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ABSTRACT
Background: Understanding the genetic links between acute pancreatitis (AP) and its infectious comorbidities is crucial for 
prognosis and therapy, yet remains underexplored.
Methods: We conducted a comprehensive post-GWAS analysis using large-scale summary statistics for AP and 16 infectious 
diseases. To pinpoint pleiotropic genes, we integrated multi-omics data via transcriptome-wide and proteome-wide association 
studies, and resolved cell-type-specific effects using single-cell analysis. Extensive locus colocalization analyses were performed 
to validate our findings by estimating the probability of shared causal variants.
Results: This computational discovery phase prioritized 29 high-confidence pleiotropic genes, including established loci 
(SPINK1, CRP) and novel candidates (ERBB2, ALDH2, FLOT1). To functionally validate and contextualize these findings, we 
performed bulk transcriptomic analysis on peripheral blood from AP patients and employed gsMap, a spatial GWAS mapping 
algorithm, to integrate our genetic data with transcriptomics from a murine AP model, comparing pathological versus normal 
tissue. These analyses confirmed that the identified genes are dynamically regulated in a severity-dependent manner in patients 
and are activated within specific pathological niches in pancreatic tissue.
Conclusion: In conclusion, this study provides a genetic map linking AP and its infectious comorbidities, offering insights into 
potential prevention strategies and highlighting novel therapeutic targets for further investigation and validation.

1   |   Introduction

Acute pancreatitis (AP) represents a major gastrointestinal 
emergency characterized by acute pancreatic parenchymal in-
flammation, resulting in substantial morbidity and mortality. 
Global epidemiological data from 1990 to 2021 indicate that AP 
affects 814 500 individuals aged 15–39 years annually, causing 

16 800 deaths in this demographic [1]. The pathophysiology of 
AP involves the premature activation of digestive enzymes 
within pancreatic acinar cells, triggering glandular autodiges-
tion and a potent pro-inflammatory cascade. In severe cases, 
this localized process can escalate to a systemic inflammatory 
response syndrome (SIRS) and multi-organ dysfunction syn-
drome (MODS) [2]. A pivotal determinant of prognosis in severe 
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AP is the onset of secondary infection. Pancreatic necrosis, a 
complication in 10%–20% of AP cases, creates an environment 
ripe for microbial invasion. Translocation of gut bacteria is 
the primary mechanism leading to infected necrotizing pan-
creatitis (INP), a condition that develops in a third of patients 
with necrosis and is associated with mortality rates as high as 
40% [2]. The transition from sterile necrosis to infected necro-
tizing pancreatitis represents a critical inflection point where 
host defense mechanisms become overwhelmed. The recent 
COVID-19 pandemic, which saw an increased prevalence and 
severity of AP, has further highlighted a potential bidirectional 
relationship between systemic infections and pancreatic injury 
[3]. Therefore, elucidating the shared biological pathways that 
govern both susceptibility to infection and the severity of AP is 
essential for developing novel therapies to mitigate this devas-
tating complication.

Despite compelling clinical links, the shared genetic architec-
ture between AP and infectious diseases remains largely unex-
plored. While genome-wide association studies (GWAS) have 
identified loci for AP and various infections independently, this 
single-trait approach cannot systematically detect pleiotropy—
where single genetic variants influence multiple distinct phe-
notypes. Uncovering these pleiotropic effects is fundamental 
to understanding the shared heritability and biological mech-
anisms underlying this clinical comorbidity. Moving from sta-
tistical association to biological insight requires sophisticated 
post-GWAS analytical frameworks that can interrogate genetic 
signals across multiple biological layers, from the transcriptome 
and proteome to specific cellular contexts.

Here, we present a comprehensive post-GWAS investigation 
to dissect the shared genetic etiology between acute pancreati-
tis and a diverse panel of infectious diseases, including sepsis, 
streptococcal septicaemia, and tuberculosis, among others. 
First, we aimed to identify the fundamental genetic architecture 
and pleiotropic loci that confer a shared susceptibility to both 
systemic inflammation and a broad spectrum of infections. As 
outlined in our study design (Figure 1), this is achieved through 

a multi-layered analytical strategy that employs cross-trait anal-
yses, transcriptome-wide (TWAS), and proteome-wide (PWAS) 
association studies to infer causality. We systematically exam-
ined the genetic relationships between AP and 16 infectious 
conditions, including sepsis, streptococcal septicemia, intestinal 
infectious diseases (IID), viral hepatitis (VH), acute lower respi-
ratory infection (ALRI), skin and subcutaneous infections (SSI), 
cystitis, and acute tubulointerstitial nephritis (ATIN), among 
others. Second, we aim to functionally validate these genetic 
findings and translate them into a pathophysiological context. 
To achieve this, we leverage bulk transcriptomic data from 
human AP patients to confirm the clinical relevance of the iden-
tified genes, specifically by examining their expression levels in 
patients with severe AP, the subgroup most vulnerable to infec-
tion. Furthermore, we employ advanced spatial transcriptomic 
analysis in a murine AP model to pinpoint the specific cellular 
microenvironments within the pancreas where these genetic 
pathways are activated during the disease process.

2   |   Methods

2.1   |   Data Acquisition and Quality Control

GWAS summary statistics for AP and 16 distinct infectious con-
ditions were obtained from publicly available datasets, primarily 
sourced from the FinnGen consortium (R12) and Verma's GWAS 
statistics [4]. The infectious diseases investigated were sepsis, 
streptococcal septicemia, Clostridium difficile enterocolitis, 
candidiasis, IID, bacterial infections, mycoses, VH, infectious 
mononucleosis, ALRI, central nervous system inflammatory 
conditions, tuberculosis, herpes zoster, cytomegalovirus in-
fection, skin and SSI, cystitis, and ATIN (Table S1). This com-
prehensive selection of infectious phenotypes was designed to 
identify core, pleiotropic pathways of host defense, rather than 
to model only specific clinical sequelae of AP.

