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We assessed congruence patterns of macroinvertebrates and fish and their drivers

We evaluate community-environmental relationships and their drivers

Low-resolution data serve as surrogates of high-resolution data

Considering cost-effectiveness, we recommend the use of coarser taxonomic resolution

The shortcuts proposed here support large-scale biomonitoring programs in Brazil.
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Abstract

A reliable response of bioindicators to environmental variation is a cornerstone for
effective bioassessment and biomonitoring. Fish and aquatic macroinvertebrates are
widely used as bioindicators of different human impacts in freshwater ecosystems, but
the cost-effectiveness of their usage can be improved through the use of surrogates.
We investigated congruence patterns between using different taxonomic and numeric
resolutions for aquatic macroinvertebrates and fish to assess community-environment
relationships. We also tested whether dataset characteristics (e.g., area sampled,
species pool) could explain the variation in the effectiveness of using different
taxonomic and numerical resolutions. We used a Brazilian nationwide database
encompassing multiple datasets with a gradient of riparian deforestation each. Our
findings suggest that families and genera can effectively represent macroinvertebrate
genera and fish species, respectively, when using community matrices for assessing
community-environment relationships, with an acceptable loss of information. EPT
(Ephemeroptera, Plecoptera, and Trichoptera) and Characiformes or Siluriformes may
be used as a surrogate, in some cases, for the entire assemblages of
macroinvertebrates and fish, respectively, but their use may result in higher loss of
information. Presence-absence data also presented a minimal loss of information
compared to abundance data, for both macroinvertebrates and fish. The variation in
congruence levels among macroinvertebrate datasets was less predicted by dataset
characteristics than fish. Across distinct resolutions, on average, 10% and 19% of the
variation in community composition of macroinvertebrates and fish, respectively, was
explained by broad-scale environmental variables, and the effect size was negatively
affected by the dataset’s sample size and spatial extent for fish. Whereas identification

at species (fish) and genus (macroinvertebrates) level and quantification of all
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individuals still provide the best scenario, we provide evidence that coarser
taxonomical resolution and presence-absence data can be used as cost-effective
alternatives to facilitate biomonitoring and bioassessment of freshwaters in the

Neotropical region impacted by deforestation.

Keywords: Amazon, Atlantic Forest, Aquatic insects, Correlation, Fish, Surrogates.
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1. Introduction

Freshwater ecosystems are species-rich and provide multiple ecosystem services to
human society, such as water for drinking and irrigation, food provision and
recreation (Lynch et al., 2023). These ecosystems have been widely modified by
human activities for a long time, resulting in negative effects on biological
communities (Reid et al., 2019). Biological monitoring and assessment are essential
for managing and controlling water quality, which rely on the detection of strong
associations between metrics used to describe bioindicators and environmental
variables related to anthropogenic impacts (Bonada et al., 2006). Bioassessment and
biomonitoring have a long history in the evaluation of freshwater environments
(Doledec and Statzner, 2010; Ruaro and Gubiani, 2013) and have been included in a
recent global agenda for advancing freshwater biodiversity research (Maasri et al.,
2022). There is an urgent demand to define indicators and monitor ecosystems from
the United Nations 2030 agenda for sustainable development and the 2030 targets of
the Convention on Biological Diversity (Leadley et al., 2022). However, our capacity
to efficiently assess and monitor freshwaters is still challenging, mainly in highly
diverse tropical regions, due to multiple and interacting human impacts, high costs,
lack of basic knowledge on taxonomy and species distribution, and uncertainty and
variability in biological responses (Barlow et al., 2018; Dala-Corte et al., 2020;
Firmiano et al., 2021; Siqueira et al., 2020; Sousa et al., 2023).

Riparian loss has led to changes in community composition and pronounced
declines in biodiversity (Albert et al., 2021; Dornelas et al., 2014; Jahnig et al., 2021;
Pelicice et al., 2017). Aquatic macroinvertebrates and fish are regarded as reliable
indicators of the effects of riparian vegetation loss and are commonly used in

bioassessment and monitoring studies (Dala-Corte et al., 2020; Feio et al., 2023,
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2021; Ruaro and Gubiani, 2013; Valente-Neto et al., 2021). Aquatic
macroinvertebrates are generally assumed to be more sensitive to the effects of
riparian vegetation loss than fish (e.g., Dala-Corte et al., 2020; Martins et al., 2022;
Valente-Neto et al., 2021), but no consensus has been reached. In addition to reliable
bioindicator response, low costs for sampling, sorting, and identifying the biological
group are critical factors for improving the cost-effectiveness of bioassessment and
biomonitoring (Bonada et al., 2006; Ruaro et al., 2024; Valente-Neto et al., 2021).

The use of different taxonomic (Lopes et al., 2021; Martins et al., 2022; Melo,
2005; Santos et al., 2022) and numerical resolutions (Lopes et al., 2021; Martins et al.,
2022; Melo, 2005; Ribas and Padial, 2015; Santos et al., 2022; Valente-Neto et al.,
2018), and the use of biodiversity surrogates (Faquim et al., 2021; Roque et al., 2017;
Siqueira et al., 2012a; Valente-Neto et al., 2018) can be cost-effective measures in
bioassessment and biomonitoring. Taxonomic resolution can be defined as the level of
detail at which organisms are identified, while numeric resolution is the detail in
representing numeric values, i.e., abundance or presence-absence data. The existence
of strong relationship (correlations greater than 0.7 — Heino, 2010) between
taxonomic (e.g., species vs. family) and numerical resolution (abundance vs.
presence-absence), or taxonomic groups (e.g., Ephemeroptera, Plecoptera, and
Trichoptera — EPT, hereafter — vs. macroinvertebrates) indicate that one taxonomic
level, numerical resolution or taxonomic group can be use as surrogate in some cases
when a detailed assessment is unfeasible. Such strong associations are assumed to
indicate minimal loss of crucial information, ensuring reliable biomonitoring (Heino,
2010).

