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Abstract  
Smart aquaculture is a data-driven approach to optimise operations and is a 

valuable practice for shrimp farmers to upscale sustainably. Acoustic telemetry is 

generally regarded as the most reliable form of data acquisition to obtain desired 

stock information, such as biomass and abundance. Current studies in the field 

deploy high-grade scientific sonars and their data to train sophisticated models, 

overlooking the financial viability. In contrast, this study explores the potential for 

basic-specification single-beam scanning sonars to construct acoustic datasets 

for model training. We propose separate methods for using machine learning to 

predict two stock measurements: school density and abundance, using artificial 

targets in a sample area. To model school density, a monofilament net containing a 

varied density of standardised uniform air-filled spheres produces echo traces, 

which an optimised neural network categorises to an overall accuracy of 90.78%. 

To model shrimp abundance, artificial targets modelling shrimp are presented to 

capture abundance with active material and orientation variables. We collect 

averaged echograms of the tank containing a variable abundance of suspended 

targets. We then deploy a variation of echo-integration where the sum of digital 

signals for each beam position is processed as features. Optimised Gaussian 

process regression models are the best-performing models in predicting the 

number of targets in the tank. Training models on different population ranges found 

the maximum error around 10%, with the best model demonstrating an MAE of 

1.36 (2.7%). Models fit data with an R-squared upwards of 0.98. The proposed 

methods demonstrate the promising potential of low-cost sonar implementation 

within the aquaculture industry.         
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1. Introduction  

The globalisation of the aquaculture industry is a response to dramatic shifts in 

nutritional demand [1]. The multifaceted opportunities for developing countries 

have driven the rapid expansion of shrimp farming operations [2]. However, due to 

poor and unregulated planning, socioeconomic and environmental ramifications 

have arisen, including the destruction of mangrove areas, coastal lowlands, and 

other rich, biodiverse ecosystems [3], [4]. Increased profitability has been 

achieved through land footprint expansion rather than optimising operations [5]. 

Upscaling sustainable aquaculture activities has been challenging due to 

inefficient feeding, resulting in nitrous waste, high operating costs, and low yields 

attributed to high mortality rates [6]. The need for formulated feed in the grow-out 

phase is a major source of production costs [7], with the production cycle in 

shrimp ponds averaging around 25 weeks wherein 1-2 g animal grow out to a 

harvest weight of 20-27 g [8]. Thus, feed scheduling is a critical area for 

improvement, as its optimisation would significantly enhance the overall process. 

The lack of insight into the growth, behaviour and abundance of stock under murky 

and turbid waters means farmers cannot adapt maintenance strategies to changes 

in biomass. Traditional monitoring and stock assessment methods have attempted 

to overcome this; however, manual techniques, such as trawling and occasional 

video monitoring [9], are labour-intensive, time-consuming, inaccurate and 

invasive [10]. Precision farming techniques were introduced to collect data on 

stock in ponds using Data Acquisition (DAQ) systems and statistical analysis [11], 

[12]. De Rosny and Roux first proposed fish monitoring methods using acoustic 

measurements, analysing back-scattering cross-sections using a reverberation 

time-series [13], with further studies employing the same fundamentals. Whilst 

these methods can yield impressive biomass estimations, they are challenging to 

apply commercially due to their statistically intensive nature and difficulty in 

replicating. In recent years, research has proposed developing fast, accurate and 

automated biomass estimation methods to optimise farming processes.  
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Smart aquaculture is a new scientific field that aims to develop digital solutions 

that convert large volumes of complex data into easily understandable and 

actionable information. The approach supports data-driven, knowledge-based 

decision-making, optimising the maintenance of commercial ponds to improve 

resource management and harvest [14]. Several DAQ systems have been proposed 

to facilitate the philosophy in aquaculture ponds, including machine vision and 

sensor-based technology [6], [15]; however, the challenging environment of shrimp 

ponds makes it difficult to obtain high-quality data. Sonar technology is showing 

the most promise for DAQ in shrimp pond environments [16], [17]. Its superiority 

over other proposed methods comes from its high range underwater and suitability 

against light attenuation in turbid water. Sonar technology is also versatile, as 

devices can be designed to overcome financial constraints, making it an 

appealing, cost-effective option if performance can be achieved. Shrimp farms 

often utilise extensive (i.e., 1–10 shrimp/m²), semi-intensive (10–25 shrimp/m²), 

and intensive (>25 shrimp/m²) production strategies [9]. While these densities can 

create overlapping echoes that are difficult to analyse individually, techniques 

such as echo-integrator regression can be employed to estimate abundances by 

analysing the entire sample volume [18],[19]. The advancement of Artificial 

Intelligence (AI), particularly Machine Learning (ML), has revolutionised industrial 

processes across sectors by deriving new knowledge from existing data. 

Techniques such as Random Forest (RF) Algorithms, K-Nearest Neighbours (KNN), 

and Artificial Neural Networks (ANNs) have shown success, being easy to 

implement commercially by supplementing DAQ systems [20]. This underpins the 

prospect of developing ML models to extract measurements from aquaculture 

data, thereby achieving efficient farming. 

Previous sonar and ML studies have been successful in fishery acoustics. Lin et al. 

[21] successfully developed a YOLOv4 (You Only Look Once) network that 

identified the number of white shrimps from 1 to 4 and their orientations, whilst 

Pargi et al. were able to predict fish biomass in murky water using Deep Learning 

(DL) of sonar images using an ARIS Explorer 3000 device and ARIScope software 

[22]. Minelli et al. [23] used KNN to detect and classify fish schools; Proud et al. 
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[24] used RF classifiers for silver cyprinid. One of the biggest challenges when 

scaling up ML-based approaches is the time-consuming nature of acquiring the 

needed data to construct a well-balanced dataset [16]. The difficulty in obtaining 

data from dynamic organisms hinders the development of robust analysis 

methods, thereby stagnating research progress. Therefore, alternate and novel 

methods of acquiring data are needed to validate ML techniques on acoustic data 

before they are deployed in commercial farms. Additionally, despite its suitability, 

sonar remains a high noise, low resolution system especially when horizontally 

propagating in shallow water due to the reverberation from surface and ground 

reflections. Further factors like the Doppler effect, multiple echo paths, sidelobe 

interference and internal device noise can degrade data quality by obscuring real 

signals, making it challenging to distinguish targets from the background [16]. As 

such, reliable methods are needed to preprocess acoustic data to manage these 

limitations, cleaning the data to enable feature extraction. Finally, studies to date 

have relied on high-tech instruments to facilitate their work, which can be 

expensive. These sonars are priced out of reach [25] for farmers interested in 

incorporating new technologies for biomass estimation, and as such, they are not 

viable for most aquacultural applications. Low-cost sonar technology is readily 

available on the market; examples of these include mechanically driven scanning 

sonars [26]. Clearly, research is needed to investigate whether low-cost sonars 

can produce satisfactory data for ML techniques to extract valuable insights for 

shrimp farmers, as this is the only viable avenue that may lead to commercial 

implementation.   

This study explores the potential for low-cost sonar to contribute to routine stock 

assessment in commercial shrimp farms. The study aims to estimate sonar 

performance in field environments by varying the abundance, position, and 

material of targets in a controlled environment and evaluating the accuracy of 

machine learning models. We propose data acquisition techniques that simulate 

shrimp distribution data using artificial targets and placement methods. The study 

explores alternative data preprocessing techniques, and we apply data analysis 

techniques in the context of the spatial intensity data produced by the scanning 
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sonar. The above applies to finding two separate insights in the context of shrimp 

farming: school density and abundance, using ML models. These investigations 

should help determine whether low-cost scanning sonars are suitable for smart 

shrimp farming and whether on-field testing is an appropriate next step.  
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2. Literature Review 

2.1. Aquaculture and Shrimp Farming 
The growing global demand for food, driven by a rapidly expanding population, has 

led to a shift in dietary patterns as regions search for alternative sources of 

nutrition to address the emerging deficit. This has been experienced at an 

accelerated rate in several pockets of the world, with environments suitable for 

aquacultural expansion increasing the share of their nutrition through seafood [1]. 

Aquaculture has made significant contributions to global food security, with 

shrimps emerging as one of the most valuable seafood products in worldwide 

trade [27], with global production increasing by 86% in the past 10 years, reaching 

more than 6.5 million tonnes of shrimp in 2019, valued at nearly 40 billion US 

dollars [5]. The most commercially valuable species produced in aquaculture is 

Litopenaeus vannamei, which constitutes 70% of industry production [9]. The 

multibillion-dollar business has attracted developing countries as a way to 

generate profits, local employment and currency to significant effect [2]. In such 

countries, shrimp aquaculture has yielded significant socioeconomic benefits, 

with the generation of foreign exchange serving as the driving force behind rapid 

expansion. Although it is possible to operate with high stocking densities of 

shrimp, commercial strategies often utilise lower densities, including extensive 

(i.e., 1–10 shrimp/m²), semi-intensive (10–25 shrimp/m²), and intensive (>25 

shrimp/m²) production [9]. The exponential growth has led to negative 

consequences due to poor planning and a lack of regulations, resulting in 

environmental impacts, waste and social conflicts [3] that require urgent solutions 

through effective management techniques.  

2.1.1. Sustainability Challenges 
Shrimp farming can have environmental impacts based on (1) the location of 

shrimp pond construction and (2) the management and technology used during 

shrimp pond operations, among others [4]. The particularly rapid development in 

countries such as Bangladesh, Vietnam, China, Thailand and Ecuador has led to 

expansions in activity at the expense of tropical and subtropical lowlands, 

endangering ecosystems. As of 2001, approximately 1–1.5 million hectares of 
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coastal lowlands had been converted into shrimp ponds, consisting mainly of 

mangrove areas, marshes, agricultural lands and salt flats [4], degrading 

biodiversity. In addition, poor and excess feed quality has been cited as a main 

source of pollution [3], [27], with the organic matter reacting with the 

environment’s pH, temperature and pressure. The creation of ponds also impacts 

natural processes such as water runoff and sedimentation, creating a ripple effect 

that hinders the growth of trophic structures and introduces contaminants and 

trace elements. To combat this, an influx of research has been conducted since 

the turn of the century, proposing management techniques to reduce footprint 

expansion by streamlining the farming processes. Emerencio et al. proposed 

intensification of cultures, creating high-density production and greater use of 

existing infrastructure [5]. This involves implementing higher levels of feeding, 

aeration, and labour, which further emphasises the influence of these variables on 

production. Hossain et al. proposed several recommendations to manage the 

impact in Bangladesh, including coastal zoning and establishing Environmental 

Impact Assessments [3]. Whilst these steps are undoubtedly effective in mitigating 

the impacts of expansion, additional solutions are required to streamline current 

processes with minimal changes to operating methods that can bring immediate 

improvements to resource management.   

2.1.2. The Shrimp Farming Process  
Generally, the shrimp farming process follows 4 distinct stages from hatchery to 

harvest, as shown in Figure 1. The procedure can vary depending on the 

philosophies employed, such as those used in indoor versus outdoor 

environments. Cultivating broodstock spawn to post larvae for stocking in grow-

out ponds requires strict monitoring within specialised tanks, typically indoors 

[28], [29]. The hatchery and nursing phases are arguably the most crucial stages in 

the process, and extensive methods and research have been well-established for 

them. Thorough management of variables such as salinity, pH, temperature, 

aeration, and feeding has left little to be improved upon in the pre-grow-out 

phases. If more efficient practices and sustainable output are to be observed, 

solutions need to optimise procedures in the grow-out phases. 
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Figure 1 – The shrimp farming process [28], [30] 

Whilst plentiful research has been conducted to improve growth conditions [2], 

[5], [28], [29], a significant inefficiency in the process remains in the method of 

feeding and adapting to unexpected changes in stock. Scaling up aquaculture 

activity has presented challenges as farmers cope with issues that threaten to 

make the process considerably less efficient in terms of time, cost, and yield. 

Shrimp farmers experience these challenges on a wide scale when they attempt to 

feed growing shrimp the optimal amount of foodstuff and harvest shrimp at the 

best biomass [6]. The need for formulated feed in the grow-out phase is a major 

source of production costs in shrimp farming. Thus, the quantity of feed used 

relative to the yield harvested is a key metric in evaluating economic success 

within a commercial cycle [7]. Maintaining stock with feed at this stage is the most 

time- and labour-intensive stage of production, with manual monitoring being a 

significant drain on resources. Shrimp behaviour is often observed through visual 

inspection or by using video recordings, which are infrequent so as not to disturb 

the livestock [9]. However, these methods are often still ineffective in capturing the 

condition of shrimp or in detecting early signs of disease. Optimising feed and the 

grow-out process will improve yield within commercial ponds, allowing farmers to 

meet demand without undertaking damaging pond expansions. The introduction of 

easy-to-implement telemetry is needed to reduce the workload of farm operators 

while enhancing insights with minimal effort. 
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2.1.3. Biomass Estimation, Precision Farming and Smart 
Aquaculture    
Farmers can derive key stock assessment information through biomass 

estimation. The practice is the most common and significant way of controlling 

stocking density, optimising feeding and determining the optimal time for 

harvesting [6]. The ability to achieve this is commonly referred to as precision 

farming. Until now, estimating marine biomass has relied on manual sampling 

techniques, such as trawling and subsampling, to determine the average weight of 

the stock. Feed trays can also be inspected to calculate feeding rates  [31], [32]. 

