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Objective: High-resolution medical images are scarce, and existing image 
generation methods perform poorly at high resolutions, struggling with the 
representation of small lesions, loss of detailed information, distortion of 
anatomical structure, high computational cost, and mode collapse. This study 
aims to develop a novel generative framework to address the challenges of 
high-resolution medical image generation.
Methods: Clinical X-ray data from 255 patients and a public dataset 
containing 1,657 lung CT images with lung nodules were collected. We 
propose a pioneering medical image generation method that employs a 
two-route synthesis strategy: a foreground generation route that utilizes a 
generative model from a single lesion image (SinGAN) to create new lesion 
configurations and structures while preserving the original patch distribution 
and a background generation route that utilizes a high-fidelity medical 
image generation model, high-resolution medical image (HiResMed) Vector-
Quantized Generative Adversarial Network (VQGAN), which incorporates a 
hierarchical dual-path fusion block (HDFB) and integrates it into a VQGAN, 
trained on the collected data. The HDFB module combines a dual-path 
learning strategy: a residual path with skip connections to capture hierarchical 
dependencies and multi-scale textures and a multi-scale convolutional 
feedforward feature extraction module (MSConvFE) that preserves low-level 
anatomical features through localized detail enhancement. Finally, based on 
the location of lesions in historical data as prior knowledge to guide the 
fusion position of the synthesized lesions in the background image, a high-
resolution synthetic medical image with small lesions is obtained. We compared 
our method with denoising diffusion model (DDM), StyleSwin, VQGAN, and 
SinGAN using Frechet Inception Distance (FID), learned perceptual image
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patch similarity (LPIPS), peak signal-to-noise ratio (PSNR), and structural 
similarity (SSIM). Two urologists participated in a visual Turing test to assess 
perceptual fidelity.
Results: The experimental results demonstrate that the proposed method 
achieves state-of-the-art performance, reducing FID by 43.3% (145.64 vs. 
256.11) and LPIPS by 5% (0.48 vs. 0.51), enhancing the PSNR by 4% (59.03 vs. 
56.54) and SSIM by 6% (0.67 vs. 0.63), and accelerating training convergence 
by 83% compared to baseline VQGAN. Clinicians misclassified 55% of synthetic 
images as real, validating their anatomical fidelity.
Conclusion: This study proposes a method for generating high-resolution 
medical images of small lesions. It not only ensures high-quality lesion 
generation but also allows controls over the number and location of 
lesions. Moreover, the innovative architecture enhances the detailed quality of 
anatomical structures and improves computational efficiency during training.

KEYWORDS

controllable synthesis, two-route synthesis strategy, high-resolution medical image 
generation, hierarchical dual-path learning, detail preservation, high fidelity 

1 Introduction

High-resolution imaging is essential for numerous medical 
applications, including surgical navigation systems, high-precision 
diagnostic technologies, and early disease screening. Preoperative 
path planning for percutaneous nephrolithotomy for kidney stones 
requires comprehensive X-ray and CT imaging of the entire upper 
torso [1, 2]. Such applications require computation and processing of 
high-resolution images to provide detailed anatomical information, 
which is essential for accurate diagnosis and effective surgical 
planning. However, the limited maturity of high-resolution imaging 
pipelines, data silos across hospitals, and strict privacy/ethics 
constraints make case collection and annotation difficult, time-
consuming, and expensive [3–6]. Despite the existence of synthetic 
data generation methods, existing methods mainly focus on low-
resolution medical images of 128 pixels × 128 pixels or 256 pixels 
× 256 pixels and rarely exceed 512 pixels × 512 pixels [7], or the 
generated effects still lack high definition and anatomical fidelity 
[8]. Zhao et al. [9] and Cao et al. [10] explored transformer-based 
improvements for high-resolution synthesis, but these methods have 
not been validated on medical images. The increasing demand for 
large-scale imaging in various medical fields has gradually exposed 
the limitations of the existing methods, including high consumption 
of computing resources, loss of detailed information, and distortion 
of anatomical structures, making it hard to achieve clinical-grade 
detail under limited data [11, 12].

Generative adversarial networks (GANs) and their variants 
provide advanced medical image synthesis [13–17], yet the 
adversarial setup often prioritizes global fidelity for fooling the 
discriminator, which conflicts with the high-dimensional, sparse, 
and strongly constrained nature of medical images and can lead 
to mode collapse. Another significant issue is that the GANs often 
lose detailed information due to some convolution operations, 
such as downsampling, and their GANs to focus on global 
distributions. These problems are magnified in medical images 
where detailed information is particularly important and the 
resolution is high, resulting in severe distortion of anatomical 

structures in the reconstructed images and the inability to generate 
detailed information, such as small lesions and their texture features 
[18, 19]. In 2020, the denoising diffusion model (DDM) [20] 
achieved improved fidelity but required prohibitive computational 
resources, had long training and generation times, and could 
not easily meet the demands of immediate diagnosis. Moreover, 
high-frequency information is prone to over-smoothing during 
the denoising step and relies on large-scale, high-quality datasets 
to accurately learn data distribution, but medical images are 
usually limited in sample size, multimodal, and exhibit strong 
domain specificity. More recently, transformer-enhanced GANs, 
such as StyleSwin [21], have introduced attention mechanisms to 
better preserve structural details, but processing high-resolution 
images produces very long token sequences and incurs high self-
attention costs [22]; the enlarged parameter space also complicates 
optimization and can yield divergent attention weights between 
the generator and discriminator, producing structural noise. 
Additionally, traditional evaluation metrics such as the peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [23], and other 
pixel-level indicators cannot evaluate anatomical rationality, and 
distribution similarity metrics such as Frechet Inception Distance 
(FID) and IS ignore medical specificity. Therefore, clinical experts 
are also required to evaluate the diagnostic value of the generated 
images, but this process is complex and expensive. Consequently, the 
ability to generate high-resolution medical images with high fidelity 
has become a crucial research objective [24–26].