The detection of significant and highly correlated relationships is required for

using simplifications in biomonitoring programs, and indicate that different
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taxonomic and numerical resolutions respond similarly to anthropogenic impacts
(Heino, 2010). A coarser taxonomic level (e.g., family) is easier and faster to identify
compared to a refined taxonomic level (e.g., species or genera). Additionally,
presence-absence data do not require counting all individuals sampled, speeding up
data acquisition, or even reducing the need for sampling large number of animals in
the field. Therefore, these approaches save time and funds in biomonitoring efforts.
However, studies assessing these simplifications for biomonitoring impacts of riparian
vegetation loss on streams are limited to local or regional scales (Brito et al., 2018;
Landeiro et al., 2012; Ribas and Padial, 2015; Santos et al., 2022; Valente-Neto et al.,
2018). Evaluating a nationwide database that encompasses multiple biomes would
enable the identification of robust patterns and broader generalizations. This is
particularly important in Brazil, one of the most biologically diverse countries,
including six terrestrial biomes, two of which are biodiversity hotspots (Atlantic
Forest and Cerrado).

To advance in the use of congruence patterns in bioassessment and
biomonitoring, it is important to understand the factors contributing to wide variations
in correlations between taxonomic and numerical resolutions (Lopes et al., 2021;
Ribas and Padial, 2015) and community-environment relationships (Heino et al.,
2015). Dataset characteristics significantly influence species composition patterns
(e.g., matrix fill) and the processes driving them. For example, increasing the regional
species pool, particularly through the inclusion of rare species, adds complexity to the
ecological data and reduces the clarity of congruence patterns and the strength of
associations between species composition and environmental variables (Heino et al.,
2015; Podani and Schmera, 2011; Siqueira et al., 2012b). Additionally, sample size,

spatial extent, and environmental variability are positively correlated, with larger
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sample size and broader spatial extents generally enhancing community-environment
relationship (Leibold and Chase, 2018). The range of environmental gradients
assessed also affects congruence, with wider gradients better capturing species
responses compared to narrower ones (Viana and Chase, 2019). Despite other studies
have synthesized cross-taxon congruence in terrestrial (Westgate et al., 2014) and
marine (Mellin et al., 2011) ecosystems, a synthesis on the potential drivers of
congruence and variation across freshwater ecosystem datasets is still lacking. Such
an understanding is needed for improving the use of surrogates in monitoring and
assessing rivers and streams, especially when evaluating human impacts.

Our study had three main objectives. First, we investigated the congruence
patterns in using different taxonomic and numerical resolutions for aquatic
macroinvertebrates and fish of Neotropical streams. Considering that species within
taxonomic levels often share similar ecological preferences (Warwick, 1993), we
hypothesized that coarse taxonomic resolution is congruent with refined taxonomic
resolution. Specifically, we expected stronger congruence between closely related
taxonomic levels (e.g., higher correlation between genus and family than between
genus and order). Given the high species turnover in the neotropics, we expected a
high congruence between abundance and presence-absence data. Second, we assessed
the relationship between community composition and environmental variables to
understand how much of the variation in composition is explained by environmental
variables. We expected that environmental variables partially explain a portion of the
variation in aquatic biodiversity composition, with the refined taxonomic resolution
and abundance data showing greater explanatory power. Third, we evaluated how the
datasets characteristics (e.g., area sampled, taxa rarity and dominance, and regional

taxa pool) could influence the variation in the congruence patterns and community-
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environment relationships. We hypothesized that these characteristics help explain the
variation observed between datasets. To investigate these objectives, we used a
comprehensive database of aquatic macroinvertebrates and fish sampled along a
gradient of riparian vegetation loss in four biomes of Brazil, including three of the
largest biomes (Amazon, Atlantic Forest, and Cerrado) and the comparatively smaller

Pampa (Dala-Corte et al., 2020).

2. Methods

2.1 Database

We used a recent database compiled by Dala-Corte et al. (2020) comprising aquatic
macroinvertebrate and fish communities sampled in streams across Brazil. This
database consists of datasets specifically designed to capture variation in riparian
vegetation loss. Streams included in the datasets are subject to the effects of riparian
vegetation loss within forest-agriculture landscapes, with other anthropogenic impacts
less evident. From the database, we selected 10 aquatic macroinvertebrate and 17 fish
datasets following the criteria described below, comprising 700 and 1,290 stream
communities, respectively (Fig. S1). We included datasets that 1) had abundance data;
i1) had at least 20 sampling sites; iii) sampled small streams (10-m wide or less) and
1v) assessed the entire community composition, i.e., all taxonomic groups belonging
to macroinvertebrates and fish. Additional specific criteria were used according to the
taxonomic group. For macroinvertebrates, we included datasets that v) met the
criterion of identifying at least 50% of individuals, as well as all the EPT taxa, to the
genus level, with the remaining macroinvertebrate taxa identified at least to the family
level. The genus level represents the most refined taxonomic resolution commonly

achievable in Neotropical freshwater studies because reliable identification to species



239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

level often requires the adult stage (Hamada et al., 2018). Some datasets used family
level because of restricted taxonomic knowledge for some groups (Hamada et al.,
2018) and/or because the refined identification was focused on a subset of
macroinvertebrates only (e.g., EPT, EPT + Coleoptera). On average 78% of
macroinvertebrate taxa were identified to genus level in all the datasets compiled
(minimum = 53%; maximum = 100%). The database used here does not allow testing
cross-taxon congruence (EPT vs. fish), because each dataset collected exclusively one
group. For fish, we included datasets that vii) identified all taxa to species level. All
the fish species were included in the analysis, and we did not exclude non-native
species.

The following biomes were represented in the database used here:
Macroinvertebrates: Amazon (four datasets), Cerrado (three), Atlantic Forest (three);
Fish: Amazon (four datasets), Cerrado (seven), Atlantic Forest (five), Pampa (one) —

see Table S1 for the list of datasets included.