These processes can be time-consuming, invasive and potentially misleading, with 

an inherent inaccuracy of 15-25% [10]. To solve this, research has been aimed at 

developing fast, accurate, and non-invasive techniques for estimation without the 

need for manual intervention. Studies to develop technological solutions have 

seen unprecedented interest in aquaculture, with researchers employing various 

tools to provide a proof of concept of the data that can be collected to help 

estimate biomass. Initially, solutions utilising technology opted for statistical 

analysis using surveying techniques and acoustic methods [11], [12]. De Rosny 

and Roux first described acoustic methods for monitoring fish behaviour using 

time-series coherent intensity backscatter and decay equations with ultrasonic 

transducers [13]. The results showed positive applications, underscoring the 

potential for valuable insights being gained about marine life in environments 

previously deemed challenging to monitor. These early studies were crucial in 

laying the foundation for precision farming and the current emerging trend. A 

limitation that prevented these early iterations from being commercially 

implemented was their statistically intensive nature, which is also time-consuming 

and complex to repeat in less sophisticated operations. Additionally, data would 

require validation based on catch results, making the process dependent on 

manual input. This led researchers to develop automated analysis methods, 

building on precision farming techniques in a new scientific field commonly 

referred to in literature as smart aquaculture. While the terms smart aquaculture 

and precision farming are often interchanged, their continued mention here will 

adhere to the outlined definitions.  
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Smart aquaculture aims to create digital solutions that can process large volumes 

of complex data into easily understandable and actionable information. This 

approach enables data-driven, knowledge-based decision-making, streamlining 

the maintenance of commercial ponds to achieve improved yields [14]. Data 

insights, such as abundance, length, biomass, and behavioural information, can 

also enable efficient resource usage in the grow-out phases, creating sustainable 

aquacultural activities and improved financial performance, which is summarised 

in Figure 2 [33]. The breakthrough of AI, particularly ML techniques, has 

revolutionised a vast majority of industries, not limited to healthcare, 

manufacturing, energy and sales [20]. Consequently, the application of ML serves 

as the critical tool for transforming processes and is designed to derive knowledge 

from existing data [34]. It stands to reason that ML is the key to unlocking smart 

aquaculture, with its subset, Deep Learning (DL), being the focus at the cutting 

edge of the field. Proposed DL methods have most recently been enhanced with 

infrastructure capable of handling automated tasks in real time using cloud 

computing, big data, and the Internet of Things (IoT) [33] Whilst that is vital 

research, the lack of definitive ML applications in this particular field means that 

further foundational research is required to evaluate the challenges posed in 

applying ML to shrimp farming. 

 

Figure 2 – Smart aquaculture principles applied to shrimp farming [33] 
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Several comprehensive reviews have been conducted to evaluate the 

effectiveness and suitability of technologies for smart aquaculture. The main 

techniques pursued here include [6], [15]:  

1.  achine  ision: Using a monocular or stereovision optical light camera 

setup at the surface, analysing image data. 

2.  coustics: Acquiring data from sound propagation using sonar, 

echosounders or passive equipment. 

3. Sensor based technologies: Measuring pass-throughs using resistivity 

counters with electrodes or infrared beams.     

Investigations into these tools are relatively new. Literature reviews suggest there is 

limited research and development on smart aquaculture [6]. Hence, it remains 

unclear what the definitive best technology is for this application, considering the 

close exchange of benefits and drawbacks associated with adopting each. This is 

likely due to the absence of studies proposing methods to extract insights from the 

data of these devices. More systematic methods utilising these technologies 

effectively need to be published to promote techniques superior to manual 

sampling.  

2.2. Sonar Technology and Key Underwater Acoustic Concepts  
Comprehensive research focused on individual technologies can help determine 

the best data acquisition systems and ML techniques for shrimp farming. Industry 

collaborators, OTAQ, have developed a mechanically driven sonar device, 

providing an opportunity to investigate the capabilities and limitations of 

hydroacoustic methods. The device relies upon acoustic principles, which are 

critical when analysing data output and explaining experimental results. Acoustic 

sensor principles can be compared well with optical devices. This is due to the 

similarity between the theories of sound and light [18], with many phenomena 

being observed in both, such as absorption, reflection, and scattering. Acoustic 

waves propagate over long distances in water, a superior medium for sound 

propagation due to the liquid’s increased conductivity.  
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2.2.1. Acoustic Technology as a Biomass Estimation Method 
Within the field of underwater object detection, there has been a recent rise in the 

popularity of acoustic techniques and devices that form the backbone of potential 

solutions. This comes after a previous trend in scholars focusing on alternate 

methods such as computer vision, machine vision, resistive sensor technology 

and tagging [15]. While these methods are still being pursued in other contexts, it 

is evident from multiple research teams [16]-[18], [35] that there is reason to 

suggest that acoustic techniques offer an overall superior use case in shrimp 

aquaculture for several reasons. These include: 

• The non-intrusive nature of sonar and acoustic technology 

• The high range of sound waves propagating in water 

• Reliability in highly turbid waters 

• Suitability in areas of minimal light 

• The scope for cost-effective solutions 

In any study involving marine life and aquaculture monitoring, one of the critical 

considerations is the feasibility of operating while minimising the negative impact 

on the measured live specimens. For aquacultural farmers, it is imperative that the 

stock is not put under increased stress, as this can directly cause several other 

abnormalities, such as shorter lifespans, increased mortality levels, and poor 

growth rates [6]. Whilst other monitoring systems, such as resistive sensory 

technology, may provide key insights that acoustic technology cannot, its intrusive 

nature can diminish any benefit its deployment offers. Acoustic technology’s range 

means that devices can be installed away from activity, enabling data acquisition 

without affecting the ecosystem’s natural behaviours or causing injury.  

The robust nature of sound waves propagating in highly turbid waters means that 

acoustic systems produce reliable information [36]. This factor becomes crucial 

during the design stage when considering other systems reliant upon alternate 

mediums such as visible light and other electromagnetic waves. Machine vision 

solutions in research have been shown to provide information on the behaviour, 

swimming, and body orientation of shrimp [17]. Although it can be argued that 
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systems such as computer and machine vision produce image details better than 

sonar, their susceptibility to light attenuation and refraction in turbid waters 

increases with depth, meaning that the quality of these images can significantly 

deteriorate in detail [16], [35]. This is particularly emphasised when considering 

how most shrimp species position themselves in the lowest layer of a body of 

water, known as the benthic zone [35]. This makes using acoustic telemetry vastly 

more appealing when designing a solution that can be semi-permanently operated 

unsupervised and remotely. 

2.2.2. Operating Principles of Sonar Technology and Its Evolution 
A Sonar device can detect objects underwater from their physical attributes and 

the water medium [6]. Like all other systems that rely upon the principles of 

underwater sound, a sonar converts mechanical energy propagated via sound 

wave into an electrical signal when the wave reaches the receiver. Acoustic 

devices can be split into two primary groups – active and passive [16]. A passive 

system detects objects with a receiving array and is used to discover sound 

sources, requiring the object concerned to emit sound waves. These are often 

referred to as hydrophones. On the other hand, active acoustics produce sound 

waves from a transmitting array and use a receiving array to detect objects. An 

electrical signal is applied to a transducer, which converts the pulse into a 

mechanical vibration that produces an oscillating pressure and results in an 

acoustic wave [17]. The wave propagates in the water and scatters once it 

interfaces with a different medium. This results in a portion of the original wave 

being reflected to a receiving transducer. The pressure from the echo pulse excites 

the transducer [37], resulting in an electrical signal which conveys information 

about the backscattered wave. The return signal can be processed digitally to form 

data which provides insight into the object’s physical characteristics through 

properties such as amplitude and distance.  

The evolution of modern sonar can be traced back to World War II [6], [38]. As 

such, acoustic technology has seen substantial advancements, creating a range of 

iterations varying in complexity and cost. The simplest form of sonar is an active 

single-beam echosounder [17] that is still commonly used to measure range and 
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depth. Dual-beam sonars were introduced in the 1970s, adding a second 

dimension to measurements. The 1980s brought split-beam sonars, which added 

a third dimension to the data acquired. Multibeam echosounders (MBES) were 

introduced to provide precise, higher-resolution data, allowing the spatiotemporal 

attributes of the scanned area to be captured. The recent advancements in 

acoustic technology mean the technique rivals other methods that are notable for 

their precision and data quality. The production of refined video-like sonar images 

allows for the deployment of supervised machine learning-based classifiers that 

can be successfully trained and deployed for object detection, species 

identification, biomass estimation, automatic counting, and length measurements 

[15]. ML classifiers can use protocols similarly applied to regular optical images 

and videos. Unlike most technological advancements that render predecessors 

obsolete, sonar development has created a spectrum of configurations to explore, 

finding an ideal set that balances cost and capability.  

2.2.3. Acoustic Waves and Target Strength 
Acoustic waves are mechanical oscillations. When a wave passes through a 

substance, it experiences local changes in density and mass displacement. This 

results in a counteractive force induced by the medium to bring the density back to 

equilibrium [39]. The phenomenon complies with Newton’s second law, the 

conservation of mass, and the relationship between pressure and volume. Thus, it 

can be expressed as the linear acoustic wave equation (1):  

∇2𝑝 =
1

𝑐2

𝛿2𝑝

𝛿2𝑡
      (  1  ) 

Where 𝛻2 is the Laplace operator, p is the pressure over t, time. c is the speed of 

sound in ambient conditions. 

The acoustic wave equation explains a wave’s interaction with varying objects, 

whose principal properties are volume stiffness, K, and density, 𝜌, with the 

properties impacting sound speed as (2): 



14 
 

𝑐 = √
𝐾

𝜌
     (  2  ) 

The intensity of an acoustic wave is the critical feature that a wave carries when it 

backscatters as an echo. Backscatter occurs whenever there is a spatial change 

[18] in the acoustic impedance, Z (3):  

𝑍 = 𝜌𝑐      (  3  ) 

The greater the change in Z across a boundary (i.e. between the water and a target), 

the stronger the backscattered wave. This is a result of a greater proportion of the 

entire transmitted wave being reflected, with the remainder continuing as 

transmitted, often referred to as forward scatter. The intensity, I, describes the 

product of a wave’s instantaneous pressure and particle velocity. This can convey 

information about a target’s density and volume stiffness from a wave reflected 

from it. 

𝐼 =
𝑝2

𝜌𝑐
      (  4  ) 

The pressure intensity of acoustic waves can convey a plethora of information and 

forms the basis of unit measurements expressing the objects interacting with the 

sonar. The extent to which an echo signal resembles the intensity of the whole 

signal depends on how reflective the ensonified target is. This acoustic property of 

an object is referred to as the backscattering cross-section (5) and can be 

quantified by calculating the ratio of intensities between the incident and reflected 

signal [38], [18].   

𝜎𝑏𝑠 =
𝐼𝑟

𝐼𝑖
|

𝑟=1
     (  5  ) 

𝜎bs is the backscattering cross-section 

Ir is the intensity of the reflected intensity, 1 meter from the object 

Ii is the incident intensity  

The measurement can then be expressed in decibels, allowing for a larger 

logarithmic scale. This enables slight differences in ratio to be displayed clearly, 



15 
 

emphasising the effect of the changing energy reflected for different objects. As a 

result, the logarithmic parameter is more commonly used in hydroacoustic 

applications and is known as the Target Strength (TS) (6).  

 𝑇𝑆 = 10 𝑙𝑜𝑔 (
𝐼𝑟

𝐼𝑖
)|

𝑟=1
           (  6  ) 

Object reflectivity is influenced by factors such as signal characteristics, the 

propagation medium, and the object itself. Despite the complexities, the target 

strength offers valuable insights, helping acousticians identify specific targets or 

classify unknown ones. [40]. The valuable insight offered by the simple ratio makes 

target strength a popular focal point for research in the field, as scholars develop 

techniques and propose models that can provide a deeper understanding of target 

strength values. Target strength is widely considered to be a practical 

measurement [18] – a value derived through conducting physical measurements 

and empirical data. The values of target strength measured are commonly 

evaluated against reference sheets. Users can reliably identify the target reflected 

by contextual information, such as what is expected within the scanned volume. 

However, it is commonly accepted within research that target strength is a 

transient measurement sensitive to the context and environment upon which it is 

gathered. The frequency must be carefully considered to prevent resonance from 

occurring at any stage due to small changes in signal exhibiting disproportionately 

large changes in target strength [38]. In addition, changes in tilt angle for large 

objects or the orientation for small objects can also result in changes in target 

strength, which can be challenging to manage when scanning a dynamic 

environment filled with live specimens [41]. The various influences on target 

strength make it a problematic measurement to base precise findings on outside 

laboratory conditions.   

2.2.4. Beamforming and Horizontal Propagation  
The response of a transducer is designed to be directional, having directional 

sensitivity that can be expressed with a beam pattern, as shown in Figure 3 [42]. 

The phase differences between parts of the transducer along its dimensions result 

in lobes, where source points are in phase and output is maximal [18]. Alternate 
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null patterns are also created between the lobes as source points become out of 

phase, causing signals to cancel each other out. The main lobe refers to the 

maximum output occurring at the acoustic axis, which is located at the centre of 

the transducer along the axis of propagation. Experimental results [43], [44] 

suggest the main lobe is estimated to carry 99% of the transmitted acoustic energy 

of the beam. Thus, the single beam produced can be simplified as a conical beam, 

similar to a searchlight. The spread of the main lobe can be expressed in terms of 

the beam width. This refers to the distance between the two opposing sides of the 

main lobe at the range where it reaches its apex, and is where a 3 decibel (dB) 

decline in intensity is observed. The beam width describes the angular resolution 

of a sonar system since two targets cannot be resolved if they are closer together 

than the beam width. The angular resolution of a rectangular transducer with face 

dimensions Lx, Ly, and operating wavelength λ, can be expressed as: 

𝜃3𝐷𝑏 = ± 25.3 ×
𝜆

𝐿𝑥
, ± 25.3 ×

𝜆

𝐿𝑦
    (  7  ) 

 

Figure 3 – Single beam transducer directional sensiti ity beam pattern [42] 

Horizontal acoustic propagation can be applied to shallow water, such as shrimp 

ponds, where areas near the surface and bottom are significant regions of interest. 

Horizontal beaming allows sonars to cover vast ground in a limited-depth region, 

with these types of surveys established in literature [45],[46], [47]. Despite this, 

several practical problems are experienced that are not encountered with vertical 

beaming. The most significant concern in this application is the boundary echoes 
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caused by the direct reverberation from the bottom and surface. As the beam 

spreads to reach these interfaces, reflections occur due to the stark acoustic 

impedance differential between water and air/hard floors. The reverberations from 

these reflections can cause noisy backgrounds, which can obscure weaker target 

signals more than stronger ones, resulting in data bias [18]. Furthermore, the 

frequent interaction of the beam with boundaries can create complex propagation 

paths, which can impact the pathways taken by echoes from targets. Whilst 

portions of echoes may take direct paths to the receiver, others from the same 

target may take longer reflection paths, resulting in a time delay and skewed data 

results. The extent to which these issues impact horizontally propagating sonars is 

still debated. Hence, research is needed to determine if data quality from this 

technique is satisfactory beyond these issues. 

