Received: 21 July 2025

Revised: 30 September 2025

Accepted: 20 October 2025

DOI: 10.1002/ppp3.70133

REVIEW

People Planet PI'F

Potential drivers of fast growth in Paulownia

Yang Zhao1? |

1Chinese Academy of Forestry, Research
Institute of Non-Timber Forestry, Zhengzhou,
China

2Lancaster Environment Centre, Lancaster
University, Lancaster, UK

Correspondence

Marjorie R. Lundgren, Lancaster Environment
Centre, Lancaster University, Lancaster LA1
4YQ, UK.

Email: m.lundgren@Ilancaster.ac.uk

Funding information

United Kingdom Research and Innovation
(UKRI) Future Leaders Fellowship via the
Medical Research Council to MRL,
Grant/Award Numbers: MR/T043970/1, MR/
Z000424/1; Chinese Academy of Forestry,
Grant/Award Numbers: CAFYBB2022MAO004,
CAFYBB2020GC019

1 | INTRODUCTION

Paulownia (Paulowniaceae) is an economically and ecologically impor-
tant genus that includes some of the fastest-growing broad-leaved

Marjorie R. Lundgren?

Societal Impact Statement

Trees in the genus Paulownia play a crucial role in sustainable forestry, rural economic
development, and carbon mitigation due to their rapid growth, exceptional hardwood
properties, and prominent carbon sequestration capacity. This review highlights the
societal value of Paulownia trees and synthesizes several potential drivers of extraor-
dinarily fast growth in these trees. These insights are valuable for maximizing Paulow-
nia's potential for timber production and carbon sequestration, and they also provide
a valuable model for studying mechanisms of rapid growth in hardwood trees.
Summary

Paulownia is a genus of fast-growing deciduous hardwood trees that are economically
and ecologically important. Originally from East Asia, Paulownia are grown globally
for their robust timber, agroforestry, and effective carbon dioxide drawdown, ser-
vices that arise from their remarkably fast growth. Despite their clear value, the
underlying drivers of fast growth in this genus remain poorly understood. Here, we
review potential causes of fast growth in Paulownia and identify several potential
adaptations, including photosynthetic metabolism, non-foliar photosynthesis, tree
habit, leaf structure, and hydraulic investment, that may contribute to fast growth in
these trees. Our review highlights the paucity of evidence that would enable evalua-
tion of these properties of Paulownia species and makes recommendations for future
research needed to help explain drivers of fast growth in these important trees. In
doing so, this review establishes a promising model system to study rapid growth in
hardwood trees, their benefits to plantation cultivation, and potential for

bioengineering.
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deciduous hardwood tree species in the world (Zhao et al., 2022). The
genus Paulownia includes between six and thirteen species, the num-
ber of which has varied over time with taxonomic reclassifications
(Table 1). The Paulownia genus has a broad geographic range. Most
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TABLE 1 The taxonomic classifications of Paulownia species across time.
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Year Species Variation Reference
1959 P. tomentosa (Hu, 1959)
P. fortunei
P. fargesii
P. kawakamii
P. elongata
P. glagrata
1976 P. tomentosa P. tomentosa var. tsinlingensis (Gong, 1976)
P. fortunei
P. fargesii
P. elongata
P. australis
P. kawakamii
P. catalpifolia
1981 P. tomentosa P. tomentosa var. tsinlingensis (Zhu, 1981)
P. fortunei
P. fargesii
P. elongata
P. australis
P. taiwaniana

P. catalpifolia

P. albiphloea P. albiphloea var. chengduensis
P. kawakamii
1990 P. tomentosa P. tomentosa var. tsinlingensis (Jiang, 1990)

P. tomentosa var. lanata
P. tomentosa var. lucida

P. fortunei

P. fargesii

P. elongata

P. australis

P. taiwaniana

P. catalpifolia

P. albiphloea P. albiphloea var. chengduensis
P. lampropylla
1992 P. tomentosa P. tomentosa var. tsinlingensis (Xiong & Chen, 1992)

