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Objective: High-resolution medical images are scarce, and existing image
generation methods perform poorly at high resolutions, struggling with the
representation of small lesions, loss of detailed information, distortion of
anatomical structure, high computational cost, and mode collapse. This study
aims to develop a novel generative framework to address the challenges of
high-resolution medical image generation.

Methods: Clinical X-ray data from 255 patients and a public dataset
containing 1,657 lung CT images with lung nodules were collected. We
propose a pioneering medical image generation method that employs a
two-route synthesis strategy: a foreground generation route that utilizes a
generative model from a single lesion image (SINGAN) to create new lesion
configurations and structures while preserving the original patch distribution
and a background generation route that utilizes a high-fidelity medical
image generation model, high-resolution medical image (HiResMed) Vector-
Quantized Generative Adversarial Network (VQGAN), which incorporates a
hierarchical dual-path fusion block (HDFB) and integrates it into a VQGAN,
trained on the collected data. The HDFB module combines a dual-path
learning strategy: a residual path with skip connections to capture hierarchical
dependencies and multi-scale textures and a multi-scale convolutional
feedforward feature extraction module (MSConvFE) that preserves low-level
anatomical features through localized detail enhancement. Finally, based on
the location of lesions in historical data as prior knowledge to guide the
fusion position of the synthesized lesions in the background image, a high-
resolution synthetic medical image with small lesions is obtained. We compared
our method with denoising diffusion model (DDM), StyleSwin, VQGAN, and
SinGAN using Frechet Inception Distance (FID), learned perceptual image
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patch similarity (LPIPS), peak signal-to-noise ratio (PSNR), and structural
similarity (SSIM). Two urologists participated in a visual Turing test to assess
perceptual fidelity.

Results: The experimental results demonstrate that the proposed method
achieves state-of-the-art performance, reducing FID by 43.3% (145.64 vs.
256.11) and LPIPS by 5% (0.48 vs. 0.51), enhancing the PSNR by 4% (59.03 vs.
56.54) and SSIM by 6% (0.67 vs. 0.63), and accelerating training convergence
by 83% compared to baseline VQGAN. Clinicians misclassified 55% of synthetic
images as real, validating their anatomical fidelity.

Conclusion: This study proposes a method for generating high-resolution
medical images of small lesions. It not only ensures high-quality lesion
generation but also allows controls over the number and location of
lesions. Moreover, the innovative architecture enhances the detailed quality of
anatomical structures and improves computational efficiency during training.

controllable synthesis, two-route synthesis strategy, high-resolution medical image

generation, hierarchical dual-path learning, detail preservation, high fidelity

1 Introduction

High-resolution imaging is essential for numerous medical
applications, including surgical navigation systems, high-precision
diagnostic technologies, and early disease screening. Preoperative
path planning for percutaneous nephrolithotomy for kidney stones
requires comprehensive X-ray and CT imaging of the entire upper
torso [1, 2]. Such applications require computation and processing of
high-resolution images to provide detailed anatomical information,
which is essential for accurate diagnosis and effective surgical
planning. However, the limited maturity of high-resolution imaging
pipelines, data silos across hospitals, and strict privacy/ethics
constraints make case collection and annotation difficult, time-
consuming, and expensive [3-6]. Despite the existence of synthetic
data generation methods, existing methods mainly focus on low-
resolution medical images of 128 pixels x 128 pixels or 256 pixels
x 256 pixels and rarely exceed 512 pixels x 512 pixels [7], or the
generated effects still lack high definition and anatomical fidelity
[8]. Zhao etal. [9] and Cao et al. [10] explored transformer-based
improvements for high-resolution synthesis, but these methods have
not been validated on medical images. The increasing demand for
large-scale imaging in various medical fields has gradually exposed
the limitations of the existing methods, including high consumption
of computing resources, loss of detailed information, and distortion
of anatomical structures, making it hard to achieve clinical-grade
detail under limited data [11, 12].

Generative adversarial networks (GANs) and their variants
provide advanced medical image synthesis [13-17], yet the
adversarial setup often prioritizes global fidelity for fooling the
discriminator, which conflicts with the high-dimensional, sparse,
and strongly constrained nature of medical images and can lead
to mode collapse. Another significant issue is that the GANs often
lose detailed information due to some convolution operations,
such as downsampling, and their GANs to focus on global
distributions. These problems are magnified in medical images
where detailed information is particularly important and the
resolution is high, resulting in severe distortion of anatomical

Frontiers in Physics

02

structures in the reconstructed images and the inability to generate
detailed information, such as small lesions and their texture features
[18, 19]. In 2020, the denoising diffusion model (DDM) [20]
achieved improved fidelity but required prohibitive computational
resources, had long training and generation times, and could
not easily meet the demands of immediate diagnosis. Moreover,
high-frequency information is prone to over-smoothing during
the denoising step and relies on large-scale, high-quality datasets
to accurately learn data distribution, but medical images are
usually limited in sample size, multimodal, and exhibit strong
domain specificity. More recently, transformer-enhanced GANS,
such as StyleSwin [21], have introduced attention mechanisms to
better preserve structural details, but processing high-resolution
images produces very long token sequences and incurs high self-
attention costs [22]; the enlarged parameter space also complicates
optimization and can yield divergent attention weights between
the generator and discriminator, producing structural noise.
Additionally, traditional evaluation metrics such as the peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [23], and other
pixel-level indicators cannot evaluate anatomical rationality, and
distribution similarity metrics such as Frechet Inception Distance
(FID) and IS ignore medical specificity. Therefore, clinical experts
are also required to evaluate the diagnostic value of the generated
images, but this process is complex and expensive. Consequently, the
ability to generate high-resolution medical images with high fidelity
has become a crucial research objective [24-26].