2.2.5. Echo Counting and Integration 
It is possible to detect the echoes of individual targets when reflective targets are 

well separated from each other. This can be seen as a viable approach for low-

density fish farming, where individual signals can be evaluated to collect data on 

individual fish. This technique is referred to as echo-counting. Signal properties 

can be closely analysed to develop key insights into fish morphology. Size and 

length measurements are valuable data estimated from a received signal in 

research using statistical models for target length [11],[48]. However, the 

environment in shrimp ponds exhibits contrasting conditions, with weakly 

reflecting targets at high densities, rendering echo-counting an unreliable 

approach. To solve this, an alternate method known as echo-integration has been 

proposed [49]. The technique is used to estimate abundance despite overlapping 

echoes. This is achieved by creating a proportionality model that relates the 

average integrated intensity of received signals in a defined volume to the number 

of targets ensonified [19]. The accumulation of echo energy can be achieved by 

connecting a sonar to a traditional echo-integrator unit, which sums the squares of 

signals and can be converted to an abundance using a scale factor and adjusting 

the device’s Time-Varied Gain (TVG) [18]. The typical TVG of 40 log R is used to 

compensate for transmission losses a signal experiences with range, R. It is 



18 
 

changed to 20 log R to compensate for a sampling volume instead. Whilst these 

physical adjustments to the sonar can effectively implement the theory of echo-

integration [50], it may also be possible to use ML techniques to achieve the same 

outcome. By creating databases consisting of various density distributions, the 

scattering field effects of multiple targets may be modelled using aggregated 

digital signal data. Investigations are needed to test this methodology, as 

successful implementation may lead to computationally efficient modelling for 

valuable abundance data.  

2.3. Evaluating Sonar Systems and Machine Learning 
Techniques 
Although the models trained and tested on high-resolution images have shown 

high accuracy [51], the devices used are expensive. Farmers find any cost-benefit 

nullified when assessing the capital required against the potential savings from 

efficiency created. This presents the opportunity to achieve a similar outcome to 

previous studies using simpler sonar systems. The literature shows promising 

results for utilising simpler forms of acoustic technology to achieve effective target 

detection and biomass estimation. Kim et al. [52] successfully obtained TS 

information of redlip mullet fish by scanning 16 live fish with a split-beam 

echosounder. They measured their weight and lengths, thus providing them with 

the statistical relationships between the three values and producing equations to 

help estimate biomass. The study underlined the significance of obtaining TS 

parameters to obtain insights into the scanned environment and how numerical 

values of target strength and volume backscattering through echo-integration can 

provide the end user with a quantitative analysis of the observed species. 

Approaches like this can ultimately pave the way for cost-effective solutions for 

farmers to incorporate sustainable practices through intelligence-based systems 

[53], providing needed reliable data. 

2.3.1. Comparing Acoustic Systems 
Deploying simple active acoustics, whether single, dual, or split beam, presents 

challenges due to the necessity of steering the acoustic beam to cover a sample 

volume. In contrast, multibeam echo sounders capture coverage in one swath 
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using multiple beams, assessing different water columns at various angles [54]. To 

address this limitation, designers like OTAQ incorporate a stepper motor to sweep 

a defined area mechanically. While this method mimics an MBES operation, it 

necessitates a set interval to complete a full scan. Slow scanning speeds can be 

exposed in dynamic environments, where fast-moving targets may not be scanned 

adequately or at all, leading to reliability issues. The costs of mechanical 

elements, such as stepper motors, are comparable to those of additional 

electronics required for a phased array, which allows for electronic rotation [55]. 

Although a phased array system is more complex to design, its scanning speed is 

superior and less vulnerable to damage, resulting in lower maintenance needs. 

Passive acoustic systems [31], [56], [57] have also shown high promise in their 

implementation as part of automatic intelligent feeders for shrimp. The analysis of 

sound emitted by shrimp mandibles during feeding may offer a more reliable 

avenue of research if the pursuit of active acoustic solutions proves unsuccessful.   

2.3.2. Machine Learning Techniques  
Machine learning is the process through which machines are programmed to learn 

from past data to find patterns, insights and mathematical expressions to make 

judgements about future data [58]. Proposed methods generally follow the basic 

procedural framework as shown in Figure 4. Supervised ML methods can be 

tedious and time-consuming, particularly during the data acquisition and 

preparation stages, where data requires manual capture and labelling. Despite 

this, ML techniques are simple to implement in almost any application with any 

data format, making it an ideal basis for modelling low-resolution acoustic data. 

 

Figure 4 – General process flow for    based approaches 
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ML-based approaches have been broadly used in fishery acoustics in recent years, 

with ANNs, KNNs and RF algorithms finding success in their respective 

applications, summarised in Table 1 [59]. Another popular ML technique for 

interpreting echograms is the YOLO network. It is a convolutional neural network 

variation that can predict bounding boxes and classify targets at once. Lin et al. 

[21] successfully developed a YOLOv4 network that identified the number of white 

shrimps with 97.3% accuracy when varying the number of shrimps from 1 to 4 and 

their orientations.  

Paper Target Acoustic System ML Models Accuracy 
Minelli et 
al. [23] 

Fish School 
and gas 
seeps 

MBES KNN and 
boosting 
ensemble 

98% 

Proud et 
al. [24] 

Rastrineobola 
Argentea 
(dagaa) 

Multifrequency (70 
and 120 kHz)  EK60 
Echosounder 

Random forest 85.40% 

Villar et 
al. [60] 

Argentine 
anchovy, 
Longtail hoki, 
Blue whiting 

SIMRAD EK500 
echosounder 

ANN models: 
Multi-layer 
Perceptron 
(MLP), Self-
organising 
Mapping 
(SOM) 

MLP: 
97.99% 
SOM: 
96.63% 

Aronica 
et al. [61] 

Anchovy, 
Sardine and 
Horse 
mackrel 

Multifrequency (38 
and 120 kHz) EK60 
and Probe 

ANN models: 
multibinary 
and multiclass 
neural 
networks 

Multibinary: 
88.20% 
Multiclass: 
90.56% 

Table 1 – Key research using    for fishery applications since 2018 [59]  

These investigations confirm that ML is a viable approach for analysing marine 

species using sonar technology. Studies can build upon these works to propose 

additional methods that streamline data acquisition and processing times using 

commercially applicable DAQ systems. 
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2.3.3. Acoustic Data Acquisition  
The consensus of scholars reviewing the development of ML techniques for 

biomass estimation is that the research is generally very limited [6], [16]. The lack 

of full-scale studies has resulted in a lack of analysis on proposed methods, with 

no single method being widely accepted and supported by sufficient testing. The 

stagnation in research progress is probably due to the challenges of conducting 

robust experiments, especially when machine learning techniques are involved. 

Chai et al. highlight the significant challenges in acquiring adequate sonar data 

and the lack of publicly available datasets as primary obstacles. The nature of 

constructing and labelling echogram datasets is time-consuming when 

considering the breadth and variety of data needed to train an effective classifier 

[16]. The paper reviews the DL in aquaculture, recommending a focus on building 

publicly available datasets to reduce data acquisition times. This would leave 

more time for data processing and developing digital solutions. Several studies 

have converged on the same area of exploration: the positive demonstration of 

applying DL classifiers to sonar data. However, investigations have lacked the 

scale to analyse the true benefits of these applications in aquaculture farms and 

how they compare to traditional manual methods. It is clear that the full potential 

of ML methods for precision aquaculture will not be realised until effective data 

collection methods have been thoroughly explored. 

In recent years, several innovative solutions have been proposed to address data 

scarcity and slow acquisition rates. These have primarily originated from entirely 

different acquisition processes, such as using advanced simulation techniques 

with 3D models to rapidly generate synthetic data that mimics real sonar images. 

Sung et al. [62] developed a method that employs a Generative Adversarial 

Network (GAN) for scanning sonars, generating simulated data and comparing its 

realism to actual images. The team utilised ray tracing to emulate sonar imaging, 

modelling nonlinear phenomena by training a GAN with real sonar images. This 

approach captured features through a 15-layer U-Net, inducing realistic noise and 

degradation effects. The study demonstrates that techniques can rapidly generate 
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large synthetic image datasets, underscoring the potential to overcome 

environmental limitations in data processing tools.   

2.3.4. Analysing Acoustic Shrimp Data  
The procedure for processing hydroacoustic aquaculture data is generally 

consistent across marine species, but gathering the biological context for those 

being studied is crucial for fine-tuning solutions. Understanding shrimp’s 

physiological, environmental, and behavioural patterns in production ponds 

enhances data quality extraction [57]. One of the biggest challenges in scanning 

decapods like shrimp, crabs, or crayfish is the lack of an air-filled cavity in their 

anatomy, unlike most fish. According to Foote [63], a swim bladder can dictate 

90% of the backscattered signal, with the rest of the physiology of the fish 

seemingly invariant to any significant deviations to the energy reflected. But as 

Nakken et al., Elliot, and Kim point out, key fish characteristics, such as its size 

[64], length [52] and tilt [65], influence the shape of this swim bladder. TS is, 

therefore, used as a function to estimate fish biology, with its application yielding 

successful results. The swim bladder significantly influences fish acoustics due to 

its effectiveness as an acoustic reflector, with gas-filled cavities showing a notable 

impedance difference in the water medium. This results in characteristically high 

TS readings amongst the noise mask, making fish easily identifiable. Clear and 

prominent readings subsequently enable deep learning tools to extract features 

from the data better, simplifying ML tasks.      

By contrast, the absence of a gas cavity means that decapods and shrimp are 

classed as weak scatterers [18], reflecting a weak signal that is often diffused in 

nature. The complexity in categorising swim-bladderless species of marine life has 

resulted in research aimed at accurately differentiating between various classes of 

zooplankton. The most important work in this area has arguably been done by 

Stanton, producing several papers classifying zooplankton into three anatomical 

categories [66]: 

1. Fluid-like (copepods, shrimp-like or salps)  

2. Elastic-shelled (gastropods) 

3. Gas-bearing (siphonophores) 
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By ensonifying animals with a broad frequency spectrum, Stanton produced TS-

frequency plots that are typically used for target identification [67]. Through a 

series of live and laboratory-controlled experiments, it was discovered that three 

distinct acoustic signatures could be observed and modelled for the three 

anatomical types of animals. This indicated that shrimp morphology produces a 

distinct and recognisable TS. Analysing the time differences of signal arrivals 

suggested that the acoustic pulses penetrate the body before echoing, indicating 

that the tissue of the shrimp contributes to the acoustic reading. This information 

provided the basis for the progression of more accurate scattering models. 

Research on shrimp scattering models surged after Stanton’s work, focusing on 

accurately capturing sound scattering. Initially, sphere models represented shrimp 

volume, emphasising material but neglecting length and orientation. This gap led 

to cylindrical models better capturing the shrimp’s shape. Subsequently, higher 

resolution models emerged, notably the Distorted Wave Born Approximation 

(DWBA) from Lavery et al. [68]. While these high-resolution models effectively 

predict individual shrimp backscatter, they are impractical for low-resolution 

imaging. For shrimp abundance using echo-averaging, simpler cylindrical models 

will likely suffice.  

It is difficult to demonstrate the degree to which biological factors influence target 

strength when present simultaneously, as each factor cannot be easily examined 

in isolation. By evaluating the biological factors of 25 adult walleye pollock, Elliot 

et al. [63] found that tilt demonstrated a greater acoustic influence compared to 

length and depth, corroborating Foote’s research that any target strength 

regression must account for tilt. Orientation may introduce unwanted transience in 

data, potentially leading to misleading conclusions, even for the most robust ML 

models. This makes the concept of producing definitive hydroacoustic insights into 

weaker signal targets appear impossible to achieve as a solitary observation tool. 

The subtext underlying the conclusions of these publications suggests that 

supplementary techniques relied upon by farmers, such as trawl sampling, must 

still be incorporated into any data modelling to validate the insights derived from 

the data. Ultimately, it signifies that hydroacoustic techniques, in their current 
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technological state, cannot yet be relied upon as automated solutions to replace 

existing methods of stock estimation, as even premium scientific equipment fails 

to provide definitive insights.     

2.3.5. Financial Viability of Sonar Systems 
To gauge the applicability of the proposed techniques, understanding the hardware 

used in this research direction is crucial. Studies primarily employ modern 

scientific MBES and imaging sonars for DL in aquaculture over basic single-beam 

systems. Devices of this specification produce echograms of high enough quality 

to easily apply DL techniques commonly associated with machine vision and 

optical images [54]. Scientific sonars significantly surpass uncalibrated devices in 

compatibility with hydroacoustic data processing programs. Software like 

Echoview derives measurements such as TS, enabling researchers to create 

statistical models alongside image classifiers to enhance accuracy. Whilst all 

these advantages point to the progression of research alongside scientific sonars, 

the field has so far failed to consider the financial feasibility of deploying these 

solutions in real-world applications for aquacultural farmers.  

Scientific sonars are expensive. Multibeam sonars can cost over £2,000 [69], [70], 

with prices increasing significantly for advanced features and software. The 

current market prices out most farmers interested in incorporating new 

technologies into their current behaviour monitoring, feeding, sampling and 

harvesting operations. This is further exacerbated when considering the reduced 

profitability of farming small marine life, such as shrimp, compared to more 

valuable livestock, like salmon [25]. Working within a low-profit margin, local 

shrimp farmers, in particular, require a technical solution with a low capital cost 

and a potentially minimal subscription cost model to retain the technical support 

and services of a company such as OTAQ. The financial discourse surrounding the 

implementation of a solution for shrimp farmers suggests that research should 

prioritise the cheapest viable solution that maintains the ability to extract key data 

insights. The significant budget reduction must still provide a utility that 

comfortably offsets the expenditure required, whilst acknowledging that the 

hardware limitations will directly inhibit the performance of a potential solution. 
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Creating the most economical solution will lay a foundation that can be referenced 

to explore how incrementally improving the system’s components by investing 

more capital can enhance data insights. Ultimately, the most optimal cost-to-

performance ratio can then be pinpointed for deployment.  
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3. Methods and Materials  

3.1. Operating Principles of the BRS-1  
The sonar used in this study is the BRS-1 developed by OTAQ. The device is a 

horizontal single-beam scanning sonar that is mechanically driven. It consists of a 

50 × 5mm rectangular transducer steered using a stepper motor with 400 steps. 