P. tomentosa var. lanata
P. tomentosa var. lucida

P. fortunei

P. fargesii

P. elongata

P. australis

P. taiwaniana

P. catalpifolia

P. albiphloea P. albiphloea var. chengduensis
P. lampropylla

P. recurva

P. jianshiensis

P. ichangensis
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TABLE 1 (Continued)

Year Species

2000 P. tomentosa

P. fortunei

P. fargesii

P. kawakamii
P. elongata

P. lamprophylla
P. ichangensis
P. jianshiensis
P. albiphloea
P. recurva

P. australis

P. catalpifolia
P. henanensis

2013-onward P. tomentosa

P. fortunei

P. fargesii

P. kawakamii
P. elongata

P. lamprophylla
P. ichangensis
P. jianshiensis
P. albiphloea

P. taiwaniana

P. catalpifolia

Paulownia species have largely remained in their native East Asian
range, where they have been -cultivated for over 3,000 years
(Hu, 1959). However, three species (Paulownia tomentosa (Thunb.)
Steud., Paulownia fortunei (Seem.) Hemsl., and Paulownia elongata S.
Y. Hu), as well as some interspecific hybrids (e.g., Clone in vitro
112, Shantong, Sundsull, and Cotevisa 2) have reached global
distributions, with P. tomentosa being the most broadly distributed
species in the genus (Stawinska et al., 2023; Young &
Lundgren, 2023).

Paulownia trees provide critical and valuable ecosystem services.
Their wood has excellent properties, such as lightness, high dimen-
sional stability, and good acoustic resonance, and thus is widely used
for making furniture, decorative materials, musical instruments, handi-
crafts and other products (Rodriguez-Seoane et al., 2020). The genus
has attracted widespread attention for use in ecological engineering
projects, including ecological restoration and afforestation in areas
with difficult terrain, due to its developed root system, barrenness tol-
erance, adaptability, and heavy metal adsorption by leaves, stems, and
roots (Doumett et al., 2008; Rodriguez-Seoane et al., 2020; Wang
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Variation Reference

P. tomentosa var. tsinlingensis (Chen et al., 2000)
P. tomentosa var. lanata
P. tomentosa var. lucida

P. albiphloea var. chengduensis

P. tomentosa var. tsinlingensis (F. Li et al., 2013)
P. tomentosa var. lanata
P. tomentosa var. lucida

P. albiphloea var. chengduensis

et al., 2009). Paulownia leaves, flowers, fruits, roots, and bark are used
as medicine, being specifically effective in curing upper respiratory
tract infections, bronchitis, and mumps (Zheng et al., 2009) and, as
such, Paulownia are considered traditional medicinal plants whose
chemical composition, bioactivity, and pharmacological activity are
becoming a research hotspot (§kovranové et al, 2024; Xiao
et al., 2024; Yang et al., 2024). Thus, Paulownia is a lucrative alterna-
tive to traditional crops, due to its relatively low resource require-
ments, high market demand, and significant financial returns
(Negrusier et al., 2024).

Paulownias are excellent agroforestry trees. They effectively
reduce wind damage, increase biodiversity, and enrich soil organic
matter (Testa et al., 2022), without significantly shading agricultural
fields at times when sunlight is needed most by key crops. For exam-
ple, Paulownia leaves emerge late in the spring and drop early in the
autumn, which allows high light penetration through the canopy to
maximize intercropping potential with winter wheat (Figure 1). Fur-
thermore, our previous research in the North China Plain found that

the average shading effect in Paulownia intercropping decreased
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exponentially with the total area of the agroforestry systems, which

have a consistent tree belt design (i.e., the same tree variety, age,
rows, and spacing) (Zhao et al., 2019). Moreover, competition for
nutrients and water within the soil is minimized between deep-rooted
Paulownia trees and shallow-rooted intercrops, giving Paulownia a sig-
nificant advantage compared to most other tree species used in agro-
forestry (Bojesen Jensen, 2016; F. Li et al., 2008; Zhu et al., 1986). For
these reasons, agricultural areas along the broad central and northern
plains of China have transformed into exemplary agroforestry zones
of Paulownia intercropping (Zhu et al., 1986), along with, for example,
bamboo (Phyllostachys heteroclada) (Chen, 2003), Chinese fir (Cunning-
hamia lanceolata) (Xu et al., 2000), and tea plant (Camellia sinensis) (Ni
et al., 1990), enabling diversified land use while enhancing the growth
of mixed forest components. Furthermore, Paulownia plantations sus-
tain relatively abundant understory vegetation, promoting biodiversity

across scales.

