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Abstract 4 

Understanding domestic dog population dynamics is critical for rabies control, particularly in 5 

sub-Saharan Africa where domestic dogs are the primary virus reservoir. This study 6 

investigates demographic and environmental determinants of dog ownership in Tanzania’s 7 

Mara region, a rabies-endemic area with ecologically diverse landscapes. Using a cross-8 

sectional household survey (n = 27,400 households), we employed mixed-effects models to 9 

assess predictors of dog ownership, dog counts, and Human-to-Dog Ratios (HDRs). 10 

Overall, 12,975 households (47%) owned dogs, with a mean of 2.2 dogs per dog-owning 11 

household. Logistic regression revealed key predictors of ownership: urban households had 12 

reduced odds of dog ownership (OR = 0.311, CI: 0.132-0.734, while ownership likelihood 13 

increased with larger household size (adults: OR = 1.151, CI: 1.134-1.169; children: OR = 1.160, 14 

CI: 1.140-1.180), and crop (OR = 1.502, 95% CI: 1.384-1.630), shrub (OR = 1.387, 95% CI: 1.269-15 

1.515), or tree land cover (OR = 1.708, 95% CI: 1.260-2.314) compared to built areas. 16 

However, among dog-owning households, variables had minimal practical impact on dog 17 

counts with most households (85.6%) owning 1–3 dogs regardless of household size, location, 18 

or land cover. Urban districts exhibited significantly higher HDRs (18.3:1 vs. rural 7.1:1), 19 

further influenced by land cover (tree: 5.1:1 vs. built: 8.7:1). 20 



These findings highlight a critical divergence: while contextual factors strongly predict dog 21 

ownership, they do not meaningfully influence the number of dogs owned.  Consequently, 22 

effective vaccination programmes require strategies tailored to local dog density and 23 

ownership patterns. 24 
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Introduction 30 

Rabies, a deadly zoonotic disease transmitted through the bites of infected animals, claims 31 

approximately 59,000 human lives annually, with over 95% of cases occurring in Africa and 32 

Asia (Hampson et al., 2015). Domestic dogs are responsible for over 99% of human rabies 33 

exposures, serving as the primary reservoir for the virus in rabies-endemic regions 34 

(Cleaveland, 1998; Cleaveland et al., 2006; Lembo et al., 2008). To eliminate dog-mediated 35 

human rabies by 2030, the World Health Organization (WHO), the World Organisation for 36 

Animal Health (WOAH), and the Food and Agriculture Organization of the United Nations 37 

(FAO) advocate for mass dog vaccination as the cornerstone strategy (FAO, 2025; WHO, 2018; 38 

WOAH, 2025). While dog vaccination is effective in reducing transmission, its successful 39 

implementation hinges on achieving high and uniform vaccination coverage (Cleaveland et 40 

al., 2006; Ferguson et al., 2025, 2015; Townsend et al., 2013). Higher and more geographically 41 



even vaccination coverage reduces transmission bottlenecks and increases the likelihood of 42 

sustained herd immunity (Fine, 1993), both important for rabies elimination. This in turn 43 

requires accurate dog population data enabling the calculation of vaccine requirements, 44 

identification of high-risk transmission zones, and adaptation of vaccination delivery 45 

strategies to local ownership practices and veterinary practices, all of which are critical for 46 

achieving the desired vaccination coverage. These data include ownership patterns, spatial 47 

distribution of households, and human-to-dog ratios (HDR), which remain poorly 48 

characterised in many rabies endemic regions within sub-Saharan Africa (Bouli et al., 2020; 49 

Fitzpatrick et al., 2012; Lembo et al., 2008; Sambo et al., 2018). 50 

Despite being 100% preventable, rabies persists as a serious public health threat in East Africa, 51 

disproportionately affecting rural communities with limited access to human rabies post-52 

exposure prophylaxis (Hampson et al., 2015, 2008; Knobel et al., 2005; Sambo et al., 2013). 53 

Dog vaccination has not yet been implemented at scale in most of sub-Saharan Africa, and 54 

where dog vaccination has been undertaken incomplete population data leads to vaccination 55 

coverage gaps (Butler and Bingham, 2000; Conan et al., 2015; Gibson et al., 2015; Gsell et al., 56 

2012; Mancy et al., 2022; Monroe et al., 2021; Moran et al., 2022). These challenges are 57 

exacerbated in ecologically diverse regions like the Mara region in northern Tanzania, which 58 

comprises a mosaic of croplands, shrublands, and rapidly growing towns. This region 59 

exemplifies the complex interplay of ecological and socioeconomic drivers of dog ownership. 60 