2.2 Congruence between taxonomic and numerical resolutions

We used the Mantel correlation to investigate the congruence among community
matrices reorganized into different numeric and taxonomic resolutions for both
macroinvertebrates and fish (Fig. 1). Numeric resolution comprised the community
matrix filled either with abundance data (i.e., number of individuals per taxa) or with
presence-absence (i.e., 0-1) data. Correlations between the numeric resolution
matrices were only performed comparing presence-absence data to fish abundance
matrices identified at species level and to macroinvertebrate abundance matrices
identified at genus level. Taxonomic resolution comprised matrices filled with taxon

individuals (i.e., abundance data) clustered into different taxonomic levels. For
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macroinvertebrates, genus was clustered into family, order, or EPT (Ephemeroptera,
Plecoptera, and Trichoptera) matrices. EPT is a bioindicator group commonly used in
stream assessment and biomonitoring (Barbour et al., 1999; Buss et al., 2015),
although other groups may better indicate anthropogenic impacts in certain contexts
(Serra et al., 2017). For EPT subset, we tested correlations for genus as taxonomic
resolution only. For fish, the species were grouped into genus, family, order, or were
subset into Characiformes or Siluriformes. The last two orders were used because
they are the most common fish taxa in the Neotropical region (Reis et al., 2016), and
were frequently used as indicators of stream system conditions, especially related to
landscape alterations (e.g., Carvalho et al., 2017). Given that we had 10 aquatic
macroinvertebrate and 17 fish datasets, we calculated 10 and 17 Mantel correlations
between all the matrices reorganized into different resolutions. Then, the values were
averaged to obtain a single overall correlation for each comparison, but the variation
was used in subsequent analyses. We used the mantel function from the vegan

package within the R environment.
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Fig. 1. Diagram depicting the statistical analyses employed in this study. We used
multiple datasets of aquatic macroinvertebrates and fish to assess congruence patterns
between different taxonomic resolutions and between abundance and occurrence data
(first aim). We also investigate community-environment relationship (second aim)
and dataset characteristics that could account for the variation in the effectiveness of
using different taxonomic and numerical resolutions, and the community-environment
relationships (third aim). To address the first aim, we used the Mantel test. The
analysis was conducted separately for each dataset and for each comparison of
composition matrices (e.g., macroinvertebrates genus x family), resulting in a
correlation value for each comparison. Since multiple datasets were analyzed, the
outcome was a vector containing correlation values for each composition matrix
comparison. For understanding community-environment relationship, we employed
redundancy analysis (RDA). The composition matrix (e.g., fish species) was the
response variable, and predictors were composed by landscape and climatic variables.
This analysis resulted in a vector with values of variation explained by the RDA
models (adjusted R?) for each composition matrix. Regarding the third aim, we fitted
multiple linear models using either the correlation values or the RDA explanation

variance for different taxonomic and numeric resolutions as the response variables
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and the dataset features as predictors. We assessed the importance of these dataset

features in the models using AICc and variable importance.

2.3 Community composition analysis

Subsequently, we used redundancy analysis (RDA, hereafter) to evaluate how
environmental variables (predictors) explain the variation in community composition
(response variables) (Fig. 1). RDA is a constrained ordination and a multivariate
extension of multiple regression, making it well-suited for analyzing community-
environment relationships. We previously transformed the abundance data using
Hellinger transformation, which is suited to species abundance data as it gives low
weights to variables with low counts and zero-inflated (Legendre and Gallagher,
2001). To assess the consistence of community-environment relationships across
datasets, we used landscape and climate environmental variables as explanatory
variables, and each matrix derived from the different numeric and taxonomic
resolution matrices as response variables. Local environmental factors, such as water
chemistry and instream habitat conditions were not available for all datasets and so
we included only broad scale environmental variables that could be used across all
datasets. We included 10 exploratory variables in the RDA models, (Table 1; Table
S1), and selected them based on their ecological relevance to stream biodiversity
(Table 1) and to ensure comparability across all datasets. In addition, to avoid model
inflation, we excluded climate variables with correlation values higher than 0.8.
Overall, a wide range of values were present in the landscape and climate predictors
within each dataset (Table S1). For instance, the percentage of native vegetation cover
within a 500-m radius buffer around sampled sites varied significantly, ranging from
between deforested (0-17%) to fully forested streams (~100%) (Table S1). We used

the rda function from the vegan package within the R environment.
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2.4 Variation between datasets

To assess the sources of variation observed among datasets in terms of the
correlations of distinct taxonomic and numeric resolutions, as well as in the variation
explained by the RDA models, we considered six features describing the datasets: 1)
number of sites sampled in the dataset (Samp.Size); i1) extension of the area sampled
calculated as the convex hull (Area in km?); iii) variation in the environmental
variables of the sites sampled, calculated as the summed coefficient of variation (CV)
for all environmental variables used in the RDA models (Env.CV); iv) species pool
size of the dataset, expressed as species richness for fish and family richness for
macroinvertebrates (Nspp or Nfam); v) proportion of rare species in the dataset
represented by singletons and doubletons (Rares); vi) species dominance (Domin) was
calculated using the Simpson index (D) with the vegan package (Oksanen et al.,
2022). Since the vegan diversity function computes 1 - D, we adjusted the result to
obtain D. In general, these six features varied significantly for both
macroinvertebrates and fish datasets (Table S2; Table S3). For example, the number
of sampled sites ranged from 35 to 110 for the macroinvertebrate dataset (Table S2)
and from 24 to 232 for the fish dataset (Table S3).

The variation among datasets was investigated using both the results from the
congruence values expressed as correlations (subsection 2.2) and adjusted R? from
RDA models (subsection 2.3) as effect sizes. Thus, we fitted multiple linear models
using as response variables either the correlation values of the distinct taxonomic and
numeric resolutions or the RDA explanation variance for the distinct datasets (Fig. 1).
The dataset’s features described above were used as predictors in these models. First,
we evaluated the variance inflation factor (vif) of the models with the car package

(Fox and Weisberg, 2019) to remove multicollinearity in the models, ensuring that
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selected variables contribute independently to explain variation in correlations and
adjusted R? from RDA models. Models for fish had no variables with high vif (all vif
values were <5), while for macroinvertebrates the proportion of rare species had a vif
greater than 5 and was therefore excluded from the analysis. We then assessed the
importance of these dataset features in the models using Akaike Information Criterion
for small sample size (AICc) and variable importance. For this, we used the dredge
function of the MuMIn package (Barton, 2022) to generate all possible combinations
of predictors, allowing us to estimate the most plausible models. We then calculated
the averaged effect size (standardized beta coefficient), which represents the weighted
mean effect size of each predictor across all models in which it appeared, with
weights determined by the Akaike Information Criterion (AIC). Additionally, we
assessed predictor importance by summing Akaike weights for each predictor across
all models. Models with AAICc < 2.0 and greater values of weight were considered
the most plausible. We also obtained adjusted R? of the models as another measure of

model goodness-of-fit.