2 | PAULOWNIA GROWTHENVIRONMENT

Optimal growth temperature for Paulownia ranges between 24 and
30°C; however, these trees can withstand temperatures down to
—20°C and above 40°C (Woods, 2008). Their optimum soil water con-
tent is approximately 50% of field capacity (Wang et al., 2020). In
regions without artificial irrigation, annual precipitation as low as
500 mm can meet their soil water content needs, although annual
rainfall up to 1,000 mm is more suitable (Wang et al., 2020). In fact,
Paulownia persists in semi-arid Mediterranean regions with low irriga-
tion levels (Testa et al., 2022). Paulownia trees, however, are intolerant
to flooding and, in stands without effective drainage, prolonged

waterlogging or flooding limits growth and can be fatal (Wang

FIGURE 1 Paulownia-wheat
intercropping system. Paulownia elongata
trees are effectively intercropped with
wheat (Triticum aestivum Zhengmai 379)
at the ground level in Lankao County,
Henan Province, China. Photograph taken
by Jie Qiao.

et al., 2020). These trees are characterized by a deep rooting system,
extensive lateral roots, and a fleshy root cortex, all of which are key
adaptations for avoiding water stress. They prefer sandy loam or grav-
elly soils that are deep and well-aerated, with an ideal soil porosity of
over 50% (Woods, 2008). Paulownia broadly tolerates soil pH
between 5.0 and 8.9, but is more sensitive to soil salinity than most
tree species (Chinnusamy et al., 2005; Zeng et al., 2002), with its
growth being severely hindered when the total salt concentration of
the soil rises above 1 % (Zhu et al., 1986).

Paulownia are light-demanding trees with very poor shade toler-
ance, especially during their sensitive sapling stage when even slight
shade can cause deformation (Barbu et al., 2023; Wang et al., 2015).
This extreme light sensitivity means that Paulownia rarely form uni-
form forests naturally, and instead usually co-occurs with Acer, Quer-
cus, and Juglans mandshurica hardwood trees to form an upper
canopy, or occurs in forest gaps and along forest edges with little
shade (Jiang, 1990). In plantations, lateral shading causes crown devia-
tion and narrows the annual rings on the shaded side of the trunk by
more than 30% in heavily shaded areas, which significantly reduces
wood yield and quality (Jiang, 1990).

3 | PAULOWNIA HAVE REMARKABLY FAST
GROWTH

Compared to conventional hardwood and softwood tree species, Pau-
lownia exhibits remarkably fast growth (Ayrilmis & Kaymakci, 2013).
P. tomentosa particularly stands out, with a biomass production of
50 t/(ha-year), which far surpasses traditionally recognized fast-
growing species, such as Populus spp., Salix spp., Panicum virgatum,

and Miscanthus x giganteus ‘Nagara’ that typically yield between
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FIGURE 2 Growth patterning in Paulownia. (a) Comparison of
leaf area (red) and height (blue) growth rates across initial, middle, and
late phenological stages of cloned Paulownia seedlings. Modified from
(Wang et al., 1993). (b) Paulownia tree height curves over the first six
months. Modified from (Zhou et al., 1996). (c) Growth in diameter at
breast height (DBH) in Paulownia fortunei ‘Yulinensis 1’ at two
plantation planting densities over 24 years in Liangyuan Forest farm in
Shanggiu City, Henan province, China (34°33'18”N and 115°34'44"E).
Data show that higher planting density is associated with reduced
trunk diameter growth, and this density-dependent growth difference
becomes more pronounced with age (unpublished data). Error bars are
the standard error of the mean.
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6 and 17 t/(ha-year) (Dominguez et al., 2017; Marsal et al., 2016). A
study on the diurnal growth rhythm across saplings of seven Paulow-
nia clones indicated that the leaf area expansion rate can reach over
7 cm? per hour, while the stem elongation rate reaches up to nearly
0.2 mm per hour (Figure 2a; Wang et al., 1993). Under suitable growth
conditions, one-year-old root cutting Paulownia trees may attain leaf
lengths up to 80 cm (Owfi, 2017), 8 m in height, and up to 12 cm in
root collar diameter (RCD) (Zhu et al., 1986). A study of growth pat-
terning in one-year-old saplings found that Paulownia's growth (in
terms of sapling height) follows a logistic curve, with approximately
80% of the total height increment occurring within a two-and-a-half-
month fast-growth stage, as shown in Figure 2b (Zhou et al., 1996).
Furthermore, Paulownia has strong coppicing ability, such that new
growth accumulates at a faster rate after being harvested compared
to new sapling growth from seed (Bojesen Jensen, 2016). If Paulownia
trees are left unharvested, they can attain a life expectancy of up to
80 years, reaching a height of 49.5m, a diameter at breast height
(DBH) of 224 cm, and a wood volume of 34 m® (Jakubowski, 2022).
By forming hollow trunks, Paulownia may have developed an adaptive
strategy that optimizes mass distribution, increases resistance to gravi-
tational loading, and thus avoids self-buckling even at great heights
(Kanahama & Sato, 2023). Paulownia can be harvested for purlin or
rafter timber after seven growing seasons (Z. Li et al., 2012). If the cul-
tivation objective is plywood or furniture timber, however, the ideal
felling age of Paulownia is between13 and 20 years, respectively.
These young felling times are in stark contrast to most hardwood
trees, which take approximately 60 to 80 years to mature and be eco-

nomically useful (Ayrilmis & Kaymakci, 2013).