Localised data on how household demographics and land use interact to shape dog 61 

populations will help planned vaccination campaigns avoid misjudging vaccination targets, 62 

which could fuel perceptions about the ineffectiveness of dog vaccination. 63 



Current gaps in knowledge regarding the size and distribution of dog populations in rabies 64 

endemic settings such as East Africa limit the precision of rabies control strategies. While prior 65 

work has linked dog ownership to household size or socio-economic status, few studies have 66 

integrated environmental variables like land cover or examined how these factors influence 67 

dog ownership (Gsell et al., 2012; Knobel et al., 2008; Moran et al., 2022; Perry, 1993; Wallace 68 

et al., 2017).  Furthermore, Human-to-Dog Ratios (HDRs) are often extrapolated from coarse 69 

population data aggregated to administrative boundaries rather than being derived from 70 

ecological or livelihood measures (Moran et al., 2022; Sambo et al., 2018, 2017; Sudarshan et 71 

al., 2001; Voupawoe et al., 2022). This oversight is problematic in regions undergoing rapid 72 

land use change, where shifting agricultural practices or urban expansion may affect the 73 

distribution of dog populations with equal rapidity, rendering previous estimates inaccurate. 74 

This study investigates demographic, spatial, and environmental determinants of dog 75 

ownership and population size in the Mara region of Tanzania. Using household survey data, 76 

we analyse how household composition (including size and age structure), land cover, and 77 

urban-rural classification predict both the likelihood of owning dogs and the number of dogs 78 

per household.  We further examine how household size itself varies across land cover types 79 

and urban-rural settings, reflecting underlying socioeconomic patterns. To contextualise 80 

these findings, we also assess HDRs at different administrative levels (ward and district), 81 

comparing urban versus rural areas and distinct land cover categories (e.g., croplands, 82 

shrublands) using negative binomial regression models. By integrating these predictors, this 83 

work advances frameworks for granular dog population estimation to inform mass dog 84 

vaccination for effective rabies control. 85 

Methods 86 



Study area  87 

This study was conducted in the Mara Region, located in northern Tanzania identified in 88 

Figure 1A. Mara is one of the country's 31 administrative regions, covering approximately 89 

30,150 square kilometres, of which about 10,942 square kilometres (36%) consists of water 90 

bodies, primarily Lake Victoria. According to the 2022 Human Population and Housing Census, 91 

the region has a human population of 2,372,015 (Tanzania National Bureau of Statistics and 92 

President’s Office, 2024). The regional capital is Musoma Municipality. 93 

Mara borders Kenya and Uganda to the north, Arusha Region to the southeast, Simiyu Region 94 

to the south, and Mwanza Region to the southwest. The region is known for its rich 95 

biodiversity and forms part of the Serengeti ecosystem, which includes Serengeti National 96 

Park, a globally recognised conservation area. 97 

Administratively, Mara Region is divided into nine Local Government Authorities (LGAs): 98 

Musoma Municipal Council, Bunda Town Council, Tarime Town Council, Bunda District 99 

Council, Butiama District Council, Musoma District Council, Rorya District Council, Serengeti 100 

District Council, and Tarime District Council. Of these, Musoma Municipal is considered urban, 101 

while the others are rural. In this paper, the term "district" is used throughout this study to 102 

refer to councils. Rural districts are divided into wards, then wards are divided into villages, 103 

and villages are further divided into sub-villages (vitongoji), whereas urban districts are 104 

divided into wards and then into streets, which serve as the smallest administrative units.  In 105 

this paper, the term "village" is also used to also represent "street" in urban areas. A map of 106 

the Mara region’s wards coloured by the urban/rural split is shown in Figure 1B.  107 



Agriculture, forestry, and fishing account for 72.2% of employment in the Mara region; other 108 

important economic activities include mining, tourism, and other professional activities that 109 

include trade, teaching, healthcare provision, and public service (Tanzania National Bureau of 110 

Statistics and President’s Office, 2024). 111 

Household survey and sampling procedures  112 

Data was collected across the Mara region, through a cross-sectional survey conducted in 113 

November 2022. 104 of the Mara region wards were selected for the study, aligning with 114 

those chosen for an ongoing randomised controlled trial (RCT) of mass vaccination delivery 115 

strategies (ISRCTN registration number: 14813279). Within each ward the central-most village 116 

was then selected as the study village for the ward such that each study village was not in 117 

direct contact with another study village to avoid contamination within the RCT. 118 

The household survey was carried out by sub-village leaders (or street leaders in urban areas) 119 

within the study districts. Each of the study sub-villages was assigned one enumerator who 120 

was familiar with the households and geographical boundaries of their respective sub-villages 121 

(or blocks/neighbourhoods in urban areas). Enumerators systematically visited each 122 

household in the sub-village and recorded demographic data on both humans and dogs. Data 123 

collection was conducted using the Open Data Kit platform (ODK, 2022). Prior to data 124 

collection, enumerators received training on the use of the data collection tool and on the 125 

standard operating procedures for conducting the survey. In each household, after obtaining 126 

verbal consent from the respondent, a questionnaire was administered to the household 127 

head or another family member over the age of 18 (Supplemental Table 1). Data was collected 128 

on the total number of people living in the household, specifying adults i.e., above 18 years 129 

of age, and children, as well as the total number of dogs owned (specifying adult dogs and 130 



puppies below 3 months) and the geo-location (latitude, longitude) and altitude of each 131 

visited household were recorded. 132 

 133 

 134 

 135 

Figure 1. Spatial context and survey coverage of the Mara region, Tanzania. (A) Map of Tanzania with 136 

the Mara region highlighted in blue. (B) Administrative wards of the Mara region: rural wards (orange) 137 

and urban wards in the Musoma Municipal Council (blue). (C) Land cover, with district boundaries 138 

within the Mara region in black:  shrubs (yellow), crops (orange), built (red), trees (green), water (blue). 139 

(D) Surveyed household distribution: retained households (blue circles), households excluded during 140 

data cleaning (orange circles), and protected areas/national parks (green). 141 

Data cleaning of the household survey 142 



Data cleaning was carried out prior to analysis to remove irregularities identified in the data. 143 

Both the data cleaning process and the later data analysis was carried out using R version 144 

4.5.1 (R Core Team, 2025), and a link to a GitHub repository with these processes can be found 145 

in the supplemental information. A flowchart of the data cleaning process is provided in 146 

Figure 2. 147 

 148 

Figure 2. Data Cleaning Flowchart. Flowchart illustrating the sequential exclusion of households 149 

during data cleaning for a household survey in the Mara Region, Tanzania. The main vertical flow 150 

shows the number of households at the beginning of each step, while rightward branches indicate 151 



excluded households.  From the initial 36,956 households, 27,400 (74.1%) were retained for final 152 

analysis. 153 

1,518 records associated with enumerators who recorded fewer than 10 households were 154 

excluded to mitigate inconsistencies arising from data entry errors (e.g., misspelled names 155 

fragmenting enumerator identities) and to ensure sufficient sample sizes per enumerator for 156 

reliable analysis. Additionally, 1,020 records associated with any enumerator name that only 157 

reported records from households that owned dogs were also removed as enumerators had 158 

mistakenly not also collected data from non-dog owning households (dog-biased 159 

enumerators, Figure 2), which would artificially inflate ownership rates. One survey question, 160 

intended to capture the total number of dogs owned by a household (adults and puppies) was 161 

misunderstood by some enumerators who mistakenly recorded only the number of adult 162 

dogs. For household records where the reported number of puppies exceeded the total 163 

number of dogs owned, we assumed that the enumerator had included only adult dogs in 164 

their assessment of the total number of dogs owned by a household. We also assumed that 165 

the enumerator had made this mistake for all other households that they collected data from. 166 

For the affected records, the total number of dogs owned by a household was used to 167 

represent the number of adult dogs, and the total number of dogs was calculated as the sum 168 

of this variable and the total number of puppies. 870, households belonging to a subvillage 169 

with less than five recorded households were also removed as these are unlikely to be 170 

representative of that area. 171 

To align household locations with land cover data, GPS coordinates were first cleaned to 172 

address inaccuracies. A total of 3,923 households sharing identical coordinates (likely due to 173 

GPS signal errors or device limitations) were excluded to avoid spatial clustering artifacts. 174 



Remaining households were then mapped to a Sentinel-2 land cover (Sentinel Hub, 2022) 175 

classification (Figure 1C) comprising five categories: built (areas dominated by closely spaced 176 

buildings), shrublands (low-lying woody vegetation), croplands (actively cultivated 177 

agricultural areas), trees (dense tree coverage), and water (natural or artificial water bodies). 178 

To ensure spatial reliability, 480 households with low-precision GPS recordings (>50 metres, 179 

as measured by the mobile survey application) and five households with coordinates outside 180 

the study area were removed. During data cleaning, four households were found to be 181 

erroneously geolocated within water bodies and were therefore excluded from the analysis 182 

as they were considered to be GPS errors.  183 

During data cleaning, 1,062 households were excluded for being unoccupied (containing no 184 

adults or children). Additionally, it was noted that some households were atypical residences, 185 

such as schools or community centres, leading to abnormally high counts of people and dogs, 186 

while others exhibited extreme values, possibly resulting from data entry errors. To address 187 

these anomalies, z-scores were calculated for each variable (adults, children, dogs, puppies), 188 

and values exceeding three standard deviations from the mean were classified as outliers. A 189 

total of 678 households were removed through this process. Crucially, zero values (e.g., 190 

households without dogs or children) were excluded from z-score calculations to prevent 191 

skewing thresholds for non-zero entries. A map of all the surveyed households coloured by 192 

inclusion or exclusion is shown in Figure 1D.   193 

Analysis of Household Composition and Dog Ownership  194 

To assess variation in household size across ecological and administrative contexts, household 195 

composition (total humans, adults, and children under 18) was analysed using mixed-effects 196 

negative binomial regression with village as a random intercept to account for clustering 197 



effects. Predictor variables included land cover type (built, crops, shrubs, trees) and urban-198 

rural classification. Model selection was performed using the dredge function in the MuMIn 199 

package to identify the best-fitting model through automated comparison of all possible 200 

subsets, with selection based on the lowest Akaike Information Criterion (AIC). 201 

Multicollinearity was assessed via variance inflation factors (VIF) from the car package, with 202 

all VIF values below 2.0, well under the conservative threshold of 5, indicating no problematic 203 

multicollinearity. We further examined bivariate relationships between predictors, finding 204 

expected associations that did not affect model stability (Supplemental Table 2a/2b). 205 

Two mixed-effects regression models were developed to analyse dog populations. For dog 206 

ownership, a mixed-effects logistic regression model with village random intercepts was used, 207 

with dog ownership as the binary outcome variable. For the number of dogs owned, a mixed-208 

effects negative binomial regression model with village random intercepts accounted for 209 

overdispersion in the count data. This analysis was restricted to households with at least one 210 

dog. Both models included the number of adults and children under 18 years in the 211 

household, land cover type, and urban-rural classification as predictor variables, and followed 212 

the same automated model selection procedure using dredge and multicollinearity 213 

assessment via VIF as described above.  Model performance was evaluated using Nakagawa's 214 

marginal R² (variance explained by fixed effects) and conditional R² (fixed + random effects). 215 

HDRs were analysed at multiple ecological scales using a hierarchical approach. The 216 

fundamental HDR for any given area (e.g., a village, district, or land cover class) was calculated 217 

as the total number of people (including children) from all surveyed households divided by 218 

the total number of dogs and puppies from those same households. Overall HDRs with 95% 219 

confidence intervals were calculated for urban-rural classifications and land cover types using 220 



village bootstrapping (10,000 iterations) to account for sampling variability. This method 221 

involved resampling villages with replacement within each category and recalculating the 222 

total human-to-dog ratio for each bootstrap sample, thereby generating a distribution of 223 

possible HDRs from which confidence intervals were derived. Village medians and 224 

interquartile ranges (IQR) were derived from village-aggregated HDRs after filtering villages 225 

with no recorded dogs to avoid infinite HDRs. Mixed-effects negative binomial regression 226 

models with village random intercepts assessed statistical differences between categories, 227 

with incidence rate ratios (IRR) and 95% Wald confidence intervals estimated for fixed effects. 228 

Model performance was evaluated using Nakagawa's marginal and conditional R².  229 

District and regional dog populations were estimated by applying the survey-derived HDRs to 230 

2022 National Census human population data (Tanzania National Bureau of Statistics and 231 

President’s Office, 2024). For each district, the HDR was calculated from all surveyed 232 

households within its boundaries. District-specific HDRs were calculated from all surveyed 233 

households within the district, with 95% confidence intervals generated through village 234 

bootstrapping (10,000 iterations) for districts with less than three sampled villages. For 235 

districts with insufficient sampled villages (Bunda DC; n = 2), point estimates are reported 236 

without CIs due to limited sampling precision. The regional HDR was derived from all surveyed 237 

households across the Mara Region. Final dog population estimates and their confidence 238 

intervals were calculated by dividing the human population by the bootstrapped HDR 239 

distribution, with the upper HDR confidence bound yielding the lower bound for the dog 240 

population and vice versa, thereby propagating the uncertainty from the HDR estimate. 241 

Ethical approval  242 



This research was approved by the Ifakara Health Institute Review Board (IHI/IRB/No. 16-243 

2021), and Tanzania’s National Institute for Medical Research (NIMR/HQ/R.8a/Vol.IX/3701). 244 

 245 

Results 246 

A total of 36,956 households were surveyed from a total of 104 villages.  The process of data 247 

cleaning removed 9,556 households (25.8%), leaving 27,400 households remaining 248 

(Supplemental Table 3, Figure 1D). These households were distributed across land cover types 249 

as follows: 13,857 (50.6%) in built areas, 7,288 (26.6%) in shrub areas, 6,028 (22%) in crop 250 

areas, and 227 (0.8%) in tree areas. From these households, 124,635 adults were recorded, 251 

as well as 84,838 children, totalling 209,473 people. Correspondingly, a total of 27,919 dogs 252 

were recorded in these households (22,049 adults and 5,870 puppies).   253 

Household size 254 

The median household size was 7 people (IQR: 5-10), with a median of 4 adults (IQR: 2-6) and 255 

3 children (IQR: 2-4) per household. The distribution of people per household is shown in 256 

Figure 3A. 257 

Using a multivariable mixed-effects model with village random effects to account for 258 

clustering, neither land cover nor urban-rural classification significantly predicted household 259 

size while village accounted for 19% of household size variance (Supplemental Table 4). Urban 260 

households showed negligible size differences compared to rural households (IRR = 1.001, 261 

95% CI: 0.861-1.164, p = 0.990). Similarly, crop-dominated areas exhibited no significant 262 

difference from built areas (IRR = 0.999, 95% CI: 0.982-1.016, p = 0.899), nor did tree-263 

dominated areas (IRR = 0.962, 95% CI: 0.900-1.028, p = 0.249). Households in shrub-264 



dominated areas showed a marginal increase, though this did not reach statistical significance 265 

(IRR = 1.016, 95% CI: 0.997-1.035, p = 0.098). 266 

Dog Ownership 267 

Of the 27,400 households surveyed, 12,975 (47%) households reported owning dogs. Dog-268 

owning households owned a median of 2 dogs (IQR: 1-3).  Of the 27,400 households surveyed, 269 

3,195 (12%) of these households owned puppies. Puppy owning households had a median of 270 

1 puppies per household (IQR: 1-2). The distribution of dogs per household is shown in Figure 271 

3B. 272 

   273 

Figure 3. Distribution of household occupants and dog ownership in the Mara region, Tanzania. 274 

(A) Histogram of the number of people per household.  Household sizes ranged from 1 to 23, with a 275 

median of 7 people per household. (B) Histogram of dogs per household. Dog ownership ranged from 276 

0 to 1 3 dogs, with 14,425 households (53%) reporting no dogs.  Data is based on 27,400 households 277 

surveyed (see Figures 1 & 2). 278 



The multivariable mixed-effects logistic regression analysis identified several significant 279 

predictors of dog ownership (Supplemental Table 5). Households with more adults were more 280 

likely to own dogs, with each additional adult increasing the odds of dog ownership by 281 

approximately 15% (OR = 1.151, 95% CI: 1.134-1.169, p < 0.001). Similarly, the number of 282 

children under 18 years of age increased the likelihood of dog ownership, with each additional 283 

child raising the odds by approximately 16% (OR = 1.160, 95% CI: 1.140-1.180, p < 0.001). 284 

Land cover was significantly associated with differences in dog ownership. Households 285 

located in areas dominated by crops had approximately 50% higher odds of owning dogs 286 

compared to those in built areas, i.e. the reference category (OR = 1.502, 95% CI: 1.384-1.630, 287 

p < 0.001). Similarly, households in areas characterised by shrub-dominated land had 288 

approximately 39% higher odds of owning dogs (OR = 1.387, 95% CI: 1.269-1.515, p < 0.001), 289 

while those in tree-dominated areas were approximately 71% more likely to own dogs 290 

compared to households in built areas (OR = 1.708, 95% CI: 1.260-2.314, p < 0.001). 291 

Households in the one urban district, Musoma Municipal were substantially less likely to own 292 

dogs compared to households in the other rural districts of the Mara region (OR = 0.311, 95% 293 

CI: 0.132-0.734, p = 0.008). Figure 4 provides a summary of factors that influenced the number 294 

of dogs owned by dog-owning households. Model diagnostics confirmed no evidence of 295 

multicollinearity among the variables, with all variance inflation factors (VIFs) below 5. Model 296 

dredging to identify the most parsimonious model resulted in the same significant predictors 297 

as the initial analysis. The final model had a conditional R2 of 0.402 and a marginal R2 of 0.098. 298 

Dog-owning households with more adult people were slightly more likely to own more dogs, 299 

with each additional adult increasing the expected number of dogs by 4% (IRR = 1.035, 95% 300 

CI: 1.029–1.041, p < 0.001). Similarly, households with more children under 18 years of age 301 



were also associated with an increase in the number of dogs owned, with each additional 302 

child raising the expected number of owned dogs by approximately 4% (IRR = 1.035, 95% CI: 303 

1.027–1.042, p < 0.001). Dog-owning households in areas with crop land cover owned a mean 304 

of 2.2 dogs (SD = 1.48), which was significantly higher than the mean number of 2.1 dogs 305 

(SD=1.59) owned by households in areas with built land cover (IRR = 1.067, 95% CI: 1.031-306 

1.103, p < 0.001). The households in shrub areas also owned a mean of 2.2 dogs (SD = 1.43) 307 

however this was not significantly different from the households in built areas (IRR = 1.031, 308 

95% CI: 0.994-1.070, p = 0.097). Households from areas with tree land cover had a mean of 309 

2.3 dogs (SD = 1.60) and this was significantly different from those from built areas (IRR = 310 

1.127, 95% CI: 1.009-1.261, p = 0.035). Urban-rural classification was excluded from the best 311 

fitting model due to a lack of statistical significance (Supplemental Table 6a/6b). A summary 312 

of these factors influencing the number of dogs owned by dog-owning households are shown 313 

in Figure 4. Model diagnostics confirmed no evidence of multicollinearity among the 314 

variables, with all variance inflation factors (VIFs) below 5. The final model had a conditional 315 

R2 of 0.147 and a marginal R2 of 0.044. 316 



 317 

Figure 4. Forest Plots of Predictor Effects on Dog Ownership Outcomes. Effect sizes are shown 318 

as odds ratios (Dog Ownership model) and incidence rate ratios (Dog Count model) with 95% 319 

confidence intervals. Red markers indicate statistically significant effects (confidence intervals do 320 

not include 1, Wald Test). Predictors include the number of adults and children under 18 in the 321 

household, land cover classifications (crop, shrub, and tree) relative to the reference (built), and urban 322 

households relative to the reference (rural households). Dashed vertical line represents no effect 323 

(ratio = 1).  Household counts were restricted to dog-owning households in the Dog Count model. 324 

Human-Dog Ratios 325 

With a total human population of 209,473 and a total dog population of 27,919, the region is 326 

estimated to have an overall HDR of 7.5 humans per dog. Analysis of village-level data 327 

revealed that rural areas showed a median HDR of 6.7 (IQR: 4.8-11.2) versus urban areas 328 

(20.9; IQR: 8.7-34.6). Mixed-effects modelling confirmed significantly higher Human-to-Dog 329 



Ratios (HDRs) in urban settings (IRR = 2.49, 95% CI: 1.600-3.860, p < 0.001, Figure 5A) 330 

(Supplemental Table 7). This model had a conditional R2 of 0.831 and a marginal R2 of 0.151. 331 

Land cover analysis of village-level data showed parallel patterns: built areas (median: 7.5, 332 

IQR: 5.1-14.9), shrubs (median: 6.4, IQR: 4.2-9.4), crops (median: 6.5, IQR: 4.2-9.3), and trees 333 

(median: 3.6, IQR: 2.4-7.3). All land cover types differed significantly from built areas (p < 334 

0.001, Figure 5B) (Supplemental Table 8). This model had a conditional R2 of 0.703 and a 335 

marginal R2 of 0.064. 336 

 337 

Figure 5. Predictors of the Number of Dogs Owned by Dog-Owning Households. (A) Distribution of 338 

village HDRs in urban versus rural districts. Rural districts had significantly lower HDRs (median HDR = 339 

6.7) than urban districts (median HDR = 20.9). (B) Distribution of village HDRs across land cover types. 340 

Built areas show the highest HDRs (median = 7.5), followed by crop (median = 6.5), shrub (median = 341 



6.4), and tree areas (median = 3.6). Each box represents the interquartile range (IQR), with the central 342 

line indicating the median village HDR. Y-axes are log-transformed to normalise skewed distributions. 343 

Estimating the Mara region dog population 344 

District-level dog population estimates revealed substantial heterogeneity across the Mara 345 

Region (Supplemental Table 9). Tarime DC had the highest estimated dog population (53,637; 346 

95% CI: 51,673-55,591 dogs), while Musoma MC had the lowest (8,948; 95% CI: 8,103- 9,826 347 

dogs). Summing district estimates yielded a regional total of 345,565 dogs, while 348 

extrapolation using the overall regional human-to-dog ratio (7.5; 95% CI: 7.4–7.6) gave 349 

316,147 dogs (95% CI: 310,807–321,587), representing a difference of 29,418 dogs (8.5%) 350 

between the two estimation methods. 351 

Discussion 352 

Across the Mara region in northwest Tanzania, we found high levels of dog ownership with 353 

47% of households owning dogs with a mean of 2.2 dogs per dog-owning household. More 354 

specifically, we identified household composition, land cover, and urban-rural classification 355 

as significant predictors of dog ownership in the Mara region. The odds of owning at least one 356 

dog were strongly associated with rural households and crop/tree-dominated land cover, 357 

while urban households had lower odds of dog ownership. Among dog-owning households, 358 

the number of dogs owned showed minimal variation across predictors, with relatively small 359 

effect sizes even for statistically significant factors. District-level HDRs revealed stark 360 

disparities (Tarime TC: 2.6:1 - Musoma Municipal: 18.3:1), informing two regional dog 361 

population estimates: 316,147 dogs using the overall regional HDR, and 345,565 dogs from 362 

summing district-level estimates. 363 



The association between dog ownership and rural/agricultural settings reflects dogs' 364 

functional roles in agrarian livelihoods, specifically with dogs serving as guardians against 365 

wildlife predation of crops and livestock, a pattern documented across sub-Saharan Africa 366 

(Butler and Bingham, 2000; Czupryna et al., 2016; Knobel et al., 2008; Murungi et al., 2025; 367 

Sambo et al., 2018). Land cover reinforced this relationship, with elevated dog ownership in 368 

crop- and shrub-dominated areas where subsistence crops and livestock production prevail, 369 

while urban households had lower rates (OR = 0.31), possibly resulting from diminished 370 

agricultural utility and reduced household space.  Notably, households in tree-dominated 371 

landscapes had the strongest association with dog ownership, but we acknowledge the 372 

limited sample size (0.8% of households) and so caution against overinterpretation. Future 373 

studies could target households in tree-dominated areas for more thorough investigation. 374 

Additionally, while these variables showed statistical associations, the model's low 375 

explanatory power (marginal R² = 0.098) indicates these variables alone cannot fully explain 376 

dog ownership patterns and unmeasured variables like cultural or religious preferences or 377 

economic constraints likely further contribute. 378 

These ownership patterns directly shape Human-to-Dog Ratios (HDRs), manifesting in stark 379 

rural-urban disparities (mean: 7.1 vs 18.3). This aligns with broader African studies 380 

(Cleaveland et al., 2014; Sambo et al., 2018) and confirms that dogs are most common in 381 

agricultural zones where their protective functions are valued. While land cover (marginal R² 382 

= 0.064) and urban-rural classification (marginal R² = 0.151) were significant predictors, their 383 

modest explanatory power indicates livelihood practices alone cannot fully account for HDR 384 

variation. Nevertheless, these patterns have operational significance and vaccination 385 



campaigns could use this for prioritising areas where both dog ownership and rabies 386 

transmission risks peak. 387 

While household composition variables were statistically significant predictors of numbers of 388 

dogs owned, their practical relevance is limited. For instance, each additional household 389 

resident only increased the expected dog count by 4%. These marginal increases suggest that, 390 

even in households with large families, the difference in dog numbers is negligible: a 391 

household with 10 residents would own approximately 1.4 dogs on average, compared to 1 392 

dog in a household with 1 resident, a difference unlikely to translate to meaningful variation 393 

in rabies transmission risk or resource demands. Similarly, the land cover disparity in dogs 394 

owned per dog-owning household, though statistically significant, reflects only a modest 395 

difference. These findings imply that dog counts are largely decoupled from household 396 

demographics or land cover once ownership is established. The trend of 1–3 dogs per 397 

household, regardless of household size, was consistent with similar studies (Durr et al., 2009; 398 

Kitala et al., 2001; Murungi et al., 2025). This typical pattern of owned dogs may also reflect 399 

unmeasured variables such as economic capacity, dog utility (e.g., guarding, herding), or 400 

owner preferences. Future studies should incorporate qualitative methods to explore these 401 

latent drivers, as quantitative predictors alone are insufficient to explain these patterns of 402 

dog ownership. 403 

Dog population estimates are critical for vaccination campaign logistics, informing vaccine 404 

procurement, resource allocation, and coverage assessment. Our study yielded two regional 405 

estimates: 345,565 dogs (district-aggregated) and 316,147 dogs (regional HDR-derived), a 406 

difference of 29,418 dogs (8.5%). This discrepancy reflects the methodological differences 407 

between the approaches; the district-summed estimate is sensitive to local HDR variation, 408 



while the regional estimate, using the survey-wide ratio, benefits from greater precision due 409 

to compensatory effects across districts. The notably small magnitude of this difference, 410 

despite these distinct methods, provides confidence in the robustness of the overall estimate. 411 

Both values provide actionable baselines, though their precision depends on representative 412 

sampling across ecological gradients. As land cover significantly influences ownership 413 

patterns, uneven sampling across these strata could bias HDRs, possibly affecting their 414 

accuracy. While valuable for regional planning, these estimates should not be extrapolated 415 

nationally as Tanzania's diverse cultural and ecological landscapes likely yield different 416 

human-dog dynamics than those in the Mara. 417 

While this study provides critical insights into dog ownership patterns, several conceptual and 418 

contextual limitations warrant consideration. The analysis focused on household-level 419 

predictors but did not capture individual-level factors such as religious practices, cultural 420 

beliefs, income disparities, or owner perceptions of dogs as economic assets versus 421 

companions, all of which have been shown to impact attitudes towards dog ownership 422 

(Cleaveland et al., 2014; Conan et al., 2015; Knobel et al., 2008; Sambo et al., 2024, 2018). In 423 

the predominantly Christian Mara region (Tanzania National Bureau of Statistics and 424 

President’s Office, 2024), Islamic views of dogs as impure likely have limited impact, but 425 

religion remains an important consideration for broader Tanzanian studies. These 426 

unmeasured variables may explain residual variation in ownership rates, particularly in 427 

urbanising areas where shifting livelihoods could redefine human-dog relationships. 428 

Accounting for these variables in subsequent research would enhance predictive models for 429 

rabies vaccination planning.  430 



The study’s cross-sectional design precludes causal inference; longitudinal data are needed 431 

to assess how land use changes (e.g., urban expansion, deforestation, or shrubland being 432 

converted to cropland) dynamically influence dog populations over time. Geographic and 433 

temporal generalisability is also uncertain. Furthermore, the timing of the survey may 434 

introduce some temporal bias. While domestic dogs in sub-Saharan Africa generally lack a 435 

discrete breeding season (Gsell et al., 2012; Mutembei et al., 2002), their reproductive success 436 

can be influenced by seasonal resource availability (Ortega-Pacheco et al., 2007; Conan et al., 437 

2015). As data collection occurred in November, immediately following the main dry season, 438 

the observed population may reflect seasonal fluctuations; however, due to the short study 439 

timeframe, we cannot determine the significance of this potential effect. 440 

This study by design focuses on owned dogs as it was carried out in tandem with a rabies 441 

vaccination campaign focussing on owned dogs. Evidence suggests that unowned dogs are 442 

negligible within the Mara region (Kaare et al., 2009; Maganga et al., 2018) and neighbouring 443 

districts (Czupryna et al., 2016). However, as urbanisation accelerates, this assumption may 444 

require re-evaluation, as urban and peri-urban areas could develop transient dog populations. 445 

In other regions with different cultural contexts or less established vaccination programs, 446 

unowned dogs may represent a more substantial proportion of the dog population. 447 

Methodological limitations emerged during data cleaning, primarily stemming from 448 

enumerator inconsistencies and technical challenges. A small number of enumerators 449 

demonstrated sampling bias by preferentially visiting dog-owning households, potentially 450 

inflating ownership rates in initial records. Similarly, misunderstanding of the questions 451 

regarding household dog ownership by some enumerators led to miscounted totals, while 452 

inconsistent enumerator name entries complicated quality control across survey days. 453 



Additionally, GPS inaccuracies resulted in misaligned household coordinates, 454 

disproportionately affecting densely populated areas. These errors were spatially clustered, 455 

with certain wards exhibiting higher exclusion rates due to enumerator teams working in 456 

localised zones. Consequently, some high-error areas are underrepresented in the final 457 

analysis. Future studies could mitigate these issues through standardised enumerator 458 

identifiers for longitudinal tracking, real-time GPS validation tools to flag low-precision 459 

entries, and more comprehensive training of enumerators. Despite these limitations, the 460 

large sample size and robustness checks across ecological zones support the validity of our 461 

findings, which generally align with broader sub-Saharan African patterns (Butler and 462 

Bingham, 2000; Cleaveland et al., 2014; Conan et al., 2015; Knobel et al., 2008; Murungi et 463 

al., 2025; Sambo et al., 2024, 2018). 464 

Understanding the spatial and demographic determinants of dog populations is critical for 465 

designing effective rabies vaccination programmes. This study highlights that dog distribution 466 

is not uniform but closely tied to land use and urbanisation. However, land use itself is 467 

heterogeneously distributed, and human settlement patterns do not align neatly with land 468 

classifications. These findings underscore the need for dynamic, iterative dog population 469 

mapping. Static estimates based on coarse administrative boundaries risk misrepresenting 470 

localised variation. Integrating land use trends (e.g., deforestation or urban expansion) into 471 

predictive models could help anticipate future shifts in dog populations, enabling proactive 472 

vaccination planning. Collaborative partnerships with local governments and agricultural 473 

extension services would further enhance data granularity, ensuring interventions align with 474 

both ecological and sociocultural realities. 475 
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