Recent studies have explicitly embedded anatomical or
hierarchical priors to improve high-resolution medical image
synthesis. Kang [27] proposed a method that explicitly introduces
anatomical structure preservation loss, which significantly improves
the consistency of organ contours during cross-domain migration.
However, it is still limited to 256 x 256 resolution, and small
lesion details are easily lost. Yu [28] proposed a HiFi-Syn, which
includes multi-scale discriminators with layered supervision to
achieve high-fidelity 512 x 512 MRI synthesis with superior
structural fidelity to traditional GANs. However, the cascaded
network doubles the number of parameters, placing heavy demands
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on hardware computing resources, and its generalization to
non-brain medical image synthesis requires further research.
Yu [29] focused on cross-granular comparative representation
of unsupervised lesion segmentation in medical images, and
although it has unique explorations in lesion segmentation tasks,
it does not involve the medical image generation link, has poor
adaptability in multi-modal medical image data fusion scenarios,
and cannot be directly applied to high-fidelity medical image
synthesis tasks. Efficient-Vector-Quantized Generative Adversarial
Network (VQGAN) [10] introduces a hierarchical transformer
module that captures the global anatomical structure and local
details through self-attention at different scales. However, the
transformer’s high computational complexity makes it difficult to
process high-resolution images, such as 1,024 x 1,024 resolution,
and it does not optimize feature weights for the sparsity of
medical images, such as small lesions. Although these works
demonstrate the value of medical priors, none address the dual
challenge of sub-millimeter lesion fidelity and computational
tractability at 1,024 pixel resolutions. Our high-resolution medical
image (HiResMed)-VQGAN addresses this challenge through
parameterized hierarchical fusion, explicitly preserving macro-
anatomical structures via residual skip connections and micro-
textures via MSConvFE, while reducing computational cost. This
approach enables adaptive integration of macroscopic structures,
such as spinal morphology, and microscopic lesions, such as
pulmonary nodules. Decoupled foreground synthesis enables
precise manipulation of lesion characteristics such as size and
location, which is impossible in diffusion and transformer
frameworks. It achieves the collaborative optimization of “high
fidelity-high efficiency-controllability,” thus providing a new
paradigm for the synthesis of small-sample, high-resolution medical
images in clinical practice.

VQGAN [30] is an advanced generative model proposed at
the 2021 IEEE International Conference on Computer Vision
and Pattern Recognition, which has demonstrated excellent
performance in various applications such as high-resolution
image generation, texture synthesis, and video generation, and it
provides a partial solution [31, 32]. The advantage of the network’s
codebook [33, 34] discrete calculation mechanism is that it improves
computational efficiency, but its disadvantage is that it fails to
coordinate multi-scale feature learning, resulting in the inability
to simultaneously preserve the macroscopic information of the
anatomical structure and the microscopic structural information
of tiny lesions. Therefore, the application of VQGAN to high-
resolution medical image generation remains underexplored [33]
[35-38].

In the context of high-resolution medical imaging, which is
above 512 x 512 pixel images, the challenge is further compounded
by the scarcity of cases, especially for small lesions that are critical
for early detection of diseases such as kidney stones, early-stage
tumors, and nodules. Traditional data augmentation approaches,
such as downsampling, have been shown to result in the loss of
critical details about small lesions, thereby compromising the quality
of synthetic data. This loss of information can lead to suboptimal
performance of AI models in detecting and diagnosing diseases at
their earliest stages. The need for a novel approach that can generate
high-resolution small-lesion medical images while preserving lesion
details and maintaining data diversity is, therefore, imperative.
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This study introduces a pioneering method that harnesses
the of the
network (SinGAN) [39] model for lesion generation as a foreground

power single-image  generative  adversarial
synthesis, complemented by an improved VQGAN model for
background synthesis. We propose a novel approach to enhance the
performance of the VQGAN by introducing a residual convolutional
feedforward network module. This module is integrated into
the encoder and decoder of a VQGAN framework. Unlike prior
works, the hierarchical dual-path fusion block (HDFB) employs
a dual-path learning strategy. An MSConvFE path preserves low-
level anatomical structures. A residual path utilizes depth-wise
convolutions and channel scaling to capture multi-scale textures.
This integration accelerates the model’s convergence, reducing
training time and enhancing the detailed information in the
generated high-resolution medical images. This work aims to fill
the gap in the current literature and provide a robust solution for
high-resolution medical image generation. Our contributions are
summarized as follows:

1. Controllable two-route synthesis: We decouple training into
a foreground lesion route and a background route and then
compose them at inference with explicit control over the
lesion size and location. This enables flexible recombination
and substantially expands data diversity, which is particularly
valuable for rare cases.

HDFB for high-fidelity, efficient background generation:
We introduce a dual-path block that combines residual
connections for multi-scale texture modeling with an
MSConvFE path for low-level anatomical preservation,
addressing the fidelity-efliciency trade-off at high resolution.
Architectural innovation: To the best of our knowledge,
this is the first integration of a hybrid HDFB into a
VQGAN encoder-decoder for high-resolution medical
imaging, improving feature extraction, gradient propagation,
computational efficiency, and training speed.

Strong potential for clinical application: Clinicians misjudged
55% of the synthetic images as real images, which proved
that the synthetic images had high anatomical fidelity, which
strongly verified the feasibility and effectiveness of the
framework in clinical application and provided strong support
for the application in actual medical scenarios.