This allows the transducer to undertake 400 transmission-reception cycles at 

equal angular intervals across a 180-degree sweep. The transducer has an 

operating frequency of 640kHz, and a pulse is designed to propagate 5 metres. For 

every pulse-echo cycle, the received signal is filtered, amplified, and digitally 

converted into arbitrary intensity values scaling 0-4095. Range data bins are 

recorded 257 times, equidistant across the 5-metre range received. Further details 

of the sonar’s hardware are found in Appendix 1. Once data is collected from one 

sweep, the string of intensity values is stored in a CSV log file and uploaded onto a 

Raspberry Pi network and cloud storage using an AWS S3 bucket.   

3.2. Visualising Acoustic Data  
Figure 5 depicts an echogram of the experimental setup, developed from the 

acoustic data of one sweep. The CSV format lets each intensity value be arranged 

in a grid describing its spatial information expressed in angle and range. Polar 

equations can be set up and converted into Cartesian form. Meshgrids add a 

dimension to the millimetre-scale spatial data, allowing 2 additional grids to be 

formed, aligning each data bin to its x and y coordinates. A contour plot expresses 

all the data, representing each bin as a pixel and using colour scaling to convey the 

intensity.  
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Figure 5 –  chogram of the tank used in the study created using data 

 isualisation code 

3.3. Method Process Flow  
Experiments are carried out in a 2 × 5-metre water tank, filled to a depth of 1.5 

metres with chlorinated water, as shown in Figure 6. The sonar was centred ahead 

of the rear tank wall and positioned at half the water depth. To investigate whether 

machine learning models can perform accurately using the BRS-1, this study 

follows similar procedures outlined by Kristmundsson [54], Zhang [71] and Pargi 

[22], involving data collection, data processing and modelling for analysis.  

 

Figure 6 – Schematic of experiment design 
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3.4. Estimating School Density  

3.4.1. Study Design  
Dense schools can generally be received as singular echo traces by sonars [18]. 

Therefore, to model this, monofilament netting keeps targets together in a defined 

volume. School densities are formed by varying the number of targets in a 

monofilament wire net tethered to a sunk flat weight using a monofilament line to 

minimise reverberation [72]. A baseline for proving the concept with this device 

must be established. Hence, air-filled PVC spheres 55mm in diameter are used as 

targets to produce the most pronounced signal, shown in Figure 7. Spheres are 

isotropic reflectors [38], negating variables such as orientation. In practice, 

models true to field applications would need to be able to classify traces of 

schools in different positions and arrangements. For each quantity, the net is 

placed in different states such as its positions across the tank, at various depths, 

orientations and arrangements. For each state change, a scan is run, typically for 3 

minutes, during which multiple sweeps of acoustic data are collected. In an initial 

run, 988 echograms are acquired, with at least 50 situations collected for each 

category. 

 

(i)                                                                                            (ii) 

Figure 7    (i)  xperiment setup; (ii) Flat weight tethered to monofilament 

sphere bag   
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To increase the number of scans recorded, the sonar firmware is modified to 

reduce the size of sweeps collected at the acquisition stage using angle and range 

gating. By isolating the angular range to the 84 beams covering the effective area 

within the tank, which excludes wall echoes, 7.5 times as many sweeps are 

collected for any given time interval. This provides the opportunity to re-run the 

experiment with additional data to compare model performance between the two 

iterations.   

3.4.2. Dataset Construction and Pre-Processing  
In field environments, the features of a school trace should inform the user of the 

biomass contained within it, requiring data to correspond to a useful value. 

Labelling datasets with the desired information facilitates the categorisation of 

traces and the generation of useful model output. Hence, the data here is 

manually labelled after the number of spheres in the net, and we train classifiers to 

differentiate between the varying contents. A code is developed to search within 

the tank region for the echo trace within the scan. The detection function finds the 

echo trace and crops the sweep to isolate the region of interest from the 

background. Observational inspection discovers that a 21 × 31-pixel bounding box 

captures all the features of every trace acquired when centred around the highest-

intensity pixel, demonstrated in Figure 8. Echograms are pre-processed using 

manual inspection to clean the dataset. The dataset is doubled through data 

augmentation by horizontally flipping the scans.  
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Figure 8 – Bounding boxes of  ariable density echo signals used for model 

training 

3.4.3. Data Analysis  
Sufficient data is collected to analyse data using a 90/10 train-test split, where the 

21 × 31 bounding boxes are input into models. Data is split randomly without 

predetermined segregation to ensure partitions are created without bias. Multiple 

classification models, including ANNs, RF algorithms, and support vector 

machines, are trained and tested in parallel to compare performance. Since 

bounding boxes contain pixels devoid of echo data, Principal Component Analysis 

(PCA) is employed to reduce feature selection, with a 90% preset used to explain 

data variance. Each model is optimised using Bayesian algorithms, where 

hyperparameters are systematically improved to minimise prediction error. The 

error is evaluated using 5-fold cross-validation to ensure models are generalised.  
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3.5. Estimating Abundance  

3.5.1. Study Design  
An artificial target is developed to investigate if low-cost sonar can produce 

interpretable data when scanning complex shapes, as would be the case in 

farming applications. The target approximating a shrimp is created by modelling its 

key features. Hydrogels are hydrophilic polymers used within the biomedical field 

to model the mechanics of soft tissues such as muscle and cartilage [73], [74]. 

This is applied to estimate shrimp’s predominant soft tissue features using a 

bundled line of 3 hydrogel spheres, presented in Figure 9. This means that to 

create 80 targets, 240 spheres are submerged in water for 36 hours, growing from 

5mm to around 30mm in diameter. They are wrapped in cellophane to allow 

bundling, where the excess wrapping is fed through a 10-millimetre hex nut before 

the whole target is coated in resin. This component represents the hard-shelled 

carapace. Shrimp are benthic feeders [21], [57] . Hence, the additional weight of a 

nut is incorporated into the model to allow targets to move with less restriction and 

stay biased to the bottom of the tank. 

 

Figure 9 –  rtificial target shrimp tethered to a wooden peg 

Since flat weights would introduce a similar cumulative reverb signal, we did not 

see the incorporation of weight directly into the model as a significant issue. 

Nevertheless, Figure 10 presents the findings for the 15 largest intensities in the 
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tank when scanning the acoustic model, a nut on its own, and when the tank is 

empty to quantify the hex nut’s impact on the model. It is shown that the hex nut 

exhibits a very similar reading to the empty tank. In contrast, the target 

demonstrates an observable impact, indicating that signals received from the 

model shrimp are predominantly generated by the resin and gel features. 

 

Figure 10 – Backscatter comparison of a hex nut and the final target  

First, 80 targets are attached to clothes pegs with monofilament lines. Figure 11 

shows a 3 × 2-metre pond-covering net placed over the back half of the tank. 

Targets are suspended in the water by clipping the peg to the net through the mesh. 

Once a target is added to the tank, an angle and range-gated scan is run for 24 

seconds, where 4-5 complete sweeps are collected. The state of the environment 

can be altered by manipulating the net plane. Tent pegs holding the net are 

reconfigured by stretching, slackening or repositioning the net to simulate the 

collective and controlled movement of the targets in all axes of freedom. Roughly 

10 states are scanned for each target quantity. Stock can take up random spatial 

distributions and orientations. Hence, training data is varied using net movement 

to capture this and ensure models do not overfit. By suspending 80 targets within 

the 3 × 2-metre range, intensive stocking densities of shrimp are simulated, whilst 

smaller ranges represent intermittent and low cultures.  
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Figure 11 – Net o erlay suspending artificial targets using wooden pegs and 

monofilament wire 

3.5.2. Dataset Construction 
The range and angle gating developed during the previous experiment means the 

scan covers 84 angles and 161 range bins to acquire tank readings. The 

dimensions of the data are reduced by summing the total intensity along each 

beam position, resulting in 84 features. Evaluating every pixel in a sweep can be 

computationally expensive and be a source of data overload [34]. Hence, 

employing echo-integration techniques like this simplifies the data, makes it easy 

to process, and prevents the need for additional equipment. Analysing large 

sections of sweep data can be challenging due to the high noise levels 

experienced in readings. Thus, denoising techniques are needed to clean the data. 

To increase the signal-to-noise ratio of each scan, all the available sweeps of the 

same state are averaged [18] to smooth out readings and reduce random noise 

whilst maintaining actual target signals. A code is built to extract the data from 

each scan folder and automatically provide label data based on the folder 

information.   
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3.5.3. Data Analysis 
Due to this application’s large number of discrete classes, a regression learning 

approach is opted for over classification. It is hypothesised that target number and 

summed intensity will be highly correlated, making regression learning models 

appropriate. In real-world shrimp farms, shrimp are farmed in ponds and can be 

stocked at different densities depending on the farming philosophy. While 

extensive cultures stock shrimp at approximately 1-10 shrimp/m², intensive 

cultures can stock shrimp at 25-30 shrimp/m2 [9]. Thus, decision trees, random 

forest algorithms, neural networks, support vector machines and Gaussian 

Process Regression (GPR) models are trained with datasets of varying sizes and 

abundance ranges and compared to determine the ideal densities at which 

machine learning models perform. Evaluating ranges also investigates how 

overlapping echoes degrade data quality and hinder model performance. Bayesian 

optimisation algorithms are again used to fine-tune hyperparameters over 30 

iterations to minimise the validation error of the 5-fold cross-validation. 
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4. Results  

4.1. Estimating School Density 

4.1.1. Evaluating Classifier Performance  
Model performance is evaluated using performance metrics, including prediction 

accuracy, precision, recall, and F1-score, expressed as percentages, where a 

higher percentage indicates better performance. Since models undergo 

supervised training, accuracy is simply the percentage of correct positive and 

negative predictions from the total instances evaluated. Accuracy can be broken 

down further into precision and recall. Precision measures the correctness of 

positive predictions from the total positively predicted. Alternately, recall 

measures the proportion of true positives correctly classified as positive 

predictions. The F1-score measures the mean between the precision and recall 

[75]. Metrics are calculated using weighted macro averaging based on the number 

of instances in which each true class appears. This enables the evaluation of 

overall model performance while accounting for dataset imbalances. 

Table 2 presents the performance found in unseen test data. It is observed that the 

best-performing model for this application is an optimised random forest 

algorithm that sampled 2 features using 481 trees with a maximum of 738 splits in 

a tree. Using 988 echograms from full sweeps resulted in an overall accuracy of 

87.95%. The confusion matrix of the model shown in Figure 12 presents the 

distributions of predictions. A perfect model would demonstrate 100% true 

positives distributed along the leading diagonal of the chart. Deviations from the 

diagonal are represented as false negatives, which indicate misclassification. The 

matrix indicates that the overall accuracy is heavily biased towards the accuracy of 

detecting an empty scan, at 97.5%. The True Positive Rates (TPR) are inferior to the 

False Negative Rate (FNR) in classes 2 and 3, indicating that models were weak at 

distinguishing traces containing 2 or 3 spheres. The predictions made for 3-sphere 

echo traces being distributed comparably across all 4 target-present categories, 

which a low F1-score captures. Since 651 features are evaluated in each sweep, a 
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lack of data possibly hinders model performance. Without optimisation, data 

acquisition speeds are likely a limiting factor in obtaining the required data.   

Model Accuracy 

(%) 

Precision 

(%) 

Recall  

(%) 

F1  

(%) 

Random Forest Algorithm 87.95 70.06 69.54 69.80 

Single-Layer Neural Network  84.83 61.09 61.94 61.51 

Single Tree 82.93 57.92 56.85 57.38 

Support Vector Machine 84.72 60.99 61.42 61.20 

Table 2 –  ccuracies of models predicting sphere number 

 

Figure 12 –  onfusion matrix with true positi e and false negati e rates of the 

first iteration 

4.1.2. Evaluating Performance using Data from Optimised Sonar 
Using updated firmware, 2336 sweeps are collected, doubled through 

augmentation, and added to the existing dataset. For comparison, the 

performance of this iteration is evaluated in the same way as the previous 

experiment. Table 3 shows the performance improvement. 
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Model Accuracy 

(%) 

Precision 

(%) 

Recall  

(%) 

F1  

(%) 

Random Forest Algorithm 89.92 79.02 79.98 79.50 

Single-Layer Neural Network  90.78 80.35 80.57 80.46 

Single Tree 83.24 64.16 64.81 64.48 

Support Vector Machine 89.32 77.52 77.71 77.61 

Table 3 –  mpro ed accuracies of models with additional data 

Table 3 shows that the best-performing model was achieved using a Single-Layer 

Neural Network and a 90% PCA, with model accuracy improving to 90.78%. The 

network is optimised to have a 289-layer size with a Tanh activation function. The 

model perfectly predicts the presence and absence of targets in the tank, 

indicating that the model is well-suited for detection applications. Figure 13 

indicates that significant improvements are seen across the leading diagonal in all 

classes, critically in classifying 2 and 3-sphere traces, which is reflected in the 

significant improvements in precision and recall. The TPR in each class is above 

70% in every category. This suggests that increasing the dataset’s size by an order 

of magnitude has provided the context to differentiate between echo traces more 

confidently. The error distribution generally stays between 1 class difference on 

either side, with errors beyond that accounting for a maximum FNR of 10% in each 

class. 
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Figure 13    onfusion matrix with true positi e and false negati e rates of the 

second iteration 

4.2. Estimating Abundance 
Evaluating Regression Model performance involves analysing prediction errors 

using the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The 

model’s fit to test data is evaluated using the R-Square, where a value closer to 1 

expresses a better fit. Table 4 summarises the performance of each trained model 

when trained on a complete dataset, predicting abundance from a target sample 

range of 80. Neural networks and GPR models are well-suited to this application, 

with GPR models demonstrating the best performance. Using a 90/10 train-test 

split, the model fits the data strongly. The R-squared value of the GPR model 

conveys its ability to explain around 98% of the variance in the test data. This is 

further depicted with test predictions being correctly predicted to an average error 

of 2.42 of the targets, around 3% of the sample range. Although the results reflect a 

controlled lab setting with static targets, anything short of a steep decline in 

performance from this baseline caused by noisy environments can still be viewed 

as a satisfactorily functioning model.   
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Model MAE RMSE R-Squared 

Random Forest Algorithm 4.23 5.76 0.937 

Gaussian Process 2.42 3.24 0.980 

K-Nearest Neighbour 4.86 7.29 0.900 

Single Tree 4.48 6.94 0.908 

Support Vector Machine 4.97 6.90 0.91 

Three-Layer Neural Network 2.91 3.97 0.970 

    

Table 4 –  erformance metrics of abundance estimation models when trained 

on a full 80 target dataset 

Model performance is further compared at different abundance ranges, as 

summarised in Table 5. The results validate the GPR’s suitability for this 

application; it is the best-performing model in all but one size range. After 

increasing sample size testing by 10 targets at a time, it is clear that regression 

models predict abundance best when the maximum number of targets is 50 within 

the 4 m2 sample area, equating to a 12.5 target/m2 density.  