4 | POTENTIAL DRIVERS OF FAST
GROWTH IN PAULOWNIA

In the following sections, we propose potential drivers of fast growth
in Paulownia, linking traits typically associated with fast growth in
trees with the available current literature on Paulownia and highlight-

ing where more research is needed.

4.1 | Specialised photosynthetic metabolism

Photosynthetic capacity is an important factor in plant growth that is
primarily driven by photosynthetic metabolism. Plants are generally
divided into four main types of photosynthetic carbon metabolism,
including Cs, C4, C,, and Crassulacean Acid Metabolism (CAM)
(Lundgren, 2020; Paulus et al., 2013). Over the past few decades,
there have been mixed reports about the type of photosynthesis used
by Paulownia. Like most trees, Paulownia species have traditionally
been classified as Cs plants, primarily due to the absence of Kranz
anatomy in their leaves (Su et al., 1993). This classification was
recently supported by transcriptomics evidence that was consistent
with C; carbon assimilation in the mesophyll (Cao et al., 2021).
Despite these lines of evidence, however, many studies have attrib-

uted Paulownia's fast growth and exceptional carbon sequestration
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capacity to Cs photosynthesis (e.g.,, Ghazzawy et al, 2024;
Jakubowski, 2022; Stawinska et al., 2023; Swiechowski et al., 2019;
Wozniak et al., 2018). C4 photosynthesis is a carbon concentrating
mechanism (CCM) that spatially separates CO, fixation across meso-
phyll and bundle sheath cell types within the leaf to effectively reduce
photorespiration and consequently boost photosynthetic efficiency
and ultimately growth under hot and bright environments (Atkinson
et al., 2016; Pearcy et al., 1987). The C4 pathway is a highly conver-
gent complex trait that has evolved in ~70 plant lineages indepen-
dently; however, it is very rarely found in true trees and is not
associated with rapid growth rates in the few tree species that do use
this CCM (Young et al., 2020).

A recent investigation of photosynthetic phenotypes in
P. tomentosa, P. fortunei, and Paulownia kawakamii strongly suggests
that these Paulownia species do not use C, photosynthesis (Young &
Lundgren, 2023). Indeed, key leaf traits used to define photosynthetic
type, such as the CO, compensation point - the CO, concentration at
which the rate of CO, uptake through photosynthesis equals the rate
of CO, release through respiration and photorespiration (55.7-
63.8 umol mol™Y)- and leaf interveinal distance - the average dis-
tances between adjacent longitudinal veins (156-225 um)- were sig-
nificantly higher in Paulownia than values typically measured in C4
plants, while carboxylation efficiency (0.04-0.09 molm~2 s~%) and
8'3C stable isotope signatures (—25.59 to —22.22 %o) in Paulownia fell
well below values typically measured in C4 plants under similar growth
environments (Young & Lundgren, 2023). Furthermore, the same
study found very few chloroplasts localized to the bundle sheath tis-
sue of Paulownia leaves, suggesting the spatial separation of atmo-
spheric CO, fixation would be nearly impossible via the dual-cell C4
system used by most C4 plants. These results indicate that Paulownia
does not employ the C4 CCM.

Unlike C4 photosynthesis, CAM is a CCM that temporally sepa-
rates CO, fixation across the day and night, such that CAM plants
take in CO, via open stomatal pores during the night when it is cool
and store it in vacuoles until the daytime when it can be mobilized
and converted into sugars in the Calvin-Benson-Bassham cycle. In
doing so, this pathway effectively saves water, making CAM
photosynthesis particularly advantageous in very dry environments. In
some plants, CAM is facultative, meaning that it can turn on and off
depending on the environment, often being induced under water-
limited conditions (Cushman & Borland, 2002). Unlike obligate CAM
species, which trade off fast growth for exceptional water-saving
potential, facultative CAM can facilitate fast growth (Winter &
Holtum, 2024).