2 Materials and methods

2.1 Datasets

Our study utilizes a public and a proprietary dataset. The public
dataset is LIDC-IDRI, one of the most popular benchmarks in
deep learning research, containing 1,657 lung CT images with lung
nodules of 512 x 512 x 3 resolution. The proprietary dataset DGPH-
KUB comprises 255 high-resolution kidney-ureter-bladder (KUB)
X-ray images at 3,292 x 3,141 resolution collected from the Urology
Department of Dongguan People’s Hospital. In particular, this study
has been authorized by the Ethics Committee of Dongguan People’s
Hospital (No.: KYKT2022-040). In order to eliminate the influence
of other factors on our reported results, image processing software
was used to adjust the resolution of the original image, and the
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images were uniformly changed to a resolution of 1,024 x 1,024 x 3.
This dataset is unique in its focus on high-resolution X-ray images
and is particularly valuable for research on kidney stone diagnosis
and surgical navigation systems.

2.2 High-resolution medical image VQGAN
network

The high-fidelity, high-resolution medical image VQGAN
network is proposed as a novel architecture that integrates HDFB
into the encoder and decoder of VQGAN. The HDFB proposed in
this paper is inserted into the encoder and decoder of VQGAN, and
the specific construction method is shown in Figure 1.

The generation process is as follows. First, the real high-
resolution medical image I is input into the HDFB-equipped
encoder. The purpose of this process is to perform multi-scale
feature extraction and latent space mapping. This process is mainly
divided into two stages. The first stage is layered convolutional
downsampling, which uses convolutional blocks with residual
connections to perform downsampling three times. This process
gradually compresses the spatial resolution from 1,024 x 1,024 to
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16 x 16 while increasing the number of channels from 3 to 512,
layer by layer, forming a feature pyramid that contains contextual
information at different scales. The second stage is the processing
of the multi-scale convolutional feedforward feature extraction.
Through the parallel structure of depth-wise separable convolution
and residual convolution, multi-scale features from the local texture
to the global structure are captured, and the features of different
branches are fused across scales by element-by-element addition.

The feature map M processed by the HDFB-equipped encoder
is compressed into a continuous latent space representation through
a 1 x 1 convolution and then mapped to a discrete codebook
space through a vector quantization layer. The codebook is a set
of predefined vectors that maps the continuous latent space to
the discrete codebook space [16]. Let B = {bn € RD}il denote a
codebook containing N entries, with each entry b; being a D-
dimensional trainable embedding with random initialization. These
vectors are continuously updated during the training process so that
the model can learn a discrete representation to better represent
the features of the input image. Subsequently, the quantizer in the
codebook maps M to a token map M', where each token is an entry
in B based on the cosine distance between M and B.
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Then, the HDFB-equipped decoder reconstructs the original
image from the token map M'. This process is divided into
two stages. The first stage is layered deconvolution upsampling.
Deconvolution blocks with skip connections are used for
upsampling three times to gradually restore the spatial resolution
from 16 x 16 to 1,024 x 1,024, and the number of channels is
compressed from 256 to 3 layer by layer. After each upsampling,
a residual convolution feedforward network is inserted, and the
weights of features of different scales are dynamically adjusted
through the channel attention mechanism. The second stage is
the detail enhancement convolution calculation. After upsampling
the last layer, the high-frequency texture of the reconstruction is
captured through the parallel structure of the depth-separable
convolution and the residual convolution, and a high-quality
reconstructed image is generated.

Finally, the discriminator, composed of two convolutional
layers, a normalization operation, and an activation function,
calculates the authenticity probability of the real image and the
reconstructed image, and it distinguishes the authenticity of local
details, medium-scale structures, and global layout of the generated
image, respectively. The ultimate goal is to continuously optimize the
generator based on the feedback from the discriminator, enabling
the generator to produce reconstructed images capable of deceiving
the discriminator.

The entire network is optimized using a combination of losses,
which is expressed as follows (Equation 1):

(1)

2
I

and Lg,y represent the

L= 1= 1" +afjsg(M") = M| + yllsg®D) = M| + L, + Loy,

where sg(-) denotes the stop-gradient operation. ||i -1
osg(M°) — M]| + yllsg(M) - M|, L,,
reconstruction loss, quantization loss, VGG-based perceptual loss

[27], and GAN loss [27], respectively. The hyper-parameters o and
y are, respectively, set to 1.0 and 0.33 by default.

2.3 Hierarchical dual-path fusion block

The HDFB is designed to optimize feature representation and
gradient propagation in high-resolution medical image synthesis.
The structure is shown in Figure 2. By integrating sequential
normalization, activation, and multi-sale feature learning with
skip connections, the HDFB ensures both anatomical fidelity and
computational efficiency. In the HDFB, the input data tensor, which
represents the height, width, and number of channels, is first passed

through a GroupNorm-SiLU pair (Equations 2, 3):
X GroupNorm(X), 2

norml

X, = SILU(X 3)

norml)'

We use a smoothly gated non-linear activation defined
as follows (Equation 4):

X

SiLU(x) = .
iLUG) 1+e™

(4)
Here, x is the input, and the function is derivable over the

whole real number field, which makes the gradient smoother
and continuous during the backpropagation process, so there is
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no problem of gradient disappearance, and it helps improve the
stability and convergence speed of training. The non-monotonicity
property can, therefore, switch between positive and negative values,
providing richer information-processing ability. It can better capture
the detailed information of the anatomical structure. SiLU [40]
preserves gradient information better than ReLU, especially for
subtle features. After applying 2D convolutional layers to extract
local spatial features, we repeat normalization and activation
(Equations 5, 6), thus amplifying discriminative features while
suppressing noise.