3. Results

3.1 Taxonomic and numerical correlations

For aquatic macroinvertebrates, the congruence between genus and family was high
(mean correlation = 0.88, range = 0.71 — 0.99; Table S4; Fig. 2A). Family and order
(mean correlation = 0.76, range = 0.60 — 0.90) were more strongly correlated than
genus and order (mean correlation = 0.66, range = 0.54 — 0.78). Mean correlation
between macroinvertebrate genera and EPT subset was high, but varied greatly

between datasets (mean correlation = 0.72, range = 0.40 — 0.90) (Table S4; Fig. 2A).



376  Abundance and presence-absence (PA, hereafter) data, identified at the genus level,

377  were also highly correlated (mean correlation = 0.83, range = 0.67 — 0.95).
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379  Fig. 2. Variation in Mantel correlations values across taxonomic and numeric

380  resolutions for macroinvertebrates (A) and fish (B), as well as the community-

381  environment relationship captured by adjusted R? of redundancy analysis models

382  (RDA) for stream macroinvertebrates (C) and fish (D). Box-plots show the median
383  (horizontal black line), interquartile range (colored rectangles), minimum (line below
384  the interquartile range), maximum (line above the interquartile range) and outliers
385  (values greater or lower than 1.5 times the interquartile range). Spp = Species; Gen =
386  Genus; Fam = Family; Ord = Order; Abu = Abundance data; PA = presence-absence
387  data; EPT = Ephemeroptera, Plecoptera, Trichoptera subset; Cha = Characiformes; Sil
388 = Siluriformes.
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For fish, the correlation between species and genus was high (mean correlation
=0.85, range = 0.60 — 0.98), but there was a low mean correlation between species
and family (mean correlation = 0.58, range = 0.30 — 0.92), and between species and
order (mean correlation = 0.43, range = 0.16 — 0.87; Fig. 2B; Table S5). Genus and
family (mean correlation = 0.68, range = 0.38 — 0.95) and genus and order (mean
correlation = 0.52, range = 0.17 — 0.90) had also low mean correlations. Total species
in the fish assemblage were more correlated with Characiformes (mean correlation =
0.81, range = 0.41 — 0.97) than with Siluriformes species (mean correlation = 0.59,
range = 0.32 — 0.84). Fish species abundance and PA data were usually highly

correlated (mean correlation = 0.87, range = 0.54 — 1.00).

3.2 Community-environment relationships

Overall, the relationship between macroinvertebrate composition and environmental
variables was similar regardless of the different taxonomic and numeric resolutions
tested (mean adjusted R?=9.0-11.6%; Table 2; Fig. 2C; Table S6). Environmental
variables related to deforestation were the mains drivers of the macroinvertebrate
community-environment relationship (Fig. S2). For fish communities, the amount of
variation explained by the environmental variables did not differ clearly between the
taxonomical and numerical resolutions (mean R?=17.1 —21.99%; Table 2; Fig. 2D;
Table S7). Climate, landscape, and environmental variables related to deforestation

were the mains drivers of the fish community-environment relationship (Fig. S3).
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Table 2. Redundancy Analysis (RDA) of environmental variables explaining stream
macroinvertebrate or fish communities identified at species, genus, family or order, all
using abundance data, and presence-absence data (PA). Mean adjusted R? is the mean
explanation obtained from 17 datasets for fish and 10 datasets for macroinvertebrates
from Brazilian Amazon, Atlantic Forest, Cerrado, and Pampa biomes. Max =

Maximum; Min = Minimum; EPT = Ephemeroptera, Plecoptera, and Trichoptera.

Response variables Mean adj-R?(%)  Min adj-R? Max adj-R?
Macroinvertebrate genus 10.0 1.1 25.5
Macroinvertebrate family 11.2 3.5 26.4
Macroinvertebrate order 11.0 0 27.2
Macroinvertebrate PA 11.6 3.0 27.0
EPT 9.0 0.7 20.9
Fish species 20.0 7.0 45.2
Fish genus 20.1 7.76 44.8
Fish family 17.1 6.3 42.6
Fish order 18.4 0 49.1
Fish PA 17.8 6.0 37.4
Characiformes 17.5 33 32.6
Siluriformes 21.9 7.6 51.6

3.3 Predictors of variation in taxonomic and numerical correlations

For macroinvertebrates, the variation in the correlation levels across different
taxonomical and numerical resolutions was poorly explained by the predictors, with
most models not differing from the null expectation (Fig. 3A; Table S8). However,
the variation in correlations between genus and family, as well as between abundance
and PA data was explained by species dominance in the community (Domin) within
each dataset (Fig. 3A; Table S9). The effect was positive for genus vs. family
correlations (average coefficient = 0.74; summed weight = 0.84) and negative for
abundance vs. PA data (average coefficient = -0.87; summed weight = 0.99) (Fig. 3A;

Table S9).
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429  Fig 3. Effect size and direction (average coefficients) for predictors (dataset

430  characteristics) of the variation in congruence patterns for A) macroinvertebrates and
431  B) fish, and in adjusted R? of redundancy analysis for C) macroinvertebrates and D)
432  fish. The circle size represents the strength of the correlation, while the color (purple-
433  brown gradient) indicates the direction of the correlation. Samp.Size = number of
434 sites sampled in the dataset; Area = extension of the area sampled calculated as the
435  convex hull; Env.Cv = variation in the environmental variables of the sites sampled
436  calculated as the summed coefficient of variation calculated for all environmental
437  variables used in the RDA models; Nspp = species pool size of the dataset, expressed
438  as total number of families; Rare = proportion of rare species in the assemblages

439  represented by singletons and doubletons; Domin = species dominance in terms of
440  abundance in the assemblage calculated as the Simpson index.
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For fish datasets, the variation in the correlation levels was better explained by
models including different predictors, although some models were not well supported
(Fig. 3B; Table S10; Table S11). Domin was negatively related to matrix correlation
between species vs. genus. Likewise, an overall negative effect was observed for
rarity (Rare) and species pool size (Nspp) within each dataset on the matrix
correlation between most taxonomic levels (Fig. 3B; Table S11). A different result
was observed for species abundances vs. PA data, where increased Samp.Size (i.e.,
number of sites sampled) and environmental variation (Env.CV) were related to
higher correlations. Also, for fish species vs. Characiformes matrices, Nspp was
positively related to correlation values (Fig. 3B; Table S11).