Two recent studies have suggested that Paulownia may fix CO,
via a facultative CAM pathway that supplements C3 metabolism (Cao
et al., 2021; Wang et al., 2019). First, Wang et al. (2019) found that
genes encoding enzymes used in CAM metabolism for CO, residue
delivery were upregulated in Paulownia. Then, Cao et al. (2021) found
that the stomata dotted along Paulownia leaves remain open through
both the day and night, suggesting that active gaseous exchange may
be taking place through their stomata at night, which is a common

phenotype of CAM plants. Furthermore, they identified differential

expression and regulation of photosynthesis genes during the daytime
versus the nighttime that were consistent with patterns of carbon
assimilation taking place during the night as is typically found in CAM
plants. The findings of these two studies are compelling, but not con-
clusive. Indeed, nocturnal stomatal opening has been observed in sev-
eral Cz species without association with CAM (Resco De Dios
et al., 2019). Furthermore, Paulownia leaves are not succulent, which
is a morphological prerequisite for vacuolar storage capacity of
organic acids in obligate CAM plants, but may not exclude the possi-
bility of facultative CAM in Paulownia (Holtum et al., 2016; Sage
et al., 2023; Winter & Holtum, 2024). Taken together, patterns are
emerging that point to Paulownia potentially having evolved a special-
ized photosynthetic mechanism that remains elusive. Further research
is needed to fully elucidate the photosynthetic phenotype of Paulow-
nia and determine the extent to which it may contribute to fast
growth. For example, 24-hour diurnal gas exchange measurements
would confirm or not whether Paulownia leaves assimilate CO, during
the night and therefore perform facultative CAM (Cenciareli
et al,, 2025; Mok et al., 2023). Following this, the degree to which
putative facultative CAM then contributes to fast growth with Pau-
lownia would require additional experimental validation. In addition,
the benefits of respiration for rapid growth should be considered, as it
functions as a process complementary to, rather than opposing, pho-
tosynthesis (Amthor, 2025).

4.2 | Non-foliar photosynthesis in saplings

While photosynthesis is typically associated with leaves, it can also
occur in any chlorophyll-rich tissues throughout a plant, such as green
stems, bracts, petals, pods, and seeds, to effectively boost whole plant
carbon assimilation (Aschan & Pfanz, 2003; Simkin et al., 2020). One
distinctive feature of non-foliar photosynthesis is its dual origin of
CO.. First, internal leaf CO, can originate from atmospheric CO, that
has diffused from the atmosphere into the cells through stomatal
pores, where it can be fixed by ribulose-1,5-bisphosphate carboxylase
(Rubisco) in leaf tissue via the Calvin-Benson-Bassham (CBB) cycle.
Additionally, CO, can also be released from respiration or photorespi-
ration into the leaf, which can then be refixed via the CBB cycle
(Millar et al., 2011; Simkin et al., 2020).

The relative contributions of non-foliar photosynthesis to whole
plant photosynthetic carbon assimilation remain contentious and
appear to be strongly species-dependent (Lawson & Milliken, 2023).
Photosynthesis in cucumber (Cucumis sativus) fruits, for example, pro-
vides nearly one tenth of the whole plant carbon assimilation and
nearly 90 % CO, released by respiration is refixed in these fruits (Sui
et al., 2017). Indeed, non-foliar photosynthetic tissue may be particu-
larly important for refixing respired CO,, which is likely to become
critical when the diffusion and supply of external CO, are limited
(Lawson & Milliken, 2023). Foliar and non-foliar photosynthesis may
have distinct photosynthetic characteristics. For example, photosyn-
thetic efficiency within the rind of Satsuma Mandarins (Citrus unshiu)

is approximately fivefold higher than that of its leaves under a low



ZHAO and LUNDGREN

Plants People Planet PPP 1 -

FIGURE 3 Photosynthetic stems in
Paulownia saplings. Photographs showing
(a) green stems; (b) lenticels along the
main stem; and (c) lenticels and vertical
cracks in maturing trees. Photographs
taken by Jie Qiao, Baoping Wang, and
Chaowei Yang, respectively.

FIGURE 4 Monoaxial growth and pseudo-dichotomous branching in Paulownia saplings and mature trees. Photographs showing

(a) monoaxial growth in saplings and (b) the terminal bud dies in winter, and the lateral bud near the top forms a pair of lateral branches, and the
growth of the stem exhibits pseudo-dichotomous branching. One of the two pseudo-dichotomous branches is often stronger (red arrow) than the
other (black arrow). In Paulownia fortunei, the former grows upwards in the direction of the main stem and thus contributes to the extension of
the stem, while the latter gradually dies back due to light/nitrogen/water competition. Panel (c) shows two balanced branches in Paulownia
tomentosa, which limits the extension of the main stem. Photographs taken by Yang Zhao.
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light intensity of 13.5 mol m™2 s~ (Hiratsuka et al., 2015). Indeed,
photosynthesis in green non-foliar tissues is widely accepted to have
a similar photosynthetic pathway to that of mesophyll (Henry
et al., 2020; Hiratsuka et al., 2015; Trainin et al., 2022). However,
foliar and non-foliar tissues have also been documented to use differ-
ent photosynthetic pathways. In the C; crop tobacco, for instance,
cells surrounding the xylem and phloem within the stems and petioles
exhibit biochemical and anatomical characteristics of C, photosynthe-
sis (Hibberd & Quick, 2002).