X,

norm2 = GroupNorm (Xactl )’ (5)

X, = SILU(X

normZ)‘

(6)

The final output is fed into the MSConvFE block (Equation 7) to
enhance multi-scale feature learning:

Foomfin = ConvFFN(X,p)- (7)

In order to mitigate vanishing gradients and preserve
low-frequency anatomical structures, we introduce a skip
connection (Equation 8):

Y:X+anvffn' (8)

The residual block, previously used in both the encoder and
decoder, was replaced by the HDFB module, resulting in several
significant improvements. First, the convolutional feedforward
network further analyzes and processes these details by retaining
low-level details in residual blocks. In particular, it contains multiple
convolutional layers and fully connected layers, and its complex
structure can capture finer-grained patterns and relationships in
the data. When processing medical images, the convolutional
feedforward network can perform an in-depth analysis of details,
such as texture and density changes in organs, soft tissues, and
bone regions, thereby extracting more subtle features. Through in-
depth analysis, this detailed information enables the decoder to
reconstruct high-resolution medical images with greater accuracy,
thereby enhancing overall network performance in terms of
reconstruction quality and generation fidelity. The enhanced feature
extraction in the encoder and the improved detail-handling in the
decoder result in more accurate reconstructions and higher-quality
generated outputs. Second, the HDFB-equipped VQGAN is more
robust in terms of noise and input variations. The skip connections
in HDFB and its non-linear transformation capabilities help the
network to better adapt to different input conditions, which is
beneficial in real-world applications where the input data may be
corrupted or have diverse characteristics. Third, the combination of
HDFB and VQGAN can lead to more efficient training. The HDFB
blocks’ ability to mitigate the vanishing gradient problem and their
effective feature processing can accelerate the convergence of the
network during training, thus reducing the overall training time and
computational resources required.

To enhance the multi-scale feature learning and preserve fine-
grained details simultaneously, we design a hybrid architecture
for the multi-scale convolutional feedforward feature extraction
module, addressing the dual challenges of anatomical coherence and
texture fidelity in high-resolution medical image generation. While
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Structural diagram of HDFB. A residual path utilizes skip connections to capture hierarchical dependencies and multi-scale textures. The multi-scale
convolutional feedforward feature extraction module preserves low-level anatomical features through localized detail enhancement.

TABLE 1 Training parameters utilized in the HiResMed-VQGAN model.

Parameter item Value
Batch size 8
Epochs 3,500

Loss function Reconstruction loss + adversarial loss + perceptual

loss
Learning rate 2.25e-05
Number codebook vectors 1,024

Optimizer Adam (eps = 1e-08, betas = (0.5, 0.9))

classical feedforward modules focus on global context aggregation,
our MSConvFE uniquely integrates localized detail enhancement,
hierarchical multi-scale modeling, and improved computational
efficiency through a dual-path structure. The architectural
components are shown in Figure 2. Moreover, the 2D convolutional
layer can extract local spatial features. Group normalization [41]
divides the channels into several groups, calculates the mean and
variance within each group for normalization (Equation 9), and
calculates the formula as follows:

.
GN(x) = 16 .

,2
O'G+8

y+p. )
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Here, G represents the number of groups; p; and 02G represent
the mean and variance of channels in each group, respectively;
and y and P represent the parameters of learnable scaling and
translation, respectively. This method does not depend on the batch
size and helps stabilize the training process. In order to prevent
the gradient explosion problem and improve the convergence
speed of the model, we introduce a batch normalization operation
after SiLU activation function processing. The GeLU activation
function introduces nonlinearity through the probability of a
Gaussian distribution, and its calculation formula is as follows
(Equation 10):

GeLU(x) = x- O(x). (10)

Here, x is the input, and ®(x) is the cumulative distribution
function of the normal distribution. Due to its high computational
complexity, an approximate expression is often used to simplify the
calculation [42].

GeLU(x) = 0.5-x- (1 + tanh(E(H 0.044715x3)>>. (11)

The nonlinear nature of the GeLU activation function (Equation
11) can enhance the models ability to fit complex data, and the
activation degree of the GeLU function is proportional to the
size of the input value, which is helpful for the learning and
generalization of the model. In particular, this paper introduces
a depth-wise separable convolution layer, which is composed of
a depth-wise convolution and a point-wise convolution, where
the depth-wise convolution is a convolution operation performed
on each channel of the input feature map. Specifically, for
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TABLE 2 Quantitative results (mean + SD) compared with state-of-the-art methods on two datasets. Lower FID/LPIPS and higher PSNR/SSIM indicate
better performance. The best result is shown in bold, and the second-best result is underlined; significance testing is based on a paired t-test. Results
are averaged over five independent samplings per background.

Method Dataset FID| (mean + SD) LPIPS| (mean + SD) PSNRT (mean + SD) SSIMT (mean + SD)
DGPH-KUB 17831 +8.24 0.46 + 0.03 63.10 + 1.27 0.69 +0.03
DDM
LIDC-IDRI 171.53 +7.91 0.46 + 0.02 63.57 +1.19 0.55 +0.02
DGPH-KUB 243.12 £ 10.56 0.49 + 0.04 62.63+1.32 0.64 +0.04
StyleSwin
LIDC-IDRI 205.92 +9.83 0.47 +0.03 64.36 + 1.08 0.60 +0.06
DGPH-KUB 256.11 + 12.37 0.51 %0.05 56.54 + 145 0.63 %0.02
VQGAN
LIDC-IDRI 280.23 £ 11.72 0.57 +0.06 61.33+1.21 052 +0.03
DGPH-KUB 277.11 £ 13.15 0.48 £ 0.04 58.58 + 1.52 0.65 +0.05
SinGAN
LIDC-IDRI 268.07 + 12.89 047 +0.03 64.00 + 1.15 0.59 +0.06
DGPH-KUB 145.64 + 5.23% %k 048 + 0.02k% 59.03 + 0.95%% 0.67 +0.03%
Ours
LIDC-IDRI 180.29 + 6.87% %k 047 + 0.02%% 64.46 + 0.84% 059 + 0.03%

Significance test: “k%%” represents p < 0.05; “k%” represents p < 0.01; “k” represents p < 0.001 (vs. baselines).

an RGB three-channel image, the depth-wise convolution uses
three single-channel convolution kernels to convolve the three
input channels, respectively, and output the feature maps of
the three channels. In this way, the convolution kernel of each
channel only needs to process the data of one channel, which
greatly reduces the number of parameters and the amount of
calculation. Point convolution is a 1 x 1 convolution operation
applied to the output of the depth-wise convolution to merge
the features of different channels. Specifically, the point-wise
convolution uses a 1 x 1 convolution kernel to convolve the
output of the depth-wise convolution, fuses the features of
different channels, and generates the final output feature map.
Therefore, this combination can not only significantly improve
the performance of the model but also optimize the computing
resources.

