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Abstract. Statistical model checking (SMC) randomly samples proba-
bilistic models to approximate quantities of interest with statistical error
guarantees. It is traditionally used to estimate probabilities and expected
rewards, i.e. means of different random variables on paths. In this pa-
per, we develop methods using the Dvoretzky-Kiefer-Wolfowitz-Massart
inequality (DKW) to extend SMC beyond means to compute quantities
such as quantiles, conditional value-at-risk, and entropic risk. The DKW
provides confidence bounds on the random variable’s entire cumulative
distribution function, a much more versatile guarantee compared to the
statistical methods prevalent in SMC today. We have implemented sup-
port for computing new quantities via the DKW in the modes simulator
of the Modest Toolset. We highlight the implementation and its ver-
satility on benchmarks from the quantitative verification literature.

1 Introduction

Statistical model checking (SMC) [1, 31, 33, 47] avoids the state space explosion
problem of classic probabilistic model checking approaches (PMC) [4, 5] that
explore and numerically analyse a model’s entire state space [27]: SMC instead
samples k random paths from the model to estimate the value of the quantity of
interest. As a simulation-based approach, it applies to any effectively executable
model, including non-Markovian [19] and hybrid [22, 39] ones. An SMC result
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comes with a statistical correctness guarantee, often expressed as a confidence
interval [l, u] that contains the true result (1− δ) · 100% of the times [15].

The most fundamental quantities computed by PMC and SMC are reacha-
bility probabilities and expected rewards [15, 27]. SMC estimates these quanti-
ties using statistical methods like the Clopper-Pearson confidence interval [16]
for probabilities (i.e. binomial proportions) and Hoeffding’s inequality [29] for
means of bounded distributions, or compares them to each other [20] or to
thresholds using Wald’s sequential probability ratio test [45]. In the past decade,
PMC has been extended to compute several other quantities of interest, such as
quantiles/percentiles/value-at-risk [30,41,44], conditional value at risk [32], and
entropic risk [6]. However, the application of SMC has so far been limited to prob-
abilities and expected rewards, i.e. only the means of distributions associated to
different random variables on sampled paths. To the best of our knowledge, no
SMC approaches or tools support quantities other than means yet.

In this paper, we show how to extend SMC to estimate non-mean quanti-
ties using the Dvoretzky-Kiefer-Wolfowitz-Massart inequality (DKW) [21, 37].
The DKW provides a sound simultaneous confidence band around the cumula-
tive distribution function (cdf), i.e. upper and lower bound functions completely
enveloping the (unknown) cdf (1 − δ) · 100% of the times (see Fig. 1). This
is a stronger statement compared to the currently-used statistical methods for
estimation mentioned above, as it applies to the entire cdf rather than a sin-
gle point or pointwise. From the DKW, we can again derive a confidence in-
terval for the mean [3, 15], but equally (and simultaneously) obtain confidence
intervals on other quantities as well. We show how to do so in particular for
higher moments, quantiles, conditional value-at-risk, and entropic risk. We have
implemented these DKW-based computations in the modes statistical model
checker [13], part of the Modest Toolset [26]. modes can now also export the
empirical cdf and DKW confidence band for plotting and further analysis by the
user. We highlight our implementation and its versatility using several models
from the Quantitative Verification Benchmark Set (QVBS) [28] in Sec. 4.

2 Preliminaries

A probability distribution over a non-empty, countable set S is a function µ : S →
[0, 1] such that

∑
s∈S µ(s) = 1. The set of all distributions over S is denoted by

D(S). The cumulative distribution function (cdf) of a random variable X is given
by FX(x) def= P(X ≤ x). A random variable X stochastically dominates another
random variable Y , written Y ≾SD X, if FY (x) ≥ FX(x) for all x (i.e. for any
x, obtaining a value less than or equal to x is more likely for Y than for X;
intuitively, X yields larger values). If Y ≾SD X, then E(Y ) ≤ E(X).

Definition 1. A discrete-time Markov chain (DTMC) is a tuple ⟨S,R, T, sI⟩ of
a finite set of states S, a reward function R : S → R⩾0, an initial state sI ∈ S,
and a transition function T : S → D(S) mapping each state to a probability
distribution over successor states. A (finite) path π is (a prefix of) an infinite
sequence π = s0 s1 . . . ∈ Sω such that s0 = sI and ∀i : T (si)(si+1) > 0.
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Fig. 1. Example of a DTMC (left) together with the probability distribution over
possible reward outcomes (middle) and the corresponding cdf (right, solid line). The
states in the DTMC are (only) labelled by their rewards. The right figure also includes
an empirical cdf (dashed) and corresponding confidence band (gray) obtained from the
DKW inequality (with δ = 0.1 and k = 50).