3.4 Predictors of variation in community-environment relationship

For macroinvertebrates, the variation in the community-environment relationships
using different taxonomical and numerical resolutions was poorly explained by
predictors and most models did not differ from the null expectation (Fig. 3C; Table
S12). The variation in the EPT community-environment relationship was explained
by the extension of the area sampled (Area) (Fig. 3C; Tables S12; S13). For fish, Area
and Samp.Size were selected in the most plausible models to explain variation in the
community-environment relationship effect sizes (Table S14). Increased number of
sampling sites and decreased extension of sampled area were associated with a low
and high percentage of variance explained by environmental factors on fish
community composition, respectively, and these effects were consistent across

taxonomical and numerical resolutions, except order level (Fig. 3D; Table S15).

4. Discussion

4.1 Cost-effective alternatives for taxonomic and numeric resolutions
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Overall, our results support that bioassessment studies and biomonitoring programs in
Neotropical streams focused on monitoring the effects of riparian deforestation can be
simplified by using different taxonomical and numerical resolutions, according to our
first hypothesis. This was supported for both aquatic macroinvertebrates and fish,
which are commonly used in bioassessment and biomonitoring approaches (Dala-
Corte et al., 2020; Feio et al., 2023, 2021; Melo, 2005; Valente-Neto et al., 2021). Our
second hypothesis was partially supported, as around one fifth and one tenth of the
variation in the composition of macroinvertebrates and fish, respectively, was
explained by environmental variables, and there was no increased explanation gain
when tested finer taxonomical or numerical resolutions. Additionally, datasets
characteristics explained the variability in correlation values between taxonomic and
numerical resolutions, and in community-environment relationships, mainly for fish
datasets, partially supporting our third hypothesis. We discuss below the
implementation of cost-effective strategies in bioassessment and biomonitoring,
considering the economic and personnel constraints, and the implications of the
drivers of variation in correlation values.

In general, we found that taxonomic resolutions coarser than genus for aquatic
macroinvertebrates and coarser than species for fish can be used with an acceptable
loss of information to represent overall community patterns in the megadiverse
Neotropical region. For macroinvertebrates, the family level can be used as a
surrogate for the genus level due to the high correlation values between them (88%,
on average) and similar community-environment relationship (10% and 11.2% on
average for genus and family, respectively). Likewise, for fish, genus and species
were highly correlated (85% on average) and showed similar associations with

environmental variables (~20% for both species and genus). These results agree with
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previous studies assessing the congruence of distinct taxonomic resolutions for
macroinvertebrates and fish based on local or regional data (e.g., Brito et al., 2018;
Faquim et al., 2021; Martins et al., 2022; Ribas and Padial, 2015). In addition, a
recent meta-analysis showed that coarser taxonomic levels, such as genus and family,
yielded more responsive bioassessment tools when using community-level data
(Ruaro et al., 2024). Employing coarser taxonomic resolution can significantly reduce
time and costs when studying the entire community or an assemblage, as their
determination is more readily accomplished than refined taxonomic resolution (Koch
et al., 2021; Williams and Gaston, 1994) (Fig. 4). This optimization is particularly
beneficial for biomonitoring programs and bioassessment initiatives aiming to detect,
for instance, the impacts of riparian vegetation loss on community diversity. In highly
biodiverse regions, such as the Neotropics, the use of higher taxonomical resolution
could be important in some cases due to the knowledge gap regarding described
species (referred to as the taxonomic gap, or Linnean shortfall) and the shortage of
taxonomists (taxonomic impediment) (Raposo et al., 2021). Such optimization can
enhance and expedite data acquisition, thereby aiding decision-making processes
regarding conservation and restoration efforts in megadiverse tropical regions like
Brazil, which face threats from intensive and rapid land use changes (Pelicice et al.,

2017; Souza et al., 2020; Strassburg et al., 2017).
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Fig. 4. Decision tree on the use of aquatic macroinvertebrates and fish in
bioassessment studies and biomonitoring programs to detect the effects of riparian
vegetation loss. The ideal scenario considers sufficient funds and taxonomic expertise
to identify all organisms of each taxon to the most refined taxonomic resolution
(macroinvertebrate genus and fish species). The simplifications that we recommend
included taxonomic resolution, subsets of each taxonomic group, and numerical
resolution. The adoption of one strategy would depend on the pros and cons of each
simplification, which is mainly related to time and personnel trained to identify

individuals.

We also found support for using presence-absence data for both aquatic
macroinvertebrates and fish due to the high correlation between abundance and
presence-absence data in the community-level matrices (83% and 87% on average for

macroinvertebrates and fish, respectively) and the similar explanatory power of
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environmental variables on community composition (~12% for macroinvertebrates
and ~18% for fish presence-absence on average). These results provide further
support to previous studies in tropical regions that suggested the effectiveness of
using presence-absence data for both groups in biomonitoring and bioassessment of
aquatic systems (Brito et al., 2018; Faquim et al., 2021; Martins et al., 2022; Ribas
and Padial, 2015). The similar explanatory power of environmental variables on
abundance and presence-absence community composition differs from studies
conducted in high latitude regions, where environmental variables have better
explained abundance-weighed community composition than presence-absence data
(Heino, 2014). This difference may be related to the higher species richness and
spatial species turnover encountered in the tropics (Soininen et al., 2018). These
processes contribute to a complex composition matrix, where species composition
varies significantly between sites, reducing the explanatory power of environmental
variables.

Presence-absence data are easier to process than abundance data, especially
for abundant and diverse groups such as macroinvertebrates and fish. Presence-
absence data only requires recording the presence of species, simplifying the counting
process (Fig. 4). Although estimates of the monetary costs involved in collecting,
counting, and identifying abundance data of aquatic macroinvertebrates and fish exist,
this information is scarce for presence-absence data. For example, the average
monitoring cost per genus of EPT (including collecting, sorting, and identification) is
estimated in US$94, while for each fish species, it is estimated in US$48 for streams
located in the Cerrado and Atlantic Forest transition in Brazil (Valente-Neto et al.,
2021), and these costs should be lower to get presence-absence data. It is important to

note that presence-absence data provide less detailed ecological information
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compared to abundance data, as they treat rare and common species equally.
However, in terms of cost-effectiveness, presence-absence data require less
processing time. The time and resources saved by using this simpler resolution can be
redirected to increase sampling coverage in bioassessment studies and biomonitoring
programs (Joseph et al., 2006). The use of presence-absence data can also reduce the
need to collect unnecessarily large numbers of individuals in the field, particularly for
fish, when species can be identified and counted on-site.