For an input feature map X € RIXWXC - where H, W, and C
represent the height, width, and number of channels, respectively,
the MSConvFE processes the feature as follows (Equation 12):

X,orm = GroupNorm(X)
Foony = Conv2Ds5(X,100m)
F,, = GeL U(me,)
1 Fpw =DWConves(F,y) - (12)
Fopannet = Conv2Dy (Fpyy)
Fyyop = DropPath(F gpe1)
Y =X+ Fypp

The skip connection retains raw anatomical features, while
the processed branch drop refines high-frequency details. This
modification ensures that both high-frequency details and low-
frequency features are preserved, which is critical for high-
resolution medical image synthesis.
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2.4 Lesion synthesis

In this study, the preprocessed lesion images obtained from the
previous step serve as the input to the lesion generation model. We
employ the SinGAN model for generating synthetic lesion images.
SinGAN is a single-image GAN that is particularly well-suited for
medical image synthesis tasks where data scarcity is a common
challenge. Unlike traditional GANs that require large datasets for
effective training, SinGAN can achieve convergence with only a
single training image, making it an ideal choice for generating
lesion images in scenarios with limited data availability. Therefore,
the problem of poor generation quality due to insufficient data
volume can be avoided. Moreover, data scarcity and data silos have
always been common problems in medical data. The SinGAN model
is based on a pyramid of fully convolutional GANs, where each
level of the pyramid learns to capture the statistical properties
of the input image at different scales. This hierarchical structure
enables the model to generate high-quality synthetic images that
preserve the fine-grained details of the original lesion. The key
advantage of SinGAN lies in its ability to learn from a single image,
which is particularly beneficial for medical imaging applications
where annotated datasets are often limited. Given a preprocessed
lesion image I,;,,, the SinGAN model generates synthetic lesion
images by learning the distribution of the input image across
multiple scales. The generation process can be formally described
as follows (Equation 13):

I

syn_lesion

= SinGAN(Lision)s (13)

where SinGAN(-) represents the SInGAN generator network.
During the training stage, the SinGAN model is trained on
a single preprocessed real lesion image, learning a multi-scale
representation of its texture and structure. During inference, no
real lesion image is fed into the network. Instead, new lesions are
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FIGURE 3

Generation performance of our method compared with the state-of-the-art on DGPH-KUB X-ray images.

VQGAN-hase Singan

synthesized by sampling random noise at the coarsest scale and
progressively refining it through the trained scales. This process
allows lesion generation to be conditioned solely on the learned
internal distribution of the training exemplar without reusing the
original image.

To generate high-resolution medical images containing small
lesions, the synthetic lesion images I, 1., are placed into a high-

The background image I,

resolution background image I, canvas

anvas*
is initialized as a zero matrix with the same dimensions as the
background high-resolution image Ij;groung> Which is the output
of the background route. The placement of the synthetic lesions
is guided by prior knowledge of lesion locations derived from
historical patient data.

To ensure anatomically plausible placement of synthetic lesions

I

within the background image I_,,,.

» we introduce a dual-
model prior position information framework. This framework
combines the location model and danger zone detection model.

The location model is a YOLOvll-based detector trained on
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historical lesion annotations to probabilistically predict likely
lesion locations. Formally, for the background image Ij,cerounds
the model outputs the following set of candidate coordinates
(Equation 14):

Cloc = (xi’y;')li =1.., k)) (14)

where each coordinate represents a high-probability lesion
occurrence region learned from historical distributions.

The danger zone detection model is a U-Net segmentation
network that is trained to identify anatomically implausible regions
(e.g., bones, major vessels, and spinal column in KUB X-rays and
pleural surfaces in lung CTs). The model generates a binary mask
M gapger» where (Equation 15)

0 (forbidden zones: spine, pelvis, etc.)

Mdunger(x’y) = (15)

1 (permissible regions)

We design a candidate region filtering Cp,, for the final
candidate region calculation (Equation 16). Cg;,, is derived by
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FIGURE 4
Details of the performance of our method compared with the state-of-the-art on DGPH-KUB X-ray images.
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FIGURE 5
Generation performance of our method compared with the state-of-the-art on LIDC-IDRI data.
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Details of the performance of our method compared with the state-of-the-art on LIDC-IDRI data.

TABLE 3 Confusion matrices of the senior and intermediate urologists in
the visual Turing test. The urologists completed the authenticity
judgment on 200 KUB X-ray images, which included both real and
synthetic images. “Synt” denotes synthesized images, and P and N
indicate positive and negative classes.