See Fig. 1 (left) for an example of a DTMC. A DTMC induces a unique proba-
bility measure P over sets of paths that, intuitively, corresponds to multiplying
the probabilities along the path (see e.g. [7, Chapter 10]).

Properties. Properties typically consist of two parts: First, a random variable
X assigning a value to each path. For our results, the choice of X is largely
irrelevant; we only require it to yield non-negative finite values. Concretely, we
consider total and reachability rewards, i.e. TR(π) =

∑∞
i=0 R(πi) and the same

sum cut off at the first goal state, respectively; see [15, Sec. 2] for details, and
Fig. 1 (middle/right) for the distribution and cdf of TR on the example DTMC.

Second, a property comes with an aggregation function to “summarize” X into
a single value, traditionally the expected value/mean E(X) (w.r.t. P). Recently,
alternative aggregations have gained popularity, for example
– higher moments (around 0), which are of the form E(Xn) for n > 1;
– the t-quantile (a.k.a. the value-at-risk) for t ∈ (0, 1), which is the smallest

value v such that X is less than or equal to v with probability t [30, 41]:
Qt(X) def= inf { v | P(X ≤ v) ≥ t };

– the conditional value-at-risk (a.k.a. expected shortfall, expected tail loss, av-
erage value-at-risk), which is the expectation over the t-quantile, i.e.

CVaRt(X) def=
1

t
(P · E[X | X < v] + (t− P ) · v)

where t ∈ (0, 1), v = Qt(X) and P = P(X < v) [32, 42]; and
– the entropic risk, which with γ > 0 is [6, 23]

ERiskγ(X) def= − 1

γ
log(E(e−γX)).

We illustrate these for the DTMC of Fig. 1 in Sec. A. Additionally, as in [15],
we distinguish whether X has a known upper bound (i.e. some U such that
P(X ≤ U) = 1, the bounded case) or not (the general case).

Statistical model checking is, at its core, Monte Carlo simulation for for-
mal models and properties: randomly generate a (predetermined) number k of
paths, or simulations, from the model that give rise to samples X1, . . . , Xk of the
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random variable X; and from that draw statistical conclusions on the property.
While PMC approaches exist for all of the aforementioned properties, SMC so
far exclusively focused on means as follows: compute the empirical mean

X̂ def=
1

k

k∑
i=1

Xi,

and perform a statistical evaluation to obtain a confidence interval I = [l, u] ∋
X̂ at a predetermined confidence level δ, so that with (a priori) probability
1 − δ we have E(X) ∈ I. That is, if we repeat the SMC procedure m times
to obtain confidence intervals I1, . . . , Im, we may find some of them (up to δ ·
100% on average) incorrect, i.e. E(X) /∈ Ii for some i. Occasionally obtaining an
“incorrect” result is the nature of a statistical approach based on sampling. In this
work, we develop statistical methods for other aggregations beyond the mean.

3 Statistical Guarantees Beyond Means

Before we introduce our approach, we formalise the exact kind of guarantees we
aim to give. Observe that simply returning confidence intervals [0,∞] is always
sound. However, we also want SMC procedures to yield “small” intervals. To
formalize this requirement, we say a procedure yields effective bounds if (i) it
produces correct intervals with high confidence, and (ii) for a large enough num-
ber k of samples, the intervals produced by the procedure are smaller than any ε
and still correct with high confidence; see Definition 2 for the formal definition.
We note that this is related to the notion of consistent estimators [2] from statis-
tics, as the mid-point of effective intervals is a consistent estimator. However, we
pose a stronger requirement since we require correct bounds to be produced.

Definition 2 (effective bounds). Let X be a random variable and F an
aggregator, mapping random variables to real numbers. An SMC procedure A
yields effective bounds on F(X) if, for any confidence δ > 0, the following two
conditions hold: (i) For a collection of independent samples Ξ drawn from X,
we have P(F(X) ∈ A(Ξ, δ)) ≥ 1− δ. (ii) For any precision ε > 0, there exists a
threshold k0 such that for a collection of independent samples Ξ drawn from X
with |Ξ| ≥ k0, we have P(F(X) ∈ A(Ξ, δ) ∧ |A(Ξ, δ)| ≤ ε) ≥ 1− δ.

Remark 1. Some works consider the dual problem of gathering enough samples
until a given precision is reached. They seek so-called probably approximately cor-
rect (PAC) guarantees: Given confidence level δ and precision ε, gather enough
samples to return I with |I| ≤ 2ε. We focus on deriving intervals given a fixed
k, and in Sec. B describe how our methods extend to the dual problem.

As already observed in [15], obtaining two-sided bounds sometimes is infeasible
(depending on the nature of the DTMC, random variable X, and aggregator F).
However, we may still be able to derive statistically sound, “converging” lower
bounds. Thus, we extend the definition of “limit-PAC” from [15, Def. 3] and say
an SMC procedure yields effective lower bounds if the value it produces is, with
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high confidence, (i) always a lower bound and (ii) close to the true value if given
enough samples. Formally:

Definition 3 (effective lower bounds). Let X be a random variable and F
an aggregator, mapping random variables to real numbers. An SMC procedure A
yields effective lower bounds on F(X) if, for any confidence δ > 0, the following
two conditions hold: (i) For a collection of independent samples Ξ drawn from
X, we have P(A(Ξ, δ) ≤ F(X)) ≥ 1 − δ. (ii) For any precision ε > 0, there
exists a threshold k0 such that for a collection of independent samples Ξ drawn
from X with |Ξ| ≥ k0, we have P(F(X)− ε ≤ A(Ξ, δ) ≤ F(X)) ≥ 1− δ.

3.1 DKW: The Dvoretzky-Kiefer-Wolfowitz-Massart Inequality

Our key to obtain effective bounds is the Dvoretzky-Kiefer-Wolfowitz-Massart
inequality (DKW), which relates the cdf of the unknown distribution of X to
the empirical cdf F̂ (x) = 1

k |{Xi | Xi ≤ x }| by

P
(
supx∈R |F̂ (x)− FX(x)| > ∆

)
≤ δ where ∆ =

√
log(δ/2)/(−2k).

Note that FX is fixed but unknown, while F̂ depends on the samples drawn from
X. Intuitively, the DKW gives a confidence band in which the true cdf lies with
high probability; see Fig. 1 (right) for an illustration. There, F̂ is drawn dashed,
and the gray area around F̂ shows the confidence band (with width 2∆). We
refer to the bounds of this band as F (x) def= min { F̂ (x) + ∆, 1 } and F (x) def=
max { 0, F̂ (x) − ∆ }, respectively. We denote the random variables that F , F̂ ,
and F correspond to as X, X̂, and X, respectively. Clearly, X ≾SD X̂ ≾SD X
and the DKW implies that X ≾SD X ≾SD X with high confidence. In general,
X and X yield 0 and ∞ with probability ∆, respectively. In the bounded case,
we have FX(U) = 1 and hence X would instead yield U with probability ∆.
In [15], this is used to derive (lower and upper, in the bounded case, and lower,
in the general case) bounds on expected rewards.

3.2 Obtaining Effective Bounds

As it turns out, computing the aggregations for X (and X) gives effective (lower)
bounds for all considered properties. We implicitly assume that the DKW con-
dition holds and prove (below) that we then obtain correct (and converging)
estimates. This means in general we get such estimates with high confidence.
Moreover, as all results only depend on the DKW condition holding, we can give
guarantees on all aggregations simultaneously, without splitting the confidence
budget, which is particularly useful for e.g. multi-objective queries [30,32,41].

Moments. For higher-order moments, note that Y def= Xn is non-negative and
has finite expectation if X satisfies these assumptions. Thus, the results of [15,
Thm. 1] are directly applicable, which state that then the DKW yields effective
lower bounds in the general case. In the bounded case, we naturally obtain
effective bounds by direct application of the DKW (see Sec. 3.1).
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Quantiles. By their definition, quantiles are monotone w.r.t. stochastic domi-
nance, i.e. if Y ≾SD X, then Qt(Y ) ≤ Qt(X). Thus, we also have Qt(X) ≤
Qt(X) ≤ Qt(X), ensuring correctness of the computed values. While we can
always obtain lower and upper bounds, even in the general case (by choosing
k so that t ∈ (∆, 1 −∆]), only the lower bounds may be effective: Consider an
X with distribution {1 7→ 1

2 , 2 7→ 1
2}. We have Q0.5(X) = 1, but any sound

statistical upper bound on the cdf of X will have F (1) < FX(1) = 0.5, and thus
always yield a 0.5-quantile of 2. This is a fundamental property of quantiles:
they are not continuous w.r.t. small changes in the distribution. This already
happens for the simple example in Fig. 1, as we illustrate in Sec. A. Thus, in
general we cannot provide effective bounds. X is always discrete for DTMC
as per Definition 1 and X = TR; we can have non-discrete X if we allow e.g.
continuously-distributed random rewards, use other models like continuous-time
Markov chains (CTMCs), or other properties. Then, if X is continuous or, at
least, if FX is continuous at Qt(X), we get effective bounds.

Conditional value-at-risk. CVaR is a distortion risk measure (as is Qt), which
are monotone w.r.t. stochastic dominance [46]. Thus we again immediately get
CVaRt(X) ≤ CVaRt(X) ≤ CVaRt(X). In contrast to general expectations, the
bounded and general case do not differ: By assumption, we have X < ∞, hence
there exists T such that FX(T ) > 1− t

2 . For a large enough k, we have ∆ < t
2 ,

and F (T ) ≥ 1 − t. Then, we know (with high confidence) that X ≤ T with
probability t, i.e. Qt(X) ≤ T and therefore CVaRt(X) ≤ T < ∞. Thus, we can
directly bound |CVaRt(X) − CVaRt(X)| by T · 2∆, which goes to 0 for large
enough k. Together, we obtain effective bounds in the general case.

Entropic risk. First, observe that if Y ≾SD X, then e−γX ≾SD e−γY (the
order reverses as e−γx is decreasing). Consequently, E(e−γX) ≤ E(e−γY ), and
thus ERiskγ(Y ) ≤ ERiskγ(X) (recall that ERisk = −1/γ · . . . ). Hence, we get
ERiskγ(X) ≤ ERiskγ(X) ≤ ERiskγ(X). While there is no strict “cut-off” as for
CVaR, we argue that we can still bound the overall difference between X and
the bounds X and X in general. We have

ERiskγ(X)− ERiskγ(X) = −1/γ · log(E(e−γX)/E(e−γX)).

We now apply two useful general facts about cdfs, namely that (i) E(X) =∫
x
(1−FX(x))·x dx and (ii) for a positive, continuous, strictly decreasing function

f we have Ff(X)(x) = 1− FX(f−1(x)). We get
E(e−γX)/E(e−γX) =

∫
F (− 1

γ log(x))e−γx dx/E(e−γX).

Recall that FX(x)−∆ ≤ F (x). Hence,∫
F (− 1

γ log(x))e−γx dx/E(e−γX) ≥
∫
(FX(− 1

γ log(x))−∆)e−γx dx/E(e−γX)

= 1−∆
∫
e−γx dx/E(e−γX).

Consequently, for ∆ → 0 this expression converges to 1, and thus ERiskγ(X)−
ERiskγ(X) = − 1

γ log(. . .) → 0. The proof for X is analogous.
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Table 1. Estimates and DKW confidence intervals for the examples’ properties.

expected value 0.3-quantile CVaR0.3

example k X̂ conf. int. est. conf. int. est. conf. int.

coupon 100 13.11 [10.08,∞) 10 [9, 11] 8.90 [4.56, 10.14]
1000 12.90 [11.82,∞) 10 [10, 11] 8.71 [7.28, 9.21]

leader_sync 100 1.17 [0.89,∞) 1 [1, 1] 1.00 [0.55, 1.00]

embedded 100 0.35 n/a 0.13 [0.10, 0.20] 0.35 n/a
1000 0.33 n/a 0.17 [0.15, 0.19] 0.33 n/a

4 Tool Implementation

The modes SMC tool [13] was recently extended with sound statistical methods
for estimating means, including the DKW [15]. Now, in version 3.1.287, we added
syntax for quantile and CVaR properties to the parsers for its input languages,
Modest [9, 25] and Jani [14], and extended its implementation of the DKW
to estimate and provide bounds for such properties. Additionally, empirical cdfs
can be exported to CSV and Excel files for plotting and further analysis.