On average, the amount of variation in community composition explained by
environmental variables was higher for fish than for macroinvertebrates, and this
pattern remained consistent regardless of the taxonomic and numerical resolution.
Some studies have shown that fish are more consistently related to environmental
variables than aquatic macroinvertebrates (Herlihy et al., 2020; Picard et al., 2022),
while others have indicated the inverse trend, including earlier detection of the effects
of native riparian vegetation loss on macroinvertebrates (Dala-Corte et al., 2020;
Valente-Neto et al., 2021). On average, environmental variables explained
approximately 10% of the variation in macroinvertebrates composition and 19% in
fish composition. This finding is not surprising, given that we used only landscape
and climate variables as predictors due to the lack of comparable local environmental
data across datasets. In general, the explanatory power of landscape and climate
variables for aquatic fauna is relatively low (Heino et al., 2008; but see Junqueira et
al., 2016; Montag et al., 2019; Roque et al., 2010). The varying responses of
freshwater species to deforestation, as indicated by the percentage of native vegetation
cover (Dala-Corte et al., 2020; Valente-Neto et al., 2021), can obscure the detection of

clear community-environment relationships.
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Local environmental variables, such as water dissolved oxygen and pH, are
known to significantly influence aquatic macroinvertebrate biodiversity (Allan and
Castillo, 2007; Tonkin et al., 2016) and may enhance the predictive power of
environmental variables for macroinvertebrate and fish composition (e.g., Tonkin et
al., 2016). However, some studies found that local environmental variables have
limited explanatory power in predicting stream macroinvertebrates (Heino et al.,
2015, 2008; Mykra et al., 2008) and fish composition (Leal et al., 2018), even using
global and standardized datasets (Heino et al., 2015). Additionally, studies
incorporating climate, landscape and local environmental variables have still reported
weak community-environment relationships (Heino et al., 2008; Siqueira et al.,
2012b) or context dependency in biodiversity patterns, where the variation explained
by environmental factors depends on the dataset analyzed (Tonkin et al., 2016).
Beyond environmental selection, other processes such as ecological drift and dispersal
also shape community patterns (Leibold and Chase, 2018). Some studies suggest that
Neotropical stream communities are more strongly influenced by ecological drift
compared to temperate streams due to their smaller community sizes (Saito et al.,
2021; Siqueira et al., 2020). Community size, defined as the number of individuals
sampled, affects the strength of ecological drift, which is more pronounced in smaller
communities. This is because a lower number of individuals increases their
susceptibility to random births and deaths (Orrock and Watling, 2010). Despite these
various potential explanations for the unexplained variation in composition, it is
important to note that we selected the most relevant environmental variables related to
deforestation, specifically the percentage of native vegetation cover and tree cover
percent, both of which are known to influence species occurrence, persistence

community structure and forest resource availability (Fahrig, 2013, 2003). Thus, the
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inclusion of additional variables would likely not improve the composition variation
related to deforestation. As a result, trends observed across taxonomic and numerical
resolution in this study are expected to remain consistent, regardless of additional
predictors or an increase in the overall community-environment relationship variation.

The mean correlation between the EPT subset and the entire macroinvertebrate
community in the datasets was moderately high (» = 0.72), albeit lower than
correlations reported in other studies, which found correlations greater than 0.90 (see
Brito et al., 2018; Martins et al., 2022). Environmental variables explained a similar
percentage of the variance in community composition when analyzing the EPT subset
(mean R? across datasets = 9%) compared to the entire macroinvertebrate assemblage
(mean R? across datasets = 10%). This result indicates that EPT are not more sensitive
to deforestation, as represented by the percentage of native vegetation cover and tree
cover percent, than other subsets of aquatic macroinvertebrates (Siqueira et al.,
2012a). Therefore, while our findings support the widespread use of taxonomic EPT
metrics (e.g., abundance, richness, and community composition) in studies assessing
stream integrity (Couceiro et al., 2012; Suriano et al., 2011) (Fig. 4), other subsets of
aquatic macroinvertebrates may be equally useful.

Similar to EPT and macroinvertebrate families, Characiformes fish species
appear to be a good surrogate for entire stream fish assemblages, given their high
correlation with fish species (mean correlation = 81%) and similar percentage of
variance explained by environmental variables (17.5%) (Fig. 4). Our result are
consistent with those recorded for Amazonian streams along a deforestation gradient
(Martins et al., 2022). Moreover, families within the Characiformes (such as
Lebiasinidae, Crenuchidae, and Characidae) have been identified as effective

surrogates for entire stream fish assemblages in Amazon basins (Santos et al., 2022).
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In general, Characiformes species dominate fish communities in Neotropical streams,
displaying diverse habitat preferences and responses to environmental changes
(Brejao et al., 2018). In addition, although Siluriformes were not strongly correlated
with entire fish assemblage (mean correlation = 59%), environmental variables
similarly accounted for variation in both Siluriformes and Characiformes (21.9% and
17.5%). One possible reason for this result is that Siluriformes encompass a great
proportion of benthic species highly reliant on substrate heterogeneity, which may be
adversely affected early by siltation of the stream bottom due to land use changes and
riparian vegetation loss (Dala-Corte et al., 2016). Therefore, although Characiformes
better represented the variance of the entire fish assemblage, Siluriformes may

provide important insights into the impacts of riparian deforestation (Fig. 4).