2 urologists
prediction

Intermediate
professional

Senior
professional

Real(P) | Synt(N) Real(P) Synt(N)
Actual
Truth Real(P) 85 15 65 35
Truth Synt(N) 55 45 55 45

imposing anatomical constraints as follows:

Cfinal = {(xi’yi) € Clac |Mdanger(xi>yi) = 1}- (16)

Users may either manually select the coordinates of interest from
these safe regions or allow random sampling to determine the final
lesion insertion regions, Ry, Finally, the pixel values of I,
are filled into Ryggop-

canvas

syn_lesion

contains I information, and we

syn_lesion

may also define I ;.45 8 I reqround-

Specifically, this process ensures that the generated lesions are
anatomically plausible and consistent with real-world medical
imaging scenarios. The final high-resolution

image  Ip,p,,
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TABLE 4 Results of the visual Turing test (n = 200). Analysis of the
sensitivity, specificity, accuracy, and consistency of the senior and
intermediate urologists in the authenticity judgment of synthetic KUB
X-ray images.

Metric Senior Intermediate
professional professional
Sensitivity (TPR, %) 85.0 65.0
Specificity (TNR, %) 45.0 45.0
Accuracy (%) 65.0 55.0
Kappa (agreement) 0.3 0.1
p-value (vs. 50%) <0.001 0.046

containing the synthetic lesion is obtained by combining I,,eground

and I

f using a pixel-wise addition operation, which is
background

as follows (Equation 17):
output(xl ) Ibuckground(x y) +1 syn_| lesmn('x’y) (17)
In particular, the pixel values in the Ry, regions of Iy,cxeround
need to be set to 0.

Since this merging method is pixel-level, there will inevitably be
excessive seams between the edge of the lesion and the background.
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TABLE 5 Variability analysis under fixed lesion/varying background and
fixed background/varying lesion conditions. The metrics (mean + SD)
show minimal fluctuations, confirming robustness against sampling
stochasticity.

Metric | Fixed lesion—varying Fixed
background (mean + background-varying
SD) lesion (mean + SD)
FID 147.21 £ 4.56 145.64 = 3.82
LPIPS 0.49 +0.03 0.48 + 0.02
PSNR 58.76 = 1.12 59.03 £ 0.87
SSIM 0.69 % 0.03 0.68 0.03

We leverage Sobel edge detection and Gaussian blurring to achieve
natural pixel-level continuity.

First, the contour of the synthetic lesion is extracted using the
Sobel operator, which computes gradient magnitudes along both the
horizontal and vertical directions to identify edge pixels. This step
isolates the boundary between the lesion and its surrounding area,
ensuring precise targeting of the transition region. Subsequently, a
Gaussian blur (with a kernel size of 3 x 3 and standard deviation o
= 1.0, which is empirically optimized for medical image textures)
is applied to the detected edge. This blurring operation creates a
gradual intensity transition between the lesion and the background:
edge pixels are weighted by a Gaussian distribution, with values
smoothly decreasing from the periphery of the lesion to the
background.

This approach minimizes abrupt intensity changes at the lesion
boundary, thus enhancing the visual coherence of the integrated
image without introducing excessive computational overhead.

3 Results
3.1 Implementation details

Weights were initialized using torch.nn.init (mean 0 and
standard deviation 0.02), and training was conducted for up to
3,500 epochs. The codebook dimension for vector quantization is
selected as 256 to align with the feature dimension of the encoder
output. More training hyperparameters are summarized in Table 1.
All experiments were conducted on a single NVIDIA V100 GPU
with 32 GB of memory. We synthesize images at 1,024 x 1,024
resolutions for both datasets. Owing to computational constraints,
DDM was trained to generate 128 x 128 x 3 images, which were
subsequently upsampled to 1,024 x 1,024 x 3 for comparison.

3.2 Quantitative evaluation

We used several quantitative metrics to assess the quality of
the generated high-resolution medical images, which are detailed
as follows.

1. Frechet Inception Distance (FID)
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The FID [43] calculates indicators of the quality and diversity of
the generated image by comparing the distribution of the generated
image with the real image in a specific space. The definition is
as follows (Equation 18):

D=, - P+ (Y + Y 23, 3)")

where pi. and ) are the mean and covariance matrix of real image

(18)

features, respectively, and p, and 2., are the mean and covariance
matrix of the generated image features, respectively. Tr is the trace
of a matrix.

2. Learned perceptual image patch similarity (LPIPS)

The LPIPS [44] is a perceptual similarity measure based on deep
learning, which is used to measure the perceptual difference between
two images. Its definition is formulated as follows (Equation 19):

0=
2

LPIPS:Z#Z"%@ (19)
L T T pw

where y' is the Ith feature maps. It is normalized with respect to
the initial feature map y. in the channel dimension using unit
normalization, and the number of activated channels is scaled using
w;; the L2 distance value is then calculated. Here, ® is the dot product
operation.

3. Peak signal-to-noise ratio (PSNR).

The PSNR measures the pixel-wise similarity between the
generated images and the ground truth. The definition is as follows
(Equation 20):

where n is the number of sampling points. In this study, we process

(2" -1)?

MSE (20)

PSNR =10 x logm(

the RGB images, so n = 24. MSE stands for the mean squared error,
which is defined as follows (Equation 21):

H W
1 o v a2
MSE = T Wizlj;(X(l,J) Y(i,5))%, (21)

where H x W is the number of pixels in the image, H and W are the
length and width of the image, X is the enhanced image, and Y is the
real clear image.

4. Structural similarity (SSIM)

The similarity between two images is measured from three
dimensions: brightness, contrast, and structure. The value range is
[0, 1], and the closer the value is to 1, the more similar it is. The
calculation formula is as follows (Equation 22):

(ZMxl’ly + cl)(Zaxy + cz)
(‘ufC +‘u; + cl)(a,zc + aﬁ + c2)

Here, u,0% 0{xy} represent the local mean, variance, and

SSIM(x,y) = (22)

covariance of the image, respectively.

To rigorously evaluate the stochasticity induced by lesion
sampling, we generated five independent samples per test
background (using different random seeds) and report the mean
+ standard deviation (SD) in Table 2. Three key findings emerged.
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TABLE 6 SSIM comparison for computing outside the lesion mask.