Abundance 
Sample 
Range 

Best Performing Model MAE Maximum Residual 
as a Percentage of 
Abundance Range 

R-
Squared 

0-40 Gaussian Process 1.33 14.15 % 0.979 
0-45 Gaussian Process 1.62 12.6 % 0.979 
0-50 Gaussian Process 1.36 6.8 % 0.989 
0-55 Gaussian Process 1.58 8.8 % 0.985 
0-60 Gaussian Process 1.90 10.3 % 0.982 
0-70 Random Forest Algorithm 2.33 11.1 % 0.978 
0-80 Gaussian Process 2.42 12.5 % 0.980 

     

Table 5 –  erformance metrics of the best models created when training and 

testing on different abundance sample sizes 

Further sample sizes are tested at more precise intervals around 50 to observe 

potentially more optimal ranges; however, the additional data confirms that range 

50 has the lowest error. The data also aligns with the strongly correlated pattern in 

model performance with range. At conservative ranges, models seem to observe 

competitive absolute errors. However, the models are normalised for better 
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comparison by finding the percentage error of the biggest residuals for each 

model. As a result, these low-range models are found to predict relatively high 

error values, which is reflected in their inferior ability to explain variance, 

expressed by a lower R-squared value. This is likely due to the smaller dataset size 

resulting from limiting the abundance sample. It may be found that if models were 

trained on equal-size datasets, conservative-range models would match, if not 

outperform, the best model with the added context. In contrast, models operating 

with higher abundances increase in error with abundance after the optimal range. 

This aligns with expectations due to the deteriorating effect of increased stock 

density on a signal passing through it [54]. Increasing the density reduces the 

differences in the total acoustic energy received between 2 consecutive target 

quantities. This makes prediction variance challenging to explain for data that is 

progressively similar. Figure 14 displays the distribution of residuals for the GPR 

trained on an abundance range of 50. Residuals show no sign of correlation, 

indicating well-balanced and robust performance when predicting scans of 

unseen states. 

 

Figure 14 – Residual plot when tested on a 50 target density 
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5. Discussion  
Our results demonstrate the success of machine learning in interpreting and 

explaining low-resolution 2D acoustic data for abundance estimation. Using a 

variation of echo-integration, we show that regression models can fit to scan data 

with an R-squared of 0.989 even when data dimensions are reduced, exploiting a 

computationally efficient data processing method and achieving predictions 

accurate within an error of 1.5 targets. A technique has effectively detected 

objects and automatically processed them into the appropriate structure for 

analysis. ML classifiers can categorise echo traces into density information to an 

accuracy of 90.78%, establishing a baseline of feasibility for classification 

applications.  

Modelling density using a net full of hollow uniform spheres introduces the 

concept to sonar and ML methods at a rudimentary level. Using simple targets 

here creates a simplified and idealised representation of school densities. As 

such, results reveal the potential limitations for commercial implementation. Air-

filled spheres backscatter noticeable acoustic energy due to the high acoustic 

impedance differential between air and water. This makes signal changes more 

pronounced, creating differences in data that are seemingly easier to classify for 

ML models. With this context, an F1-score of 80.46% suggests the sonar is not 

currently suited to reliably classify densities of more complex and weak 

backscattering shrimp targets in this manner. This can be explained through 

several technical aspects: (i) Low resolution, particularly in the range where echo 

data is resolved at around 20mm, making it possible for crucial echo data to be 

skipped over. (ii) The lack of spatial information in the z-plane makes sphere 

arrangements challenging to interpret. (iii) Horizontal propagation relies heavily on 

reflection angles to carry echo data [47]. The transducer size can be deemed 

suboptimal for this application, with a narrower beam reducing the number of 

reflections, which is likely to yield more precise data. (iv) High noise introduced 

predominantly by signal processing and electroacoustic circuitry. This creates 

speckle noise [16] amplified with the range due to the time-varied gain amplifier, 

degrading data quality even in laboratory conditions.  Although these hardware 
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limitations render the sonar incapable of serving as a scientific measuring tool, the 

device is found to be coherent enough to have its data interpreted using ML 

techniques. However, limitations that create such noise and low resolution make 

analysing individual echo signals through bounding boxes challenging, simply 

because of the lack of information conveyed by the sonar within the regions of 

interest. Breaking down compact overlapping echoes within cropped sample areas 

to estimate individual school density is therefore a suboptimal application for this 

specification of sonar.  

In contrast, utilising a larger portion of the sonar's observational capacity for 

general abundance estimation shows greater compatible functionality. Regression 

models estimating abundance demonstrate a correlation between increasing 

sample range and absolute error, maintaining a maximum percentage error of 

around 10%. Increasing training data in more diverse positions may enhance 

accuracy in explanations of these variances [54]. Whilst a recommended 

maximum abundance has been found, sample sizes both greater and smaller can 

have data variance explained to a similar standard. Despite this, some limitations 

must be considered. For abundance estimation, the data processing method 

employs averaging, an effective technique for enhancing the signal-to-noise ratio. 

However, this can only be executed reliably in static conditions where targets 

remain still during scanning, which is improbable during in situ observations, 

where averaging may be misrepresentative [6]. It may be possible to sweep faster 

with improved hardware and to take minimal sweeps, achieving the same effect 

before major movements occur within a few seconds. While training time and 

computational speeds are realised in real-world applications, they are not 

considered factors in this study. Nevertheless, the study uses an 8th Gen Core i5 

processor, available on easily accessible hardware, to develop each model. 

Hardware limitations can become apparent when training GPR models on range-

80 data that is augmented to double in size. The exclusion of the augmentation 

step from the experiment still produces satisfactory results, with its inclusion 

unlikely to significantly enhance models based on the results.                                 
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Using a basic cost-effective specification, the sonar produces data that can be 

used to make population predictions in a sample area. Whilst it is not determined 

how closely the artificial targets approximate shrimp, the rough, heterogeneous 

nature of the targets means real-world parameters such as orientation, depth and 

material can be captured to a reliable degree in a varied dataset to make accurate 

predictions. The effect of the abundance range impacting predictions is correctly 

observed. Placing a proportion of targets on the tank floor to simulate shrimp 

behaviour is data that models can explain to a reasonably good standard. The 

targets may better represent alternate stock with greater reflectivity, such as fish 

[65], in which case, results can still serve as a helpful reference. To more closely 

simulate field conditions, such as using real shrimp, is beyond the scope of this 

study, yet from these constraints, creative modelling methods are proposed to 

overcome the challenge of sonar data acquisition.  

Expanding on artificial target modelling can form the basis of reframing future 

studies to overcome the obstacles of on-field data acquisition. The results serve 

as a marker of capability for basic specification sonars. Despite their compromise 

on hardware components, regression models can interpret the acoustic data of 

well-balanced datasets to make accurate predictions.  
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6. Conclusion and Recommendations  
This project utilises a basic specification scanning sonar to collect training 

datasets of two circumstances applicable to a shrimp farming environment. 

Developing a visualisation tool helps process data and create further automated 

tools for feature engineering tasks. Whilst the sonar is hardware-limited to break 

down the details of an echo trace, angle-gating scans offer the data acquisition 

speeds needed to produce reasonable classification accuracies. Echo-integration 

strategies heavily reduce the features required for prediction and allow regression 

models to interpret sweep data effectively, mapping data to an R-squared of 0.989. 

Models can predict the population between 0-80 targets to a mean absolute error 

of 2.3, indicating a methodology is presented whereby insights can be derived from 

basic acoustic data. It also suggests that sonars of this specification can be 

incrementally improved upon to be deployed in real shrimp ponds as an affordable 

solution.   

It is recommended that artificial target models be refined for shrimp for easy 

testing to overcome health and safety regulations in laboratory environments. 

Sonar specifications may additionally be improved upon to observe how 

improvements in hardware correspond to model performance against cost. 

Datasets should be collected in real pond environments to investigate how 

environmental factors impact acoustic propagation and data quality. 
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Appendices 

Appendix 1 – Hardware Features of OTAQ’s BRS-1  
The BRS-1 is an acoustic telemetry system designed and manufactured by OTAQ to 

function as an active-pulsed sonar designed to detect shrimp within a submerged 

body of water. Short for Biomass Reader for Shrimp, the device is integrated into an 

Internet of Things (IoT) infrastructure, whereby digital data is generated from 

electrical signals induced within the receiver electronics. The hardware 

components are operated by a Raspberry Pi controller, which sends command 

prompts to the device via its network. The generated data is stored in log files. The 

raw data can be post-processed into several forms for analysis, with the aim of 

creating valuable insights for farmers, such as the behaviour of shrimp or the 

biological morphology index of shrimp, including biomass, length, and population 

within a sampled area.   

The system can be broken down into 3 components, interworking to facilitate a 

robust and cost-effective solution: 

1. The BRS-1 Hardware: The transducer, stepper motor and associated 

circuitry. 

2. The Raspberry Pi network and Firmware: Digital signal data generation and 

storage. 

3. Post-Processing Software: Code to transform data for digitalisation and 

machine learning. 

The post-processing software is the primary focus of the research project, and the 

network features of the system utilise protocols common for IoT and cloud storage 

solutions. Hence, this appendix will detail the hardware components featured in 

the BRS-1. 

The BRS-1’s hardware can be segmented into four categories:  

• The Central Processing Unit (CPU) 

• The stepper motor and drive electronics   

• The transducer, connected to the transmitter and receiver electronics 
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• An Inertial Measurement Unit (IMU) 

The Main Printed Circuit Board (PCB) facilitates connection points between the 

CPU and all other components. Therefore, the device's firmware, which contains 

the operational instructions of the default function, is uploaded onto the CPU via a 

Power over Ethernet (PoE) cable. The PCB also includes a Serial Wire Debugging 

(SWD) port, which allows external devices to communicate with the device and 

facilitate debugging. SWDIO (Serial Wire Debugging Input/Output), SWCLK (Serial 

Wire Clock), and nRST are pins available within the device to enable the execution 

of protocols for handling malfunctioning devices. The CPU consists of two STM32 

processors, one of which is dedicated to managing the power supply. A 2980 

stepper driver is used to power the stepper motor, relay the sweep instructions, 

and evaluate the current step position of the motor.  

Using two MOSFET switches, the transmitter produces a square wave signal at the 

operating acoustic frequency of the transducer (64 kHz). Capacitors are integrated 

into the circuit to smooth the wave's rise and fall times, thereby enhancing 

consistency. To handle the high frequencies and the necessary high voltage, the 

MOSFET switches are paired with drivers. The primary benefit of using MOSFET 

drivers in the sonar system is enabling high switching speeds while minimising 

switching losses. These drivers supply the required voltage to surpass the high gate 

threshold voltage, enabling the MOSFET to switch on and allowing the higher 

source voltage to be delivered to the transducer, as shown in Figure 15. The low 

impedance of the driver Integrated Circuit (IC) ensures that the gate capacitors are 

charged more quickly with the correct voltage and discharged faster through a 

lower resistance pathway provided by the driver, resulting in faster switching. This 

also helps protect the MOSFET from overheating and high-voltage damage by 

reducing the effects of the gate capacitance and inductance. The microcontroller, 

which provides the low-voltage square wave, is protected from potential back 

current due to the driver’s resilience to negative transients travelling from the 

transducer through to the drain. When the transmitted square wave signal 

matches the natural frequency of the transducer, resonance is achieved, resulting 
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in increased stresses and strains within the piezoelectric material, which induces 

amplified vibrational amplitudes at the same frequency [37].  

 

Figure 15 – Schematic of   SF T and dri er circuit [76] 

Comparatively, the receiver electronics are more complex, requiring a differential 

amplifier, fixed and TVG components, and Butterworth filter. Each component is 

vital in the signal-treating process, eliminating noise and amplifying the signal for 

digital conversion and analysis. A TVG signal is created digitally to compensate for 

the transmission losses that accumulate with distance. This signal is fed through a 

Digital-to-Analogue converter (DAC) using a bandgap voltage reference to maintain 

the signal's precision with a stable step voltage and resolution. A timer within the 

microcontroller is programmed to supply the variable gain following the 

exponential TVG range function of 40 log R. The gain is varied using a Lookup Table 

(LUT) instead of external Programmable Logic Devices (PLDs). While PLD 

microchips use an integrated circuit of logic gates to execute continuous 

functions, LUTs are tabular data structures containing two sets of pre-computed 

values [77]. This means the LUT applies pre-assigned gain values to a discrete 

number of time intervals to mimic the 40 log R function. Implementing LUTs using 

the microcontroller frees the CPU from performing computations by running 

simple data search and retrieval protocols, making the device more efficient in 

terms of space, expense, and computational cost. However, the efficiency from a 

discrete number of lookup values compromises the smoothness of the signal, as 

only a finite number of gain values are applied rather than the ideal gain curve. The 

device also compromises on responsiveness due to a microcontroller that is 
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overstretched in managing multiple systems within the device. While PLDs can 

perform calculations in nanoseconds, relying on the microcontroller to run 

retrieval protocols can still take microseconds to perform. The TVG signal is input 

into the receiver filter alongside the true received signal, with a signal derivative of 

both being fed through using another operational amplifier generated by the 

transducer from the echo signals. The received signal must only contain 

frequencies close to the original pulse projected to confirm it is from the echo 

signal and reject reverb and unwanted noise from the scanned environment. An 

active RC Bandpass filter ensures only the desired frequency range from the 

received signal is carried through for digital processing. The Butterworth 

configuration is used for this application, which prevents ripples or distortions 

from both the pass and stop bands, maintaining the accuracy of the echo signals. 