Recent studies have explicitly embedded anatomical or 
hierarchical priors to improve high-resolution medical image 
synthesis. Kang [27] proposed a method that explicitly introduces 
anatomical structure preservation loss, which significantly improves 
the consistency of organ contours during cross-domain migration. 
However, it is still limited to 256 × 256 resolution, and small 
lesion details are easily lost. Yu [28] proposed a HiFi-Syn, which 
includes multi-scale discriminators with layered supervision to 
achieve high-fidelity 512 × 512 MRI synthesis with superior 
structural fidelity to traditional GANs. However, the cascaded 
network doubles the number of parameters, placing heavy demands 
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on hardware computing resources, and its generalization to 
non-brain medical image synthesis requires further research. 
Yu [29] focused on cross-granular comparative representation 
of unsupervised lesion segmentation in medical images, and 
although it has unique explorations in lesion segmentation tasks, 
it does not involve the medical image generation link, has poor 
adaptability in multi-modal medical image data fusion scenarios, 
and cannot be directly applied to high-fidelity medical image 
synthesis tasks. Efficient-Vector-Quantized Generative Adversarial 
Network (VQGAN) [10] introduces a hierarchical transformer 
module that captures the global anatomical structure and local 
details through self-attention at different scales. However, the 
transformer’s high computational complexity makes it difficult to 
process high-resolution images, such as 1,024 × 1,024 resolution, 
and it does not optimize feature weights for the sparsity of 
medical images, such as small lesions. Although these works 
demonstrate the value of medical priors, none address the dual 
challenge of sub-millimeter lesion fidelity and computational 
tractability at 1,024 pixel resolutions. Our high-resolution medical 
image (HiResMed)-VQGAN addresses this challenge through 
parameterized hierarchical fusion, explicitly preserving macro-
anatomical structures via residual skip connections and micro-
textures via MSConvFE, while reducing computational cost. This 
approach enables adaptive integration of macroscopic structures, 
such as spinal morphology, and microscopic lesions, such as 
pulmonary nodules. Decoupled foreground synthesis enables 
precise manipulation of lesion characteristics such as size and 
location, which is impossible in diffusion and transformer 
frameworks. It achieves the collaborative optimization of “high 
fidelity–high efficiency–controllability,” thus providing a new 
paradigm for the synthesis of small-sample, high-resolution medical 
images in clinical practice.

VQGAN [30] is an advanced generative model proposed at 
the 2021 IEEE International Conference on Computer Vision 
and Pattern Recognition, which has demonstrated excellent 
performance in various applications such as high-resolution 
image generation, texture synthesis, and video generation, and it 
provides a partial solution [31, 32]. The advantage of the network’s 
codebook [33, 34] discrete calculation mechanism is that it improves 
computational efficiency, but its disadvantage is that it fails to 
coordinate multi-scale feature learning, resulting in the inability 
to simultaneously preserve the macroscopic information of the 
anatomical structure and the microscopic structural information 
of tiny lesions. Therefore, the application of VQGAN to high-
resolution medical image generation remains underexplored [33] 
[35–38].

In the context of high-resolution medical imaging, which is 
above 512 × 512 pixel images, the challenge is further compounded 
by the scarcity of cases, especially for small lesions that are critical 
for early detection of diseases such as kidney stones, early-stage 
tumors, and nodules. Traditional data augmentation approaches, 
such as downsampling, have been shown to result in the loss of 
critical details about small lesions, thereby compromising the quality 
of synthetic data. This loss of information can lead to suboptimal 
performance of AI models in detecting and diagnosing diseases at 
their earliest stages. The need for a novel approach that can generate 
high-resolution small-lesion medical images while preserving lesion 
details and maintaining data diversity is, therefore, imperative.

This study introduces a pioneering method that harnesses 
the power of the single-image generative adversarial 
network (SinGAN) [39] model for lesion generation as a foreground 
synthesis, complemented by an improved VQGAN model for 
background synthesis. We propose a novel approach to enhance the 
performance of the VQGAN by introducing a residual convolutional 
feedforward network module. This module is integrated into 
the encoder and decoder of a VQGAN framework. Unlike prior 
works, the hierarchical dual-path fusion block (HDFB) employs 
a dual-path learning strategy. An MSConvFE path preserves low-
level anatomical structures. A residual path utilizes depth-wise 
convolutions and channel scaling to capture multi-scale textures. 
This integration accelerates the model’s convergence, reducing 
training time and enhancing the detailed information in the 
generated high-resolution medical images. This work aims to fill 
the gap in the current literature and provide a robust solution for 
high-resolution medical image generation. Our contributions are 
summarized as follows: 

1. Controllable two-route synthesis: We decouple training into 
a foreground lesion route and a background route and then 
compose them at inference with explicit control over the 
lesion size and location. This enables flexible recombination 
and substantially expands data diversity, which is particularly 
valuable for rare cases.

2. HDFB for high-fidelity, efficient background generation: 
We introduce a dual-path block that combines residual 
connections for multi-scale texture modeling with an 
MSConvFE path for low-level anatomical preservation, 
addressing the fidelity–efficiency trade-off at high resolution.

3. Architectural innovation: To the best of our knowledge, 
this is the first integration of a hybrid HDFB into a 
VQGAN encoder–decoder for high-resolution medical 
imaging, improving feature extraction, gradient propagation, 
computational efficiency, and training speed.

4. Strong potential for clinical application: Clinicians misjudged 
55% of the synthetic images as real images, which proved 
that the synthetic images had high anatomical fidelity, which 
strongly verified the feasibility and effectiveness of the 
framework in clinical application and provided strong support 
for the application in actual medical scenarios.

2 Materials and methods

2.1 Datasets

Our study utilizes a public and a proprietary dataset. The public 
dataset is LIDC-IDRI, one of the most popular benchmarks in 
deep learning research, containing 1,657 lung CT images with lung 
nodules of 512 × 512 × 3 resolution. The proprietary dataset DGPH-
KUB comprises 255 high-resolution kidney–ureter–bladder (KUB) 
X-ray images at 3,292 × 3,141 resolution collected from the Urology 
Department of Dongguan People’s Hospital. In particular, this study 
has been authorized by the Ethics Committee of Dongguan People’s 
Hospital (No.: KYKT2022-040). In order to eliminate the influence 
of other factors on our reported results, image processing software 
was used to adjust the resolution of the original image, and the 
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FIGURE 1
Overview of the controllable high-resolution medical image synthesis network. The proposed framework consists of two generation routes: the 
foreground and background. The foreground uses the SinGAN model to generate lesion images, and the background image is generated using the 
HiResMed-VQGAN model. Finally, the foreground and background are fused to obtain the result.

images were uniformly changed to a resolution of 1,024 × 1,024 × 3. 
This dataset is unique in its focus on high-resolution X-ray images 
and is particularly valuable for research on kidney stone diagnosis 
and surgical navigation systems. 

2.2 High-resolution medical image VQGAN 
network

The high-fidelity, high-resolution medical image VQGAN 
network is proposed as a novel architecture that integrates HDFB 
into the encoder and decoder of VQGAN. The HDFB proposed in 
this paper is inserted into the encoder and decoder of VQGAN, and 
the specific construction method is shown in Figure 1.

The generation process is as follows. First, the real high-
resolution medical image I is input into the HDFB-equipped 
encoder. The purpose of this process is to perform multi-scale 
feature extraction and latent space mapping. This process is mainly 
divided into two stages. The first stage is layered convolutional 
downsampling, which uses convolutional blocks with residual 
connections to perform downsampling three times. This process 
gradually compresses the spatial resolution from 1,024 × 1,024 to 

16 × 16 while increasing the number of channels from 3 to 512, 
layer by layer, forming a feature pyramid that contains contextual 
information at different scales. The second stage is the processing 
of the multi-scale convolutional feedforward feature extraction. 
Through the parallel structure of depth-wise separable convolution 
and residual convolution, multi-scale features from the local texture 
to the global structure are captured, and the features of different 
branches are fused across scales by element-by-element addition.

The feature map M processed by the HDFB-equipped encoder 
is compressed into a continuous latent space representation through 
a 1 × 1 convolution and then mapped to a discrete codebook 
space through a vector quantization layer. The codebook is a set 
of predefined vectors that maps the continuous latent space to 
the discrete codebook space [16]. Let B = {bn ∈ RD}N

n=1
 denote a 

codebook containing N entries, with each entry bi being a D-
dimensional trainable embedding with random initialization. These 
vectors are continuously updated during the training process so that 
the model can learn a discrete representation to better represent 
the features of the input image. Subsequently, the quantizer in the 
codebook maps M to a token map Mt, where each token is an entry 
in B based on the cosine distance between M and B.
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Then, the HDFB-equipped decoder reconstructs the original 
image from the token map Mt. This process is divided into 
two stages. The first stage is layered deconvolution upsampling. 
Deconvolution blocks with skip connections are used for 
upsampling three times to gradually restore the spatial resolution 
from 16 × 16 to 1,024 × 1,024, and the number of channels is 
compressed from 256 to 3 layer by layer. After each upsampling, 
a residual convolution feedforward network is inserted, and the 
weights of features of different scales are dynamically adjusted 
through the channel attention mechanism. The second stage is 
the detail enhancement convolution calculation. After upsampling 
the last layer, the high-frequency texture of the reconstruction is 
captured through the parallel structure of the depth-separable 
convolution and the residual convolution, and a high-quality 
reconstructed image is generated.

Finally, the discriminator, composed of two convolutional 
layers, a normalization operation, and an activation function, 
calculates the authenticity probability of the real image and the 
reconstructed image, and it distinguishes the authenticity of local 
details, medium-scale structures, and global layout of the generated 
image, respectively. The ultimate goal is to continuously optimize the 
generator based on the feedback from the discriminator, enabling 
the generator to produce reconstructed images capable of deceiving 
the discriminator.

The entire network is optimized using a combination of losses, 
which is expressed as follows (Equation 1):

L = ‖ ̂I− I‖2 + α‖sg(Mt) −M‖ + γ‖sg(M) −Mt‖ + Lp + LGAN, (1)

where sg(·) denotes the stop-gradient operation. ‖ ̂I− I‖2, 
α‖sg(Mt) −M‖ + γ‖sg(M) −Mt‖, Lp, and LGAN represent the 
reconstruction loss, quantization loss, VGG-based perceptual loss 
[27], and GAN loss [27], respectively. The hyper-parameters α and 
γ are, respectively, set to 1.0 and 0.33 by default. 

2.3 Hierarchical dual-path fusion block

The HDFB is designed to optimize feature representation and 
gradient propagation in high-resolution medical image synthesis. 
The structure is shown in Figure 2. By integrating sequential 
normalization, activation, and multi-sale feature learning with 
skip connections, the HDFB ensures both anatomical fidelity and 
computational efficiency. In the HDFB, the input data tensor, which 
represents the height, width, and number of channels, is first passed 
through a GroupNorm–SiLU pair (Equations 2, 3):

Xnorm1 = GroupNorm(X), (2)

Xact1 = SiLU(Xnorm1). (3)

We use a smoothly gated non-linear activation defined 
as follows (Equation 4):

SiLU(x) = x
1+ e−x
. (4)

Here, x is the input, and the function is derivable over the 
whole real number field, which makes the gradient smoother 
and continuous during the backpropagation process, so there is 

no problem of gradient disappearance, and it helps improve the 
stability and convergence speed of training. The non-monotonicity 
property can, therefore, switch between positive and negative values, 
providing richer information-processing ability. It can better capture 
the detailed information of the anatomical structure. SiLU [40] 
preserves gradient information better than ReLU, especially for 
subtle features. After applying 2D convolutional layers to extract 
local spatial features, we repeat normalization and activation 
(Equations 5, 6), thus amplifying discriminative features while 
suppressing noise.

Xnorm2 = GroupNorm(Xact1), (5)

Xact2 = SiLU(Xnorm2). (6)

The final output is fed into the MSConvFE block (Equation 7) to 
enhance multi-scale feature learning:

Fconvf fn = ConvFFN(Xact2). (7)

In order to mitigate vanishing gradients and preserve 
low-frequency anatomical structures, we introduce a skip 
connection (Equation 8):

Y = X+ Fconvf fn. (8)

The residual block, previously used in both the encoder and 
decoder, was replaced by the HDFB module, resulting in several 
significant improvements. First, the convolutional feedforward 
network further analyzes and processes these details by retaining 
low-level details in residual blocks. In particular, it contains multiple 
convolutional layers and fully connected layers, and its complex 
structure can capture finer-grained patterns and relationships in 
the data. When processing medical images, the convolutional 
feedforward network can perform an in-depth analysis of details, 
such as texture and density changes in organs, soft tissues, and 
bone regions, thereby extracting more subtle features. Through in-
depth analysis, this detailed information enables the decoder to 
reconstruct high-resolution medical images with greater accuracy, 
thereby enhancing overall network performance in terms of 
reconstruction quality and generation fidelity. The enhanced feature 
extraction in the encoder and the improved detail-handling in the 
decoder result in more accurate reconstructions and higher-quality 
generated outputs. Second, the HDFB-equipped VQGAN is more 
robust in terms of noise and input variations. The skip connections 
in HDFB and its non-linear transformation capabilities help the 
network to better adapt to different input conditions, which is 
beneficial in real-world applications where the input data may be 
corrupted or have diverse characteristics. Third, the combination of 
HDFB and VQGAN can lead to more efficient training. The HDFB 
blocks’ ability to mitigate the vanishing gradient problem and their 
effective feature processing can accelerate the convergence of the 
network during training, thus reducing the overall training time and 
computational resources required.

To enhance the multi-scale feature learning and preserve fine-
grained details simultaneously, we design a hybrid architecture 
for the multi-scale convolutional feedforward feature extraction 
module, addressing the dual challenges of anatomical coherence and 
texture fidelity in high-resolution medical image generation. While 
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FIGURE 2
Structural diagram of HDFB. A residual path utilizes skip connections to capture hierarchical dependencies and multi-scale textures. The multi-scale 
convolutional feedforward feature extraction module preserves low-level anatomical features through localized detail enhancement.

TABLE 1  Training parameters utilized in the HiResMed-VQGAN model.

Parameter item Value

Batch size 8

Epochs 3,500

Loss function Reconstruction loss + adversarial loss + perceptual 
loss

Learning rate 2.25e-05

Number codebook vectors 1,024

Optimizer Adam (eps = 1e-08, betas = (0.5, 0.9))

classical feedforward modules focus on global context aggregation, 
our MSConvFE uniquely integrates localized detail enhancement, 
hierarchical multi-scale modeling, and improved computational 
efficiency through a dual-path structure. The architectural 
components are shown in Figure 2. Moreover, the 2D convolutional 
layer can extract local spatial features. Group normalization [41] 
divides the channels into several groups, calculates the mean and 
variance within each group for normalization (Equation 9), and 
calculates the formula as follows:

GN(x) =
x− μG

√σ2
G + ε
· γ+ β. (9)

Here, G represents the number of groups; μG and σ2
G represent 

the mean and variance of channels in each group, respectively; 
and γ and β represent the parameters of learnable scaling and 
translation, respectively. This method does not depend on the batch 
size and helps stabilize the training process. In order to prevent 
the gradient explosion problem and improve the convergence 
speed of the model, we introduce a batch normalization operation 
after SiLU activation function processing. The GeLU activation 
function introduces nonlinearity through the probability of a 
Gaussian distribution, and its calculation formula is as follows
(Equation 10):

GeLU(x) = x ·Φ(x). (10)

Here, x is the input, and Φ(x) is the cumulative distribution 
function of the normal distribution. Due to its high computational 
complexity, an approximate expression is often used to simplify the 
calculation [42].

GeLU(x) ≈ 0.5 · x · (1+ tanh(√ 2
π
(x+ 0.044715x3))). (11)

The nonlinear nature of the GeLU activation function (Equation 
11) can enhance the model’s ability to fit complex data, and the 
activation degree of the GeLU function is proportional to the 
size of the input value, which is helpful for the learning and 
generalization of the model. In particular, this paper introduces 
a depth-wise separable convolution layer, which is composed of 
a depth-wise convolution and a point-wise convolution, where 
the depth-wise convolution is a convolution operation performed 
on each channel of the input feature map. Specifically, for 
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TABLE 2  Quantitative results (mean ± SD) compared with state-of-the-art methods on two datasets. Lower FID/LPIPS and higher PSNR/SSIM indicate 
better performance. The best result is shown in bold, and the second-best result is underlined; significance testing is based on a paired t-test. Results 
are averaged over five independent samplings per background.

Method Dataset FID↓ (mean ± SD) LPIPS↓ (mean ± SD) PSNR↑ (mean ± SD) SSIM↑ (mean ± SD)

DDM
DGPH-KUB 178.31 ± 8.24 0.46 ± 0.03 63.10 ± 1.27 0.69 ± 0.03

LIDC-IDRI 171.53 ± 7.91 0.46 ± 0.02 63.57 ± 1.19 0.55 ± 0.02

StyleSwin
DGPH-KUB 243.12 ± 10.56 0.49 ± 0.04 62.63 ± 1.32 0.64 ± 0.04

LIDC-IDRI 205.92 ± 9.83 0.47 ± 0.03 64.36 ± 1.08 0.60 ± 0.06

VQGAN
DGPH-KUB 256.11 ± 12.37 0.51 ± 0.05 56.54 ± 1.45 0.63 ± 0.02

LIDC-IDRI 280.23 ± 11.72 0.57 ± 0.06 61.33 ± 1.21 0.52 ± 0.03

SinGAN
DGPH-KUB 277.11 ± 13.15 0.48 ± 0.04 58.58 ± 1.52 0.65 ± 0.05

LIDC-IDRI 268.07 ± 12.89 0.47 ± 0.03 64.00 ± 1.15 0.59 ± 0.06

Ours
DGPH-KUB 145.64 ± 5.23★★★ 0.48 ± 0.02★★ 59.03 ± 0.95★★ 0.67 ± 0.03★

LIDC-IDRI 180.29 ± 6.87★★★ 0.47 ± 0.02★★ 64.46 ± 0.84★ 0.59 ± 0.03★

Significance test: “★★★” represents p < 0.05; “★★” represents p < 0.01; “★” represents p < 0.001 (vs. baselines).

an RGB three-channel image, the depth-wise convolution uses 
three single-channel convolution kernels to convolve the three 
input channels, respectively, and output the feature maps of 
the three channels. In this way, the convolution kernel of each 
channel only needs to process the data of one channel, which 
greatly reduces the number of parameters and the amount of 
calculation. Point convolution is a 1 × 1 convolution operation 
applied to the output of the depth-wise convolution to merge 
the features of different channels. Specifically, the point-wise 
convolution uses a 1 × 1 convolution kernel to convolve the 
output of the depth-wise convolution, fuses the features of 
different channels, and generates the final output feature map. 
Therefore, this combination can not only significantly improve 
the performance of the model but also optimize the computing 
resources.

For an input feature map X ∈ RH×W×C, where H, W, and C
represent the height, width, and number of channels, respectively, 
the MSConvFE processes the feature as follows (Equation 12):

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

Xnorm = GroupNorm(X)

Fconv = Conv2D3x3(Xnorm)

Fact = GeLU(Fconv)

FDW = DWConv5x5(Fact)

Fchannel = Conv2D1x1(FDW)

Fdrop = DropPath(Fchannel)

Y = X+ Fdrop

. (12)

The skip connection retains raw anatomical features, while 
the processed branch drop refines high-frequency details. This 
modification ensures that both high-frequency details and low-
frequency features are preserved, which is critical for high-
resolution medical image synthesis. 

2.4 Lesion synthesis

In this study, the preprocessed lesion images obtained from the 
previous step serve as the input to the lesion generation model. We 
employ the SinGAN model for generating synthetic lesion images. 
SinGAN is a single-image GAN that is particularly well-suited for 
medical image synthesis tasks where data scarcity is a common 
challenge. Unlike traditional GANs that require large datasets for 
effective training, SinGAN can achieve convergence with only a 
single training image, making it an ideal choice for generating 
lesion images in scenarios with limited data availability. Therefore, 
the problem of poor generation quality due to insufficient data 
volume can be avoided. Moreover, data scarcity and data silos have 
always been common problems in medical data. The SinGAN model 
is based on a pyramid of fully convolutional GANs, where each 
level of the pyramid learns to capture the statistical properties 
of the input image at different scales. This hierarchical structure 
enables the model to generate high-quality synthetic images that 
preserve the fine-grained details of the original lesion. The key 
advantage of SinGAN lies in its ability to learn from a single image, 
which is particularly beneficial for medical imaging applications 
where annotated datasets are often limited. Given a preprocessed 
lesion image Ilesion, the SinGAN model generates synthetic lesion 
images by learning the distribution of the input image across 
multiple scales. The generation process can be formally described 
as follows (Equation 13):

Isyn_lesion = SinGAN(Ilesion), (13)

where SinGAN(·) represents the SinGAN generator network.
During the training stage, the SinGAN model is trained on 

a single preprocessed real lesion image, learning a multi-scale 
representation of its texture and structure. During inference, no 
real lesion image is fed into the network. Instead, new lesions are 
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FIGURE 3
Generation performance of our method compared with the state-of-the-art on DGPH-KUB X-ray images.

synthesized by sampling random noise at the coarsest scale and 
progressively refining it through the trained scales. This process 
allows lesion generation to be conditioned solely on the learned 
internal distribution of the training exemplar without reusing the 
original image.

To generate high-resolution medical images containing small 
lesions, the synthetic lesion images Isyn_lesion are placed into a high-
resolution background image Icanvas. The background image Icanvas
is initialized as a zero matrix with the same dimensions as the 
background high-resolution image Ibackground, which is the output 
of the background route. The placement of the synthetic lesions 
is guided by prior knowledge of lesion locations derived from 
historical patient data.

To ensure anatomically plausible placement of synthetic lesions 
within the background image Icanvas, we introduce a dual-
model prior position information framework. This framework 
combines the location model and danger zone detection model. 
The location model is a YOLOv11-based detector trained on 

historical lesion annotations to probabilistically predict likely 
lesion locations. Formally, for the background image Ibackground, 
the model outputs the following set of candidate coordinates
(Equation 14):

Cloc = (xi,yi)|i = 1, ...,k), (14)

where each coordinate represents a high-probability lesion 
occurrence region learned from historical distributions.

The danger zone detection model is a U-Net segmentation 
network that is trained to identify anatomically implausible regions 
(e.g., bones, major vessels, and spinal column in KUB X-rays and 
pleural surfaces in lung CTs). The model generates a binary mask 
Mdanger, where (Equation 15)

Mdanger(x,y) =
{
{
{

0 ( forbidden zones: spine,  pelvis,  etc.)

1 (permissible regions) 
. (15)

We design a candidate region filtering C final for the final 
candidate region calculation (Equation 16). C final is derived by 
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FIGURE 4
Details of the performance of our method compared with the state-of-the-art on DGPH-KUB X-ray images.

FIGURE 5
Generation performance of our method compared with the state-of-the-art on LIDC-IDRI data.
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FIGURE 6
Details of the performance of our method compared with the state-of-the-art on LIDC-IDRI data.

TABLE 3  Confusion matrices of the senior and intermediate urologists in 
the visual Turing test. The urologists completed the authenticity 
judgment on 200 KUB X-ray images, which included both real and 
synthetic images. “Synt” denotes synthesized images, and P and N 
indicate positive and negative classes.

Actual

2 urologists  
prediction 

Senior
professional

Intermediate
professional

 Real(P)  Synt(N)  Real(P)  Synt(N)

Truth Real(P) 85 15 65 35

Truth Synt(N) 55 45 55 45

imposing anatomical constraints as follows:

C final = {(xi,yi) ∈ Cloc |Mdanger(xi,yi) = 1}. (16)

Users may either manually select the coordinates of interest from 
these safe regions or allow random sampling to determine the final 
lesion insertion regions, Rlesion. Finally, the pixel values of Isyn_lesion
are filled into Rlesion. Icanvas contains Isyn_lesion information, and we 
may also define Icanvas as I foreground.

Specifically, this process ensures that the generated lesions are 
anatomically plausible and consistent with real-world medical 
imaging scenarios. The final high-resolution image Ioutput

TABLE 4  Results of the visual Turing test (n = 200). Analysis of the 
sensitivity, specificity, accuracy, and consistency of the senior and 
intermediate urologists in the authenticity judgment of synthetic KUB 
X-ray images.

Metric Senior 
professional

Intermediate 
professional

Sensitivity (TPR, %) 85.0 65.0

Specificity (TNR, %) 45.0 45.0

Accuracy (%) 65.0 55.0

Kappa (agreement) 0.3 0.1

p-value (vs. 50%) <0.001 0.046

containing the synthetic lesion is obtained by combining I foreground
and IIbackground

 using a pixel-wise addition operation, which is 
as follows (Equation 17):

Ioutput(x,y) = Ibackground(x,y) + Isyn_lesion(x,y). (17)

In particular, the pixel values in the Rlesion regions of Ibackground
need to be set to 0.

Since this merging method is pixel-level, there will inevitably be 
excessive seams between the edge of the lesion and the background. 
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TABLE 5  Variability analysis under fixed lesion/varying background and 
fixed background/varying lesion conditions. The metrics (mean ± SD) 
show minimal fluctuations, confirming robustness against sampling 
stochasticity.

Metric Fixed lesion–varying 
background (mean ± 

SD)

Fixed 
background–varying 
lesion (mean ± SD)

FID 147.21 ± 4.56 145.64 ± 3.82

LPIPS 0.49 ± 0.03 0.48 ± 0.02

PSNR 58.76 ± 1.12 59.03 ± 0.87

SSIM 0.69 ± 0.03 0.68 ± 0.03

We leverage Sobel edge detection and Gaussian blurring to achieve 
natural pixel-level continuity.

First, the contour of the synthetic lesion is extracted using the 
Sobel operator, which computes gradient magnitudes along both the 
horizontal and vertical directions to identify edge pixels. This step 
isolates the boundary between the lesion and its surrounding area, 
ensuring precise targeting of the transition region. Subsequently, a 
Gaussian blur (with a kernel size of 3 × 3 and standard deviation σ 
= 1.0, which is empirically optimized for medical image textures) 
is applied to the detected edge. This blurring operation creates a 
gradual intensity transition between the lesion and the background: 
edge pixels are weighted by a Gaussian distribution, with values 
smoothly decreasing from the periphery of the lesion to the 
background.

This approach minimizes abrupt intensity changes at the lesion 
boundary, thus enhancing the visual coherence of the integrated 
image without introducing excessive computational overhead. 

3 Results

3.1 Implementation details

Weights were initialized using torch.nn.init (mean 0 and 
standard deviation 0.02), and training was conducted for up to 
3,500 epochs. The codebook dimension for vector quantization is 
selected as 256 to align with the feature dimension of the encoder 
output. More training hyperparameters are summarized in Table 1. 
All experiments were conducted on a single NVIDIA V100 GPU 
with 32 GB of memory. We synthesize images at 1,024 × 1,024 
resolutions for both datasets. Owing to computational constraints, 
DDM was trained to generate 128 × 128 × 3 images, which were 
subsequently upsampled to 1,024 × 1,024 × 3 for comparison. 

3.2 Quantitative evaluation

We used several quantitative metrics to assess the quality of 
the generated high-resolution medical images, which are detailed 
as follows. 

1. Frechet Inception Distance (FID)

The FID [43] calculates indicators of the quality and diversity of 
the generated image by comparing the distribution of the generated 
image with the real image in a specific space. The definition is 
as follows (Equation 18):

FID = ‖μr − μg‖
2 +Tr(∑

r
+∑

g
− 2(∑

r
∑

g
)

1/2
), (18)

where μr and ∑r are the mean and covariance matrix of real image 
features, respectively, and μg and ∑g are the mean and covariance 
matrix of the generated image features, respectively. Tr is the trace 
of a matrix. 

2. Learned perceptual image patch similarity (LPIPS)

The LPIPS [44] is a perceptual similarity measure based on deep 
learning, which is used to measure the perceptual difference between 
two images. Its definition is formulated as follows (Equation 19):

LPIPS =∑
L

1
HlWl
∑
h,w
‖ωl ⊗ (yl − yl

o)‖
2

2

, (19)

where yl is the lth feature maps. It is normalized with respect to 
the initial feature map yl

o in the channel dimension using unit 
normalization, and the number of activated channels is scaled using 
ωl; the L2 distance value is then calculated. Here, ⊗ is the dot product 
operation. 

3. Peak signal-to-noise ratio (PSNR).

The PSNR measures the pixel-wise similarity between the 
generated images and the ground truth. The definition is as follows 
(Equation 20):

PSNR = 10× log10(
(2n − 1)2

MSE
), (20)

where n is the number of sampling points. In this study, we process 
the RGB images, so n = 24. MSE stands for the mean squared error, 
which is defined as follows (Equation 21):

MSE = 1
H×W

H

∑
i=1

W

∑
j=1
(X(i, j) −Y(i, j))2, (21)

where H × W is the number of pixels in the image, H and W are the 
length and width of the image, X is the enhanced image, and Y is the 
real clear image. 

4. Structural similarity (SSIM)

The similarity between two images is measured from three 
dimensions: brightness, contrast, and structure. The value range is 
[0, 1], and the closer the value is to 1, the more similar it is. The 
calculation formula is as follows (Equation 22):

SSIM(x,y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ
2
x + σ2

y + c2)
(22)

Here, μ,σ2,σ{xy} represent the local mean, variance, and 
covariance of the image, respectively.

To rigorously evaluate the stochasticity induced by lesion 
sampling, we generated five independent samples per test 
background (using different random seeds) and report the mean 
± standard deviation (SD) in Table 2. Three key findings emerged. 
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FIGURE 7
Visual examples of generated images under a fixed lesion with varying backgrounds (left), where each row represents the same lesion image, and a 
fixed background with varying lesions (right), where each row represents the same background image (Bg is short for background, and the red boxes 
indicate the lesion images).

TABLE 6  SSIM comparison for computing outside the lesion mask.

Method Dataset SSIM (no 
mask)

SSIM(mask 
lesion)

VQGAN DGPH-KUB 0.63 0.62

OUR DGPH-KUB 0.67 0.66

First, in terms of lesion generation fidelity, on KUB X-ray data, 
the FID decreased to 145.64 ± 5.23, which is a significant 43.3% 
reduction compared to the baseline VQGAN (p < 0.001), and 
the standard deviation (SD = 5.23) was the lowest among all the 
methods, demonstrating optimal generation stability. Although 
DDM performed well in terms of LPIPS (0.46 ± 0.03) and PSNR 
(63.10 ± 1.27), it failed to generate visible lesions (Figures 3, 4). 
Our method, on the other hand, successfully synthesized small 
lesions while preserving the anatomical structure (LPIPS = 0.48 
± 0.02, PSNR = 59.03 ± 0.95). Second, in terms of cross-modal 
generalization ability, in the CT dataset (LIDC-IDRI), the FID 
(180.29 ± 6.87) of this method significantly outperformed all 
baselines (p < 0.001), and the PSNR (64.46 ± 0.84) was the best 
(p < 0.05). The variability caused by the prior lesion (LPIPS 
fluctuation SD ≤ 0.02) is far below the human eye perception 
threshold (LPIPS > 0.05 can be perceived [44]), proving the clinical 
reliability of the synthesized results. Third, statistical significance 
was verified by paired t-tests (Bonferroni correction, α = 0.05). The 
FID improvement of this method was significant for all baselines 
(p < 0.001), and PSNR was significantly better than DDM on 

CT data (p < 0.05). Due to computational resource limitations, 
DDM can generate images only at 128 × 128 resolution, which 
must then be upsampled to 1,024 × 1,024. This results in high 
PSNR values while failing to capture true high-resolution details
(Figure 5). 

3.3 Qualitative comparison with 
state-of-the-art approaches

Figures 3, 4 present KUB X-ray results. Our method synthesizes 
target images with accurate anatomical structures and fine lesion 
details. The details of the synthetic KUB X-ray images are displayed 
in Figure 4. DDM produces structurally reasonable yet overall blurry 
images and often fails to generate lesion signals. The StyleSwin model 
produces inferior quality results, and the structure of the spinal 
cord is unreasonable and unclear. In this comparative experiment, 
the target map generated by the VQGAN model demonstrates 
better overall quality but lacks sharp bone edges and clear lesion 
depiction. The generation effect of SinGAN is not satisfactory, and 
additionally, the spine is broken, indicating that the model fails 
to learn global anatomical logic. Overall, our results are visually 
closest to real images, providing clearer cortical bone boundaries, 
a more realistic lesion appearance, and more natural representation 
of intrabody bubbles. Comparison of generation details (Figure 4) 
shows that our method most closely resembles real images 
in the synthetic quality of the spine and intrabody bubbles, 
whereas the results of other methods deviate substantially from 
realism. A crucial point is that the texture, edge, and clarity 
of kidney stone lesions generated by the proposed method are
superior.
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FIGURE 8
Training loss convergence comparison on the KUB images dataset.

Figures 5, 6 show the visual comparison of the generated CT 
medical images and their details using our proposed method and 
other state-of-the-art techniques. Similarly, the generation effect 
of DDM is still vague, and the information on pulmonary blood 
vessels is not generated. The generation result of StyleSwin is 
only at a normal level for pulmonary blood vessels but severely 
distorted for other tissue structures. The texture features generated 
by the VQGAN model are better than those mentioned above, but 
the pulmonary vascular information is almost missing. SinGAN 
generates higher-quality bone and blood vessel information, but it 
introduces severe distortions in the morphology of other tissues. 
In our method, both the overall morphology and local texture 
features, including the vascular features of both lungs and the 
information about the spine, are very close to those of the real image. 
Representative synthetic detail information is displayed in Figure 6. 
The spine generation quality of all the comparison methods is poor 
and does not reach the level of clinical application.

Comparatively, the generation quality of this method and 
StyleSwin is acceptable and can roughly show the shape of the 
spinal bone cross-section. When comparing the generation quality 
of pulmonary nodules, the results of the proposed method and the 
VQGAN method are closest to real images, whereas other methods 
produce ground glass-like nodules that lack clarity and suggest a risk 
of malignant transformation. The last row shows the comparison 
of the imaging quality of arteries. It is easily observable that the 
proposed method can clearly generate contours and textures similar 
to those of real images, while the other methods cannot even present 
the contours of arteries.

The above results fully confirmed the feasibility of the proposed 
method in generating X-ray and CT images with high resolution. In 
particular, compared with the baseline VQGAN effect, the overall 
quality and details are significantly improved, and the effectiveness 
of the proposed structural optimization of HDFB is confirmed. 

3.4 Clinical validation using visual Turing 
test

To evaluate the perceptual fidelity of synthetic images, we 
conducted a visual Turing test on 200 KUB X-ray images, where 
100 X-rays are real and taken from the DGPH-KUB dataset and 
the other 100 are images synthesized using our method. Two 
urologists (senior: 20 years of experience; intermediate: 10 years 
of experience) take part in this test to complete the authenticity 
judgment of the 200 KUB X-ray images. As shown in Table 3, the 
true positive of the senior urologist is 85, reflecting familiarity with 
authentic anatomical features. Nevertheless, the true negative is 45, 
which means that 55% of the synthetic images were misclassified 
as real. Our method can mimic clinical data. The false positives 
of the intermediate urologist are 72, indicating that 72% of the 
synthetic images were mistaken as real, which validates our method’s 
perceptual fidelity. A further analysis of the clinical implications 
is shown in Table 4. Sensitivity (the true positive rate for real 
images) and specificity (the true negative rate for synthetic images) 
were calculated, and statistical significance was assessed using 
McNemar’s [45] test against random guessing (50%). Inter-rater 
agreement was quantified using Cohen’s kappa (κ) [46]. Senior 
physicians demonstrated significantly higher sensitivity (85.0% vs. 
65.0%, p < 0.001), reflecting their expertise in familiarity with the 
characteristics of real KUB X-ray images. However, both groups 
exhibited critically low specificity (senior: 45.0%; intermediate: 
45.0%, p < 0.01 vs. 50% random guessing), with 55% of the 
synthetic images being misclassified as real. The low kappa values 
(0.3 for senior, 0.1 for intermediate) suggest variability in individual 
judgment criteria, yet the consistent 55% misclassification rate is 
sufficient to support the validity of the model’s ability to generate 
clinically plausible images. 
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3.5 Ablation studies

3.5.1 Effect of lesion–background variability on 
synthesis stability

To assess the effect of lesion-sampling variability, we analyzed 
two cases: (1) varying lesion texture, scale, and placement on a 
fixed background and (2) placing a fixed lesion across varying 
backgrounds. All metrics were computed per the synthesized 
image, and the reported values are the mean ± SD across B = 10 
backgrounds × L = 5 lesion samples per background (N = 50). As 
shown in Table 5, both scenarios exhibited low metric fluctuations 
(FID: 145.64–147.21; LPIPS: 0.48–0.49; PSNR: 58.76–59.03; SSIM: 
0.68–0.69), indicating that the learned prior introduces controlled 
diversity without compromising visual realism. These variations are 
below clinical perceptibility thresholds, confirming the method’s 
stability. Some visual examples are shown in Figure 7. 

3.5.2 Background fidelity assessment via lesion 
masking

To evaluate the impact of controlled lesion synthesis on 
background anatomy fidelity, we conducted a specialized analysis 
on 100 background samples from the DGPH-KUB test set. The 
experiments computed two variants: SSIM computed only on 
pixels outside the lesion mask (background), and SSIM with 
no mask computed the global pixels. As shown in Table 6, the 
difference between the mask SSIM 0.66 and the global SSIM 0.67 
of our proposed method was only 0.01, which is comparable to 
the difference observed in the baseline VQGAN, demonstrating 
that controlled lesion insertion did not disrupt the background 
anatomy. Furthermore, the global SSIM of our proposed method 
was significantly higher than that of the VQGAN, validating the 
enhanced background fidelity achieved by the HDFB module. 
This conclusion demonstrates that the innovative approach in this 
paper achieves flexible integration of pathological features while 
maintaining the integrity of the background. 

3.5.3 Accelerated convergence via HDFB 
integration

For the ablation experiment, we compared the quantitative 
results with the benchmark model VQGAN in Section 3.2 and the 
visual results in Section 3.3, all of which prove the effectiveness of 
the proposed HDFB module and have a significant effect on the 
performance improvement of the VQGAN model. In addition, we 
compared the training loss convergence of our proposed method 
with that of VQGAN. As shown in Figure 8, integrating the HDFB 
module into the VQGAN framework leads to faster convergence 
and more stable training. The training loss of our method decreases 
more rapidly and reaches a lower value than VQGAN. In addition, 
the loss of the model with the HDFB block was reduced to 0.1 at 
approximately the 200th epoch, while the baseline model needed 
to reach 0.1 at approximately the 1,200th epoch. A total of 10,000 
epochs were run in this experiment. Compared with the baseline 
model, the final loss value of the model with the HDFB block 
was 0.023, which was 0.057 less than 0.08 of the VQGAN model. 
This indicates that the HDFB module helps mitigate the vanishing 
gradient problem and accelerates the training process. This results 
in reduced training time and improved computational efficiency. 

4 Discussion

In this study, we proposed a controllable lesion synthesis 
framework that integrates a SinGAN-based lesion generator with 
anatomically guided placement and a high-fidelity background 
synthesis network (HiResMed-VQGAN). The experimental 
results demonstrate the superiority of the proposed method 
in generating high-resolution medical images with small 
lesions. The two-route synthesis strategy addresses a critical 
bottleneck in medical AI: the scarcity of rare-lesion data. 
By decoupling SinGAN’s lesion generation from background 
synthesis through HiResMed-VQGAN, our framework achieves 
flexible lesion control while ensuring high-quality anatomical 
structures in the generated images and establishes a new 
benchmark for high-resolution medical image generation, with 
transformative potential in surgical planning and early-disease 
detection.

Although the proposed method demonstrates promising 
results in high-resolution medical image generation, some 
limitations need to be addressed. In this study, the inter-rater 
agreement was low (kappa = 0.3 for senior, kappa = 0.1 for 
intermediate), corresponding to a fair and slight agreement by 
Landis and Koch’s criteria. This may be due to the intrinsic 
difficulty of the “real vs. synthetic” visual judgment task, 
especially in the absence of standardized evaluation criteria. 
The results suggest that while sensitivity was relatively high, 
low specificity and low agreement limit the reliability of purely 
visual assessments, warranting methodological refinements in 
future work. Although the evaluation metrics indicate superior 
perceptual quality, the absence of task-specific evaluation, such 
as lesion detection or segmentation limits claims, regarding 
diagnostic fidelity. This is partly mitigated by clinical validation, 
which shows a high misclassification rate of 55%, indicating 
that the synthetic lesions are anatomically plausible, and we 
report SSIM values computed specifically within the lesion 
mask. Our method achieves SSIM = 0.68 ± 0.03 for lesions, 
which is significantly higher than that of VQGAN. This 
objectively confirms that synthetic lesions retain structural 
similarity to real lesions. Furthermore, low LPIPS variance (SD 
≤ 0.02) implies perceptual consistency below human-discernible
thresholds.

To bridge this gap, the future work will train lesion detectors 
and segmenters on hybrid datasets to quantify diagnostic 
utility. Lesion morphological control will be extended by 
enhancing SinGAN to generate diverse lesion shapes and 
textures, enabling the synthesis of atypical pathologies. The 
findings will be validated across modalities, and generalizability 
will be tested to MRI/PET, where structural constraints 
differ.
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