4.2 What explains the variation across datasets?

Spatial extent and grain size have been reported to affect different types of
congruence (cross-taxon, higher levels or subset) in terrestrial and marine ecosystems
(Mellin et al., 2011; Westgate et al., 2014). Using predictors to elucidate the variation
in congruence values is helpful in discerning scenarios where surrogates are more
appropriate (Mellin et al., 2011). The variation in most congruence levels among
macroinvertebrate datasets was not effectively explained by dataset characteristics,
with exceptions noted for comparisons between genus and family, and between
abundance and presence-absence. One possible explanation is the lower variation in
correlation values for macroinvertebrates compared to fish (Table S2), which may
hinder the detection of significant effect. On the other hand, the variation in
congruence levels among fish datasets was effectively explained by dataset

characteristics. Datasets of fish assemblages exhibiting high dominance, low rarity,
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and low species pool size may employ coarser taxonomic resolutions (e.g., replacing
species by genus level) in a bioassessment and biomonitoring context with minimal
information loss. These results suggest that the variation in congruence levels among
macroinvertebrate datasets is less predictable than among fish datasets, at least for the
database available and studied here.

The variation in community-environment relationships was high among
datasets (around 4-fold for macroinvertebrates and 6-fold for fish) (Fig. 2).
Understanding the factors that determine our capacity to explain freshwater
communities is crucial for the effective use of bioindicators. For macroinvertebrates,
the variation in community-environment relationships was poorly explained by
datasets characteristics. Similar to congruence patterns, the lower variation in adjusted
R? of community-environment relationships can explain this pattern (Table S6). For
fish datasets, sample size and spatial extent was consistently found to affect our
capacity to explain community composition using environmental variables, and this
pattern was consistent across the different taxonomical and numerical resolutions
evaluated. Increasing the spatial extent enhances the adjusted R? of community
composition explained by environmental variables, aligning with findings from other
studies (Leibold and Chase, 2018). On the other hand, increasing sample size may
paradoxically decrease our ability to explain community variation through landscape
and climate predictors in freshwater studies. Interestingly, environmental variability
was not selected as important predictors of the community-environment relationship
for fish. This suggest that increasing the number of sampling sites may add more data
variation independent of the environmental variability. One possible explanation is
that increasing the sample size may increase spatial turnover in species composition in

highly diverse tropics (Soininen et al., 2018), leading to varied and contrasting
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responses among assemblages. However, further studies are needed to investigate this
hypothesis. The database used here was designed to capture variation in riparian
vegetation loss. Therefore, increasing sample size may not necessarily increase
environmental variability. For example, if a dataset encompasses 20 streams spanning
a continuous gradient of riparian vegetation loss (ranging from 0 to 100%, in 5%
increments), adding more sites might not necessarily enhance the variation of riparian
vegetation loss or the associated environmental variability. Nevertheless, expanding
the number of sampling sites would undoubtedly enhance confidence in the obtained
results, which is crucial for accurately assessing human impacts. Therefore, our
results do not indicate that stream assessment and biomonitoring studies should
decrease sample size to improve the community-environment relationship for fish.
Instead, a rigorous study design remains crucial for an accurate environmental
diagnosis.

Despite using a comprehensive database encompassing multiple biomes in a
highly diverse Neotropical country, our study is subject to certain limitations, and
potential caveats should be considered. Firstly, the available taxonomic knowledge
and expertise in the Neotropical region limit our ability to identify aquatic
macroinvertebrates beyond the genus level (Hamada et al., 2018). Consequently, we
are unable to test the congruence between macroinvertebrate genus and species or
determine whether genus can be used as surrogate for species. Therefore, our
inference regarding the taxonomic resolution of macroinvertebrates is constrained to
the genus level. Secondly, our study reveals several simplifications that can be
employed to achieve the goals of bioassessment and biomonitoring. However, the
implications and recommendations derived from our findings are limited to studies

aimed at detecting and monitoring the effects of riparian vegetation loss on streams
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and using community-level data. The most refined taxonomic resolution of aquatic
biodiversity is crucial in various contexts, including monitoring temporal trends in
abundance and identifying biogeographical and macroecological patterns. Thirdly, our
analyses incorporated both native and non-native fish species, thereby potentially
influencing fish composition. While invasive species are known to impact riverine
macroinvertebrate biomonitoring scores and indices that incorporate abundance
weightings (Mathers et al., 2016), the influence of non-native species on fish
congruence patterns remains unclear and needs to be better explored, considering the
negative impacts in aquatic megadiverse ecoregions (Vitule and Pelicice, 2023). Even
if we excluded non-native fish species from the analyses, the effects of their presence
on native species would persist. Therefore, future studies should investigate this issue

to provide further insights.

5. Conclusions

Ideally, with sufficient funds and taxonomic expertise, identifying organisms to the
species level is the best choice for detecting and monitoring anthropogenic impacts,
but this is rarely achievable (Jones, 2008). Therefore, our study provides clear and
practical recommendations for stream assessment and biomonitoring the effects of
riparian deforestation of Neotropical freshwater systems (Fig. 4). The congruences
evaluated here provide good alternatives, suggesting that coarser taxonomical
resolution and presence-absence data can serve as surrogates for refined taxonomical
resolution and abundance data, respectively, for biomonitoring programs and
bioassessment using community-level metrics of aquatic macroinvertebrates and fish.
In addition, EPT and Characiformes or Siluriformes subsets may be good substitutes

for macroinvertebrates and fish assemblages in some cases, but using these surrogates
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may result in some loss of information compared to using macroinvertebrate family or
fish genera identification level. The predictors used in our analysis could only explain
part of the variation in the congruence values for fish and macroinvertebrates. Our
results indicate that, with a rigorous study design, both macroinvertebrates and fish
were partially explained by environmental variables, but the magnitude of the effects
of these variables on community composition was negatively affected by sample size
and spatial extent for fish. Therefore, the choice of taxonomical resolution
(macroinvertebrate family and fish genera), taxonomic subsets (e.g., EPT,
Characiformes/Siluriformes) or numerical resolution (abundance or presence-absence)
should depend on the budget and availability of trained personnel for sampling,

sorting, and identifying individuals.
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Table 2. Redundancy Analysis (RDA) of environmental variables explaining stream
macroinvertebrate or fish communities identified at species, genera, family or order, all
using abundance data, and presence-absence data (PA). Mean adjusted R? is the mean
explanation obtained from 17 datasets for fish and 10 datasets for macroinvertebrates
from Brazilian Amazon, Atlantic Forest, Cerrado, and Pampa biomes. Max =

Maximum; Min = Minimum; EPT = Ephemeroptera, Plecoptera, and Trichoptera.