Method  Dataset SSIM (nho SSIM(mask
mask) lesion)
VQGAN | DGPH-KUB 0.63 0.62
OUR DGPH-KUB 0.67 0.66

First, in terms of lesion generation fidelity, on KUB X-ray data,
the FID decreased to 145.64 + 5.23, which is a significant 43.3%
reduction compared to the baseline VQGAN (p < 0.001), and
the standard deviation (SD = 5.23) was the lowest among all the
methods, demonstrating optimal generation stability. Although
DDM performed well in terms of LPIPS (0.46 + 0.03) and PSNR
(63.10 £ 1.27), it failed to generate visible lesions (Figures 3, 4).
Our method, on the other hand, successfully synthesized small
lesions while preserving the anatomical structure (LPIPS = 0.48
+ 0.02, PSNR = 59.03 + 0.95). Second, in terms of cross-modal
generalization ability, in the CT dataset (LIDC-IDRI), the FID
(180.29 * 6.87) of this method significantly outperformed all
baselines (p < 0.001), and the PSNR (64.46 + 0.84) was the best
(p < 0.05). The variability caused by the prior lesion (LPIPS
fluctuation SD < 0.02) is far below the human eye perception
threshold (LPIPS > 0.05 can be perceived [44]), proving the clinical
reliability of the synthesized results. Third, statistical significance
was verified by paired t-tests (Bonferroni correction, a = 0.05). The
FID improvement of this method was significant for all baselines
(p < 0.001), and PSNR was significantly better than DDM on
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CT data (p < 0.05). Due to computational resource limitations,
DDM can generate images only at 128 x 128 resolution, which
must then be upsampled to 1,024 x 1,024. This results in high
PSNR values while failing to capture true high-resolution details
(Figure 5).

3.3 Qualitative comparison with
state-of-the-art approaches

Figures 3, 4 present KUB X-ray results. Our method synthesizes
target images with accurate anatomical structures and fine lesion
details. The details of the synthetic KUB X-ray images are displayed
in Figure 4. DDM produces structurally reasonable yet overall blurry
images and often fails to generate lesion signals. The StyleSwin model
produces inferior quality results, and the structure of the spinal
cord is unreasonable and unclear. In this comparative experiment,
the target map generated by the VQGAN model demonstrates
better overall quality but lacks sharp bone edges and clear lesion
depiction. The generation effect of SinGAN is not satisfactory, and
additionally, the spine is broken, indicating that the model fails
to learn global anatomical logic. Overall, our results are visually
closest to real images, providing clearer cortical bone boundaries,
a more realistic lesion appearance, and more natural representation
of intrabody bubbles. Comparison of generation details (Figure 4)
shows that our method most closely resembles real images
in the synthetic quality of the spine and intrabody bubbles,
whereas the results of other methods deviate substantially from
realism. A crucial point is that the texture, edge, and clarity
of kidney stone lesions generated by the proposed method are
superior.
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FIGURE 8
Training loss convergence comparison on the KUB images dataset.

Figures 5, 6 show the visual comparison of the generated CT
medical images and their details using our proposed method and
other state-of-the-art techniques. Similarly, the generation effect
of DDM is still vague, and the information on pulmonary blood
vessels is not generated. The generation result of StyleSwin is
only at a normal level for pulmonary blood vessels but severely
distorted for other tissue structures. The texture features generated
by the VQGAN model are better than those mentioned above, but
the pulmonary vascular information is almost missing. SinGAN
generates higher-quality bone and blood vessel information, but it
introduces severe distortions in the morphology of other tissues.
In our method, both the overall morphology and local texture
features, including the vascular features of both lungs and the
information about the spine, are very close to those of the real image.
Representative synthetic detail information is displayed in Figure 6.
The spine generation quality of all the comparison methods is poor
and does not reach the level of clinical application.

Comparatively, the generation quality of this method and
StyleSwin is acceptable and can roughly show the shape of the
spinal bone cross-section. When comparing the generation quality
of pulmonary nodules, the results of the proposed method and the
VQGAN method are closest to real images, whereas other methods
produce ground glass-like nodules that lack clarity and suggest a risk
of malignant transformation. The last row shows the comparison
of the imaging quality of arteries. It is easily observable that the
proposed method can clearly generate contours and textures similar
to those of real images, while the other methods cannot even present
the contours of arteries.

The above results fully confirmed the feasibility of the proposed
method in generating X-ray and CT images with high resolution. In
particular, compared with the baseline VQGAN effect, the overall
quality and details are significantly improved, and the effectiveness
of the proposed structural optimization of HDFB is confirmed.
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3.4 Clinical validation using visual Turing
test

To evaluate the perceptual fidelity of synthetic images, we
conducted a visual Turing test on 200 KUB X-ray images, where
100 X-rays are real and taken from the DGPH-KUB dataset and
the other 100 are images synthesized using our method. Two
urologists (senior: 20 years of experience; intermediate: 10 years
of experience) take part in this test to complete the authenticity
judgment of the 200 KUB X-ray images. As shown in Table 3, the
true positive of the senior urologist is 85, reflecting familiarity with
authentic anatomical features. Nevertheless, the true negative is 45,
which means that 55% of the synthetic images were misclassified
as real. Our method can mimic clinical data. The false positives
of the intermediate urologist are 72, indicating that 72% of the
synthetic images were mistaken as real, which validates our method’s
perceptual fidelity. A further analysis of the clinical implications
is shown in Table 4. Sensitivity (the true positive rate for real
images) and specificity (the true negative rate for synthetic images)
were calculated, and statistical significance was assessed using
McNemar’s [45] test against random guessing (50%). Inter-rater
agreement was quantified using Cohen’s kappa (k) [46]. Senior
physicians demonstrated significantly higher sensitivity (85.0% vs.
65.0%, p < 0.001), reflecting their expertise in familiarity with the
characteristics of real KUB X-ray images. However, both groups
exhibited critically low specificity (senior: 45.0%; intermediate:
45.0%, p < 0.01 vs. 50% random guessing), with 55% of the
synthetic images being misclassified as real. The low kappa values
(0.3 for senior, 0.1 for intermediate) suggest variability in individual
judgment criteria, yet the consistent 55% misclassification rate is
sufficient to support the validity of the model’s ability to generate
clinically plausible images.
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3.5 Ablation studies