A gradual roll-off from the pass band allows any echo signal distorted from 

interfacing with a target to be picked up in the received signal at a reduced 

magnitude. The signal is subjected to further amplification using a closed-loop 

gain design, leading to a controlled and reliable increase in the signal magnitude 

and smoothing. The valuable data in the echo signal is the amplitude of the several 

peaks correlating to the acoustic reflectivity of the interacted targets. A rectifier 

circuit is inserted before the signal is digitised to isolate this data from the received 

signal. A series of diodes causes the carrier component of the signal to be 

removed, leaving behind an envelope signal. This processed signal is fed back into 

the main CPU microcontroller, which is digitalised for numerical conversions of 

signal amplitude for set intervals dictated by the CPU clock. The microcontroller 

that processes the signal has a maximum input voltage of 3 volts; hence, a Zener 

diode regulates the voltage by providing a back current path, preventing excess 

voltage being supplied to the input that can overload or damage the CPU. The 

voltage cap means the maximum digital signal received translates to a value of 

4095, whilst a null reading outputs a zero. The raw numerical strings are sent to the 

Raspberry Pi network and formatted into log files.  

An Inertial Measurement Unit (IMU) is a system integrated into each device, with 

the primary purpose of measuring and recording its relative orientation. In normal 
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operation, the device is expected to be submerged upright, with the transducer 

face perpendicular to the water surface. The configuration ensures the device is 

running as a horizontal propagation sonar, with the echo data heavily influenced by 

changes in the elevation angle of the beam. The IMU’s inclusion in the device 

provides additional telemetry to validate data and analyse orientation as a 

potential cause of anomalous readings. The hardware and firmware components 

had already been developed and well-integrated by OTAQ; however, a lack of post-

processing analysis software maintained uncertainty regarding the feasibility of 

achieving a solution with the device in its current form. The lack of exploration here 

formed the basis of the project’s overarching research question: Can post-

processing data techniques be applied to the sonar's output to achieve valuable 

insights? 
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Appendix 2 – Sonar Visualisation Code  

 

Figure 16   Sonar data  isualisation code flowchart 
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Figure 17   Sonar data bounding box code flowchart 

 ode: 

% sonar v3.4: Image, Bounding Box and if statement streamline 
% v_.4: Bounding box multi-breach patch, Max value auto data tip 
% -------------------------------------------------------------------------- 
% - Description: This code visualises Sonar data output from the BRS by 
% producing surface plots using a cartesian meshgrid to form Sonar Images 
% - Code also creates sleuth regions and bounding boxes 
% -------------------------------------------------------------------------- 
% - Author: B.Eng. Hamzah Isap 
% - Contact: hamzahisap02@gmail.com 
% - Date: November 2024 
% -------------------------------------------------------------------------- 
function s = sonar(In,Bg,Av,varargin)  
    % In: Sweep Intensity Array, Bg: Background filter toggle (optional), Av: 
Background arrays needing averaging (optional)   
   Sweepsize = size(In(:,:,1),1); wide = Sweepsize/2;  
   offset = 0; minrng = 0; % Values are manually input based on parameters 
chosen in the command window for the scan (fware: offset:-20,minrng:60) 
   centre = 400 + offset;  
   Angle = centre-wide:centre+wide-1; 
   if In(2) == In(1)+1 % Default all sweeps to descend in angle 
   In = flip(In, 1);  
   end 
   cIn = In(1:size(In,1),2:size(In,2)); % Crop 'In' (to make cIn) to remove 
angle to only leave intensity 
    if nargin == 1 
        DeNoise = zeros(size(cIn,1),size(cIn,2));  
    elseif strcmp(Bg,'none') % Type 2nd argument as none for no noise filter 
        DeNoise = zeros(size(cIn,1),size(cIn,2)); 
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    elseif strcmp(Bg, 'average') % Type 2nd arg as average to use the 'Av' 
input 
        DeNoise = NoiseAv(Av);  
        DeNoise = DeNoise(:,2:size(In,2));     
    elseif isscalar(Bg)==1 % For a constant threshold, input a single numeric 
value 
        DeNoise = Bg.*ones(size(cIn,1),size(cIn,2));      
    elseif isa(Bg, 'double')==1 % To subtract an already averaged or specific 
background   
        DeNoise = Bg(:,2:257); 
    end 
    cIn = cIn - DeNoise; % Denoise the scan 
    cIn(cIn < 0) = 0; 
    RngRes = 19.53125; % Range resolution / mm 
    Dis = (RngRes*(minrng)):RngRes:(RngRes*(size(cIn,2)+minrng)-2); % Define 
Distance 
    th = 200.*ones(1,size(In,1)); % (Change dimensions column from the data 
or a generated row array) 
    Rad = (Angle - th).*(60/133).*pi/180; % Angular Resolution  
    [rr, tr] = meshgrid(Dis, Rad); 
    o = size(rr); 
    x = rr.*cos(tr); % Convert to Cartesian coordinate system 
    y = rr.*sin(tr); 
    a1 = 1; a2 = 400; g1 = 15; g2 = 241; %centre: 175  
    % Zoom Parameters z-(Angle range, Distance Range) - optional tool for 
manual inspection 
 
    %zx = x(a1:a2,g1:g2);  
    %zy = y(a1:a2,g1:g2); % Carnforth Zoom (165:235,90:150) Carnforth Gating 
~10 degree offset (185:265,1:230) 
    %zIn = cIn(a1:a2,g1:g2); % Minnowtech Zoom (1:400, 26:60) 
    p = surf(x,y,cIn); % Make z(vars) = R(vars) to see what area the bounding 
box search is evaluating 
        %surf for z values, p colour for just 2d images (x,y,cIn for whole 
sweep) 
    shading("flat"); set(p, 'Edgecolor', 'none'); colormap("parula"); 
colorbar % graphics options 
    view(2) % View over the xy plane 
    %clim([0, 4100]); % set manual colour scale instead of automatic ranging  
  xlim([-5000, 5000]); ylim([0, 5000]) % set x-y scale (optional) 
    pbaspect([2 1 1])  % Aspect ratio for angle and range gate within tank  
    [mximus indxicus] = max(cIn, [], 'all'); % ID and locate the max-
intensity pixel of the scan (used for patched sonar) 
    sciz = size(cIn); 
    [row, col] = ind2sub(sciz,indxicus);  
    locax = x(row,col); 
    locay = y(row,col); 
    locai = cIn(row,col);  
    %datatip(p,locax,locay); 
    %} 
    %% ------------------------------- Scan in tank -------------------------
----------------------------%% 
    % This section of the code was used before the latest Sonar patch. Is 
    % used to angle and range gate to create a sleuth region that isolates 
the scan from the tank walls 
    %------------------------------------------------------------------------
---------------------------% 
    % 
    if size(cIn,1) > 399 
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        b1 = 110; b2 = 240; l1 = 20; l2 = 237; % b_ = angle limits % l_ = 
range limits 
    else  
        b1 = 20; b2 = size(cIn,1)-20; l1 = 15; l2 = size(cIn,2) - 15; 
    end  
    % region of search scan 
    Rgx = x(b1:b2,l1:l2); 
    Rgy = y(b1:b2,l1:l2); 
    RgI = cIn(b1:b2,l1:l2); 
    % 
figure 
    ps = surf(Rgx,Rgy,RgI); % Outputs echogram of the sleuth region 
    shading("flat"); set(ps, 'Edgecolor', 'none'); colormap("parula") 
    colorbar; view(2) 
    xlim([-5000 5000]); ylim([0 5000]); pbaspect([2 1 1]); 
    %} 
    %% ------------------------------ bounding box --------------------%% 
    % This section of the code creates a bounding box surrounding the 
    % signal of interest which is the largest pixel in the sleuth region 
    %------------------------------------------------------------------------
---------------------% 
    % 
    [mx, is] = max(RgI,[],'all'); %Find the pixel in the gated scan that has 
the largest intensity 
    sz = size(RgI); 
    %sprintf("RgI = %f", sz) 
    [rw, cl] = ind2sub(sz,is); % Obtain the row (angle) and column (length) 
number within scanned region of this pixel 
figure % Create new image of bounding box of the ROI 
    locx = Rgx(rw,cl); 
    locy = Rgy(rw,cl); 
 %   sprintf("max value in scan: %f \nlocation of max in x: %f mm\nlocation 
of max in y: %f mm", mx,locx, locy) 
 %   sprintf("row value: %d \ncolumn value: %d",rw,cl) 
    w = 15; le = 10; slce = 0; shft = 0; % w: horizontal distance from centre 
pixel and box edge, le: vertical distance; 
     % 
     % This series of if statements are used if the centre pixel creates a 
     % bounding box whose edges extend out of the sleuth region causing 
     % missing data. 
     % The statements recalls the missing data from the initial scan and 
     % adds it on to complete the box 
     % (Believe there is a much easier way of acheiving this by evaluating 
the initial scan instead) 
     % 
    if rw <= w %i.e 15 
        slce = -(w-rw+1);   
        sprintf("slce is: %d",slce)  
        Rgx = [x((b1+rw-w-1):b1-1, l1:l2) ;Rgx(1:(size(Rgx,1)+slce),:)]; Rgy 
= [y((b1+rw-w-1):b1-1, l1:l2) ;Rgy(1:(size(Rgy,1)+slce),:)]; RgI = 
[cIn((b1+rw-w-1):b1-1, l1:l2) ;RgI(1:(size(RgI,1)+slce),:)]; 
        %rw = w+1; 
    end 
    if rw >= b2 - b1 - w % i.e. 115 %'+2' taking into consider that e.g 4:10 
is 1 greater than 10-4 and also here, we start with the row after that number 
        slce = rw-(b2-b1-w)+2; %When the max pixel breaches both limits, the 
new Rg must be cut and added to equally to ensure it can be contacated again 
for the second limit  
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        sprintf("slce is: %d",slce) % slce is the amount exceeded and this 
how much should be taken off the top to be given to the bottom. It also comes 
into play for correcting a second limit scenario 
        Rgx = [Rgx(slce:(size(Rgx,1)),:); x(b2+1:(b1+rw+w+1), l1:l2)]; Rgy = 
[Rgy(slce:(size(Rgy,1)),:); y(b2+1:(b1+rw+w+1), l1:l2)]; RgI = 
[RgI(slce:(size(RgI,1)),:); cIn(b2+1:(b1+rw+w+1), l1:l2)]; 
        %rw = b2 - b1 - w; 
    end 
    if slce < 0 
        shft = slce; 
    end 
    if slce > 0 
        shft = slce - 1; 
    end 
    if cl <= le %if column number is less than the lower half-height of box 
        Rgx = [x(b1+shft:b2+shft, (l1+cl-le-1):l1-1) Rgx]; Rgy = 
[y(b1+shft:b2+shft, (l1+cl-le-1):l1-1) Rgy]; RgI = [cIn(b1+shft:b2+shft, 
(l1+cl-le-1):l1-1) RgI]; 
        %cl = le+1; 
    end  
    if cl >= l2 - l1 - le % i.e. 210 
        Rgx = [Rgx x(b1+shft:b2+shft, l2+1:(l1+cl+le+1))]; Rgy = [Rgy 
y(b1+shft:b2+shft, l2+1:(l1+cl+le+1))]; RgI = [RgI cIn(b1+shft:b2+shft, 
l2+1:(l1+cl+le+1))]; 
        %cl = l2 - l1-le; 
    end  
    [rw, cl] = find(RgI == mx); %Re-evaluate rw and cl values  
 %   sprintf("row value: %d \ncolumn value: %d",rw,cl) 
    bx = Rgx(rw-w:rw+w,cl-le:cl+le); % Index the bounding box with the 
largest pixel value at the centre  
    by = Rgy(rw-w:rw+w,cl-le:cl+le);  
    bIn = RgI(rw-w:rw+w,cl-le:cl+le); 
    pb = surf(bx,by,bIn); 
    shading("flat"); set(pb, 'Edgecolor', 'none'); colormap("parula"); 
%clim([0 2500]); 
    view(2); pbaspect([1.5 1 1]); colorbar  
    bIn = reshape(bIn, 1, ((2*w)+1)*((2*le)+1)); 
    bdata = [bIn locx locy]; 
    s = bdata; % Output the bounding box matrix 
    %}  
end 
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Appendix 3 – Echogram Timelapse Code 

 

Figure 18   Shrimp data time lapse code flowchart 

 

 

 

 

 

 

 

Start

End

Create a new folder in to
store echograms

Is the sweep
complete?

Index sweep files from 1
to n, using counter i

Read
directory of
sweep files

Label sweep number Label quantity of shrimp Write sweep as the next
frame in the video

Does i   n?