Response variables Mean adj-R? (%) Min adj-R? Max adj-R?
Macroinvertebrate genera 10.0 1.1 25.5
Macroinvertebrate family 11.2 3.5 26.4
Macroinvertebrate order 11.0 0 27.2
Macroinvertebrate PA 11.6 3.0 27.0
EPT 9.0 0.7 20.9
Fish species 20.0 7.0 45.2
Fish genera 20.1 7.76 44.8
Fish family 17.1 6.3 42.6
Fish order 18.4 0 49.1
Fish PA 17.8 6.0 37.4
Characiformes 17.5 33 32.6

Siluriformes 21.9 7.6 51.6




S211S

S|aA9| Jay8iy X
|9A3] dlWOUOXe]
paulaJl 10N

EH

exe}
uolinjosal
JIWLIOUOXe|

$11S

Ajlwey x snuag 383 30UaLIN0
X @auepunqy
;— Bl —[= %] —E
: : exe}
[opoW Jeaulq SonJeA (uonejauio) |a1uelN) uonnjosal
uolle|alio) wucw?_mcou |[earlswinN
JU3IXa |eneds _
‘lood sapads |euoi3as “3°3
loselep oy} g <
}O sainjleo4 )_.
-
sjasele(

slasele

Tvay
LT
1 1 28
s ] rols — BB
D) JeA AU
[oPpOW Jeaul San|eA .Y m_m>_mcm sa|gelJen

|eluaWwuolInUg

Aduepunpay

$31lS

222

exe)
UoIIN|0SaJ [ealBWNU
Jo Jlwouoxe|




vd IS eyo pIO we4 us9 dds

00
|
F1°0
Al
_ €0
L F 70
o

Py [ ] [ ]
° .
3 S0

vdxXnay  IISXIIV  BYODXIV PIOXUeD weqxus ploxdds weqxddg ueoxddg
[ ]
-GZ'0
! (]
-0G°0
[ )

[ ]

4 FG.'0
[ ]
[ ]

3 1p8-epi jouew " ZB1einbi4 peojUMOP/SSS22. 0] alay MoI1D 00t

pajsnipe gy vay

(1) uoned1Io90 |JUBN

om

vd 1d3 pio we4 uso

ry FO'0
z
F10 >
X
)
©
e
[
@
03
s FZ'0
[ ]
° [ ]
J
YdXNay Ld3axiv pJOXWe- PIOXUSD we-4xusD
Fv°0
<
g
F9'0 m
Q
S
| ° 5
I .DIVT
30 w
=
ZihBiy




souLIOLIN[IS
ﬁl

Ldd
: @
" : Q : I9pI0
o 0 O . souLojIoRIRy ) - '
‘ © o. Q ol e -
80— o O O Q ‘ IpI0 w.ol Q Q
90— ‘ Q Q 0 Q -
Aue g 0 Q . ]
00— Q O O O m.o Q
eeee - @ RS I K Q@ e
o @ |
. e Vvd sorads 90 mu - Q
To ‘ O ‘ <0 ‘ .a : :
. ‘ N u | .
v'0 ‘ OO0 O douepunqge sa10adg I mw\w M Mu m Q
! cle @ w ]
80 ‘ O H _ W w
I w = z c m 2 )
,.m m d A ‘ d x punqy
m. SOULIOJLINIS x [[V O <
(¢] ﬁl
Q < . ) Q d x ShuanH
: Q O : SOULIOJIORIRY)) x 0 O ’
1.: : vl 0 @ o @
80— Q ‘ Q Q Vd x 9ouepunqy o o Q o
@ @00 ®
90— ‘ : . m
0 ‘ Q O . Q 19pIQ x snuanH o : e
: | @ O
70— o O ‘ . O AJrwe ] x snuof m.m Q o o
1% i |
. O ‘ Q Q Q IopIQ x sar0adg 90 i ;
| @ @ e w ] @ a ‘m w
4] ‘ Q x soradg . § : : e
O ‘ Aprureq ﬁ e ; ; :
v0 O . Q E| S s v*\ )
O . ‘ snuan) x sarvadg mS
90
0 O 3
80 i
. - )
s 8 5
W.

5 Jpdco n ¢ ainbi4
aJey YoI1D
p B14:peojumop/ssaesoe 0}
‘¢ ainbiy‘ainbi:
Jparg aunb



duiwnsuod

s9123ds pue snuagd Ajlzuapl s9129ds pue snuagd Ajlzuapl gulwnsuod
-9WI3} 9J0W S| [9A3] paulyal
0] [UUO0SJad pauUle)]) e 0] [SUUO0SJad paule)] -9WI} 9J0W S| S|ENPIAIPU| = 1sow a3 01 senpnpul 1
2Jow puews( :(-) suo) aJow puews( :(-) suo) lle SuiAyuap] :(-) suod e mc_&:cm_u“ A._w.m_.hﬂu.
S9|qelden |eluUsWUOIIAUD S9|CelJeA |eljusWUOJIAUD S9|gelJeA |[elusaWuolIAuL $3|qeIeA [BJUBLUUOIIAUD
y3m uoleposse — yim uoljedosse — yim uoijeiposse — YUM c.osm_uo&< (+) .mohn_ —
Je[IWIS :(+) soid Jejiwis :(+) soud Jejlwis :(+) soud : .
93e|quiasse ALUBD!
oo | — oo porduoy | _ sy o soneuony
Ajluapl pue Junod : . 0 Sso| ON :(+) soid
01 aw] ss97 :(+) soad 210s wa wpmncmmw._ :(+) s01d pue Ajiwed :(+) soud 4 _ (+)

sappads sawojlN|Is

SNU3D >

ejep ajuasqe/aduasasd /sauwiojdeiey) saads >y
uoilnjosaa [eaBWINN pue snuag 143 Ajlwey oy ——
195qns uollnjosal diwouoxe|
_ _ _
I
sindlioys [eap]

sweJiSoid SuliojluowoIq pue S3IPNIS JUBWISSISSLOI( Ul 3S()

P Dy

3 Ipd -y 'B14'ainbi4:peOojumMop/SS8008. 0] aiay o110 ¥ ainbi4




Supplementary Material

Click here to access/download
Supplementary Material
Supplementary Material.docx



Declaration of Interest Statement

Declaration of interests

XThe authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

[(OThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:



