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Abstract

Smart aquaculture is a data-driven approach to optimise operations and is a
valuable practice for shrimp farmers to upscale sustainably. Acoustic telemetry is
generally regarded as the most reliable form of data acquisition to obtain desired
stock information, such as biomass and abundance. Current studies in the field
deploy high-grade scientific sonars and their data to train sophisticated models,
overlooking the financial viability. In contrast, this study explores the potential for
basic-specification single-beam scanning sonars to construct acoustic datasets
for model training. We propose separate methods for using machine learning to
predict two stock measurements: school density and abundance, using artificial
targets in a sample area. To model school density, a monofilament net containing a
varied density of standardised uniform air-filled spheres produces echo traces,
which an optimised neural network categorises to an overall accuracy of 90.78%.
To model shrimp abundance, artificial targets modelling shrimp are presented to
capture abundance with active material and orientation variables. We collect
averaged echograms of the tank containing a variable abundance of suspended
targets. We then deploy a variation of echo-integration where the sum of digital
signals for each beam position is processed as features. Optimised Gaussian
process regression models are the best-performing models in predicting the
number of targets in the tank. Training models on different population ranges found
the maximum error around 10%, with the best model demonstrating an MAE of
1.36 (2.7%). Models fit data with an R-squared upwards of 0.98. The proposed
methods demonstrate the promising potential of low-cost sonar implementation

within the aquaculture industry.
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1. Introduction

The globalisation of the aquaculture industry is a response to dramatic shifts in
nutritional demand [1]. The multifaceted opportunities for developing countries
have driven the rapid expansion of shrimp farming operations [2]. However, due to
poor and unregulated planning, socioeconomic and environmental ramifications
have arisen, including the destruction of mangrove areas, coastal lowlands, and
other rich, biodiverse ecosystems [3], [4]. Increased profitability has been
achieved through land footprint expansion rather than optimising operations [5].
Upscaling sustainable aquaculture activities has been challenging due to
inefficient feeding, resulting in nitrous waste, high operating costs, and low yields
attributed to high mortality rates [6]. The need for formulated feed in the grow-out
phase is a major source of production costs [7], with the production cycle in
shrimp ponds averaging around 25 weeks wherein 1-2 g animal grow outto a
harvest weight of 20-27 g [8]. Thus, feed schedulingis a critical area for
improvement, as its optimisation would significantly enhance the overall process.
The lack of insight into the growth, behaviour and abundance of stock under murky
and turbid waters means farmers cannot adapt maintenance strategies to changes
in biomass. Traditional monitoring and stock assessment methods have attempted
to overcome this; however, manual techniques, such as trawling and occasional
video monitoring [9], are labour-intensive, time-consuming, inaccurate and
invasive [10]. Precision farming techniques were introduced to collect data on
stock in ponds using Data Acquisition (DAQ) systems and statistical analysis [11],
[12]. De Rosny and Roux first proposed fish monitoring methods using acoustic
measurements, analysing back-scattering cross-sections using a reverberation
time-series [13], with further studies employing the same fundamentals. Whilst
these methods can yield impressive biomass estimations, they are challenging to
apply commercially due to their statistically intensive nature and difficulty in
replicating. In recent years, research has proposed developing fast, accurate and

automated biomass estimation methods to optimise farming processes.



Smart aquaculture is a new scientific field that aims to develop digital solutions
that convert large volumes of complex data into easily understandable and
actionable information. The approach supports data-driven, knowledge-based
decision-making, optimising the maintenance of commercial ponds to improve
resource management and harvest [14]. Several DAQ systems have been proposed
to facilitate the philosophy in aquaculture ponds, including machine vision and
sensor-based technology [6], [15]; however, the challenging environment of shrimp
ponds makes it difficult to obtain high-quality data. Sonar technology is showing
the most promise for DAQ in shrimp pond environments [16], [17]. Its superiority
over other proposed methods comes from its high range underwater and suitability
against light attenuation in turbid water. Sonar technology is also versatile, as
devices can be designed to overcome financial constraints, making it an
appealing, cost-effective option if performance can be achieved. Shrimp farms
often utilise extensive (i.e., 1-10 shrimp/m?), semi-intensive (10-25 shrimp/m?),
and intensive (>25 shrimp/m?) production strategies [9]. While these densities can
create overlapping echoes that are difficult to analyse individually, techniques
such as echo-integrator regression can be employed to estimate abundances by
analysing the entire sample volume [18],[19]. The advancement of Artificial
Intelligence (Al), particularly Machine Learning (ML), has revolutionised industrial
processes across sectors by deriving new knowledge from existing data.
Techniques such as Random Forest (RF) Algorithms, K-Nearest Neighbours (KNN),
and Artificial Neural Networks (ANNs) have shown success, being easy to
implement commercially by supplementing DAQ systems [20]. This underpins the
prospect of developing ML models to extract measurements from aquaculture

data, thereby achieving efficient farming.

Previous sonar and ML studies have been successful in fishery acoustics. Lin et al.
[21] successfully developed a YOLOv4 (You Only Look Once) network that
identified the number of white shrimps from 1 to 4 and their orientations, whilst
Pargi et al. were able to predict fish biomass in murky water using Deep Learning
(DL) of sonar images using an ARIS Explorer 3000 device and ARIScope software

[22]. Minelli et al. [23] used KNN to detect and classify fish schools; Proud et al.



[24] used RF classifiers for silver cyprinid. One of the biggest challenges when
scaling up ML-based approaches is the time-consuming nature of acquiring the
needed data to construct a well-balanced dataset [16]. The difficulty in obtaining
data from dynamic organisms hinders the development of robust analysis
methods, thereby stagnating research progress. Therefore, alternate and novel
methods of acquiring data are needed to validate ML techniques on acoustic data
before they are deployed in commercial farms. Additionally, despite its suitability,
sohar remains a high noise, low resolution system especially when horizontally
propagating in shallow water due to the reverberation from surface and ground
reflections. Further factors like the Doppler effect, multiple echo paths, sidelobe
interference and internal device noise can degrade data quality by obscuring real
signals, making it challenging to distinguish targets from the background [16]. As
such, reliable methods are needed to preprocess acoustic data to manage these
limitations, cleaning the data to enable feature extraction. Finally, studies to date
have relied on high-tech instruments to facilitate their work, which can be
expensive. These sonars are priced out of reach [25] for farmers interested in
incorporating new technologies for biomass estimation, and as such, they are not
viable for most aquacultural applications. Low-cost sonar technology is readily
available on the market; examples of these include mechanically driven scanning
sonars [26]. Clearly, research is needed to investigate whether low-cost sonars
can produce satisfactory data for ML techniques to extract valuable insights for
shrimp farmers, as this is the only viable avenue that may lead to commercial

implementation.

This study explores the potential for low-cost sonar to contribute to routine stock
assessment in commercial shrimp farms. The study aims to estimate sonar
performance in field environments by varying the abundance, position, and
material of targets in a controlled environment and evaluating the accuracy of
machine learning models. We propose data acquisition techniques that simulate
shrimp distribution data using artificial targets and placement methods. The study
explores alternative data preprocessing techniques, and we apply data analysis

techniques in the context of the spatial intensity data produced by the scanning



sonar. The above applies to finding two separate insights in the context of shrimp
farming: school density and abundance, using ML models. These investigations
should help determine whether low-cost scanning sonars are suitable for smart

shrimp farming and whether on-field testing is an appropriate next step.



2. Literature Review

2.1. Aquaculture and Shrimp Farming

The growing global demand for food, driven by a rapidly expanding population, has
led to a shiftin dietary patterns as regions search for alternative sources of
nutrition to address the emerging deficit. This has been experienced at an
accelerated rate in several pockets of the world, with environments suitable for
aquacultural expansion increasing the share of their nutrition through seafood [1].
Aquaculture has made significant contributions to global food security, with
shrimps emerging as one of the most valuable seafood products in worldwide
trade [27], with global production increasing by 86% in the past 10 years, reaching
more than 6.5 million tonnes of shrimp in 2019, valued at nearly 40 billion US
dollars [5]. The most commercially valuable species produced in aquaculture is
Litopenaeus vannamei, which constitutes 70% of industry production [9]. The
multibillion-dollar business has attracted developing countries as a way to
generate profits, local employment and currency to significant effect [2]. In such
countries, shrimp aquaculture has yielded significant socioeconomic benefits,
with the generation of foreign exchange serving as the driving force behind rapid
expansion. Although it is possible to operate with high stocking densities of
shrimp, commercial strategies often utilise lower densities, including extensive
(i.e., 1-10 Shrimp/mz), semi-intensive (10-25 shrimp/mz), and intensive (>25
shrimp/mz) production [9]. The exponential growth has led to negative
consequences due to poor planning and a lack of regulations, resulting in
environmental impacts, waste and social conflicts [3] that require urgent solutions

through effective management techniques.

2.1.1. Sustainability Challenges

Shrimp farming can have environmental impacts based on (1) the location of
shrimp pond construction and (2) the management and technology used during
shrimp pond operations, among others [4]. The particularly rapid developmentin
countries such as Bangladesh, Vietnam, China, Thailand and Ecuador has led to
expansions in activity at the expense of tropical and subtropical lowlands,

endangering ecosystems. As of 2001, approximately 1-1.5 million hectares of
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coastal lowlands had been converted into shrimp ponds, consisting mainly of
mangrove areas, marshes, agricultural lands and salt flats [4], degrading
biodiversity. In addition, poor and excess feed quality has been cited as a main
source of pollution [3], [27], with the organic matter reacting with the
environment’s pH, temperature and pressure. The creation of ponds also impacts
natural processes such as water runoff and sedimentation, creating a ripple effect
that hinders the growth of trophic structures and introduces contaminants and
trace elements. To combat this, an influx of research has been conducted since
the turn of the century, proposing management techniques to reduce footprint
expansion by streamlining the farming processes. Emerencio et al. proposed
intensification of cultures, creating high-density production and greater use of
existing infrastructure [5]. This involves implementing higher levels of feeding,
aeration, and labour, which further emphasises the influence of these variables on
production. Hossain et al. proposed several recommendations to manage the
impact in Bangladesh, including coastal zoning and establishing Environmental
Impact Assessments [3]. Whilst these steps are undoubtedly effective in mitigating
the impacts of expansion, additional solutions are required to streamline current
processes with minimal changes to operating methods that can bring immediate

improvements to resource management.

2.1.2. The Shrimp Farming Process

Generally, the shrimp farming process follows 4 distinct stages from hatchery to
harvest, as shown in Figure 1. The procedure can vary depending on the
philosophies employed, such as those used in indoor versus outdoor
environments. Cultivating broodstock spawn to post larvae for stocking in grow-
out ponds requires strict monitoring within specialised tanks, typically indoors
[28], [29]. The hatchery and nursing phases are arguably the most crucial stages in
the process, and extensive methods and research have been well-established for
them. Thorough management of variables such as salinity, pH, temperature,
aeration, and feeding has left little to be improved upon in the pre-grow-out
phases. If more efficient practices and sustainable output are to be observed,

solutions need to optimise procedures in the grow-out phases.
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Figure 1-The shrimp farming process [28], [30]

Whilst plentiful research has been conducted to improve growth conditions [2],
[5], [28], [29], a significant inefficiency in the process remains in the method of
feeding and adapting to unexpected changes in stock. Scaling up aquaculture
activity has presented challenges as farmers cope with issues that threaten to
make the process considerably less efficient in terms of time, cost, and yield.
Shrimp farmers experience these challenges on a wide scale when they attempt to
feed growing shrimp the optimal amount of foodstuff and harvest shrimp at the
best biomass [6]. The need for formulated feed in the grow-out phase is a major
source of production costs in shrimp farming. Thus, the quantity of feed used
relative to the yield harvested is a key metric in evaluating economic success
within a commercial cycle [7]. Maintaining stock with feed at this stage is the most
time- and labour-intensive stage of production, with manual monitoring being a
significant drain on resources. Shrimp behaviour is often observed through visual
inspection or by using video recordings, which are infrequent so as not to disturb
the livestock [9]. However, these methods are often still ineffective in capturing the
condition of shrimp or in detecting early signs of disease. Optimising feed and the
grow-out process will improve yield within commercial ponds, allowing farmers to
meet demand without undertaking damaging pond expansions. The introduction of
easy-to-implement telemetry is needed to reduce the workload of farm operators

while enhancing insights with minimal effort.



2.1.3. Biomass Estimation, Precision Farming and Smart
Aquaculture

Farmers can derive key stock assessment information through biomass
estimation. The practice is the most common and significant way of controlling
stocking density, optimising feeding and determining the optimal time for
harvesting [6]. The ability to achieve this is commonly referred to as precision
farming. Until now, estimating marine biomass has relied on manual sampling
techniques, such as trawling and subsampling, to determine the average weight of
the stock. Feed trays can also be inspected to calculate feeding rates [31], [32].
These processes can be time-consuming, invasive and potentially misleading, with
an inherent inaccuracy of 15-25% [10]. To solve this, research has been aimed at
developing fast, accurate, and non-invasive techniques for estimation without the
need for manual intervention. Studies to develop technological solutions have
seen unprecedented interest in aquaculture, with researchers employing various
tools to provide a proof of concept of the data that can be collected to help
estimate biomass. Initially, solutions utilising technology opted for statistical
analysis using surveying techniques and acoustic methods [11], [12]. De Rosny
and Roux first described acoustic methods for monitoring fish behaviour using
time-series coherent intensity backscatter and decay equations with ultrasonic
transducers [13]. The results showed positive applications, underscoring the
potential for valuable insights being gained about marine life in environments
previously deemed challenging to monitor. These early studies were crucial in
laying the foundation for precision farming and the current emerging trend. A
limitation that prevented these early iterations from being commercially
implemented was their statistically intensive nature, which is also time-consuming
and complex to repeatin less sophisticated operations. Additionally, data would
require validation based on catch results, making the process dependent on
manualinput. This led researchers to develop automated analysis methods,
building on precision farming techniques in a new scientific field commonly
referred to in literature as smart aquaculture. While the terms smart aquaculture
and precision farming are often interchanged, their continued mention here will

adhere to the outlined definitions.



Smart aquaculture aims to create digital solutions that can process large volumes
of complex data into easily understandable and actionable information. This
approach enables data-driven, knowledge-based decision-making, streamlining
the maintenance of commercial ponds to achieve improved yields [14]. Data
insights, such as abundance, length, biomass, and behavioural information, can
also enable efficient resource usage in the grow-out phases, creating sustainable
aquacultural activities and improved financial performance, which is summarised
in Figure 2 [33]. The breakthrough of Al, particularly ML techniques, has
revolutionised a vast majority of industries, not limited to healthcare,
manufacturing, energy and sales [20]. Consequently, the application of ML serves
as the critical tool for transforming processes and is designed to derive knowledge
from existing data [34]. It stands to reason that ML is the key to unlocking smart
aquaculture, with its subset, Deep Learning (DL), being the focus at the cutting
edge of the field. Proposed DL methods have most recently been enhanced with
infrastructure capable of handling automated tasks in real time using cloud
computing, big data, and the Internet of Things (loT) [33] Whilst that is vital
research, the lack of definitive ML applications in this particular field means that
further foundational research is required to evaluate the challenges posed in
applying ML to shrimp farming.

Data-Driven Intelligence Smart Shrimp Aquaculture Optimisations

Enhanced Quality
Cloud Big Data Acquisition

Computing Data System %

Reduced Cost

Data Shrimp

Artificial Analysis in Pond
Intelligence

(o

Higher Efficiency

[

Higher Output

Machine

Learning
Deep
Learning

Figure 2 - Smart aquaculture principles applied to shrimp farming [33]



Several comprehensive reviews have been conducted to evaluate the
effectiveness and suitability of technologies for smart aquaculture. The main

techniques pursued here include [6], [15]:

1. Machine vision: Using a monocular or stereovision optical light camera
setup at the surface, analysing image data.

2. Acoustics: Acquiring data from sound propagation using sonar,
echosounders or passive equipment.

3. Sensor-based technologies: Measuring pass-throughs using resistivity

counters with electrodes or infrared beams.

Investigations into these tools are relatively new. Literature reviews suggest there is
limited research and development on smart aquaculture [6]. Hence, it remains
unclear what the definitive best technology is for this application, considering the
close exchange of benefits and drawbacks associated with adopting each. This is
likely due to the absence of studies proposing methods to extract insights from the
data of these devices. More systematic methods utilising these technologies
effectively need to be published to promote techniques superior to manual

sampling.

2.2. Sonar Technology and Key Underwater Acoustic Concepts
Comprehensive research focused on individual technologies can help determine
the best data acquisition systems and ML techniques for shrimp farming. Industry
collaborators, OTAQ, have developed a mechanically driven sonar device,
providing an opportunity to investigate the capabilities and limitations of
hydroacoustic methods. The device relies upon acoustic principles, which are
critical when analysing data output and explaining experimental results. Acoustic
sensor principles can be compared well with optical devices. This is due to the
similarity between the theories of sound and light [18], with many phenomena
being observed in both, such as absorption, reflection, and scattering. Acoustic
waves propagate over long distances in water, a superior medium for sound

propagation due to the liquid’s increased conductivity.
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2.2.1. Acoustic Technology as a Biomass Estimation Method

Within the field of underwater object detection, there has been arecentrise in the
popularity of acoustic techniques and devices that form the backbone of potential
solutions. This comes after a previous trend in scholars focusing on alternate
methods such as computer vision, machine vision, resistive sensor technology
and tagging [15]. While these methods are still being pursued in other contexts, it
is evident from multiple research teams [16]-[18], [35] that there is reason to
suggest that acoustic techniques offer an overall superior use case in shrimp

aquaculture for several reasons. These include:

e The non-intrusive nature of sonar and acoustic technology
e The high range of sound waves propagating in water

e Reliability in highly turbid waters

e Suitability in areas of minimal light

e The scope for cost-effective solutions

In any study involving marine life and aquaculture monitoring, one of the critical
considerations is the feasibility of operating while minimising the negative impact
on the measured live specimens. For aquacultural farmers, it is imperative that the
stock is not put under increased stress, as this can directly cause several other
abnormalities, such as shorter lifespans, increased mortality levels, and poor
growth rates [6]. Whilst other monitoring systems, such as resistive sensory
technology, may provide key insights that acoustic technology cannot, its intrusive
nature can diminish any benefit its deployment offers. Acoustic technology’s range
means that devices can be installed away from activity, enabling data acquisition

without affecting the ecosystem’s natural behaviours or causing injury.

The robust nature of sound waves propagating in highly turbid waters means that
acoustic systems produce reliable information [36]. This factor becomes crucial
during the design stage when considering other systems reliant upon alternate
mediums such as visible light and other electromagnetic waves. Machine vision
solutions in research have been shown to provide information on the behaviour,

swimming, and body orientation of shrimp [17]. Although it can be argued that

11



systems such as computer and machine vision produce image details better than
sonar, their susceptibility to light attenuation and refraction in turbid waters
increases with depth, meaning that the quality of these images can significantly
deteriorate in detail [16], [35]. This is particularly emphasised when considering
how most shrimp species position themselves in the lowest layer of a body of
water, known as the benthic zone [35]. This makes using acoustic telemetry vastly
more appealing when designing a solution that can be semi-permanently operated

unsupervised and remotely.

2.2.2. Operating Principles of Sonar Technology and Its Evolution

A Sonar device can detect objects underwater from their physical attributes and
the water medium [6]. Like all other systems that rely upon the principles of
underwater sound, a sonar converts mechanical energy propagated via sound
wave into an electrical signal when the wave reaches the receiver. Acoustic
devices can be splitinto two primary groups — active and passive [16]. A passive
system detects objects with a receiving array and is used to discover sound
sources, requiring the object concerned to emit sound waves. These are often
referred to as hydrophones. On the other hand, active acoustics produce sound
waves from a transmitting array and use a receiving array to detect objects. An
electrical signal is applied to a transducer, which converts the pulse into a
mechanical vibration that produces an oscillating pressure and results in an
acoustic wave [17]. The wave propagates in the water and scatters once it
interfaces with a different medium. This results in a portion of the original wave
being reflected to a receiving transducer. The pressure from the echo pulse excites
the transducer [37], resulting in an electrical sighal which conveys information
about the backscattered wave. The return signal can be processed digitally to form
data which provides insight into the object’s physical characteristics through

properties such as amplitude and distance.