In trees, photosynthesis in green, non- or low-lignified trunk and
stem tissue can contribute significantly to carbon fixation and stem
growth, while also improving hydraulic function and drought survival
(Avila-Lovera et al., 2024; Chen et al., 2021; Kocurek et al., 2020; Sun
et al, 2021). Previous studies indicate that stem photosynthesis in
desert shrubs operates between 16 and 60% of leaf photosynthetic
rates (Avila et al., 2014), and this strong stem photosynthetic capacity
is largely maintained throughout the dry season (Avila-Lovera
et al., 2017), and can reach more than 70% of leaf photosynthetic
rates in the arid-adapted wild cherry (Prunus arabica) (Brukental
et al., 2021). In addition to the main trunk/stems of saplings and
green-barked trees, current-year branches can also effectively con-
tribute to whole plant net carbon assimilation (Berveiller et al., 2007).
Studies have quantified the importance of stem photosynthesis in
trees, finding that it contributes approximately 11% to branch tissue
growth in Eucalyptus miniata (Cernusak & Hutley, 2011), 24% to stem
growth in Populus nigra (Bloemen et al., 2013), and up to 56% to trunk
diameter in Arctostaphylos manzanita (Saveyn et al., 2010).

In non-succulent plants, stem photosynthesis can be divided into
two types: direct stem net photosynthesis and indirect stem CO,
recycling photosynthesis (Avila et al., 2014). Direct stem net photo-
synthesis is characterized by the presence of stomata or lenticels
along the stem epidermis, which allow an entry point for atmospheric
CO, into the photosynthetic cells of green tree trunks, stems, and
branches (Cernusak & Cheesman, 2015). Here, chlorophyll-rich
trunks/stems/branches engage in active CO, assimilation via the CBB
cycle to increase whole plant carbon assimilation and water-use effi-
ciency. By contrast, the more common indirect stem CO, recycling
photosynthesis occurs in shrub and tree species with smooth bark
surfaces, which effectively trap respired CO, and allow for higher light
penetration, and involves the refixation of CO, produced by underly-
ing respiratory processes or from released CO, transported during
transpiration. This indirect stem recycling photosynthesis reduces car-
bon respiratory losses to boost whole plant net carbon assimilation
(Berveiller et al., 2007; Cernusak & Cheesman, 2015; De Roo
et al., 2020).

While Paulownia may engage one or both types of this non-foliar
photosynthesis in their trunk/stems/branches throughout their life, it
may be particularly important during the sapling stage for these trees.
Unlike most trees, Paulownia stems remain green and non-lignified
throughout the first year of growth (Figure 3a), with numerous lenti-
cels developing along the stem during this year-long sapling stage. As
Paulownia trees mature in their second year of growth, their epidermis

gradually transitions from green to grey-brown or black (Figure 3b),

stem lignification increases, and lenticels transform into vertical cracks
(Figure 3c) along the bark surface (Jakubowski, 2022). These traits
suggest that active stem net photosynthesis occurs along the main
trunk of Paulownia during their first year of growth, which would give
an initial boost to the whole-plant carbon acquisition, allowing these
trees to grow tall quickly. While stem photosynthesis has been char-
acterized in other fast-growing trees, including Eucalyptus urophylla
(Chen et al., 2021), Poplar tremula (De Roo et al., 2020), and Salix mat-
sudana (Liu et al., 2019), it remains uncharacterized in Paulownia.
Understanding whether Paulownia effectively performs direct stem
net and/or indirect recycling photosynthesis and their implications for
growth requires further investigation.

Further research is needed to address these questions around the
potential contribution of non-foliar photosynthesis to rapid growth in
Paulownia trees. For example, one simple approach to start to answer
these questions would be to characterize the presence or absence of
stomata along the non-foliar green surfaces. If stomata are indeed
present, then gas exchange measurements could confirm or not CO,
flux in these non-foliar tissues. Furthermore, long-term light-exclusion
experiments, for example by covering stems in aluminum foil (Valverdi
et al., 2023) or performing leaf defoliation (Natale et al., 2023), would
directly quantify the contribution of stem photosynthesis to seedling
growth. Finally, patterns of carbon- and oxygen-isotope discrimination
may shed light on the fraction of woody biomass produced by net
stem photosynthesis and refixation (Cernusak & Hutley, 2011).