To ensure the validity and robustness of the genetic data for 
downstream analyses, we performed a rigorous quality control 

FIGURE 1    |    Graphical abstract of the study design.
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process. We utilized linkage disequilibrium score regression 
(LDSC) to estimate the single-nucleotide polymorphism (SNP)-
based heritability for AP and each infectious disease. The sta-
tistical significance of the heritability estimates was evaluated 
using Z-scores, with a threshold of Z > 3 considered indicative of 
a reliable genetic component suitable for further investigation. 
Furthermore, the LDSC intercept was examined to assess for 
potential confounding from factors such as population strati-
fication or cryptic relatedness. Intercepts approximating 1.0 
were deemed acceptable, suggesting minimal inflation of test 
statistics.

2.2   |   Assessment of Genetic Correlation 
and Causal Inference

We systematically quantified the shared genetic architecture be-
tween AP and each of the 16 infectious outcomes using LDSC. 
This method estimates the genetic correlation between two traits 
by regressing the product of their GWAS Z-scores against a link-
age disequilibrium score. The formula for genetic correlation is: 

rg = covg ∕

√

(

h2
g1
∗h2

g2

)

, where covg represents the genetic cova-

riance between the two traits, and h2
g1

 and h2
g2

 are their respective 
SNP-based heritabilities. To account for multiple testing across 
the 16 trait pairs, p values for genetic correlations were adjusted 
using the Benjamini-Hochberg procedure to control the false 
discovery rate (FDR).

To formally evaluate the causal relationships between AP and 
each infectious disease, we conducted bi-directional, two-
sample Mendelian Randomization (MR). For each analysis, 
genetic variants robustly associated with the exposure trait 
(p < 5 × 10−8) were selected as potential instrumental variables 
(IVs). These IVs were subsequently pruned to ensure indepen-
dence (r2 < 0.001 within a 10 000 kb window). To mitigate bias, 
we filtered out variants with low minor allele frequency (MAF 
< 0.01) and excluded weak instruments, defined as those with 
an F-statistic below 10. The primary causal estimate was derived 
using the random-effects inverse-variance weighted (IVW) 
model. In cases where an exposure was instrumented by only 
a single valid IV, the Wald ratio method was employed. A suite 
of sensitivity analyses was performed to assess the validity of 
the MR assumptions, including MR-Egger regression to detect 
directional pleiotropy and Cochran's Q statistic to evaluate het-
erogeneity among the IVs. Statistical significance for the causal 
estimates was determined using FDR correction to account for 
all bi-directional tests.

2.3   |   Cross-Trait Analysis and Identification 
of Pleiotropic Variants

To enhance statistical power for discovering loci with shared 
effects between AP and each infectious disease, we im-
plemented two complementary analytical methods. First, 
Multi-Trait Analysis of GWAS (MTAG) was applied to each 
trait pair that demonstrated a significant genetic correlation. 
MTAG leverages genetic correlation to combine informa-
tion across traits, generating more precise SNP-level asso-
ciation estimates and meta-analysis p-values (pMTAG). As a 

complementary approach, we employed CPASSOC to identify 
pleiotropic variants, a method that accounts for heterogeneity 
in genetic effects across phenotypes via the SHet test statis-
tic. Variants meeting our predefined significance criteria were 
then functionally annotated using ANNOVAR, a positional 
mapping method, to map them to their nearest genes and ge-
nomic features.

Subsequently, each significant pleiotropic locus underwent sta-
tistical fine-mapping to identify putative causal variants. This 
process involved analyzing a ±500 kb genomic region surround-
ing these SNPs using a Bayesian framework to calculate a pos-
terior inclusion probability (PIP) for each variant. Finally, a 99% 
credible set was constructed for each locus by ranking variants 
in descending order of their PIPs and including those with the 
highest probabilities until the cumulative sum reached or ex-
ceeded 0.99.

2.4   |   Multi-Omic Identification 
of Pleiotropic Genes

Recognizing that simple positional mapping is often insuffi-
cient to identify the effector genes underlying pleiotropic sig-
nals, we implemented a comprehensive multi-omic strategy 
to infer shared genetic regulators. This involved a suite of six 
complementary analyses leveraging eQTL data and mixed-
model frameworks. Gene-level associations were first imputed 
by aggregating SNP p-values within a gene into a test statis-
tic, with local linkage disequilibrium structure accounted for 
by MAGMA. These signals were then re-assessed through a 
complementary burden test implemented in GCTA-fastBAT, 
which operates on a mixed-model approximation from sum-
mary statistics. To investigate the role of genetically regulated 
gene expression, we then conducted several TWAS analyses. 
These included using sparse-Canonical Correlation Analysis 
(sCCA) with the Aggregated Cauchy Association Test (ACAT) 
to build robust cross-tissue expression models, and perform-
ing Summary-data-based Mendelian Randomization (SMR) 
to test for causal links between gene expression and disease 
risk using cis-eQTL data from relevant tissues (Whole blood 
and Pancreas) in the GTEx v8 database [5]. Moving to the pro-
teomic level, we conducted a PWAS using pre-computed pre-
diction models for 4657 plasma proteins to assess the impact 
of genetically determined protein abundance. Finally, to ex-
plore cell-type-specific effects, we applied CONtexT-spEcific-
geNeTics pipeline (CONTENT), a novel method that enhances 
the power to detect context-dependent genetic effects by de-
composing gene expression into shared and specific compo-
nents [6]. For all six methodologies, p-values were adjusted for 
multiple testing using the FDR, with a significance threshold 
of pFDR < 0.05. The European panel from the 1000 Genomes 
Project (Phase 3) served as the linkage disequilibrium refer-
ence for all analyses.

2.5   |   Bayesian Colocalization and Causal Gene 
Inference

To test whether shared association signals at a pleiotropic locus 
were driven by a common causal variant, we first performed 
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Bayesian colocalization analysis for each AP-infection trait pair. 
For each locus containing a gene implicated by our multi-omic 
analyses, we calculated the posterior probability for Hypothesis 
4 (PPH4), which represents the probability of a single shared 
causal variant. A PPH4 threshold greater than 0.6 was consid-
ered strong evidence of colocalization.

To further probe the causality of genes at these colocalized loci, 
we performed a locus-specific two-sample MR analysis. For 
each candidate gene, we selected cis-acting SNPs from the AP 
GWAS to serve as IVs. These potential IVs were required to have 
a p-value < 5 × 10−3 and were clumped to ensure independence 
(clumping window = 250 kb, r2 threshold < 0.2). The causal ef-
fect of AP on the corresponding infectious disease, mediated by 
the genetic variants at that specific locus, was then estimated. 
For loci with multiple independent IVs, the random-effects IVW 
method was applied. In cases where only a single valid IV was 
available, the Wald ratio method was employed.

2.6   |   Functional Annotation and Pathway Analysis

The functional significance of the identified pleiotropic genes 
was investigated through systematic enrichment analyses 
against canonical pathways and Gene Ontology (GO) databases. 
We used the Molecular Signatures Database (MsigDB) to iden-
tify overrepresented canonical pathways and gene ontologies. 
To pinpoint relevant cellular contexts, we conducted cell-type-
specific enrichment analysis using WebCSEA, which compares 
the gene list against expression signatures from over 110 distinct 
tissue–cell types. The FUMA platform was further utilized to 
characterize the expression patterns of these genes across nor-
mal human tissues. All enrichment analyses were corrected for 
multiple testing using the FDR method.

2.7   |   Bulk Transcriptomic Validation in Human 
Acute Pancreatitis

To validate the clinical relevance of our identified pleiotropic 
genes, we performed a differential expression analysis using a 
publicly available human bulk RNA-sequencing dataset [7]. This 
dataset comprises peripheral blood samples from AP patients, 
categorized as Mild (n = 79) and Severe (n = 8), as well as from 32 
healthy controls. Raw count data were obtained and processed 
using the DESeq2 R package. Following normalization using the 
variance stabilizing transformation (VST), we conducted differ-
ential expression analysis comparing severe AP patients against 
healthy controls. Genes were considered significantly differen-
tially expressed at FDR adjusted p-value < 0.05. We specifically 
examined the expression patterns of our high-confidence pleio-
tropic genes within this cohort to determine their association 
with disease severity.

2.8   |   Genetically Informed Spatial Mapping 
of Pleiotropic Genes

To elucidate the spatial architecture of genetic risk for acute pan-
creatitis, we implemented the gsMap (genetically informed spa-
tial mapping of cells for complex traits) algorithm, a powerful 

framework recently introduced in Nature for integrating GWAS 
data with spatial transcriptomics (ST) [8]. This approach inte-
grates GWAS summary statistics with spatially resolved single-
cell transcriptomic data to map disease-associated cellular 
patterns at single-cell resolution. We analyzed ST data from an 
alcohol- and cerulein-induced acute pancreatitis mouse model, 
comprising pancreatic FFPE sections from young (n = 2) and 
aging (n = 2) C57BL/6 male mice [9]. Based on canonical marker 
gene expression and morphological features, we annotated 
distinct cellular compartments, including acinar, ductal, endo-
crine, immune, and mesothelial cells, as well as inflammatory-
activated cells and macrophages. The gsMap algorithm was 
applied by first calculating gene-specific scores (GSS) for each 
high-prioritized pleiotropic gene. Spatial coordinates were pre-
served to maintain tissue architecture information. A high GSS 
indicates that a gene's expression is highly concentrated in a par-
ticular niche. This score was then assigned to all SNPs within a 
100 kb window, functionally annotating each SNP with the spa-
tial expression profile of its potential target gene in the context 
of pancreatitis. Human orthologs were mapped using biomaRt 
(version 2.50.3) with stringent quality filters.

2.9   |   Target Prioritization and In Silico 
Repurposing

A computational pipeline was established to identify and prior-
itize drugs for repurposing against the comorbidity of AP and 
infections. Our primary strategy involved a systematic, pathway-
based alignment of drug action with disease pathology. The set 
of high-confidence pleiotropic genes was cross-referenced with 
the DrugCentral, DGIdb, and PharmGKB databases to identify 
interacting drugs. Key pathological pathways disrupted by the 
pleiotropic genes were then defined using enrichment analysis 
via ClusterProfiler. In parallel, the pharmacological pathways 
modulated by each candidate drug were identified based on 
their known targets. A quantitative pairing score was subse-
quently calculated to measure the concordance between a drug's 
pharmacological action and the disease's pathophysiology, pri-
oritizing drugs with a high degree of overlap as promising repur-
posing candidates. For the specific methodology of the pairing 
score, please refer to the research by Gao et al. [10] As a comple-
mentary, direct-lookup approach, we also queried the DrugBank 
database to rapidly identify any established drugs known to tar-
get the pleiotropic genes.

3   |   Results

3.1   |   GWAS Data and Quality Control

We obtained GWAS summary statistics for AP, which comprised 
over 19 million SNPs, and for 17 infectious diseases, each with 
over 21 million SNPs. Detailed information on these cohorts, in-
cluding sample sizes and data sources, is provided in Table S1. 
The quality and statistical power of each GWAS were rigorously 
assessed by estimating SNP-based heritability using LDSC. Our 
quality control protocol required a trait's heritability estimate to 
be statistically significant. We found that eight of the infectious 
disease traits (Candidiasis, Central nervous system inflamma-
tory conditions, C. difficile enterocolitis, CMV infection, Herpes 
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zoster, Tuberculosis, Mycoses, Infectious Mononucleosis, and 
Streptococcal Septicemia) exhibited low and non-significant 
SNP heritability. Specifically, these traits had heritability Z-
scores < 3 with corresponding p-values approaching or ex-
ceeding 0.05. This indicates that the null hypothesis of zero 
heritability could not be rejected, suggesting a weak polygenic 
signal in these datasets. In contrast, AP and the remaining eight 
infectious disease traits demonstrated robust and significant 
SNP-based heritability, with all Z-scores substantially greater 
than 3. Notably, ATIN, Cystitis, and SSI showed the strongest 
heritability signals. Furthermore, the LDSC intercepts for all re-
tained traits were approximately 1.0 and did not deviate signifi-
cantly from this value, suggesting that confounding biases such 
as population stratification were minimal and well-controlled. 
A summary of all LDSC results is presented in Table S2.

3.2   |   Genetic Correlation and Causal Inference

We performed LDSC regression for each AP and infectious trait 
pair, identifying five pairs with statistically significant posi-
tive genetic correlations after correction for multiple testing: 
ALRI (rg = 0.48, pFDR = 0.03), Cystitis (rg = 0.43, pFDR = 0.003), 
IID (rg = 0.42, pFDR = 0.003), SSI (rg = 0.40, pFDR = 0.0084), and 
ATIN (rg = 0.35, pFDR = 0.04). Additionally, several other traits 
showed nominally significant positive correlations, includ-
ing VH (rg = 0.47), sepsis (rg = 0.42), and bacterial infection 
(rg = 0.39). Although these associations did not remain signif-
icant after FDR correction (pFDR > 0.05), they were retained 
for subsequent genetic analysis due to their strong correlation 
coefficients and clinical relevance (Figure  2A). To investigate 
whether these observed genetic correlations represent causal re-
lationships, we conducted bi-directional two-sample Mendelian 
Randomization. In the forward-direction analysis, a genetically 
predicted liability to AP was nominally associated with an in-
creased risk of five infectious diseases: VH (OR: 1.05, 95% CI: 
1.03–1.08; p = 3.28 × 10−5), Cystitis (OR: 1.05, 95% CI: 1.02–1.08; 
p = 0.24 × 10−3), SSI (OR: 1.04, 95% CI: 1.01–1.06; p = 0.008), IID 

(OR: 1.03, 95% CI: 1.01–1.06; p = 0.0124), and ALRI (OR: 1.03, 
95% CI: 1.00–1.06; p = 0.0267). After applying FDR correc-
tion, the causal effects on VH (pFDR = 0.525 × 10−3) and Cystitis 
(pFDR = 0.003) remained statistically significant (Figure 2B). In 
the reverse-direction analysis, a genetic predisposition to VH 
showed a significant causal association with an increased risk 
of AP (OR: 543.99, 95% CI: 9.52–31088.98; p = 0.002), which also 
remained significant after FDR correction (pFDR = 0.0455). No 
other infectious traits showed a nominally significant causal ef-
fect on AP risk (Figure 2C). Importantly, sensitivity analyses for 
these MR tests revealed no significant directional pleiotropy or 
heterogeneity, supporting the robustness of the causal estimates.

3.3   |   Cross-Trait Analysis and Identification 
of Pleiotropic Variants

We performed a cross-trait meta-analysis using MTAG for AP 
and eight infectious disease traits: ALRI, Cystitis, IID, SSI, 
ATIN, VH, sepsis, and bacterial infection. To specifically test for 
pleiotropy while accounting for potential heterogeneity, this was 
complemented by CPASSOC analysis. Applying a stringent sig-
nificance threshold (pMTAG < 5 × 10−8 and pCPASSOC < 5 × 10−8), 
we identified a total of 108 unique pleiotropic variants across 
the eight trait pairs. The number of variants identified per pair 
ranged from 18 to 65, with the AP-ATIN analysis yielding the 
most loci (Figure S1). Functional annotation using ANNOVAR 
revealed that three (2.8%) of the pleiotropic variants were lo-
cated in exonic regions, including rs1800947 (CRP), rs17107315 
(SPINK1), and rs7853989 (ABO). The majority of the remaining 
variants (91.7%) were located in intronic or intergenic regions 
(Figure S2; Table S3). To prioritize likely causal variants from 
these signals, we then performed Bayesian fine-mapping on 
the surrounding genomic regions (±500 kb). This analysis re-
fined 231 variants within these regions into a 99% credible set 
containing 141 putative causal SNPs. Among these, we iden-
tified nine high-confidence pleiotropic variants: rs1800947 
(CRP), rs74596724 (CRP), rs559363229 (JAKMIP2; SPINK1), 

FIGURE 2    |    Genetic correlation and bidirectional causal inference between acute pancreatitis (AP) and Infectious Diseases. (A) Forest plot dis-
playing the genetic correlations (rg) between AP and nine infectious diseases. (B) Results of forward two-sample Mendelian randomization (MR) 
assessing the causal effect of AP on each infectious disease. (C) Results of reverse-direction MR assessing the causal effect of each infectious disease 
on AP.
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rs2073823 (ABO), rs7853989 (ABO), rs8176722 (ABO), rs8176725 
(ABO), rs8176730 (ABO), and a second independent signal for 
rs559363229 (JAKMIP2; SPINK1). Notably, with the exception 
of the two CRP variants, which are located on chromosome 1 
and exhibit positive effect sizes, the remaining seven variants 
are located on either chromosome 5 or 9 and all exhibit negative 
effect sizes (Figure S3).

3.4   |   Pleiotropic Genes Identification

To identify candidate effector genes for the pleiotropic loci, we 
implemented a multi-omic analytical strategy integrating tran-
scriptomic, proteomic, and single-cell level data. At the tran-
scriptomic level, a cross-tissue analysis using sCCA identified 
24 pleiotropic genes after FDR correction, with the majority 
discovered in the AP-SSI trait pair (Table S4; Table S5). As com-
plementary approaches, two gene-based association tests that 
aggregate SNP-level signals were performed. These tests impli-
cated further candidates, with GCTA-fastBAT identifying 30 
unique genes and MAGMA identifying 8 unique genes signifi-
cantly associated with AP-infection trait pairs (Tables  S6 and 
S7). Focusing on tissue-specific effects, we identified a signifi-
cant regulatory link in the pancreas, where the SNP rs8057145 
is associated with the expression of CTRB2, influencing the risk 
of both AP and associated infections. To resolve effects at the 
cellular level, we applied CONTENT, a method that decom-
poses gene expression into context-shared and context-specific 
components to enhance statistical power. This analysis re-
vealed significant expression associations for eight genes within 
four specific immune cell populations including plasmacytoid 
dendritic cells (pDCs), CD8+ T cells, CD4+ T cells, and non-
classical monocytes (Table S8), highlighting a potential cellular 

basis for the observed pleiotropy. At the proteomic level, a PWAS 
found that the genetically predicted levels of five unique plasma 
proteins—ABO, CTRB1, CTRB2, CRP, and APOC3—were sig-
nificantly associated with the risk of eight infectious diseases 
(Table S9). This finding provides evidence for shared pathogenic 
pathways manifesting at the protein level. A comprehensive 
summary of all identified pleiotropic genes, with counts per 
methodology, is detailed in Figure 3A and Figure 3B. To vali-
date whether the 61 unique genes previously identified represent 
true shared genetic associations, we performed Bayesian colo-
calization analysis for each corresponding trait pair. Following 
this stringent analysis, 29 genes showed strong evidence of har-
boring a shared causal variant between AP and an infectious 
disease, defined by a posterior probability (PPH4) greater than 
0.6 (Figure 4A; Table 1). This high-confidence set of 29 genes 
formed the basis for all subsequent functional interrogation.

An investigation into the tissue-specific expression patterns 
of these 29 high-confidence genes revealed significant enrich-
ment in the pancreas (e.g., ABO, CRP, CTRB1, CTRB2, SPINK1) 
and liver (e.g., CRP, CUX2, SPINK1), suggesting these are pri-
mary sites of their biological function (Figure  4B). This was 
further supported by differential expression analysis, which 
showed a significant collective upregulation of this gene set 
in pancreatic tissue (Figure S4). Subsequent pathway enrich-
ment analysis highlighted significant overrepresentation in 
biological processes such as “Activation of GTPase activity,” 
“Digestion,” and molecular functions including “Serine hy-
drolase activity” (Figure 4C). Chromosomal mapping showed 
a notable clustering of these genes on chromosome 12, with 
smaller groups located on chromosomes 6 and 16 (Figure 4D). 
Cell-type specific enrichment analysis (CSEA) revealed that 
the pleiotropic genes were significantly enriched across a 

FIGURE 3    |    Multi-omic identification of candidate pleiotropic genes. (A) Circular plots illustrating the number of significant pleiotropic genes 
identified by each of the seven analytical methods for each AP-infection trait pair. (B) Radar charts showing the number of significant genes identi-
fied by each omic-level analysis after FDR correction.
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diverse range of cell types. The analysis strongly implicated 
cells of the digestive system, with the most significant en-
richment observed in Adult Ascending Colon Enterocyte pro-
genitors, Adult Stomach Goblet cells, and crucial pancreatic 
cell types such as Pancreas exocrine cells and Fetal Pancreas 
Acinar cells. Furthermore, multiple immune cell popula-
tions were also significantly enriched, including classical 
monocytes, macrophages, and dendritic cells. These findings 

indicate that the shared genetic pathways linking AP and 
infection are active in both digestive/pancreatic tissues and 
key components of the immune system (Figure 4E). Finally, 
to identify which of these genes represent potentially drugga-
ble targets, we performed a locus-specific MR analysis. After 
correction for multiple testing, this analysis revealed that the 
genetically predicted expression of all 18 tested genes had a 
significant causal association with at least one of the analyzed 

FIGURE 4    |    Functional characterization and causal inference for high-confidence pleiotropic genes. (A) Summary of Bayesian colocalization 
results (PPH4) for candidate genes. (B) Heatmap of normalized expression for high-confidence genes across various human tissues. (C) Results of 
pathway enrichment analysis. (D) Ideogram showing the chromosomal locations of the high-confidence genes. (E) Results of cell-type specific en-
richment analysis (CSEA). (F) Forest plot of locus-specific MR results testing the causal effects of gene expression on disease risk.
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traits. Notable examples include NAA25 (OR = 3.71, 95% CI: 
1.95–7.02, pFDR = 5.2 × 10−4) and BCAR1 (OR = 2.32, 95% CI: 
1.77–3.05, pFDR = 2.1 × 10−8) (Figure  4F). These convergent 
findings from multiple lines of bioinformatic evidence under-
score the robustness of these pleiotropic genes as key media-
tors of the comorbidity between AP and infectious diseases.

3.5   |   Peripheral Blood Transcriptomic Validation 
in Human Acute Pancreatitis Patients With 
Infection

Bulk peripheral-blood transcriptomes showed that, relative 
to healthy controls, patients with AP exhibited marked differ-
ential expression of genes including FLOT1, IER3, HECTD4, 
TUBB0, TRIM27, and ALDH2 (Figure 5A). Specifically, a dis-
tinct set of genes, including FLOT1, IER3, ALDH2, RPH3A, 
and DUSP23, was significantly upregulated in the periph-
eral blood of AP patients, satisfying the criteria of a log2(fold 
change (FC)) > 0.5 and an FDR-adjusted p-value < 0.05. Other 
genes, including TRIM27, BRAP, and TRAFD1, demonstrated 
a trend towards upregulation but did not meet the statistical 
significance (Figure  5A,B). Critically, the expression levels 
of several of these pleiotropic genes correlated with disease 
severity, a clinically relevant finding as increased severity is 
strongly associated with the development of infection. We ob-
served a stepwise, severity-dependent increase in the expres-
sion of FLOT1, IER3, RPH3A, and DUSP23 whereas ALDH2 
and TRIM27 showed no significant differences between mild 
and severe disease (Figure 5C).

3.6   |   Genetically Informed Spatial Mapping

Application of the gsMap algorithm to spatial transcriptomic 
data from murine acute pancreatitis revealed heterogeneity in 
the spatial distribution of pleiotropic gene expression across 
pancreatic tissue architecture. The GSS, which quantifies the 
relative expression specificity of each gene within distinct 
spatial compartments, demonstrated that pleiotropic genes 
associated with AP-infection comorbidity are not randomly 
distributed but exhibit compartmental localization reflecting 
their functional roles in disease pathogenesis. We first uti-
lized pathological and normal pancreata ST data to perform 
regional mapping based on canonical marker genes. Using 
established pancreatic cell type markers from the Human 
Protein Atlas and PanglaoDB databases, combined with di-
mensionality reduction and unsupervised clustering, we an-
notated distinct cellular compartments within the ST data. 
Figure  6A revealed reorganization of cellular architecture 
during pancreatitis. The pathological sections showed dis-
ruption of normal acinar organization, with the emergence of 
distinct cellular compartments including stressed acinar cells, 
inflammatory-activated cells, ductal proliferation zones, and 
areas of mesenchymal expansion. Normal tissue maintained 
organized acinar structure with minimal inflammatory in-
filtration and intact ductal architecture. We assessed the 
association of pancreatic regions with AP-infection risk by 
aggregating p values of individual cells in each region using 
the Cauchy combination test. The acinar cells (p = 2.3 × 10−5), 
ductal cells (p = 4.1 × 10−4), and inflammatory-activated cells C
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(p = 8.7 × 10−5) showed the highest relevance to infection sus-
ceptibility. Figure  6B demonstrated differential expression 
patterns of key pleiotropic genes between normal and patho-
logical tissue. FLOT1, ALDH2 and TRAFD1 showed markedly 
increased expression in diffuse pathological tissue compared 
to normal tissue. IER3 exhibited the most dramatic change, 
with high expression observed throughout pathological tissue 
while remaining nearly absent in normal samples. PTPN11 
demonstrated elevated expression primarily in stressed aci-
nar cells and inflammatory zones of pathological tissue ver-
sus normal tissue. ERBB2 showed preferential upregulation in 
ductal cell regions of pathological samples compared to nor-
mal status. Figure  6C illustrated the spatial gene specificity 
patterns using GSS calculations across tissue compartments. 
IER3 demonstrated the highest spatial restriction among 
analyzed genes, with expression concentrated in specific in-
flammatory microdomains. FLOT1 and TRAFD1 showed 
high spatial specificity, while ALDH2 and PTPN11 displayed 
intermediate specificity patterns. ERBB2 demonstrated more 
diffuse expression with lower spatial restriction.

3.7   |   Drug Class Signals From the In Silico Screen

To identify potential therapeutic candidates, we implemented 
a systematic drug repurposing pipeline centered on the 29 
high-confidence pleiotropic genes. This approach utilized a 
“pairing score” to quantify the alignment between the known 
pharmacological pathways of existing drugs and the patho-
logical pathways disrupted by the pleiotropic genes. This 
pathway-based method offers greater mechanistic insight 
than simple drug-gene interaction lookups. The results of this 
pairing analysis revealed several drug classes with high scores 
across multiple AP-infection trait pairs, notably HER/EGFR 
Inhibitors, ROCK Inhibitors, and S1P Receptor Modulators 
(Figure  S5). Among the top individual candidates were the 
ROCK inhibitor Sovesudil and the S1P Receptor Modulator 
Ponesimod. As a complementary approach, we performed a 
direct search of the DRUGBANK database for compounds 
targeting key pleiotropic genes. For ALDH2, this search iden-
tified Guanidine, Daidzin, and Disulfiram as compounds 
with established pharmacological actions. Two other related 

FIGURE 5    |    Peripheral blood transcriptomic validation of pleiotropic genes in human acute pancreatitis. (A) Volcano plot showing differential 
gene expression in peripheral blood from acute pancreatitis patients compared to healthy controls. The x-axis represents log2(fold change) and the 
y-axis represents −log10(adjusted p-value). Genes with log2FC > 0.5 and FDR-adjusted p < 0.05 are highlighted in red (upregulated) or blue (down-
regulated). (B) Heatmap displaying hierarchical clustering of pleiotropic gene expression profiles across individual samples. Rows represent the 29 
high-confidence pleiotropic genes, columns represent individual samples grouped by disease severity. (C) Box plots showing normalized expression 
levels (VST) of 11 representative pleiotropic genes across disease severity groups. Statistical significance determined by Wilcoxon rank-sum test with 
Bonferroni correction: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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molecules, NADH and Crotonaldehyde, were also linked to 
ALDH2, but their specific pharmacological actions have not 
been determined.

4   |   Discussion

AP extends beyond a localized disorder of pancreatic acinar 
cells, with extrapancreatic and extrahepatic factors playing cru-
cial roles in disease pathogenesis. Previous large-scale GWAS 
meta-analyses of AP have demonstrated that proteome-wide 
Mendelian randomization reveals susceptibility genes including 
ABCG5/G8 and SPINK1, highlighting the potential for genetic 
exploration of therapeutic targets and preventive strategies for 
AP. Up to exceeding 20% of acute pancreatitis patients develop 
extrapancreatic infections, including bloodstream infections, 
pneumonia, and urinary tract infections. Infection represents 
a critical culprit in the development of persistent organ failure. 
However, clinically, infection accompanies the entire treatment 
course of AP, making the diagnosis of concurrent infection par-
ticularly challenging. This diagnostic difficulty arises because 
patients with severe acute pancreatitis (SAP) present with se-
vere inflammatory responses at disease onset, including high 
fever, markedly elevated white blood cell counts, dramatically 

increased CRP and procalcitonin levels, multi-organ dysfunc-
tion, and even shock. The clinical manifestations of SAP are 
difficult to distinguish from sepsis and septic shock, leading to 
inappropriate antibiotic usage in clinical practice. Furthermore, 
due to complex bacterial resistance patterns, many AP patients 
cannot promptly receive effective antibiotics, resulting in de-
layed treatment and significant challenges in clinical AP patient 
management [11].

Our post-GWAS investigation identified moderate genetic cor-
relations between AP and a range of infectious diseases, with 
genetic correlation coefficients ranging from 0.35 to 0.48. The 
identification of several high-confidence pleiotropic genes with 
well-documented roles in pancreatic pathophysiology provides 
a robust biological foundation for our findings. The discovery 
of SPINK1 is particularly noteworthy, given its established role 
in preventing premature, trypsin-catalyzed activation of zy-
mogens within the pancreas [12–14]. As mutations in SPINK1, 
especially the N34S variant, are critical genetic risk factors for 
chronic pancreatitis [12, 14], its dual function in pancreatic cyto-
protection and immune regulation suggests that its genetic vari-
ants may simultaneously compromise local pancreatic defense 
and systemic antimicrobial responses [13]. The identification of 
CRP, a classic acute-phase reactant, as a pleiotropic gene aligns 

FIGURE 6    |    Spatially resolved expression mapping of pleiotropic genes in murine acute pancreatitis. (A) Spatial transcriptomic analysis of tissue 
architecture in a murine model of pathological acute pancreatitis compared to normal pancreatic tissue. Each dot represents a spatial spot colored by 
cell type annotation based on canonical marker expression. (B) Spatial expression patterns of six key pleiotropic genes comparing pathological (left) 
and normal (right) pancreatic tissue. Expression levels are visualized using a gradient color scale from low (blue) to high (red). (C) Gene-specific 
score (GSS) analysis quantifying spatial expression specificity for each pleiotropic gene. Higher GSS values (red) indicate concentrated expression 
in specific tissue niches, while lower values (blue) represent diffuse expression. GSS calculations were performed using the gsMap algorithm with 
100 kb flanking windows.
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perfectly with its clinical utility as a prognostic biomarker for 
AP severity [15]. IER3 was similarly highlighted, corroborating 
prior reports [16, 17]. Our transcriptomic validation in human 
patients reinforced this, demonstrating a severity-dependent up-
regulation of IER3 in peripheral blood. Furthermore, our spatial 
analysis demonstrated that its expression was markedly elevated 
in inflammatory microdomains, identifying it as a pivotal reg-
ulator of the acute inflammatory response. Our locus-specific 
MR analysis demonstrated that elevated IER3 expression sig-
nificantly increases the risk of cystitis in patients with AP (OR 
3.43, 95% CI 1.65–7.11), reinforcing its role in acute inflamma-
tion. Furthermore, the identification of the Chymotrypsinogen 
B1/B2 (CTRB1/CTRB2) locus underscores the importance of 
digestive enzymes in both local pancreatic homeostasis and sys-
temic immunity, consistent with preclinical evidence showing 
that chymotrypsin mitigates pancreatitis severity by degrading 
trypsin [18, 19].

Beyond previously established susceptibility loci, our study 
identified several novel AP risk loci strongly associated with 
infection risk. The pleiotropy of the ABO gene offers evidence 
for the role of innate immunity at the AP-infection interface, 
consistent with previously documented associations between 
ABO polymorphisms and susceptibility to infectious diseases, 
pancreatic cancer, and AP. The discovery of ERBB2 (HER2), a 
receptor tyrosine kinase well-studied in pancreatic cancer [20], 
provides a new perspective on AP-infection comorbidity, sug-
gesting a complex regulatory function in inflammation [21]. Our 
spatial analysis reveals a pathological redistribution of ERBB2 
during pancreatitis progression, with significant upregulation 
and enrichment in the ductal and peri-ductal stromal regions 
of pathological tissue. Our investigation also extended to genes 
governing fundamental cellular processes. The identification 
of FLOT1 and TUBB indicates that cytoskeletal organization 
and membrane trafficking may contribute to the interplay be-
tween AP and infection. Bulk transcriptomic analysis of pe-
ripheral blood from patients provided initial clinical support 
for this association, showing that both genes were significantly 
upregulated during AP. Expression of FLOT1, in particular, in-
creased progressively with disease severity, suggesting a poten-
tial involvement in the systemic inflammatory response. Spatial 
transcriptomic analysis further contextualized these findings 
by localizing FLOT1 expression within regions of dense im-
mune cell infiltration in injured pancreatic tissue, implying a 
site-specific role in modulating local inflammation. This spa-
tially anchored observation complements our locus-specific 
Mendelian randomization results, which suggested that higher 
expression levels of FLOT1 and TUBB are causally associated 
with an elevated risk of urinary tract infection.

Further pleiotropic loci implicated cellular regulation and me-
tabolism. The rs632650 T>G variant near PCNPP1 and RPH3A 
was associated with increased risk of both AP and infection, 
and colocalization analysis showed the rs695047 variant in the 
PCNPP1 locus was shared between AP and SSI. Furthermore, 
this was supported by transcriptomic data showing signifi-
cant, severity-dependent upregulation of RPH3A in patients. 
RPH3A has a known role in neurodevelopmental disorders [22]. 
Variants in ALDH2, a key enzyme in alcohol metabolism, were 
also shared between AP and SSI. Increased ALDH2 expression 
was causally linked to a higher probability of SSI, suggesting a 

pleiotropic mechanism may be relevant to alcoholic pancreati-
tis via oxidative stress pathways [23]. Our spatial analysis sup-
ports this genetic finding, showing pronounced upregulation 
of ALDH2 in damaged acinar cells that are likely experiencing 
high levels of oxidative stress. This feature was further delin-
eated in the transcriptomic analysis of peripheral blood, and 
subsequently corroborated in a meta-analysis using an allelic 
contrast model [24]. We also identified NAA25 and RPL6, en-
zymes crucial for co-translational N-terminal acetylation. Their 
dysregulation, often observed in cancer, can trigger endoplasmic 
reticulum stress—a pivotal mechanism in pancreatitis patho-
genesis [25, 26]. BCAR1 which modulates cell adhesion, migra-
tion, and proliferation, a signaling adaptor protein, showed a 
significant causal association with VH infection (OR = 2.32, 95% 
CI 1.77–3.05). At the 12q24 locus, the rs11066283 variant—an 
eQTL associated with elevated PTPN11 expression in blood—
was found in our analyses to be linked with an increased risk 
of AP and secondary infection. This association is biologically 
plausible, considering SHP2's well-established role in modulat-
ing cytokine receptor signaling and JAK–STAT pathway activity. 
Spatial transcriptomic profiling of AP tissue further supported 
this observation, revealing a significant upregulation of both 
PTPN11 and TRAFD1 within acinar regions and immune cell–
rich inflammatory infiltrates. The regulatory roles of the ln-
cRNA MAPKAPK5-AS1 and the ubiquitin ligase genes HECTD4 
and TRIM27 were also confirmed, with risk-associated variants 
appearing to alter key immune protein regulation, thereby con-
tributing to the pathogenesis of both AP and subsequent infec-
tions. Notably, HECTD4 expression was reduced in peripheral 
blood during AP, suggesting a possibly dysregulated immune re-
sponse that may impair the ability to combat infections during 
AP progression.

Building on these mechanistic insights, our study provides a 
framework for generating data-driven hypotheses for drug re-
purposing. Our computational screen highlighted several ther-
apeutic classes, including HER2/EGFR inhibitors, Rho Kinase 
(ROCK) inhibitors, and S1P Receptor Modulators, as promising 
candidates due to their association with the key pleiotropic path-
ways identified. The prioritization of HER2/EGFR inhibitors is 
particularly compelling, as it converges with our spatial tran-
scriptomic data demonstrating the pathological redistribution 
of ERBB2 to regions of ductal remodeling, providing a strong 
mechanistic rationale for testing these agents to preserve bar-
rier integrity. Similarly, the relevance of ROCK inhibitors is 
underscored by the known role of the Rho/ROCK signaling 
pathway as a critical mediator of both cytoskeletal integrity 
and the inflammatory responses seen in sepsis and its sequelae 
[27]. Likewise, S1P Receptor Modulators such as Fingolimod are 
known for their efficacy in various inflammatory conditions 
[28]. Although animal models suggest these agents can mitigate 
complications of pancreatitis, they are not yet widely studied in 
this context. Nevertheless, the computational signals reported 
here should be regarded as hypothesis-generating, not as evi-
dence of clinical efficacy, and they serve to prioritize candidates 
for mechanistic and preclinical testing.

While this study provides the most comprehensive investiga-
tion to date of the shared genetic architecture between acute 
pancreatitis and infectious diseases, several limitations should 
be acknowledged. First, although our computational findings 
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are now supported by experimental transcriptomic and spatial 
validation, the murine spatial transcriptomics model may not 
fully recapitulate all aspects of human disease heterogeneity. 
Therefore, the identified pleiotropic loci, causal inferences, and 
prioritized drug candidates represent statistical predictions that 
require experimental validation in relevant cellular and animal 
models to confirm their biological function. Second, a signif-
icant limitation of our study is that the GWAS summary sta-
tistics were predominantly sourced from cohorts of European 
ancestry. This reliance may limit the generalizability of our 
findings, as allele frequencies and linkage disequilibrium pat-
terns can differ substantially across ancestries. A prime exam-
ple is the ALDH2 gene, where the rs671 (Glu504Lys) variant, 
common in East Asian populations and strongly associated 
with alcohol metabolism and pancreatitis risk, is virtually ab-
sent in European populations [29, 30]. Consequently, our study 
may have missed population-specific risk loci like this one, 
while some identified associations may be ancestry-specific. 
Therefore, we strongly advocate for and highlight the critical 
need for future large-scale GWAS of acute pancreatitis and in-
fectious diseases in diverse, non-European cohorts (e.g., East 
Asian, African, and Hispanic populations) to uncover a more 
complete and globally applicable genetic architecture. Third, 
while MR is a powerful tool for inferring causality, it is pred-
icated on assumptions that cannot be fully proven, such as the 
absence of horizontal pleiotropy. Although we performed mul-
tiple sensitivity analyses to mitigate this, the potential for un-
measured confounding remains. Finally, our drug repurposing 
pipeline is an in silico prioritization based on pathway align-
ment and curated target annotations rather than evidence of ef-
ficacy. Even with directionality checks, this approach does not 
account for pharmacokinetics and pharmacodynamics, toxic-
ity, off-target effects, or indication-specific risks in infection-
prone settings, and it is limited by database incompleteness and 
the lack of cell-state–specific pharmacology; accordingly, these 
outputs should guide mechanistic studies of target engagement 
and efficacy in pancreas-relevant models rather than substitute 
for preclinical drug development.

In conclusion, this comprehensive post-GWAS investigation 
successfully dissects the complex shared genetic landscape be-
tween acute pancreatitis and infectious diseases. By leveraging 
a multi-layered analytical framework that moves beyond com-
putational prediction to include functional validation, we identi-
fied 29 high-confidence pleiotropic genes, including established 
loci like SPINK1 and novel candidates such as ERBB2, FLOT1, 
and PTPN11. Crucially, we established a robust, multi-modal ev-
idence chain for their roles in pathogenesis. First, genetic and 
causal inference analyses confirmed them as shared risk fac-
tors. Second, bulk transcriptomic analysis of peripheral blood 
from human patients demonstrated their, severity-dependent 
dysregulation, confirming their involvement in the systemic 
inflammatory response. Finally, by employing gsMap, a state-
of-the-art spatial GWAS mapping algorithm, we provided a 
spatially resolved mechanistic framework, pinpointing the ac-
tivation of these genes to distinct pathological niches within 
the pancreas, such as inflammatory microdomains and zones 
of tissue remodeling. The convergence of genetic causality, sys-
temic dysregulation in patients, and localized activation within 
diseased tissue underscores the pivotal role of these genes in 
the pathophysiology linking AP to infection. This is crucial for 

molecular-level risk prevention in AP. Furthermore, it provides 
a solid foundation for prognostic stratification and early preven-
tion, while simultaneously identifying and prioritizing validated 
therapeutic targets for future intervention.
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