The evolution of modern sonar can be traced back to World War |l [6], [38]. As
such, acoustic technology has seen substantial advancements, creating a range of
iterations varying in complexity and cost. The simplest form of sonar is an active

single-beam echosounder [17] that is still commonly used to measure range and
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depth. Dual-beam sonars were introduced in the 1970s, adding a second
dimension to measurements. The 1980s brought split-beam sonars, which added
a third dimension to the data acquired. Multibeam echosounders (MBES) were
introduced to provide precise, higher-resolution data, allowing the spatiotemporal
attributes of the scanned area to be captured. The recent advancements in
acoustic technology mean the technique rivals other methods that are notable for
their precision and data quality. The production of refined video-like sonar images
allows for the deployment of supervised machine learning-based classifiers that
can be successfully trained and deployed for object detection, species
identification, biomass estimation, automatic counting, and length measurements
[15]. ML classifiers can use protocols similarly applied to regular optical images
and videos. Unlike most technological advancements that render predecessors
obsolete, sonar development has created a spectrum of configurations to explore,

finding an ideal set that balances cost and capability.

2.2.3. Acoustic Waves and Target Strength

Acoustic waves are mechanical oscillations. When a wave passes through a
substance, it experiences local changes in density and mass displacement. This
results in a counteractive force induced by the medium to bring the density back to
equilibrium [39]. The phenomenon complies with Newton’s second law, the
conservation of mass, and the relationship between pressure and volume. Thus, it

can be expressed as the linear acoustic wave equation (1):

1 62
VP =Gw (1)

Where V2 is the Laplace operator, p is the pressure over t, time. c is the speed of

sound in ambient conditions.

The acoustic wave equation explains a wave’s interaction with varying objects,
whose principal properties are volume stiffness, K, and density, p, with the

properties impacting sound speed as (2):
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c= |- (2)

The intensity of an acoustic wave is the critical feature that a wave carries when it
backscatters as an echo. Backscatter occurs whenever there is a spatial change

[18] in the acoustic impedance, Z (3):
Z = pc (3)

The greater the change in Z across a boundary (i.e. between the water and a target),
the stronger the backscattered wave. This is a result of a greater proportion of the
entire transmitted wave being reflected, with the remainder continuing as
transmitted, often referred to as forward scatter. The intensity, /, describes the
product of a wave’s instantaneous pressure and particle velocity. This can convey
information about a target’s density and volume stiffness from a wave reflected

from it.

== (4)

The pressure intensity of acoustic waves can convey a plethora of information and
forms the basis of unit measurements expressing the objects interacting with the
sonar. The extent to which an echo sighal resembles the intensity of the whole
signal depends on how reflective the ensonified target is. This acoustic property of
an object is referred to as the backscattering cross-section (5) and can be
quantified by calculating the ratio of intensities between the incident and reflected

signal [38], [18].

I
O-bS:f (5)
Ulr=1

ObsiS the backscattering cross-section
I, is the intensity of the reflected intensity, T meter from the object
liis the incident intensity

The measurement can then be expressed in decibels, allowing for a larger

logarithmic scale. This enables slight differences in ratio to be displayed clearly,
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emphasising the effect of the changing energy reflected for different objects. As a
result, the logarithmic parameter is more commonly used in hydroacoustic

applications and is known as the Target Strength (TS) (6).

T5=1010g(%) (6)

r=1

Object reflectivity is influenced by factors such as signal characteristics, the
propagation medium, and the object itself. Despite the complexities, the target
strength offers valuable insights, helping acousticians identify specific targets or
classify unknown ones. [40]. The valuable insight offered by the simple ratio makes
target strength a popular focal point for research in the field, as scholars develop
techniques and propose models that can provide a deeper understanding of target
strength values. Target strength is widely considered to be a practical
measurement [18] — a value derived through conducting physical measurements
and empirical data. The values of target strength measured are commonly
evaluated against reference sheets. Users can reliably identify the target reflected
by contextual information, such as what is expected within the scanned volume.
However, it is commonly accepted within research that target strength is a
transient measurement sensitive to the context and environment upon which itis
gathered. The frequency must be carefully considered to prevent resonance from
occurring at any stage due to small changes in signal exhibiting disproportionately
large changes in target strength [38]. In addition, changes in tilt angle for large
objects or the orientation for small objects can also result in changes in target
strength, which can be challenging to manage when scanning a dynamic
environment filled with live specimens [41]. The various influences on target
strength make it a problematic measurement to base precise findings on outside

laboratory conditions.

2.2.4. Beamforming and Horizontal Propagation

The response of a transducer is designed to be directional, having directional
sensitivity that can be expressed with a beam pattern, as shown in Figure 3 [42].
The phase differences between parts of the transducer along its dimensions result

in lobes, where source points are in phase and output is maximal [18]. Alternate
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null patterns are also created between the lobes as source points become out of
phase, causing signals to cancel each other out. The main lobe refers to the
maximum output occurring at the acoustic axis, which is located at the centre of
the transducer along the axis of propagation. Experimental results [43], [44]
suggest the main lobe is estimated to carry 99% of the transmitted acoustic energy
of the beam. Thus, the single beam produced can be simplified as a conical beam,
similar to a searchlight. The spread of the main lobe can be expressed in terms of
the beam width. This refers to the distance between the two opposing sides of the
main lobe at the range where it reaches its apex, and is where a 3 decibel (dB)
decline in intensity is observed. The beam width describes the angular resolution
of a sonar system since two targets cannot be resolved if they are closer together
than the beam width. The angular resolution of a rectangular transducer with face
dimensions Ly, L,, and operating wavelength A, can be expressed as:

93Db=125.3><;—x,125.3><% (7)

Side lobes -3 dB 0dB

Transducer

Figure 3 - Single beam transducer directional sensitivity beam pattern [42]

Horizontal acoustic propagation can be applied to shallow water, such as shrimp
ponds, where areas near the surface and bottom are significant regions of interest.
Horizontal beaming allows sonars to cover vast ground in a limited-depth region,
with these types of surveys established in literature [45],[46], [47]. Despite this,
several practical problems are experienced that are not encountered with vertical

beaming. The most significant concern in this application is the boundary echoes
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caused by the direct reverberation from the bottom and surface. As the beam
spreads to reach these interfaces, reflections occur due to the stark acoustic
impedance differential between water and air/hard floors. The reverberations from
these reflections can cause noisy backgrounds, which can obscure weaker target
signals more than stronger ones, resulting in data bias [18]. Furthermore, the
frequent interaction of the beam with boundaries can create complex propagation
paths, which can impact the pathways taken by echoes from targets. Whilst
portions of echoes may take direct paths to the receiver, others from the same
target may take longer reflection paths, resulting in a time delay and skewed data
results. The extent to which these issues impact horizontally propagating sonars is
still debated. Hence, research is needed to determine if data quality from this

technique is satisfactory beyond these issues.

2.2.5. Echo Counting and Integration

Itis possible to detect the echoes of individual targets when reflective targets are
well separated from each other. This can be seen as a viable approach for low-
density fish farming, where individual signals can be evaluated to collect data on
individual fish. This technique is referred to as echo-counting. Signal properties
can be closely analysed to develop key insights into fish morphology. Size and
length measurements are valuable data estimated from a received signal in
research using statistical models for target length [11],[48]. However, the
environment in shrimp ponds exhibits contrasting conditions, with weakly
reflecting targets at high densities, rendering echo-counting an unreliable
approach. To solve this, an alternate method known as echo-integration has been
proposed [49]. The technique is used to estimate abundance despite overlapping
echoes. This is achieved by creating a proportionality model that relates the
average integrated intensity of received signals in a defined volume to the number
of targets ensonified [19]. The accumulation of echo energy can be achieved by
connecting a sonar to a traditional echo-integrator unit, which sums the squares of
signals and can be converted to an abundance using a scale factor and adjusting
the device’s Time-Varied Gain (TVG) [18]. The typical TVG of 40 log Ris used to

compensate for transmission losses a sighal experiences with range, R. It is
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changed to 20 log R to compensate for a sampling volume instead. Whilst these
physical adjustments to the sonar can effectively implement the theory of echo-
integration [50], it may also be possible to use ML techniques to achieve the same
outcome. By creating databases consisting of various density distributions, the
scattering field effects of multiple targets may be modelled using aggregated
digital signal data. Investigations are needed to test this methodology, as
successful implementation may lead to computationally efficient modelling for

valuable abundance data.

2.3. Evaluating Sonar Systems and Machine Learning
Techniques

Although the models trained and tested on high-resolution images have shown
high accuracy [51], the devices used are expensive. Farmers find any cost-benefit
nullified when assessing the capital required against the potential savings from
efficiency created. This presents the opportunity to achieve a similar outcome to
previous studies using simpler sonar systems. The literature shows promising
results for utilising simpler forms of acoustic technology to achieve effective target
detection and biomass estimation. Kim et al. [52] successfully obtained TS
information of redlip mullet fish by scanning 16 live fish with a split-beam
echosounder. They measured their weight and lengths, thus providing them with
the statistical relationships between the three values and producing equations to
help estimate biomass. The study underlined the significance of obtaining TS
parameters to obtain insights into the scanned environment and how numerical
values of target strength and volume backscattering through echo-integration can
provide the end user with a quantitative analysis of the observed species.
Approaches like this can ultimately pave the way for cost-effective solutions for
farmers to incorporate sustainable practices through intelligence-based systems

[53], providing needed reliable data.

2.3.1. Comparing Acoustic Systems

Deploying simple active acoustics, whether single, dual, or split beam, presents
challenges due to the necessity of steering the acoustic beam to cover a sample

volume. In contrast, multibeam echo sounders capture coverage in one swath
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using multiple beams, assessing different water columns at various angles [54]. To
address this limitation, designers like OTAQ incorporate a stepper motor to sweep
a defined area mechanically. While this method mimics an MBES operation, it
necessitates a set interval to complete a full scan. Slow scanning speeds can be
exposed in dynamic environments, where fast-moving targets may not be scanned
adequately or at all, leading to reliability issues. The costs of mechanical
elements, such as stepper motors, are comparable to those of additional
electronics required for a phased array, which allows for electronic rotation [55].
Although a phased array system is more complex to design, its scanning speed is
superior and less vulnerable to damage, resulting in lower maintenance needs.
Passive acoustic systems [31], [56], [57] have also shown high promise in their
implementation as part of automatic intelligent feeders for shrimp. The analysis of
sound emitted by shrimp mandibles during feeding may offer a more reliable

avenue of research if the pursuit of active acoustic solutions proves unsuccessful.

2.3.2. Machine Learning Techniques

Machine learning is the process through which machines are programmed to learn
from past data to find patterns, insights and mathematical expressions to make
judgements about future data [58]. Proposed methods generally follow the basic
procedural framework as shown in Figure 4. Supervised ML methods can be
tedious and time-consuming, particularly during the data acquisition and
preparation stages, where data requires manual capture and labelling. Despite
this, ML techniques are simple to implement in almost any application with any

data format, making it an ideal basis for modelling low-resolution acoustic data.

Data Acquisition

» Dataset Construction

» Environment Control

Data Preparation

> Preprocessing
» Bounding Box
> Feature Extraction

v

Model Training

» Object Detection
» Classification
> Regression

Model Evaluation

5| > Accuracy

> Data Fit

Figure 4 - General process flow for ML-based approaches
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ML-based approaches have been broadly used in fishery acoustics in recent years,
with ANNs, KNNs and RF algorithms finding success in their respective
applications, summarised in Table 1 [59]. Another popular ML technique for
interpreting echograms is the YOLO network. It is a convolutional neural network
variation that can predict bounding boxes and classify targets at once. Lin et al.
[21] successfully developed a YOLOv4 network that identified the number of white
shrimps with 97.3% accuracy when varying the number of shrimps from 1 to 4 and

their orientations.

Paper Target Acoustic System ML Models Accuracy
Minelliet Fish School MBES KNN and 98%
al. [23] and gas boosting
seeps ensemble
Proud et Rastrineobola Multifrequency (70 Random forest 85.40%
al. [24] Argentea and 120 kHz) EK60
(dagaa) Echosounder
Villar et Argentine SIMRAD EK500 ANN models: MLP:
al. [60] anchovy, echosounder Multi-layer 97.99%
Longtail hoki, Perceptron SOM:
Blue whiting (MLP), Self- 96.63%
organising
Mapping
(SOM)
Aronica Anchovy, Multifrequency (38 ANN models: Multibinary:
etal.[61] Sardine and and 120 kHz) EK60 multibinary 88.20%
Horse and Probe and multiclass Multiclass:
mackrel neural 90.56%
networks

Table 1 - Key research using ML for fishery applications since 2018 [59]

These investigations confirm that ML is a viable approach for analysing marine
species using sonar technology. Studies can build upon these works to propose
additional methods that streamline data acquisition and processing times using

commercially applicable DAQ systems.
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2.3.3. Acoustic Data Acquisition

The consensus of scholars reviewing the development of ML techniques for
biomass estimation is that the research is generally very limited [6], [16]. The lack
of full-scale studies has resulted in a lack of analysis on proposed methods, with
no single method being widely accepted and supported by sufficient testing. The
stagnation in research progress is probably due to the challenges of conducting
robust experiments, especially when machine learning techniques are involved.
Chai et al. highlight the significant challenges in acquiring adequate sonar data
and the lack of publicly available datasets as primary obstacles. The nature of
constructing and labelling echogram datasets is time-consuming when
considering the breadth and variety of data needed to train an effective classifier
[16]. The paper reviews the DL in aquaculture, recommending a focus on building
publicly available datasets to reduce data acquisition times. This would leave
more time for data processing and developing digital solutions. Several studies
have converged on the same area of exploration: the positive demonstration of
applying DL classifiers to sonar data. However, investigations have lacked the
scale to analyse the true benefits of these applications in aquaculture farms and
how they compare to traditional manual methods. Itis clear that the full potential
of ML methods for precision aquaculture will not be realised until effective data

collection methods have been thoroughly explored.

In recent years, several innovative solutions have been proposed to address data
scarcity and slow acquisition rates. These have primarily originated from entirely
different acquisition processes, such as using advanced simulation techniques
with 3D models to rapidly generate synthetic data that mimics real sonarimages.
Sung et al. [62] developed a method that employs a Generative Adversarial
Network (GAN) for scanning sonars, generating simulated data and comparing its
realism to actual images. The team utilised ray tracing to emulate sonar imaging,
modelling nonlinear phenomena by training a GAN with real sonar images. This
approach captured features through a 15-layer U-Net, inducing realistic noise and

degradation effects. The study demonstrates that techniques can rapidly generate
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large synthetic image datasets, underscoring the potential to overcome

environmental limitations in data processing tools.

2.3.4. Analysing Acoustic Shrimp Data

The procedure for processing hydroacoustic aquaculture data is generally
consistent across marine species, but gathering the biological context for those
being studied is crucial for fine-tuning solutions. Understanding shrimp’s
physiological, environmental, and behavioural patterns in production ponds
enhances data quality extraction [57]. One of the biggest challenges in scanning
decapods like shrimp, crabs, or crayfish is the lack of an air-filled cavity in their
anatomy, unlike most fish. According to Foote [63], a swim bladder can dictate
90% of the backscattered signal, with the rest of the physiology of the fish
seemingly invariant to any significant deviations to the energy reflected. But as
Nakken et al., Elliot, and Kim point out, key fish characteristics, such as its size
[64], length [52] and tilt [65], influence the shape of this swim bladder. TS is,
therefore, used as a function to estimate fish biology, with its application yielding
successful results. The swim bladder significantly influences fish acoustics due to
its effectiveness as an acoustic reflector, with gas-filled cavities showing a notable
impedance difference in the water medium. This results in characteristically high
TS readings amongst the noise mask, making fish easily identifiable. Clear and
prominent readings subsequently enable deep learning tools to extract features

from the data better, simplifying ML tasks.

By contrast, the absence of a gas cavity means that decapods and shrimp are
classed as weak scatterers [18], reflecting a weak signal that is often diffused in
nature. The complexity in categorising swim-bladderless species of marine life has
resulted in research aimed at accurately differentiating between various classes of
zooplankton. The most important work in this area has arguably been done by
Stanton, producing several papers classifying zooplankton into three anatomical

categories [66]:

1. Fluid-like (copepods, shrimp-like or salps)
2. Elastic-shelled (gastropods)

3. Gas-bearing (siphonophores)
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By ensonifying animals with a broad frequency spectrum, Stanton produced TS-
frequency plots that are typically used for target identification [67]. Through a
series of live and laboratory-controlled experiments, it was discovered that three
distinct acoustic signatures could be observed and modelled for the three
anatomical types of animals. This indicated that shrimp morphology produces a
distinct and recognisable TS. Analysing the time differences of signal arrivals
suggested that the acoustic pulses penetrate the body before echoing, indicating
that the tissue of the shrimp contributes to the acoustic reading. This information
provided the basis for the progression of more accurate scattering models.
Research on shrimp scattering models surged after Stanton’s work, focusing on
accurately capturing sound scattering. Initially, sphere models represented shrimp
volume, emphasising material but neglecting length and orientation. This gap led
to cylindrical models better capturing the shrimp’s shape. Subsequently, higher
resolution models emerged, notably the Distorted Wave Born Approximation
(DWBA) from Lavery et al. [68]. While these high-resolution models effectively
predict individual shrimp backscatter, they are impractical for low-resolution
imaging. For shrimp abundance using echo-averaging, simpler cylindrical models

will likely suffice.

Itis difficult to demonstrate the degree to which biological factors influence target
strength when present simultaneously, as each factor cannot be easily examined
in isolation. By evaluating the biological factors of 25 adult walleye pollock, Elliot
et al. [63] found that tilt demonstrated a greater acoustic influence compared to
length and depth, corroborating Foote’s research that any target strength
regression must account for tilt. Orientation may introduce unwanted transience in
data, potentially leading to misleading conclusions, even for the most robust ML
models. This makes the concept of producing definitive hydroacoustic insights into
weaker signal targets appear impossible to achieve as a solitary observation tool.
The subtext underlying the conclusions of these publications suggests that
supplementary techniques relied upon by farmers, such as trawl sampling, must
still be incorporated into any data modelling to validate the insights derived from

the data. Ultimately, it signifies that hydroacoustic techniques, in their current
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technological state, cannot yet be relied upon as automated solutions to replace
existing methods of stock estimation, as even premium scientific equipment fails

to provide definitive insights.

2.3.5. Financial Viability of Sonar Systems

To gauge the applicability of the proposed techniques, understanding the hardware
used in this research direction is crucial. Studies primarily employ modern
scientific MBES and imaging sonars for DL in aquaculture over basic single-beam
systems. Devices of this specification produce echograms of high enough quality
to easily apply DL techniques commonly associated with machine vision and
optical images [54]. Scientific sonars significantly surpass uncalibrated devices in
compatibility with hydroacoustic data processing programs. Software like
Echoview derives measurements such as TS, enabling researchers to create
statistical models alongside image classifiers to enhance accuracy. Whilst all
these advantages point to the progression of research alongside scientific sonars,
the field has so far failed to consider the financial feasibility of deploying these

solutions in real-world applications for aquacultural farmers.

Scientific sonars are expensive. Multibeam sonars can cost over £2,000 [69], [70],
with prices increasing significantly for advanced features and software. The
current market prices out most farmers interested in incorporating new
technologies into their current behaviour monitoring, feeding, sampling and
harvesting operations. This is further exacerbated when considering the reduced
profitability of farming small marine life, such as shrimp, compared to more
valuable livestock, like salmon [25]. Working within a low-profit margin, local
shrimp farmers, in particular, require a technical solution with a low capital cost
and a potentially minimal subscription cost model to retain the technical support
and services of a company such as OTAQ. The financial discourse surrounding the
implementation of a solution for shrimp farmers suggests that research should
prioritise the cheapest viable solution that maintains the ability to extract key data
insights. The significant budget reduction must still provide a utility that
comfortably offsets the expenditure required, whilst acknowledging that the

hardware limitations will directly inhibit the performance of a potential solution.
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Creating the most economical solution will lay a foundation that can be referenced
to explore how incrementally improving the system’s components by investing
more capital can enhance data insights. Ultimately, the most optimal cost-to-

performance ratio can then be pinpointed for deployment.
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3. Methods and Materials

3.1. Operating Principles of the BRS-1

The sonar used in this study is the BRS-1 developed by OTAQ. The device is a
horizontal single-beam scanning sonar that is mechanically driven. It consists of a
50 x 5mm rectangular transducer steered using a stepper motor with 400 steps.
This allows the transducer to undertake 400 transmission-reception cycles at
equal angular intervals across a 180-degree sweep. The transducer has an
operating frequency of 640kHz, and a pulse is desighed to propagate 5 metres. For
every pulse-echo cycle, the received signalis filtered, amplified, and digitally
converted into arbitrary intensity values scaling 0-4095. Range data bins are
recorded 257 times, equidistant across the 5-metre range received. Further details
of the sonar’s hardware are found in Appendix 1. Once data is collected from one
sweep, the string of intensity values is stored in a CSV log file and uploaded onto a

Raspberry Pi network and cloud storage using an AWS S3 bucket.

3.2. Visualising Acoustic Data

Figure 5 depicts an echogram of the experimental setup, developed from the
acoustic data of one sweep. The CSV format lets each intensity value be arranged
in a grid describing its spatial information expressed in angle and range. Polar
equations can be set up and converted into Cartesian form. Meshgrids add a
dimension to the millimetre-scale spatial data, allowing 2 additional grids to be
formed, aligning each data bin to its x and y coordinates. A contour plot expresses
all the data, representing each bin as a pixel and using colour scaling to convey the

intensity.
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Figure 5 - Echogram of the tank used in the study created using data

visualisation code

3.3. Method Process Flow

Experiments are carried outin a 2 x 5-metre water tank, filled to a depth of 1.5

metres with chlorinated water, as shown in Figure 6. The sonar was centred ahead

of the rear tank wall and positioned at half the water depth. To investigate whether

machine learning models can perform accurately using the BRS-1, this study

follows similar procedures outlined by Kristmundsson [54], Zhang [71] and Pargi

[22], involving data collection, data processing and modelling for analysis.
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Figure 6 - Schematic of experiment design
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3.4. Estimating School Density
3.4.1. Study Design

Dense schools can generally be received as singular echo traces by sonars [18].
Therefore, to model this, monofilament netting keeps targets together in a defined
volume. School densities are formed by varying the number of targets in a
monofilament wire net tethered to a sunk flat weight using a monofilament line to
minimise reverberation [72]. A baseline for proving the concept with this device
must be established. Hence, air-filled PVC spheres 55mm in diameter are used as
targets to produce the most pronounced signal, shown in Figure 7. Spheres are
isotropic reflectors [38], negating variables such as orientation. In practice,
models true to field applications would need to be able to classify traces of
schools in different positions and arrangements. For each quantity, the netis
placed in different states such as its positions across the tank, at various depths,
orientations and arrangements. For each state change, a scanis run, typically for 3
minutes, during which multiple sweeps of acoustic data are collected. In an initial
run, 988 echograms are acquired, with at least 50 situations collected for each

category.

(i) (ii)

Figure 7 - (i) Experiment setup; (ii) Flat weight tethered to monofilament

sphere bag
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To increase the number of scans recorded, the sonar firmware is modified to
reduce the size of sweeps collected at the acquisition stage using angle and range
gating. By isolating the angular range to the 84 beams covering the effective area
within the tank, which excludes wall echoes, 7.5 times as many sweeps are
collected for any given time interval. This provides the opportunity to re-run the
experiment with additional data to compare model performance between the two

iterations.

3.4.2. Dataset Construction and Pre-Processing

In field environments, the features of a school trace should inform the user of the
biomass contained within it, requiring data to correspond to a useful value.
Labelling datasets with the desired information facilitates the categorisation of
traces and the generation of useful model output. Hence, the data here is
manually labelled after the number of spheres in the net, and we train classifiers to
differentiate between the varying contents. A code is developed to search within
the tank region for the echo trace within the scan. The detection function finds the
echo trace and crops the sweep to isolate the region of interest from the
background. Observational inspection discovers that a 21 x 31-pixel bounding box
captures all the features of every trace acquired when centred around the highest-
intensity pixel, demonstrated in Figure 8. Echograms are pre-processed using
manual inspection to clean the dataset. The dataset is doubled through data

augmentation by horizontally flipping the scans.
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Figure 8 - Bounding boxes of variable-density echo signals used for model

training

3.4.3. Data Analysis

Sufficient data is collected to analyse data using a 90/10 train-test split, where the
21 x 31 bounding boxes are input into models. Data is split randomly without
predetermined segregation to ensure partitions are created without bias. Multiple
classification models, including ANNs, RF algorithms, and support vector
machines, are trained and tested in parallel to compare performance. Since
bounding boxes contain pixels devoid of echo data, Principal Component Analysis
(PCA) is employed to reduce feature selection, with a 90% preset used to explain
data variance. Each model is optimised using Bayesian algorithms, where
hyperparameters are systematically improved to minimise prediction error. The

error is evaluated using 5-fold cross-validation to ensure models are generalised.
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3.5. Estimating Abundance
3.5.1. Study Design

An artificial target is developed to investigate if low-cost sonar can produce
interpretable data when scanning complex shapes, as would be the case in
farming applications. The target approximating a shrimp is created by modelling its
key features. Hydrogels are hydrophilic polymers used within the biomedical field
to model the mechanics of soft tissues such as muscle and cartilage [73], [74].
This is applied to estimate shrimp’s predominant soft tissue features using a
bundled line of 3 hydrogel spheres, presented in Figure 9. This means that to
create 80 targets, 240 spheres are submerged in water for 36 hours, growing from
5mm to around 30mm in diameter. They are wrapped in cellophane to allow
bundling, where the excess wrapping is fed through a 10-millimetre hex nut before
the whole target is coated in resin. This component represents the hard-shelled
carapace. Shrimp are benthic feeders [21], [57] . Hence, the additional weight of a
nutis incorporated into the model to allow targets to move with less restriction and

stay biased to the bottom of the tank.

o
00000000000

Figure 9 - Artificial target shrimp tethered to a wooden peg

Since flat weights would introduce a similar cumulative reverb signal, we did not
see the incorporation of weight directly into the model as a significant issue.

Nevertheless, Figure 10 presents the findings for the 15 largest intensities in the
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tank when scanning the acoustic model, a nut on its own, and when the tank is
empty to quantify the hex nut’s impact on the model. It is shown that the hex nut
exhibits a very similar reading to the empty tank. In contrast, the target
demonstrates an observable impact, indicating that signals received from the

model shrimp are predominantly generated by the resin and gel features.

«10% 15 Largest Acoustic Backscatter Intensities of Different Targets for Abundance Experiment
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Figure 10 — Backscatter comparison of a hex nut and the final target

First, 80 targets are attached to clothes pegs with monofilament lines. Figure 11
shows a 3 x 2-metre pond-covering net placed over the back half of the tank.
Targets are suspended in the water by clipping the peg to the net through the mesh.
Once a target is added to the tank, an angle and range-gated scan is run for 24
seconds, where 4-5 complete sweeps are collected. The state of the environment
can be altered by manipulating the net plane. Tent pegs holding the net are
reconfigured by stretching, slackening or repositioning the net to simulate the
collective and controlled movement of the targets in all axes of freedom. Roughly
10 states are scanned for each target quantity. Stock can take up random spatial
distributions and orientations. Hence, training data is varied using net movement
to capture this and ensure models do not overfit. By suspending 80 targets within
the 3 x 2-metre range, intensive stocking densities of shrimp are simulated, whilst

smaller ranges represent intermittent and low cultures.
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Figure 11 - Net overlay suspending artificial targets using wooden pegs and

monofilament wire

3.5.2. Dataset Construction

The range and angle gating developed during the previous experiment means the
scan covers 84 angles and 161 range bins to acquire tank readings. The
dimensions of the data are reduced by summing the total intensity along each
beam position, resulting in 84 features. Evaluating every pixel in a sweep can be
computationally expensive and be a source of data overload [34]. Hence,
employing echo-integration techniques like this simplifies the data, makes it easy
to process, and prevents the need for additional equipment. Analysing large
sections of sweep data can be challenging due to the high noise levels
experienced in readings. Thus, denoising techniques are needed to clean the data.
To increase the signal-to-noise ratio of each scan, all the available sweeps of the
same state are averaged [18] to smooth out readings and reduce random noise
whilst maintaining actual target signals. A code is built to extract the data from
each scan folder and automatically provide label data based on the folder

information.
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3.5.3. Data Analysis

Due to this application’s large number of discrete classes, a regression learning
approach is opted for over classification. It is hypothesised that target number and
summed intensity will be highly correlated, making regression learning models
appropriate. In real-world shrimp farms, shrimp are farmed in ponds and can be
stocked at different densities depending on the farming philosophy. While
extensive cultures stock shrimp at approximately 1-10 shrimp/mz, intensive
cultures can stock shrimp at 25-30 shrimp/m?[9]. Thus, decision trees, random
forest algorithms, neural networks, support vector machines and Gaussian
Process Regression (GPR) models are trained with datasets of varying sizes and
abundance ranges and compared to determine the ideal densities at which
machine learning models perform. Evaluating ranges also investigates how
overlapping echoes degrade data quality and hinder model performance. Bayesian
optimisation algorithms are again used to fine-tune hyperparameters over 30

iterations to minimise the validation error of the 5-fold cross-validation.
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4. Results

4.1. Estimating School Density

4.1.1. Evaluating Classifier Performance

Model performance is evaluated using performance metrics, including prediction
accuracy, precision, recall, and F1-score, expressed as percentages, where a
higher percentage indicates better performance. Since models undergo
supervised training, accuracy is simply the percentage of correct positive and
negative predictions from the total instances evaluated. Accuracy can be broken
down further into precision and recall. Precision measures the correctness of
positive predictions from the total positively predicted. Alternately, recall
measures the proportion of true positives correctly classified as positive
predictions. The F1-score measures the mean between the precision and recall
[75]. Metrics are calculated using weighted macro averaging based on the number
of instances in which each true class appears. This enables the evaluation of

overall model performance while accounting for dataset imbalances.

Table 2 presents the performance found in unseen test data. It is observed that the
best-performing model for this application is an optimised random forest
algorithm that sampled 2 features using 481 trees with a maximum of 738 splits in
a tree. Using 988 echograms from full sweeps resulted in an overall accuracy of
87.95%. The confusion matrix of the model shown in Figure 12 presents the
distributions of predictions. A perfect model would demonstrate 100% true
positives distributed along the leading diagonal of the chart. Deviations from the
diagonal are represented as false negatives, which indicate misclassification. The
matrix indicates that the overall accuracy is heavily biased towards the accuracy of
detecting an empty scan, at 97.5%. The True Positive Rates (TPR) are inferior to the
False Negative Rate (FNR) in classes 2 and 3, indicating that models were weak at
distinguishing traces containing 2 or 3 spheres. The predictions made for 3-sphere
echo traces being distributed comparably across all 4 target-present categories,

which a low F1-score captures. Since 651 features are evaluated in each sweep, a
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lack of data possibly hinders model performance. Without optimisation, data

acquisition speeds are likely a limiting factor in obtaining the required data.

Model Accuracy Precision Recall F1
(%) (%) (%) (%)
Random Forest Algorithm 87.95 70.06 69.54 69.80
Single-Layer Neural Network 84.83 61.09 61.94 61.51
Single Tree 82.93 57.92 56.85 57.38
Support Vector Machine 84.72 60.99 61.42 61.20

Table 2 - Accuracies of models predicting sphere number
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Figure 12 - Confusion matrix with true positive and false negative rates of the

first iteration

4.1.2. Evaluating Performance using Data from Optimised Sonar

Using updated firmware, 2336 sweeps are collected, doubled through
augmentation, and added to the existing dataset. For comparison, the
performance of this iteration is evaluated in the same way as the previous

experiment. Table 3 shows the performance improvement.
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Model Accuracy Precision Recall F1

(%) (%) (%) (%)
Random Forest Algorithm 89.92 79.02 79.98 79.50
Single-Layer Neural Network 90.78 80.35 80.57 80.46
Single Tree 83.24 64.16 64.81 64.48
Support Vector Machine 89.32 77.52 77.71 77.61

Table 3 - Improved accuracies of models with additional data

Table 3 shows that the best-performing model was achieved using a Single-Layer
Neural Network and a 90% PCA, with model accuracy improving to 90.78%. The
network is optimised to have a 289-layer size with a Tanh activation function. The
model perfectly predicts the presence and absence of targets in the tank,
indicating that the model is well-suited for detection applications. Figure 13
indicates that significant improvements are seen across the leading diagonalin all
classes, critically in classifying 2 and 3-sphere traces, which is reflected in the
significant improvements in precision and recall. The TPR in each class is above
70% in every category. This suggests that increasing the dataset’s size by an order
of magnitude has provided the context to differentiate between echo traces more
confidently. The error distribution generally stays between 1 class difference on
either side, with errors beyond that accounting for a maximum FNR of 10% in each

class.
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Optimised Single-Layer Neural Network Confusion Matrix After Collecting 5660 Data Sweeps
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Figure 13 - Confusion matrix with true positive and false negative rates of the

second iteration

4.2. Estimating Abundance

Evaluating Regression Model performance involves analysing prediction errors
using the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The
model’s fit to test data is evaluated using the R-Square, where a value closer to 1
expresses a better fit. Table 4 summarises the performance of each trained model
when trained on a complete dataset, predicting abundance from a target sample
range of 80. Neural networks and GPR models are well-suited to this application,
with GPR models demonstrating the best performance. Using a 90/10 train-test
split, the model fits the data strongly. The R-squared value of the GPR model
conveys its ability to explain around 98% of the variance in the test data. This is
further depicted with test predictions being correctly predicted to an average error
of 2.42 of the targets, around 3% of the sample range. Although the results reflect a
controlled lab setting with static targets, anything short of a steep decline in
performance from this baseline caused by noisy environments can still be viewed

as a satisfactorily functioning model.
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Model MAE RMSE R-Squared

Random Forest Algorithm 4.23 5.76 0.937
Gaussian Process 2.42 3.24 0.980
K-Nearest Neighbour 4.86 7.29 0.900
Single Tree 4.48 6.94 0.908
Support Vector Machine 4.97 6.90 0.91

Three-Layer Neural Network 2.91 3.97 0.970

Table 4 - Performance metrics of abundance estimation models when trained

on a full 80-target dataset

Model performance is further compared at different abundance ranges, as
summarised in Table 5. The results validate the GPR’s suitability for this
application; itis the best-performing model in all but one size range. After
increasing sample size testing by 10 targets at a time, it is clear that regression
models predict abundance best when the maximum number of targets is 50 within

the 4 m?sample area, equating to a 12.5 target/m?density.

Abundance Best Performing Model MAE Maximum Residual R-
Sample as a Percentage of Squared
Range Abundance Range
0-40 Gaussian Process 1.33 14.15 % 0.979
0-45 Gaussian Process 1.62 12.6 % 0.979
0-50 Gaussian Process 1.36 6.8 % 0.989
0-55 Gaussian Process 1.58 8.8 % 0.985
0-60 Gaussian Process 1.90 10.3% 0.982
0-70 Random Forest Algorithm 2.33 11.1% 0.978
0-80 Gaussian Process 2.42 12.5% 0.980

Table 5 - Performance metrics of the best models created when training and

testing on different abundance sample sizes

Further sample sizes are tested at more precise intervals around 50 to observe
potentially more optimal ranges; however, the additional data confirms that range
50 has the lowest error. The data also aligns with the strongly correlated pattern in
model performance with range. At conservative ranges, models seem to observe

competitive absolute errors. However, the models are normalised for better
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comparison by finding the percentage error of the biggest residuals for each
model. As a result, these low-range models are found to predict relatively high
error values, which is reflected in their inferior ability to explain variance,
expressed by a lower R-squared value. This is likely due to the smaller dataset size
resulting from limiting the abundance sample. It may be found that if models were
trained on equal-size datasets, conservative-range models would match, if not
outperform, the best model with the added context. In contrast, models operating
with higher abundances increase in error with abundance after the optimal range.
This aligns with expectations due to the deteriorating effect of increased stock
density on a signal passing through it [54]. Increasing the density reduces the
differences in the total acoustic energy received between 2 consecutive target
quantities. This makes prediction variance challenging to explain for data that is
progressively similar. Figure 14 displays the distribution of residuals for the GPR
trained on an abundance range of 50. Residuals show no sign of correlation,
indicating well-balanced and robust performance when predicting scans of

unseen states.

Residuals Plot of Test Predictions using an Optimised Gaussian Process Regression Model with Abundance Range 0-5C
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Figure 14 - Residual plot when tested on a 50-target density
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5. Discussion

Our results demonstrate the success of machine learning in interpreting and
explaining low-resolution 2D acoustic data for abundance estimation. Using a
variation of echo-integration, we show that regression models can fit to scan data
with an R-squared of 0.989 even when data dimensions are reduced, exploiting a
computationally efficient data processing method and achieving predictions
accurate within an error of 1.5 targets. A technique has effectively detected
objects and automatically processed them into the appropriate structure for
analysis. ML classifiers can categorise echo traces into density information to an
accuracy of 90.78%, establishing a baseline of feasibility for classification

applications.

Modelling density using a net full of hollow uniform spheres introduces the
concept to sonar and ML methods at a rudimentary level. Using simple targets
here creates a simplified and idealised representation of school densities. As
such, results reveal the potential limitations for commercial implementation. Air-
filled spheres backscatter noticeable acoustic energy due to the high acoustic
impedance differential between air and water. This makes signal changes more
pronounced, creating differences in data that are seemingly easier to classify for
ML models. With this context, an F1-score of 80.46% suggests the sonar is not
currently suited to reliably classify densities of more complex and weak
backscattering shrimp targets in this manner. This can be explained through
severaltechnical aspects: (i) Low resolution, particularly in the range where echo
datais resolved at around 20mm, making it possible for crucial echo data to be
skipped over. (ii) The lack of spatial information in the z-plane makes sphere
arrangements challenging to interpret. (iii) Horizontal propagation relies heavily on
reflection angles to carry echo data [47]. The transducer size can be deemed
suboptimal for this application, with a narrower beam reducing the number of
reflections, which is likely to yield more precise data. (iv) High noise introduced
predominantly by signal processing and electroacoustic circuitry. This creates
speckle noise [16] amplified with the range due to the time-varied gain ampilifier,

degrading data quality even in laboratory conditions. Although these hardware
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limitations render the sonar incapable of serving as a scientific measuring tool, the
device is found to be coherent enough to have its data interpreted using ML
techniques. However, limitations that create such noise and low resolution make
analysing individual echo signals through bounding boxes challenging, simply
because of the lack of information conveyed by the sonar within the regions of
interest. Breaking down compact overlapping echoes within cropped sample areas
to estimate individual school density is therefore a suboptimal application for this

specification of sonar.

In contrast, utilising a larger portion of the sonar's observational capacity for
general abundance estimation shows greater compatible functionality. Regression
models estimating abundance demonstrate a correlation between increasing
sample range and absolute error, maintaining a maximum percentage error of
around 10%. Increasing training data in more diverse positions may enhance
accuracy in explanations of these variances [54]. Whilst a recommended
maximum abundance has been found, sample sizes both greater and smaller can
have data variance explained to a similar standard. Despite this, some limitations
must be considered. For abundance estimation, the data processing method
employs averaging, an effective technique for enhancing the signal-to-noise ratio.
However, this can only be executed reliably in static conditions where targets
remain still during scanning, which is improbable during in situ observations,
where averaging may be misrepresentative [6]. It may be possible to sweep faster
with improved hardware and to take minimal sweeps, achieving the same effect
before major movements occur within a few seconds. While training time and
computational speeds are realised in real-world applications, they are not
considered factors in this study. Nevertheless, the study uses an 8" Gen Core i5
processor, available on easily accessible hardware, to develop each model.
Hardware limitations can become apparent when training GPR models on range-
80 data that is augmented to double in size. The exclusion of the augmentation
step from the experiment still produces satisfactory results, with its inclusion

unlikely to significantly enhance models based on the results.
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Using a basic cost-effective specification, the sonar produces data that can be
used to make population predictions in a sample area. Whilst it is not determined
how closely the artificial targets approximate shrimp, the rough, heterogeneous
nature of the targets means real-world parameters such as orientation, depth and
material can be captured to a reliable degree in a varied dataset to make accurate
predictions. The effect of the abundance range impacting predictions is correctly
observed. Placing a proportion of targets on the tank floor to simulate shrimp
behaviour is data that models can explain to a reasonably good standard. The
targets may better represent alternate stock with greater reflectivity, such as fish
[65], in which case, results can still serve as a helpful reference. To more closely
simulate field conditions, such as using real shrimp, is beyond the scope of this
study, yet from these constraints, creative modelling methods are proposed to

overcome the challenge of sonar data acquisition.

Expanding on artificial target modelling can form the basis of reframing future
studies to overcome the obstacles of on-field data acquisition. The results serve
as a marker of capability for basic specification sonars. Despite their compromise
on hardware components, regression models can interpret the acoustic data of

well-balanced datasets to make accurate predictions.
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6. Conclusion and Recommendations

This project utilises a basic specification scanning sonar to collect training
datasets of two circumstances applicable to a shrimp farming environment.
Developing a visualisation tool helps process data and create further automated
tools for feature engineering tasks. Whilst the sonar is hardware-limited to break
down the details of an echo trace, angle-gating scans offer the data acquisition
speeds needed to produce reasonable classification accuracies. Echo-integration
strategies heavily reduce the features required for prediction and allow regression
models to interpret sweep data effectively, mapping data to an R-squared of 0.989.
Models can predict the population between 0-80 targets to a mean absolute error
of 2.3, indicating a methodology is presented whereby insights can be derived from
basic acoustic data. It also suggests that sonars of this specification can be
incrementally improved upon to be deployed in real shrimp ponds as an affordable

solution.

Itis recommended that artificial target models be refined for shrimp for easy
testing to overcome health and safety regulations in laboratory environments.
Sonar specifications may additionally be improved upon to observe how
improvements in hardware correspond to model performance against cost.
Datasets should be collected in real pond environments to investigate how

environmental factors impact acoustic propagation and data quality.
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Appendices
Appendix 1 - Hardware Features of OTAQ’s BRS-1

The BRS-1 is an acoustic telemetry system designed and manufactured by OTAQ to
function as an active-pulsed sonar designed to detect shrimp within a submerged
body of water. Short for Biomass Reader for Shrimp, the device is integrated into an
Internet of Things (loT) infrastructure, whereby digital data is generated from
electrical signals induced within the receiver electronics. The hardware
components are operated by a Raspberry Pi controller, which sends command
prompts to the device via its network. The generated data is stored in log files. The
raw data can be post-processed into several forms for analysis, with the aim of
creating valuable insights for farmers, such as the behaviour of shrimp or the
biological morphology index of shrimp, including biomass, length, and population

within a sampled area.

The system can be broken down into 3 components, interworking to facilitate a

robust and cost-effective solution:

1. The BRS-1 Hardware: The transducer, stepper motor and associated
circuitry.

2. The Raspberry Pi network and Firmware: Digital signal data generation and
storage.

3. Post-Processing Software: Code to transform data for digitalisation and

machine learning.

The post-processing software is the primary focus of the research project, and the
network features of the system utilise protocols common for loT and cloud storage
solutions. Hence, this appendix will detail the hardware components featured in

the BRS-1.
The BRS-1’s hardware can be segmented into four categories:

e The Central Processing Unit (CPU)
e The stepper motor and drive electronics

e The transducer, connected to the transmitter and receiver electronics
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e Anlnertial Measurement Unit (IMU)

The Main Printed Circuit Board (PCB) facilitates connection points between the
CPU and all other components. Therefore, the device's firmware, which contains
the operational instructions of the default function, is uploaded onto the CPU via a
Power over Ethernet (PoE) cable. The PCB also includes a Serial Wire Debugging
(SWD) port, which allows external devices to communicate with the device and
facilitate debugging. SWDIO (Serial Wire Debugging Input/Output), SWCLK (Serial
Wire Clock), and nRST are pins available within the device to enable the execution
of protocols for handling malfunctioning devices. The CPU consists of two STM32
processors, one of which is dedicated to managing the power supply. A 2980
stepper driver is used to power the stepper motor, relay the sweep instructions,

and evaluate the current step position of the motor.

Using two MOSFET switches, the transmitter produces a square wave signal at the
operating acoustic frequency of the transducer (64 kHz). Capacitors are integrated
into the circuit to smooth the wave's rise and fall times, thereby enhancing
consistency. To handle the high frequencies and the necessary high voltage, the
MOSFET switches are paired with drivers. The primary benefit of using MOSFET
drivers in the sonar system is enabling high switching speeds while minimising
switching losses. These drivers supply the required voltage to surpass the high gate
threshold voltage, enabling the MOSFET to switch on and allowing the higher
source voltage to be delivered to the transducer, as shown in Figure 15. The low
impedance of the driver Integrated Circuit (IC) ensures that the gate capacitors are
charged more quickly with the correct voltage and discharged faster through a
lower resistance pathway provided by the driver, resulting in faster switching. This
also helps protect the MOSFET from overheating and high-voltage damage by
reducing the effects of the gate capacitance and inductance. The microcontroller,
which provides the low-voltage square wave, is protected from potential back
current due to the driver’s resilience to negative transients travelling from the
transducer through to the drain. When the transmitted square wave signal

matches the natural frequency of the transducer, resonance is achieved, resulting
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in increased stresses and strains within the piezoelectric material, which induces

amplified vibrational amplitudes at the same frequency [37].
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Figure 15 - Schematic of MOSFET and driver circuit [76]

Comparatively, the receiver electronics are more complex, requiring a differential
amplifier, fixed and TVG components, and Butterworth filter. Each component is
vital in the signal-treating process, eliminating noise and amplifying the signal for
digital conversion and analysis. A TVG signal is created digitally to compensate for
the transmission losses that accumulate with distance. This signal is fed through a
Digital-to-Analogue converter (DAC) using a bandgap voltage reference to maintain
the signal's precision with a stable step voltage and resolution. A timer within the
microcontroller is programmed to supply the variable gain following the
exponential TVG range function of 40 log R. The gain is varied using a Lookup Table
(LUT) instead of external Programmable Logic Devices (PLDs). While PLD
microchips use an integrated circuit of logic gates to execute continuous
functions, LUTs are tabular data structures containing two sets of pre-computed
values [77]. This means the LUT applies pre-assigned gain values to a discrete
number of time intervals to mimic the 40 log R function. Implementing LUTs using
the microcontroller frees the CPU from performing computations by running
simple data search and retrieval protocols, making the device more efficient in
terms of space, expense, and computational cost. However, the efficiency from a
discrete number of lookup values compromises the smoothness of the signal, as
only a finite number of gain values are applied rather than the ideal gain curve. The
device also compromises on responsiveness due to a microcontroller that is
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overstretched in managing multiple systems within the device. While PLDs can
perform calculations in nanoseconds, relying on the microcontroller to run
retrieval protocols can still take microseconds to perform. The TVG signal is input
into the receiver filter alongside the true received signal, with a signal derivative of
both being fed through using another operational amplifier generated by the
transducer from the echo signals. The received signal must only contain
frequencies close to the original pulse projected to confirm it is from the echo
signal and reject reverb and unwanted noise from the scanned environment. An
active RC Bandpass filter ensures only the desired frequency range from the
received signal is carried through for digital processing. The Butterworth
configuration is used for this application, which prevents ripples or distortions
from both the pass and stop bands, maintaining the accuracy of the echo signals.
A gradual roll-off from the pass band allows any echo signal distorted from
interfacing with a target to be picked up in the received signal at a reduced
magnitude. The sighal is subjected to further amplification using a closed-loop
gain design, leading to a controlled and reliable increase in the signal magnitude
and smoothing. The valuable data in the echo signhal is the amplitude of the several
peaks correlating to the acoustic reflectivity of the interacted targets. A rectifier
circuit is inserted before the signal is digitised to isolate this data from the received
signal. A series of diodes causes the carrier component of the signal to be
removed, leaving behind an envelope signal. This processed signhal is fed back into
the main CPU microcontroller, which is digitalised for numerical conversions of
signal amplitude for set intervals dictated by the CPU clock. The microcontroller
that processes the signal has a maximum input voltage of 3 volts; hence, a Zener
diode regulates the voltage by providing a back current path, preventing excess
voltage being supplied to the input that can overload or damage the CPU. The
voltage cap means the maximum digital signal received translates to a value of
4095, whilst a null reading outputs a zero. The raw numerical strings are sent to the

Raspberry Pi network and formatted into log files.

An Inertial Measurement Unit (IMU) is a system integrated into each device, with

the primary purpose of measuring and recording its relative orientation. In normal
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operation, the device is expected to be submerged upright, with the transducer
face perpendicular to the water surface. The configuration ensures the device is
running as a horizontal propagation sonar, with the echo data heavily influenced by
changes in the elevation angle of the beam. The IMU’s inclusion in the device
provides additional telemetry to validate data and analyse orientation as a
potential cause of anomalous readings. The hardware and firmware components
had already been developed and well-integrated by OTAQ; however, a lack of post-
processing analysis software maintained uncertainty regarding the feasibility of
achieving a solution with the device in its current form. The lack of exploration here
formed the basis of the project’s overarching research question: Can post-
processing data techniques be applied to the sonar's output to achieve valuable

insights?
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Appendix 2 - Sonar Visualisation Code
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Figure 16 - Sonar data visualisation code flowchart
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Figure 17 - Sonar data bounding box code flowchart
Code:

% sonar v3.4: Image, Bounding Box and if statement streamline
% v_.4: Bounding box multi-breach patch, Max value auto data tip

% - Description: This code visualises Sonar data output from the BRS by
% producing surface plots using a cartesian meshgrid to form Sonar Images
% - Code also creates sleuth regions and bounding boxes

% - Author: B.Eng. Hamzah Isap
% - Contact: hamzahisap@2@gmail.com
% - Date: November 2024

function s = sonar(In,Bg,Av,varargin)
% In: Sweep Intensity Array, Bg: Background filter toggle (optional), Av:
Background arrays needing averaging (optional)
Sweepsize = size(In(:,:,1),1); wide = Sweepsize/2;
offset = @; minrng = ©; % Values are manually input based on parameters
chosen in the command window for the scan (fware: offset:-20,minrng:60)
centre = 400 + offset;
Angle = centre-wide:centre+wide-1;
if In(2) == In(1)+1 % Default all sweeps to descend in angle
In = flip(In, 1);
end
cIn = In(1l:size(In,1),2:size(In,2)); % Crop 'In' (to make cIn) to remove
angle to only leave intensity
if nargin ==
DeNoise = zeros(size(cIn,1l),size(cIn,2));
elseif strcmp(Bg, 'none') % Type 2nd argument as none for no noise filter
DeNoise = zeros(size(cIn,1),size(cIn,2));

51



elseif strcmp(Bg, 'average') % Type 2nd arg as average to use the 'Av’
input
DeNoise = NoiseAv(Av);
DeNoise = DeNoise(:,2:size(In,2));
elseif isscalar(Bg)==1 % For a constant threshold, input a single numeric
value
DeNoise = Bg.*ones(size(cIn,1),size(cIn,2));

elseif isa(Bg, 'double')==1 % To subtract an already averaged or specific
background
DeNoise = Bg(:,2:257);
end

cIn = cIn - DeNoise; % Denoise the scan

cIn(cIn < @) = 0;

RngRes = 19.53125; % Range resolution / mm

Dis = (RngRes*(minrng)):RngRes:(RngRes*(size(cIn,2)+minrng)-2); % Define
Distance

th = 200.*ones(1,size(In,1)); % (Change dimensions column from the data
or a generated row array)

Rad = (Angle - th).*(60/133).*pi/180; % Angular Resolution

[rr, tr] = meshgrid(Dis, Rad);

o = size(rr);
X = rr.*cos(tr); % Convert to Cartesian coordinate system
y = rr.*sin(tr);

al = 1; a2 = 400; gl = 15; g2 = 241; %centre: 175
% Zoom Parameters z-(Angle range, Distance Range) - optional tool for
manual inspection

%zx = x(al:a2,gl:g2);
%zy = y(al:a2,gl:g2); % Carnforth Zoom (165:235,90:150) Carnforth Gating
~10 degree offset (185:265,1:230)
%zIn = cIn(al:a2,gl:82); % Minnowtech Zoom (1:400, 26:60)
p = surf(x,y,cIn); % Make z(vars) = R(vars) to see what area the bounding
box search is evaluating
%surf for z values, p colour for just 2d images (Xx,y,cIn for whole

sweep)

shading("flat"); set(p, 'Edgecolor', 'none'); colormap("parula");
colorbar % graphics options

view(2) % View over the xy plane

%clim([@, 4100]); % set manual colour scale instead of automatic ranging

x1lim([-5000, 5000]); ylim([0, 5000]) % set x-y scale (optional)

pbaspect([2 1 1]) % Aspect ratio for angle and range gate within tank

[mximus indxicus] = max(cIn, [], 'all'); % ID and locate the max-
intensity pixel of the scan (used for patched sonar)

sciz = size(cIn);

[row, col] = ind2sub(sciz,indxicus);

locax = x(row,col);

locay = y(row,col);

locai = cIn(row,col);

%datatip(p,locax,locay);

%}

Bl === mmmmm o Scan in tank --------------"---""-------

% This section of the code was used before the latest Sonar patch. Is
% used to angle and range gate to create a sleuth region that isolates
the scan from the tank walls

%
if size(cIn,1) > 399
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bl = 110; b2 = 240; 11 = 20; 12 = 237; % b_ = angle limits % 1_ =

range limits

else
bl = 20; b2 = size(cIn,1)-20; 11 = 15; 12 = size(cIn,2) - 15;
end
% region of search scan
Rgx = x(bl:b2,11:12);

Rgy = y(bl:b2,11:12);
RgI = cIn(bl:b2,11:12);
%

figure

the

ps = surf(Rgx,Rgy,RgIl); % Outputs echogram of the sleuth region
shading("flat"); set(ps, 'Edgecolor', 'none'); colormap("parula")
colorbar; view(2)

x1im([-5000 5000]); ylim([@ 5000]); pbaspect([2 1 1]);

%}

Y e e bounding box -------------------- %%
% This section of the code creates a bounding box surrounding the

% signal of interest which is the largest pixel in the sleuth region

[mx, is] = max(RgI,[], 'all"); %Find the pixel in the gated scan that has
largest intensity

sz = size(RgI);

%sprintf("Rgl = %f", sz)

[rw, cl] = ind2sub(sz,is); % Obtain the row (angle) and column (length)

number within scanned region of this pixel
figure % Create new image of bounding box of the ROI

%

locx = Rgx(rw,cl);
locy = Rgy(rw,cl);
sprintf("max value in scan: %f \nlocation of max in x: %f mm\nlocation

of max in y: %f mm", mx,locx, locy)

%

sprintf("row value: %d \ncolumn value: %d",rw,cl)
w = 15; le = 10; slce = 0; shft = 0; % w: horizontal distance from centre

pixel and box edge, le: vertical distance;

%

% This series of if statements are used if the centre pixel creates a
% bounding box whose edges extend out of the sleuth region causing

% missing data.

% The statements recalls the missing data from the initial scan and

% adds it on to complete the box

% (Believe there is a much easier way of acheiving this by evaluating

the initial scan instead)

%
if rw <= w %i.e 15
slce = -(w-rw+l);
sprintf("slce is: %d",slce)
Rgx = [x((bl+rw-w-1):b1-1, 11:12) ;Rgx(1l:(size(Rgx,1l)+slce),:)]; Rgy

= [y((bl+rw-w-1):b1-1, 11:12) ;Rgy(1l:(size(Rgy,1)+slce),:)]; Rgl =
[cIn((bl+rw-w-1):b1-1, 11:12) ;RgI(1:(size(RgI,1l)+slce),:)];

%Brw = w+l;
end
if rw >=b2 - bl - w % i.e. 115 %'+2' taking into consider that e.g 4:10

is 1 greater than 10-4 and also here, we start with the row after that number

slce = rw-(b2-bl-w)+2; %When the max pixel breaches both limits, the

new Rg must be cut and added to equally to ensure it can be contacated again
for the second 1limit
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sprintf("slce is: %d",slce) % slce is the amount exceeded and this
how much should be taken off the top to be given to the bottom. It also comes
into play for correcting a second limit scenario
Rgx = [Rgx(slce:(size(Rgx,1)),:); x(b2+1l:(bl+rw+w+l), 11:12)]; Rgy =
[Rgy(slce:(size(Rgy,1)),:); y(b2+1:(bl+rw+w+l), 11:12)]; RgI =
[RgI(slce:(size(RgI,1)),:); cIn(b2+1:(bl+rw+w+l), 11:12)];
%rw = b2 - bl - w;
end
if slce < ©
shft = slce;
end
if slce > 0
shft = slce - 1;
end
if cl <= le %if column number is less than the lower half-height of box
Rgx = [x(bl+shft:b2+shft, (ll+cl-le-1):11-1) Rgx]; Rgy =
[y(bl+shft:b2+shft, (ll+cl-le-1):11-1) Rgy]; RgI = [cIn(bl+shft:b2+shft,
(114cl-1le-1):11-1) RgI];
%cl = le+l;
end
if cl >=12 - 11 - le % i.e. 210
Rgx = [Rgx x(bl+shft:b2+shft, 12+1:(11+cl+le+l))]; Rgy = [Rgy
y(bl+shft:b2+shft, 12+1:(1l1+cl+le+1))]; RgI = [RgI cIn(bl+shft:b2+shft,
12+41: (11+cl+le+1))];
%cl = 12 - 11-1le;
end
[rw, cl1] = find(RgI == mx); %Re-evaluate rw and cl values
%  sprintf("row value: %d \ncolumn value: %d",rw,cl)
bx = Rgx(rw-w:rw+w,cl-le:cl+le); % Index the bounding box with the
largest pixel value at the centre
by = Rgy(rw-w:rw+w,cl-le:cl+le);
bIn = RgI(rw-w:rw+w,cl-le:cl+le);
pb = surf(bx,by,bIn);
shading("flat"); set(pb, 'Edgecolor', 'none'); colormap("parula");
%clim([0 2500]);
view(2); pbaspect([1.5 1 1]); colorbar
bIn = reshape(bIn, 1, ((2*w)+1)*((2*1le)+1));
bdata = [bIn locx locy];
s = bdata; % Output the bounding box matrix
%}
end
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Appendix 3 - Echogram Timelapse Code

Read
directory of
sweep files

Create a new folder in to
store echograms

Create video file

Index sweep files from 1
to n, using counter i

Read sweep
file i

Initiate Sonar visualisation Is the sweep
code complete?

Add 1 to counter i

Write sweep as the next

Label sweep number Label quantity of shrimp N

Save
echogram Doesi=n?
as JPEG file

Save Video

Figure 18 - Shrimp data time-lapse code flowchart

55



Code:

% Sonar Scanner v2: incomplete log file patch
4 g AL
% - Description: This code returns Sonar Images for each sweep and compiles
% them into a video from log files contained in the current folder by

% typing SonarScanner in the command window

% *NOTE 1*: Ensure the current folder opened in MATLAB is the folder
containing the log
% files
% *NOTE 2*: In event of path error, simply add folder to the MATLAB path
4 g AL
% - Author: B.Eng. Hamzah Isap
% - Contact: hamzahisap@2@gmail.com
% - Date: September 2024
4 g AL
function SonarScanner(Av)
mkdir SonarScanImages
files = dir('*.log'); % Convert log files to 3D array
csweep = ones(400,257);
for i=1:length(files) %2:(length(files)-1)
T = readtable(files(i).name, Range="C1:1Y400");
if size(T,1) <= 399
continue
end
csweep(:,:,1i) = table2array(T);
end
idx = all(csweep == 1, [1 2]);

ido = all(csweep == 0, [1 2]);
csweep(:,:,idx) = [1;
csweep(:,:,ido) = [];
%bl = repmat(1l, [1 24]); b2 = repmat(2, [1 19]); b3 = repmat(3, [1 24]);

b4 = repmat(4, [1 24]); bo
%bn = [bl b2 b3 b4 bo];
cd SonarScanImages % Create files inside folder 'SonarScanImages'
v = VideoWriter("SonarScans","MPEG-4");
v.FrameRate = 2; % Set fps
open(v)
for i = 1:length(files) %2:(length(files)-1)
sonar(csweep(:,:,1))%, "average',Av) % Use the sonar command to
produce images
%title(sprintf("balls: %d, sweep no: %d", bn(i),i))
set(gcf, 'Units', 'Normalized', 'OuterPosition', [@, ©.04, 1, 0.96]);
saveas(gcf,sprintf('sonarscan _%d.jpg',i)) % Image number corresponds
to sweep number
frame = getframe(gcf);
writeVideo(v,frame) % create video from string of images
clf

repmat(0, [1 13]);

end
close(v)
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