3.5.1 Effect of lesion—background variability on
synthesis stability

To assess the effect of lesion-sampling variability, we analyzed
two cases: (1) varying lesion texture, scale, and placement on a
fixed background and (2) placing a fixed lesion across varying
backgrounds. All metrics were computed per the synthesized
image, and the reported values are the mean + SD across B = 10
backgrounds x L = 5 lesion samples per background (N = 50). As
shown in Table 5, both scenarios exhibited low metric fluctuations
(FID: 145.64-147.21; LPIPS: 0.48-0.49; PSNR: 58.76-59.03; SSIM:
0.68-0.69), indicating that the learned prior introduces controlled
diversity without compromising visual realism. These variations are
below clinical perceptibility thresholds, confirming the method’s
stability. Some visual examples are shown in Figure 7.

3.5.2 Background fidelity assessment via lesion
masking

To evaluate the impact of controlled lesion synthesis on
background anatomy fidelity, we conducted a specialized analysis
on 100 background samples from the DGPH-KUB test set. The
experiments computed two variants: SSIM computed only on
pixels outside the lesion mask (background), and SSIM with
no mask computed the global pixels. As shown in Table 6, the
difference between the mask SSIM 0.66 and the global SSIM 0.67
of our proposed method was only 0.01, which is comparable to
the difference observed in the baseline VQGAN, demonstrating
that controlled lesion insertion did not disrupt the background
anatomy. Furthermore, the global SSIM of our proposed method
was significantly higher than that of the VQGAN, validating the
enhanced background fidelity achieved by the HDFB module.
This conclusion demonstrates that the innovative approach in this
paper achieves flexible integration of pathological features while
maintaining the integrity of the background.

3.5.3 Accelerated convergence via HDFB
integration

For the ablation experiment, we compared the quantitative
results with the benchmark model VQGAN in Section 3.2 and the
visual results in Section 3.3, all of which prove the effectiveness of
the proposed HDFB module and have a significant effect on the
performance improvement of the VQGAN model. In addition, we
compared the training loss convergence of our proposed method
with that of VQGAN. As shown in Figure 8, integrating the HDFB
module into the VQGAN framework leads to faster convergence
and more stable training. The training loss of our method decreases
more rapidly and reaches a lower value than VQGAN. In addition,
the loss of the model with the HDFB block was reduced to 0.1 at
approximately the 200th epoch, while the baseline model needed
to reach 0.1 at approximately the 1,200th epoch. A total of 10,000
epochs were run in this experiment. Compared with the baseline
model, the final loss value of the model with the HDFB block
was 0.023, which was 0.057 less than 0.08 of the VQGAN model.
This indicates that the HDFB module helps mitigate the vanishing
gradient problem and accelerates the training process. This results
in reduced training time and improved computational efficiency.
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4 Discussion

In this study, we proposed a controllable lesion synthesis
framework that integrates a SinGAN-based lesion generator with
anatomically guided placement and a high-fidelity background
synthesis (HiResMed-VQGAN). The experimental
results demonstrate the superiority of the proposed method
with
lesions. The two-route synthesis strategy addresses a critical

network

in generating high-resolution medical images small
bottleneck in medical AL the scarcity of rare-lesion data.
By decoupling SinGAN’s lesion generation from background
synthesis through HiResMed-VQGAN, our framework achieves
flexible lesion control while ensuring high-quality anatomical
structures in the generated images and establishes a new
benchmark for high-resolution medical image generation, with
transformative potential in surgical planning and early-disease
detection.

Although the proposed method demonstrates promising
results in high-resolution medical image generation, some
limitations need to be addressed. In this study, the inter-rater

agreement was low (kappa = 0.3 for senior, kappa = 0.1 for
intermediate), corresponding to a fair and slight agreement by
Landis and Koch’s criteria. This may be due to the intrinsic
difficulty of the “real vs. synthetic” visual judgment task,
especially in the absence of standardized evaluation criteria.
The results suggest that while sensitivity was relatively high,
low specificity and low agreement limit the reliability of purely
visual assessments, warranting methodological refinements in
future work. Although the evaluation metrics indicate superior
perceptual quality, the absence of task-specific evaluation, such
as lesion detection or segmentation limits claims, regarding
diagnostic fidelity. This is partly mitigated by clinical validation,
which shows a high misclassification rate of 55%, indicating
that the synthetic lesions are anatomically plausible, and we
report SSIM values computed specifically within the lesion
mask. Our method achieves SSIM = 0.68 + 0.03 for lesions,
which is significantly higher than that of VQGAN. This
objectively confirms that synthetic lesions retain structural
similarity to real lesions. Furthermore, low LPIPS variance (SD
< 0.02) implies perceptual consistency below human-discernible
thresholds.

To bridge this gap, the future work will train lesion detectors
and segmenters on hybrid datasets to quantify diagnostic
utility. Lesion morphological control will be extended by
enhancing SinGAN to generate diverse lesion shapes and
textures, enabling the synthesis of atypical pathologies. The
findings will be validated across modalities, and generalizability
will be tested to MRI/PET, where
differ.

structural constraints
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