Initiate Sonar visualisation
code

Yes No

No

Yes

Read sweep
file i

Create video file

Save
echogram
as JPEG file

Save Video

Add 1 to counter i



56 
 

Code: 
% Sonar Scanner v2: incomplete log file patch 
% -------------------------------------------------------------------------- 
% - Description: This code returns Sonar Images for each sweep and compiles  
% them into a video from log files contained in the current folder by  
% typing SonarScanner in the command window   
% 
% *NOTE 1*: Ensure the current folder opened in MATLAB is the folder 
containing the log 
% files 
% *NOTE 2*: In event of path error, simply add folder to the MATLAB path 
% -------------------------------------------------------------------------- 
% - Author: B.Eng. Hamzah Isap 
% - Contact: hamzahisap02@gmail.com 
% - Date: September 2024 
% -------------------------------------------------------------------------- 
function SonarScanner(Av) 
    mkdir SonarScanImages 
    files = dir('*.log'); % Convert log files to 3D array 
    csweep = ones(400,257); 
    for i=1:length(files) %2:(length(files)-1) 
        T = readtable(files(i).name, Range="C1:IY400"); 
        if size(T,1) <= 399 
            continue 
        end  
        csweep(:,:,i) = table2array(T); 
    end 
        idx = all(csweep == 1, [1 2]); 
        id0 = all(csweep == 0, [1 2]); 
        csweep(:,:,idx) = []; 
        csweep(:,:,id0) = []; 
    %b1 = repmat(1, [1 24]); b2 = repmat(2, [1 19]); b3 = repmat(3, [1 24]); 
b4 = repmat(4, [1 24]); b0 = repmat(0, [1 13]); 
    %bn = [b1 b2 b3 b4 b0]; 
    cd SonarScanImages % Create files inside folder 'SonarScanImages'  
    v = VideoWriter("SonarScans","MPEG-4"); 
    v.FrameRate = 2; % Set fps 
    open(v) 
    for i = 1:length(files) %2:(length(files)-1)      
        sonar(csweep(:,:,i))%,'average',Av) % Use the sonar command to 
produce images 
        %title(sprintf("balls: %d, sweep no: %d", bn(i),i)) 
        set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 
        saveas(gcf,sprintf('sonarscan_%d.jpg',i)) % Image number corresponds 
to sweep number 
        frame = getframe(gcf);  
        writeVideo(v,frame) % create video from string of images 
        clf 
    end  
    close(v) 

   

 

 



57 
 

References 

[1] O. Mendoza et al, "Metagenomic Analyses of Biofilms on Whiteleg Shrimp 
(Litopenaeus vannamei) Effluents: Implications for Worldwide Aquaculture 
Bioremediation and Environmental Sustainability in the Current Trend of Climate 
Change and Global Warming - State of the Art and Experimental Proof of Concept," 
Reviews in Fisheries Science, vol. 29, (4), pp. 431–444, 2021. Available: 
https://www.tandfonline.com/doi/abs/10.1080/23308249.2020.1820720. DOI: 
10.1080/23308249.2020.1820720. 

[2] E. K. Pikitch, D. D. Huppert and M. P. Sissenwine, "Fisheries Management," 
1994. . 

[3] M. S. Hossain, M. J. Uddin and A. N. M. Fakhruddin, "Impacts of shrimp farming 
on the coastal environment of Bangladesh and approach for management," Rev 
Environ Sci Biotechnol, vol. 12, (3), pp. 313, 2013. . DOI: 10.1007/s11157-013-
9311-5. 

[4] F. Pa ´ez-Osuna, "The Environmental Impact of Shrimp Aquaculture: Causes, 
Effects, and Mitigating Alternatives," Environmental Management, vol. 28, (1), pp. 
131, 2001. . DOI: 10.1007/s002670010212. 

[5] M. G. C. Emerenciano et al, "Intensification of Penaeid Shrimp Culture: An 
Applied Review of Advances in Production Systems, Nutrition and Breeding," 
Animals, vol. 12, (3), 2022. . DOI: 10.3390/ani12030236. 

[6] D. Li, Y. Hao and Y. Duan, "Nonintrusive methods for biomass estimation in 
aquaculture with emphasis on fish: a review," Reviews in Aquaculture, vol. 12, (3), 
pp. 1390, 2019. . DOI: 10.1111/raq.12388. 

[7] C. R. Engle et al, "Economics of Sustainable Intensification of Aquaculture: 
Evidence from Shrimp Farms in Vietnam and Thailand," J World Aquaculture Soc, 
vol. 48, (2), pp. 227, 2017. . DOI: 10.1111/jwas.12423. 

[8] R. Yu, P. Leung and P. Bienfang, "Predicting shrimp growth: Artificial neural 
network versus nonlinear regression models," Aquacultural Engineering, vol. 34, 
(1), pp. 26–32, 2006. Available: https://dx.doi.org/10.1016/j.aquaeng.2005.03.003. 
DOI: 10.1016/j.aquaeng.2005.03.003. 

[9] G. Bardera et al, "The influence of density and dominance on Pacific white 
shrimp (Litopenaeus vannamei) feeding behaviour," Aquaculture, vol. 531, 2020. . 
DOI: 10.1016/j.aquaculture.2020.735949. 

[10] G. W. Klontz and H. Kaiser, "Producing a marketable fish, part V: inventory 
techniques: three tried-and-true methods for sampling pond populations of 
farmed salmonids," Northern Aquaculture, vol. 9, (2), pp. 21, 1993. Available: 
https://www.proquest.com/docview/201688518. 

https://www.tandfonline.com/doi/abs/10.1080/23308249.2020.1820720
https://dx.doi.org/10.1016/j.aquaeng.2005.03.003
https://www.proquest.com/docview/201688518


58 
 

[11] V. F. Matveev, "Assessing the biomass of small fish with a split-beam sonar in 
the Murray River, Australia," Fisheries Research, vol. 88, (1-3), pp. 139, 2007. . DOI: 
10.1016/j.fishres.2007.07.008. 

[12] S. G. Conti et al, "Acoustical monitoring of fish density, behavior, and growth 
rate in a tank," Aquaculture, vol. 251, (2-4), pp. 314, 2006. . DOI: 
10.1016/j.aquaculture.2005.06.018. 

[13] J. De Rosny and P. Roux, "Multiple scattering in a reflecting cavity: Application 
to fish counting in a tank," The Journal of the Acoustical Society of America, vol. 
109, (6), pp. 2587, 2001. . DOI: 10.1121/1.1369101. 

[14] M. Føre et al, "Precision fish farming: A new framework to improve production 
in aquaculture," Biosystems Engineering, vol. 173, pp. 176, 2017. . DOI: 
10.1016/j.biosystemseng.2017.10.014. 

[15] D. Li et al, "Automatic counting methods in aquaculture: A review," J World 
Aquaculture Soc, vol. 52, (2), pp. 269, 2020. . DOI: 10.1111/jwas.12745. 

[16] Y. Chai et al, "Deep Learning Algorithms for Sonar Imagery Analysis and Its 
Application in Aquaculture: A Review," IEEE Sensors J., vol. 23, (23), pp. 28549, 
2023. . DOI: 10.1109/jsen.2023.3324438. 

[17] D. Li et al, "Recent advances in acoustic technology for aquaculture: A 
review," Reviews in Aquaculture, vol. 16, (1), pp. 357, 2023. . DOI: 
10.1111/raq.12842. 

[18] J. Simmonds and D. N. MacLennan, Fisheries Acoustics. (2nd ed. ed.) 
200810Available: 
http://portal.igpublish.com/iglibrary/search/WILEYB0014124.html. 

[19] J. Ehrenberg, "Echo counting and echo integration with a sector scanning 
sonar," Journal of Sound and Vibration, vol. 73, (3), pp. 321–332, 1980. Available: 
https://dx.doi.org/10.1016/0022-460X(80)90517-9. DOI: 10.1016/0022-
460X(80)90517-9. 

[20] J. Wang et al, "Deep learning for smart manufacturing: Methods and 
applications," Journal of Manufacturing Systems, vol. 48, pp. 144, 2018. . DOI: 
10.1016/j.jmsy.2018.01.003. 

[21] F. Lin et al, "Development of ultrasonic shrimp monitoring system based on 
machine learning approaches," in Oct 10, 2022, Available: 
https://ieeexplore.ieee.org/document/9958877. DOI: 
10.1109/IUS54386.2022.9958877. 

[22] M. K. Pargi et al, "Improving aquaculture systems using AI: Employing 
predictive models for biomass estimation on sonar images," in 2022-12, . DOI: 
10.1109/icmla55696.2022.00250. 

http://portal.igpublish.com/iglibrary/search/WILEYB0014124.html
https://dx.doi.org/10.1016/0022-460X(80)90517-9
https://ieeexplore.ieee.org/document/9958877


59 
 

[23] A. Minelli et al, "Semi-Automated Data Processing and Semi-Supervised 
Machine Learning for the Detection and Classification of Water-Column Fish 
Schools and Gas Seeps with a Multibeam Echosounder," Sensors (Basel, 
Switzerland), vol. 21, (9), pp. 2999, 2021. Available: 
https://www.ncbi.nlm.nih.gov/pubmed/33923343. DOI: 10.3390/s21092999. 

[24] R. Proud et al, "Automated classification of schools of the silver cyprinid 
Rastrineobola argentea in Lake Victoria acoustic survey data using random 
forests," ICES Journal of Marine Science, vol. 77, (4), pp. 1379–1390, 2020. 
Available: https://academic.oup.com/icesjms/article-
pdf/77/4/1379/33513175/fsaa052.pdf. DOI: 10.1093/icesjms/fsaa052. 

[25] F. Asche et al, "The economics of shrimp disease," Journal of Invertebrate 
Pathology, vol. 186, pp. 107397, 2021. Available: 
https://dx.doi.org/10.1016/j.jip.2020.107397. DOI: 10.1016/j.jip.2020.107397. 

[26] M. J. Hasan et al, "Exploring the Feasibility of Affordable Sonar Technology: 
Object Detection in Underwater Environments Using the Ping 360," 2024. 
Available: https://arxiv.org/abs/2411.05863. DOI: 10.48550/arxiv.2411.05863. 

[27] V. Hatje et al, "Detection of environmental impacts of shrimp farming through 
multiple lines of evidence," Environmental Pollution, vol. 219, pp. 672, 2016. . DOI: 
10.1016/j.envpol.2016.06.056. 

[28] P. Singh et al, Shrimp Culture Technology. (1st ed. 2025 ed.) 2025Available: 
https://doi.org/10.1007/978-981-97-8549-0. 

[29] M. S. R. Licop, "Sodium-EDTA effects on survival and metamorphosis of 
Penaeus monodon larvae," Aquaculture, vol. 74, (3-4), pp. 239–247, 1988. . 

[30] M. B. New, "Farming freshwater prawns. A manual for the culture of the giant 
river prawn (macrobrachium rosenbergii)," in FAO Fisheries Technical 
PaperAnonymous 2005, Available: 
https://search.proquest.com/docview/19681127. 

[31] D. V. Smith and S. Tabrett, "The use of passive acoustics to measure feed 
consumption by Penaeus monodon (giant tiger prawn) in cultured systems," 
Aquacultural Engineering, vol. 57, pp. 38, 2013. . DOI: 
10.1016/j.aquaeng.2013.06.003. 

[32] M. Irani et al, "Production of Pacific white shrimp under different stocking 
density in a zero-water exchange biofloc system: Effects on water quality, 
zootechnical performance, and body composition," Aquacultural Engineering, vol. 
100, 2022. . DOI: 10.1016/j.aquaeng.2022.102313. 

[33] X. Yang et al, "Deep learning for smart fish farming: applications, 
opportunities and challenges," Reviews in Aquaculture, vol. 13, (1), pp. 66, 2020. . 
DOI: 10.1111/raq.12464. 

https://www.ncbi.nlm.nih.gov/pubmed/33923343
https://academic.oup.com/icesjms/article-pdf/77/4/1379/33513175/fsaa052.pdf
https://academic.oup.com/icesjms/article-pdf/77/4/1379/33513175/fsaa052.pdf
https://dx.doi.org/10.1016/j.jip.2020.107397
https://arxiv.org/abs/2411.05863
https://doi.org/10.1007/978-981-97-8549-0
https://search.proquest.com/docview/19681127


60 
 

[34] T. Wuest et al, "Machine learning in manufacturing: advantages, challenges, 
and applications," Production &Amp; Manufacturing Research, vol. 4, (1), pp. 23, 
2016. . DOI: 10.1080/21693277.2016.1192517. 

[35] F. Lin et al, "Development of ultrasonic shrimp monitoring system based on 
machine learning approaches," in 2022-10-10, . DOI: 
10.1109/ius54386.2022.9958877. 

[36] Y. Huang, W. Li and F. Yuan, "Speckle Noise Reduction in Sonar Image Based 
on Adaptive Redundant Dictionary," JMSE, vol. 8, (10), 2020. . DOI: 
10.3390/jmse8100761. 

[37] H. Liang, G. Hao and O. Z. Olszewski, "A review on vibration-based 
piezoelectric energy harvesting from the aspect of compliant mechanisms," 
Sensors and Actuators A: Physical, vol. 331, 2021. . DOI: 
10.1016/j.sna.2021.112743. 

[38] R. J. Urick, Principles of Underwater Sound. (3rd ed ed.) Peninsula publishing, 
1983. 

[39] J. M. Hovem, "Underwater acoustics: Propagation, devices and systems," in 
2007-02-21, . DOI: 10.1007/s10832-007-9059-9. 

[40] K. M. Boswell et al, "Evaluation of target strength–fish length equation choices 
for estimating estuarine fish biomass," Hydrobiologia, vol. 610, (1), pp. 113, 2008. . 
DOI: 10.1007/s10750-008-9425-x. 

[41] A. C. Lavery et al, "Three-dimensional modeling of acoustic backscattering 
from fluid-like zooplankton," The Journal of the Acoustical Society of America, vol. 
111, (3), pp. 1197, 2002. . DOI: 10.1121/1.1433813. 

[42] S. Fraser, "Acoustic Investigation of the Hydrodynamics and Ecology of a Tidal 
Channel and the Impacts of a Marine Renewable Energy Installation." , ProQuest 
Dissertations & Theses, 2017. 

[43] E. J. Simmonds, "The effects of mounting the equivalent beam angle of 
acoustic survey transducers," in Jan 1, 1984, Available: 
https://search.proquest.com/docview/14277181. 