43 | Growth habit

The monoaxial growth strategy, which is characterized by a single,
strictly unbranched stem, is associated with rapid height growth in
trees (Kohyama, 1987). Monoaxial trees typically adjust the petiole
length of leaves within the crown to reduce self-shading (Aoyagi
et al., 2024). Together, the monoaxial growth strategy allows trees to
grow vertically at a fast rate and with cheap extension costs, so that
they can rapidly take advantage of canopy gaps and minimize compe-
tition (Aiba & Nakashizuka, 2007). Paulownia saplings are monoaxial,
exhibiting the specialized leafing pattern, with their petiole length
decreasing from the top to the bottom of the stem (Figure 4a). As Pau-
lownia trees age, however, they gradually transition to a pseudo-
dichotomous branching pattern (Zhao et al., 2021), whereby the ter-
minal axis stops growing and growth only continues via lateral
branches (Figure 4c). Similar to petiole length in young Paulownia sap-
lings, branch lengths that form in older saplings also increase from the
top to the base, as do the angles between branches and stems
(Figure 4b,c). The shift from monoaxial to pseudo-dichotomous
growth habit after the first year of growth suggests that Paulownia
prioritizes rapid and inexpensive height growth during its first year of
life to quickly outcompete and escape its neighbors. Further study is
required to determine how the crown architecture of this growth
habit, including total leaf area, the distribution of leaf and branch
angles, and the resulting patterns of canopy light transmission, inter-

ception, and light use efficiency (Aoyagi et al., 2024; De Mattos
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FIGURE 5 Conceptual diagram collating the topics discussed in this review. Paulownia present several traits that facilitate their escape from
competition via specific habit, structure, and phenological strategies (blue). Potential use of specialist photosynthetic metabolism and non-foliar
photosynthesis would maximize carbon-use efficiency, whilst a deep root system and large vascular structures could enhance nutrient and water
acquisition (green). Together, strategies that effectively evade competition coupled to effective resource acquisition appear to underpin fast
growth in paulownia trees. However, structured, hypothesis-driven experiments are needed to validate these proposed drivers of fast growth in

Paulownia.

et al., 2020) at both sapling and mature stages, efficiently contributes

to overall tree growth.

44 | Leaf structure

The leaf structure of Paulownia may contribute to its high photosyn-
thetic capacity and rapid growth. For example, P. elongata exhibits a
high stomatal density of 630.06 mm~2 (Fan et al., 2006), well above
those values reported for several Populus species (Sakoda et al., 2020;
Wang et al., 2024), another well-known rapid-growth tree species.
Because stomatal density is positively correlated with CO, exchange,
net photosynthesis, and biomass production (Sakoda et al., 2020;
Tanaka et al., 2013), having high stomatal density could provide an
anatomical advantage to growth. In addition, mesophyll architecture
can be tuned to raise mesophyll conductance by expanding the sur-
face area of mesophyll cells exposed to the intercellular airspace
(Baillie & Fleming, 2020; Lehmeier et al., 2017). Paulownia leaves have
been shown to possess unusually large mesophyll air spaces
(Jiang, 1990), which could enhance internal CO, diffusion and, conse-
quently, photosynthetic performance.

Specific leaf area (SLA), or the light-capturing surface area per
unit dry mass investment, is an important factor in photosynthetic-
nitrogen relations (Milla & Reich, 2007; Reich et al., 1998). Indeed,
Paulownia saplings have remarkably large, thin leaves that can exceed
one meter in length and have high SLA (Zhu et al., 1986), like many
monoaxial trees, which typically have large leaves with low construc-
tion costs (Aiba & Nakashizuka, 2007). Leaves with high SLA increase
light interception in saplings and younger trees (Augspurger &
Bartlett, 2003), and greater light interception has been linked to
greater water and resource allocation leading to improved photosyn-
thesis, growth rates and, ultimately, woody mass production
(De Mattos et al., 2020; Pongpattananurak et al., 2025; Ruiz-Robleto &

Villar, 2005; Steppe et al., 2011). After the first year of growth, how-
ever, Paulownia leaves transition to become smaller and thicker (lower
SLA) (Icka et al., 2016), which may indicate an evolutionary adaptation
to cope with greater water limitation in mature trees (Aparecido
et al., 2017; England & Attiwill, 2006).