To demonstrate the new tool features, we use three examples from the QVBS
selected for diversity in cdfs: (1) the coupon model with parameters N = 15,
DRAWS = 4, B = 5 (a DTMC of 17 billion states, to which SMC is agnostic) and
the random variable underlying property exp_draws; (2) leader_sync with N = 5,
K = 4 (DTMC, 4244 states) and time; and (3) embedded with MAX_COUNT = 8,
T = 12 (a continuous-time Markov chain of 8548 states) and danger_time. The
original properties query for expected reachability rewards; we add properties
querying for the 0.3-quantile and CVaR0.3 of the same reward specification,
i.e. the same random variable on paths. We run modes on each example with
k = 100 simulations, and on coupon and embedded additionally with k = 1000.
In addition to obtaining DKW-based confidence intervals, we use modes’ new
--cdf parameter to export empirical CDFs with DKW confidence bands.

In Table 1, we show the results that modes obtains for the properties. As
reachability rewards fall into the general case, we can only obtain lower bounds
for the expected values [15]. For quantiles and CVaR, as per Sec. 3.2, the DKW
allows us to obtain (for CVaR effective) lower and upper bounds. On embedded,
modes cannot apply the DKW to expectation and CVaR because its syntactic
procedure to find a lower bound for the rewards fails as they are encoded via an
unbounded real-valued variable. For quantiles, the absence of bounds on the dis-
tribution is no hindrance. The DKW can produce rather asymmetric confidence
intervals, which we see for leader_sync’s CVaR property.

We plot the empirical cdfs and associated DKW confidence bounds modes
delivered in Fig. 2. Graphically, the confidence interval for the quantile is the
p = 0.3 line’s segment between the bound curves, while the CVaR estimate and
confidence interval stem from the curves cut off at that line. The DTMCs’ reward
distributions are necessarily discrete: leader_sync has only 3 possible outcomes
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Fig. 2. DKW CDF confidence bands obtained on the example benchmarks.

of non-negligible probability (we thus omit k = 1000); increasing k for coupon
does not smoothen the curve much, because most elements of the distribution’s
support were already sampled at k = 100—only the confidence band gets much
thinner. For the CTMC embedded, the distribution is visibly continuous.

We do not report runtimes because the overhead of using the DKW—for
collecting all samples to finally compute the intervals, instead of incremental
averaging plus evaluation based on k and δ only as for traditional methods for
the mean—was negligible in these experiments. Aside from DTMCs and CTMCs,
modes also supports more complex and expressive formalisms up to stochastic
hybrid automata [24]; the new methods to check and bound quantiles and CVaRs
work independent of the model type. They equally combine orthogonally with
modes’ features for rare event simulation [12] as well as learning and scheduler
sampling for nondeterministic models [17,18,38].

5 Conclusion

In this work, we have shown how the DKW inequality can be used to derive
bounds on various aggregation functions beyond the classical expectation/mean,
closing a significant gap of SMC compared to traditional verification. Moreover,
as all our estimations are based on the DKW inequality, our methods can esti-
mate all values simultaneously. Our experimental evaluation confirms the effec-
tiveness of our methods, allowing for scalable estimation of such aggregation val-
ues for large systems. For future work, we believe that our approach should also
be applicable to other risk measures such as variance [10,35], variance-penalized
expected payoff [8,34,36,40], or cumulative prospect theory [11,43].
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Data availability. The modes tool is available at modestchecker.net. An arti-
fact for this paper—a reproduction package with the models and commands for
the experiments in Sec. 4—is available at DOI 10.5281/zenodo.15286509.
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Fig. 3. Example of a DTMC (left) together with the probability distribution over
possible reward outcomes (middle) and the corresponding cdf (right, solid line). The
states in the DTMC are (only) labelled by their rewards. The right figure also includes
an empirical cdf (dashed) and corresponding confidence band (gray) obtained from the
DKW inequality (with δ = 0.1 and k = 50).

A Example: Computing Quantities of Interest

For convenience, we repeat Fig. 1 here in Fig. 3. In this appendix, we show how
compute the quantities of interest listed in Sec. 2 for a given cdf. We highlight
that while the example uses a discrete random variable, the aggregators are also
applicable in the general case; in the same vein, our theory developed in Sec. 3
also applies to general random variables (i.e. discrete, continuous, or mixed). We
denote by X the random variable and by dom(X) its domain; in the example it is
(a subset of) the natural numbers. For x ∈ dom(X) we write p(x) for P(X = x).
Mean Recall that E(X) =

∫
X(ω) dP(ω). As our example comprises a discrete

random variable, we simply compute the weighted sum E(X) =
∑

x∈dom(X) x·
p(x) = 0.5 · 1 +

∑∞
i=1 2i · (

1
2 )

i+1 = 2.5.
Higher moments are computed as the mean of Xn. Essentially, we rescale

every outcome by taking its n-th power. For example, with n = 2 we get
E(X2) =

∑
x∈dom(X) x

2 · p(x) = 0.5 · 12 +
∑∞

i=1(2i)
2 · ( 12 )

i+1 = 12.5.
Quantiles Recall that Qt(X) = inf{v | P(X ≤ v) ≥ t} for t ∈ (0, 1). Intuitively,

we take the highest value of the worst t
100 % outcomes. We note that quantiles

are sometimes also defined by “partitioning” the outcomes into n different
blocks and then taking the k-the value, for example “the second 20% quantile”,
which is equal to t = 0.4 in our definition, i.e. t = k

n in general.
Choosing t ∈ (0, 0.5], we get Qt(X) = 1, since that is the smallest value
with a positive probability. Then we observe the non-continuity of quantiles
that is mentioned as a complication in Sec. 3.2: Choosing t ∈ (0.5, 0.75], we
obtain Qt(X) = 2. Quantiles can easily be read off from the cdf by finding
the smallest (leftmost) value x such that the cdf is above t.

Conditional Value-at-Risk Formally, CVaR is defined as: CVaRt(X) = 1
t (P ·

E[X | X < v] + (t− P ) · v), where t ∈ (0, 1), v = Qt(X) and P = P(X < v).
Intuitively, this means taking the expectation over the t-quantile. The reason
this definition looks surprisingly complicated is that it has to account for the
probability mass exactly at v potentially only being partially included.
In our example, for t = 0.75, we have v = 2 and P = 0.5, yielding CVaR0.75(X) =
1

0.75 · (0.5 · 1 + 0.25 · 2). However, choosing t = 0.7, observe that we only
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want to consider 0.2 of the outcome 2, even though p(2) = 0.25, reflected by
(t− P ) · v = 0.2 · 2.

Entropic Risk Entropic risk is defined as ERiskγ(X) = − 1
γ log(E(e−γX)), with

γ > 0. This function first rescales the obtained reward using the exponential
function e−γX , takes the expectation of the exponentially rescaled rewards,
and then re-normalizes the value by −γ log(. . . ). We refer to [6] for a more
detailed explanation.
In our example, for γ = 2, we get

ERisk1(X) = − 1
2 log(

∑
x∈dom(X)

e−2x · p(x))

= − 1
2 log(e

−2 · 0.5 +
∑∞

i=1
e−4i · ( 12 )

i+1) ≈ 1.35.

B Sequential DKW

In the main body, we considered the problem of deriving “as good as possible”
bounds given a sample budget (or an already gathered set of samples). However,
as mentioned in Remark 1, sometimes we are also interested in the sequential
setting, where the goal is to gather samples until a certain precision can be
guaranteed. As a naive approach, we could try to derive an a-priori upper bound
on the number of samples required. For example, [15] notes that such bounds
for estimating the mean can be derived by using the fact that DKW reduces to
Hoeffding’s inequality in the worst case. However, far fewer samples might be
sufficient in case the variance of the sample data is low.

Additionally, the “DKW-Lower” procedure introduced in [15] gives a lower
bound for the expected value of an unbounded reward, again for a fixed set of
samples. It is shown that DKW-Lower “converges” in the sense that the lower
bound can be arbitrarily close to the true expected value if a large enough sample
set is chosen.

Intuitively, one might think it is possible to derive a simple sequential pro-
cedure by repeatedly computing bounds via the DKW inequality until a satis-
factory confidence interval is achieved. However, this simple approach to build
sequential procedures is no longer sound: The probability that any confidence
interval is incorrect accumulates and is no longer guaranteed to be ≤ δ. Even
if we are only interested in the final confidence interval in the sequence, the
guarantees of the DKW inequality no longer apply since the stopping condition
is not independent of the outcome of the sampling process, as discussed in [15].

In this section, we now aim to define a sequential procedure that retains
soundness while converging to the true expected value. The core idea is to define
certain stages at which we build confidence intervals and split the confidence
budget δ over all stages in such a way that the probability of all stages yielding
a correct confidence interval is ≥ 1 − δ while at the same time ensuring that
the sample count per stage grows fast enough to counteract the growth of the
confidence intervals due to decreasing δ. Further, we show that this sequential
procedure extends to a very general class of objectives beyond expected rewards.
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Formally, let F be an aggregation. (Technically, when we write F(F ) for a
cdf F , we refer to computing the aggregation of the associated random variable.)
Like in the DKW inequality, for ε ≥ 0 we define the confidence band

F̂ε =
{
F ′(x) | supx∈R⩾0

|F (x)− F ′(x)| ≤ ε
}
.

and derive the confidence interval Cε as

Cε = [Cε, Cε] =
[
infF∈F̂ε

F(F ), supF∈F̂ε
F(F )

]
.

Given an infinite stream of random variables X = X1, X2, . . . and confidence
level 1− δ, we define, we define the procedure “Sequential-DKW” as follows: We
choose an n ∈ N and define ni = ni2 as well as δi =

δ
2i for all i ≥ 0. We also

define Ξi = {X1, . . . , Xni} with the corresponding eCDF Fi. Finally, we define
the sequence of confidence intervals output by Sequential-DKW as (Ci)i≥0 where

Ci = Cεi with εi =
√

ln(2/δi)
2ni

.

Theorem 1. For any aggregation F , stream of random variables X drawn from
a distribution with cdf FX and δ ∈ (0, 1), the probability that all confidence
intervals Ci produced by Sequential-DKW are correct is at least 1− δ, i.e.

P (∀i ≥ 0.F(X) ∈ Ci) ≥ 1− δ.

Further, if Cε is always continuous at ε = 0, we have
limi→∞Ci = limi→∞Ci = F(FX).

Proof. By the DKW inequality, he have

P (F(FX) /∈ Ci) ≤ P
(
FX /∈ F̂εi

)
= P

(
supx∈R⩾0

|FX − Fi| ≥
√

ln(2/δi)/(2ni)
)

≤ 2e−2ni

√
ln(2/δi)/(2ni)

2

= δi

By definition of δi and the union bound we have

P (∀i ≥ 0.F(FX) ∈ Ci) ≤
∑∞

i=0
P (F(FX) /∈ Ci) ≤

∑∞

i=0
δi ≤

∑∞

i=0

δ

2i
= δ

To show the second part of the theorem, note that for all i ≥ 0, by definition of
Cεi , there is a sequence (F j

i )j≥0 for which all F j
i ∈ F̂εi and limj→∞ F(F j

i ) = Ci

and and analogous sequence (F j
i )j≥0. Then, since F j

i , F
j

i ∈ F̂εi for all j ≥ 0 and
by definition of ni we have

supx∈R

(
limj→∞F

j

i (x)− limj→∞F j
i (x)

)
≤ 2

√
ln(2/δi)/(2ni)

= 2
√

ln(2i+1/δ)/(2ni2) = 2
√
(i+ 1) ln(2/δ)/(2ni2)

Thus, since limi→∞ εi = 0 and Cε is continuous at ε = 0, we have

limi→∞Ci − Ci = limi→∞

(
limj→∞F(F

j

i )− limj→∞F(F j
i )
)
= 0,

i.e. limi→∞ Ci = limi→∞ Ci. Finally, by the law of large numbers limi→∞ Fi =
FX and thus again by limi→∞ εi = 0 and continuity of Cε at ε = 0 we have
limi→∞ Ci = limi→∞ Ci = F(FX).
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Remark 2. Sequential-DKW naturally extends to bounded random variables
(e.g. positive expected reward with an a priori upper bound) where a ≤ X ≤ b
for all X ∈ X by additionally requiring F (a) = 0 and F (b) = 1 for all F ∈ F̂εi

for all i ≥ 0.

Remark 3. If only Ci is continuous at ε = 0 we can still obtain convergence for
the lower bound, i.e. limi→∞ Ci = F(FX), in the same way as for Theorem 1. The
analogous statement holds for Ci. This is for example relevant for unbounded
expected rewards (where Cε is always finite for ε = 0 but infinite for ε >
0). There, (Ci)i≥0 as in Sequential-DKW is a sound sequence of lower bounds
converging towards the true expected reward, but Sequential-DKW likely does
not yield converging upper bounds since Ci = ∞ for all i ≥ 0. Similarly, for VaR
Cε may not always be continuous at ε = 0 for discrete distributions but Ci is.
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