Leaf structural costs are influenced by multiple leaf traits in addi-
tion to SLA. For example, trade-offs between photosynthesis and res-
piration and between structural and non-structural carbon
accumulations, and plant nutrient characteristics (i.e., plant elemental
stoichiometry, such as N allocation trade-off). Despite their recog-
nized importance for plant performance, these interacting determi-
nants of construction cost have yet to be examined in Paulownia.
Therefore, dedicated studies are still needed to clarify how each fac-

tor shapes the leaf economic strategy of this genus.

4.5 | Reduced investment in hydraulic safety

As discussed above, Paulownia is renowned as tall, fast-growing trees.
In one remarkable example, a P. fortunei tree in Sichuan Province,
China, grew to 21.7 m high and with a volume of 6.65 m® over just
18 years (Zhu et al, 1986). This significant vertical growth rate
requires the production of additional xylem conduits to maintain vas-
cular continuity from where water is absorbed in the roots to where it
is transpired from the crown foliage. Some have hypothesized that
this vascular connectivity can create a context-dependent trade-off
between hydraulic efficiency (i.e., water transport capacity) and safety
(i.e., resistance to embolism) (Hacke et al., 2006; Prendin et al., 2018;
Sperry, 2003). In support of this theory, Van Der Sande et al. (2019)
found that enhanced hydraulic safety was associated with higher
wood density, greater leaf dry mass content, lower stomatal conduc-
tance, and lower photosynthetic efficiency across a study of 18 tree

species, which suggests that high-cost dense wood and leaves with
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lower photosynthetic activity play key roles in enhancing hydraulic
safety in trees (van der Sande et al., 2019). In further support, Santi-
ago et al. (2004) found that greater hydraulic efficiency was associated
with higher rates of gas exchange in the leaves of 20 canopy-forming
trees, facilitating an acquisitive life history strategy of fast resource
acquisition and growth. Therefore, one could conclude that Paulownia
may prioritize hydraulic efficiency over safety. Indeed, Paulownia trees

have low wood density ranging from 220 to 350kgm~2

(Jakubowski, 2022); compared to a typical range of 300-600 kg m~2
across most tree species (Saranpaa, 2003) which is linked to greater
hydraulic efficiency and rapid height growth (Aiba &
Nakashizuka, 2007; Van Der Sande et al., 2019). However, trade-offs
between hydraulic safety and efficiency are not inevitable (Maherali
et al., 2004), and some tree species can evolve phenotypes that bal-
ance both safety and efficiency (Gleason et al., 2016; Liu et al., 2021).
If trade-offs between hydraulic safety and efficiency exist, then natu-
ral selection should favor high efficiency in wet environments and
high safety in arid environments (Sperry et al., 2008). A 7-year multi-
site clonal test at three sites spanning the temperate to subtropical
regions of China indicated that Paulownia typically grows best in wet
environments with a mean annual precipitation of 1,690 mm (Zhao
et al.,, 2022), Furthermore, one site in Hubei province experienced a
severe meteorological drought in 2022—the worst in 60 years—which
led to dieback in Paulownia branch tips while neighboring slower-
growing Chinese fir plantation trees appeared unaffected throughout
the drought period (personal observation). These examples lend sup-
port to the idea that Paulownia prioritizes hydraulic efficiency over
safety. However, the details behind the hydraulic strategy of Paulow-
nia and its role in rapid growth remain unclear. Future studies should
therefore investigate how biomass allocation, leaf water relations,
stem xylem anatomy and function, and the coordination of these traits
(Medeiros et al., 2016) function together to shape overall hydraulic

performance.

5 | CONCLUSION

Paulownia are remarkable hardwood deciduous trees with significant
economic and ecological value that have among the fastest recorded
growth rates in the plant kingdom. Despite their societal value, the
drivers of fast growth in these trees remain unknown. Here we pro-
pose several possible underlying facilitators of fast growth in the
genus, including potential use of facultative CAM photosynthetic
metabolism, non-foliar sapling stem photosynthesis, a sapling mono-
axial growth habit, inexpensive structural costs, and prioritized
hydraulic efficiency, which may all function together to convey
extraordinarily fast growth in these trees (Figure 5). Furthermore, we
conclude that Paulownia trees prioritize rapid growth via a combina-
tion of these factors, specifically during the first 12 months of growth,
to effectively outcompete or escape their neighbors. Comprehensive
investigations are required to gain a more holistic understanding of
the mechanisms behind the rapid growth of Paulownia. Elucidating

these drivers could yield a physiological model system of the rapid

growth in hardwood tree species and provide pivotal insights that
would be broadly applicable to sustainable plantation management,

conservation, bioenergy production systems, and plant biotechnology.
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