[44] SIMMONDS E. J, "A comparison between measured and theoretical equivalent 
beam angles for seven similar transducers," J. Sound Vib, vol. 97, pp. 117–128, 
1984. . 

[45] F. R. Knudsen and H. Sægrov, "Benefits from horizontal beaming during 
acoustic survey: application to three Norwegian lakes," Fisheries Research, vol. 
56, (2), pp. 205, 2018. . DOI: 10.1016/s0165-7836(01)00318-6. 

https://search.proquest.com/docview/14277181


61 
 

[46] M. V. Trevorrow, "Salmon and herring school detection in shallow waters using 
sidescan sonars," Fisheries Research, vol. 35, (1), pp. 5–14, 1998. Available: 
https://dx.doi.org/10.1016/S0165-7836(98)00054-X. DOI: 10.1016/s0165-
7836(98)00054-x. 

[47] J. Kubecka and M. Wittingerova, "Horizontal beaming as a crucial component 
of acoustic fish stock assessment in freshwater reservoirs," Fisheries Research, 
vol. 35, (1), pp. 99–106, 1998. Available: https://dx.doi.org/10.1016/S0165-
7836(98)00064-2. DOI: 10.1016/S0165-7836(98)00064-2. 

[48] S. G. Conti and D. A. Demer, "Wide-bandwidth acoustical characterization of 
anchovy and sardine from reverberation measurements in an echoic tank," ICES 
Journal of Marine Science, vol. 60, (3), pp. 617, 2003. . DOI: 10.1016/s1054-
3139(03)00056-0. 

[49] O. Dragesund and S. Olsen, "On the possibility of estimating year-class 
strength by measuring echo-abundance of 0-group fish," in Fiskeridirektoratets 
Skrifter. Serie HavundersoekelserAnonymous 1965, Available: 
https://search.proquest.com/docview/18888914. 

[50] O. A. Misund et al, "Improved mapping of schooling fish near the surface: 
comparison of abundance estimates obtained by sonar and echo integration," 
ICES Journal of Marine Science, vol. 53, (2), pp. 383–388, 1996. Available: 
https://api.istex.fr/ark:/67375/HXZ-J31XC92K-D/fulltext.pdf. DOI: 
10.1006/jmsc.1996.0053. 

[51] H. Liu et al, "Application of Deep Learning-Based Object Detection 
Techniques in Fish Aquaculture: A Review," Journal of Marine Science and 
Engineering, vol. 11, (4), pp. 867, 2023. Available: 
https://www.proquest.com/docview/2806556124. DOI: 10.3390/jmse11040867. 

[52] H. Kim et al, "Acoustic Target Strength Measurements for Biomass Estimation 
of Aquaculture Fish, Redlip Mullet (Chelon haematocheilus)," Applied Sciences, 
vol. 8, (9), pp. 1536, 2018. Available: 
https://www.proquest.com/docview/2321991425. DOI: 10.3390/app8091536. 

[53] F. O'Donncha et al, "Data Driven Insight Into Fish Behaviour and Their Use for 
Precision Aquaculture," Frontiers in Animal Science, vol. 2, 2021. Available: 
https://www.frontiersin.org/articles/10.3389/fanim.2021.695054/pdf. DOI: 
10.3389/fanim.2021.695054. 

[54] J. Kristmundsson et al, "Fish Monitoring in Aquaculture Using Multibeam 
Echosounders and Machine Learning," IEEE Access, vol. 11, pp. 108306, 2023. . 
DOI: 10.1109/access.2023.3320949. 

[55] Z. Guan et al, "Design and research of uniform linear array for imaging sonar," 
in Sep 2019, Available: https://ieeexplore.ieee.org/document/8960731. DOI: 
10.1109/ICSPCC46631.2019.8960731. 

https://dx.doi.org/10.1016/S0165-7836(98)00054-X
https://dx.doi.org/10.1016/S0165-7836(98)00064-2
https://dx.doi.org/10.1016/S0165-7836(98)00064-2
https://search.proquest.com/docview/18888914
https://api.istex.fr/ark:/67375/HXZ-J31XC92K-D/fulltext.pdf
https://www.proquest.com/docview/2806556124
https://www.proquest.com/docview/2321991425
https://www.frontiersin.org/articles/10.3389/fanim.2021.695054/pdf
https://ieeexplore.ieee.org/document/8960731


62 
 

[56] D. V. Smith and M. S. Shahriar, "A context aware sound classifier applied to 
prawn feed monitoring and energy disaggregation," Knowledge-Based Systems, 
vol. 52, pp. 21, 2013. . DOI: 10.1016/j.knosys.2013.05.007. 

[57] J. Darodes De Tailly et al, "Monitoring methods of feeding behaviour to answer 
key questions in penaeid shrimp feeding," Reviews in Aquaculture, vol. 13, (4), pp. 
1828, 2021. . DOI: 10.1111/raq.12546. 

[58] T. T. T. Nguyen and G. Armitage, "A survey of techniques for internet traffic 
classification using machine learning," COMST, vol. 10, (4), pp. 56–76, 2008. 
Available: https://ieeexplore.ieee.org/document/4738466. DOI: 
10.1109/SURV.2008.080406. 

[59] A. Yassir et al, "Acoustic fish species identification using deep learning and 
machine learning algorithms: A systematic review," Fisheries Research, vol. 266, 
pp. 106790, 2023. Available: https://dx.doi.org/10.1016/j.fishres.2023.106790. 
DOI: 10.1016/j.fishres.2023.106790. 

[60] S. A. Villar et al, "ECOPAMPA: A new tool for automatic fish schools detection 
and assessment from echo data," Heliyon, vol. 7, (1), pp. e05906, 2021. Available: 
https://dx.doi.org/10.1016/j.heliyon.2021.e05906. DOI: 
10.1016/j.heliyon.2021.e05906. 

[61] S. Aronica et al, "Identifying small pelagic Mediterranean fish schools from 
acoustic and environmental data using optimized artificial neural networks," 
Ecological Informatics, vol. 50, pp. 149–161, 2019. Available: 
https://dx.doi.org/10.1016/j.ecoinf.2018.12.007. DOI: 
10.1016/j.ecoinf.2018.12.007. 

[62] M. Sung et al, "Realistic Sonar Image Simulation Using Deep Learning for 
Underwater Object Detection," Int. J. Control Autom. Syst, vol. 18, (3), pp. 523–
534, 2020. Available: https://link.springer.com/article/10.1007/s12555-019-0691-
3. DOI: 10.1007/s12555-019-0691-3. 

[63] E. L. Hazen and J. K. Horne, "A method for evaluating the effects of biological 
factors on fish target strength," ICES Journal of Marine Science, vol. 60, (3), pp. 
555–562, 2003. Available: https://api.istex.fr/ark:/67375/HXZ-MQWZTP72-
Q/fulltext.pdf. DOI: 10.1016/S1054-3139(03)00053-5. 

[64] O. Nakken and K. Olsen, "Target strength measurements of fish," 1977. 
Available: http://hdl.handle.net/11250/107967. 

[65] K. G. Foote, "Importance of the swimbladder in acoustic scattering by fish: A 
comparison of gadoid and mackerel target strengths," The Journal of the 
Acoustical Society of America, vol. 67, (6), pp. 2084–2089, 1980. Available: 
https://search.proquest.com/docview/15236425. DOI: 10.1121/1.384452. 

https://ieeexplore.ieee.org/document/4738466
https://dx.doi.org/10.1016/j.fishres.2023.106790
https://dx.doi.org/10.1016/j.heliyon.2021.e05906
https://dx.doi.org/10.1016/j.ecoinf.2018.12.007
https://link.springer.com/article/10.1007/s12555-019-0691-3
https://link.springer.com/article/10.1007/s12555-019-0691-3
https://api.istex.fr/ark:/67375/HXZ-MQWZTP72-Q/fulltext.pdf
https://api.istex.fr/ark:/67375/HXZ-MQWZTP72-Q/fulltext.pdf
http://hdl.handle.net/11250/107967
https://search.proquest.com/docview/15236425


63 
 

[66] T. K. Stanton, D. Chu and P. H. Wiebe, "Acoustic scattering characteristics of 
several zooplankton groups," ICES Journal of Marine Science, vol. 53, (2), pp. 289–
295, 1996. Available: https://api.istex.fr/ark:/67375/HXZ-1H0D95HM-
Z/fulltext.pdf. DOI: 10.1006/jmsc.1996.0037. 

[67] R. J. Korneliussen et al, "ICES COOPERATIVE RESEARCH REPORT #344," 2018. 
. 

[68] A. C. Lavery et al, "Three-dimensional modeling of acoustic backscattering 
from fluid-like zooplankton," The Journal of the Acoustical Society of America, vol. 
111, (3), pp. 1197–1210, 2002. Available: 
https://www.ncbi.nlm.nih.gov/pubmed/11931297. DOI: 10.1121/1.1433813. 

[69] The Scuba Diver Store. JW Fishers SCAN 650 Scanning Sonar. Available: 
https://www.thescubadiverstore.com/product/jw-fishers-scan-650-scanning-
sonar/. 

[70] Carcinus Ltd. Blue Robotics Ping360 Scanning Imaging Sonar. Available: 
https://www.carcinus.co.uk/product/ping360-scanning-imaging-
sonar/?utm_source=adwords&utm_term=&utm_campaign=Blue+Robotics+-
+Shopping+Std&utm_medium=ppc&hsa_kw=&hsa_ad=695390233902&hsa_src=g
&hsa_ver=3&hsa_grp=162959131080&hsa_cam=20071001649&hsa_tgt=pla-
362587409677&hsa_acc=3301071309&hsa_mt=&hsa_net=adwords&gad_source
=1&gclid=Cj0KCQjwhr6_BhD4ARIsAH1YdjDBtM11GPkhRf75rc9OK_OyFZ1jE0SBES
yGVDo-IYbwhOMVRqe8nDMaAnupEALw_wcB. 

[71] L. Zhang et al, "Automatic shrimp counting method using local images and 
lightweight YOLOv4," Biosystems Engineering, vol. 220, pp. 39–54, 2022. Available: 
https://dx.doi.org/10.1016/j.biosystemseng.2022.05.011. DOI: 
10.1016/j.biosystemseng.2022.05.011. 

[72] T. K. Stanton et al, "Sound scattering by several zooplankton groups. I. 
Experimental determination of dominant scattering mechanisms," The Journal of 
the Acoustical Society of America, vol. 103, (1), pp. 225–235, 1998. Available: 
https://www.ncbi.nlm.nih.gov/pubmed/9440325. DOI: 10.1121/1.421469. 

[73] E. Caló and V. V. Khutoryanskiy, "Biomedical applications of hydrogels: A 
review of patents and commercial products," European Polymer Journal, vol. 65, 
pp. 252–267, 2015. Available: https://dx.doi.org/10.1016/j.eurpolymj.2014.11.024. 
DOI: 10.1016/j.eurpolymj.2014.11.024. 

[74] S. Casciaro et al, "Experimental investigation and theoretical modelling of the 
nonlinear acoustical behaviour of a liver tissue and comparison with a tissue 
mimicking hydrogel," J Mater Sci: Mater Med, vol. 19, (2), pp. 899–906, 2008. 
Available: https://link.springer.com/article/10.1007/s10856-007-3007-8. DOI: 
10.1007/s10856-007-3007-8. 

https://api.istex.fr/ark:/67375/HXZ-1H0D95HM-Z/fulltext.pdf
https://api.istex.fr/ark:/67375/HXZ-1H0D95HM-Z/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/11931297
https://www.thescubadiverstore.com/product/jw-fishers-scan-650-scanning-sonar/
https://www.thescubadiverstore.com/product/jw-fishers-scan-650-scanning-sonar/
https://www.carcinus.co.uk/product/ping360-scanning-imaging-sonar/?utm_source=adwords&utm_term=&utm_campaign=Blue+Robotics+-+Shopping+Std&utm_medium=ppc&hsa_kw=&hsa_ad=695390233902&hsa_src=g&hsa_ver=3&hsa_grp=162959131080&hsa_cam=20071001649&hsa_tgt=pla-362587409677&hsa_acc=3301071309&hsa_mt=&hsa_net=adwords&gad_source=1&gclid=Cj0KCQjwhr6_BhD4ARIsAH1YdjDBtM11GPkhRf75rc9OK_OyFZ1jE0SBESyGVDo-IYbwhOMVRqe8nDMaAnupEALw_wcB
https://www.carcinus.co.uk/product/ping360-scanning-imaging-sonar/?utm_source=adwords&utm_term=&utm_campaign=Blue+Robotics+-+Shopping+Std&utm_medium=ppc&hsa_kw=&hsa_ad=695390233902&hsa_src=g&hsa_ver=3&hsa_grp=162959131080&hsa_cam=20071001649&hsa_tgt=pla-362587409677&hsa_acc=3301071309&hsa_mt=&hsa_net=adwords&gad_source=1&gclid=Cj0KCQjwhr6_BhD4ARIsAH1YdjDBtM11GPkhRf75rc9OK_OyFZ1jE0SBESyGVDo-IYbwhOMVRqe8nDMaAnupEALw_wcB
https://www.carcinus.co.uk/product/ping360-scanning-imaging-sonar/?utm_source=adwords&utm_term=&utm_campaign=Blue+Robotics+-+Shopping+Std&utm_medium=ppc&hsa_kw=&hsa_ad=695390233902&hsa_src=g&hsa_ver=3&hsa_grp=162959131080&hsa_cam=20071001649&hsa_tgt=pla-362587409677&hsa_acc=3301071309&hsa_mt=&hsa_net=adwords&gad_source=1&gclid=Cj0KCQjwhr6_BhD4ARIsAH1YdjDBtM11GPkhRf75rc9OK_OyFZ1jE0SBESyGVDo-IYbwhOMVRqe8nDMaAnupEALw_wcB
https://www.carcinus.co.uk/product/ping360-scanning-imaging-sonar/?utm_source=adwords&utm_term=&utm_campaign=Blue+Robotics+-+Shopping+Std&utm_medium=ppc&hsa_kw=&hsa_ad=695390233902&hsa_src=g&hsa_ver=3&hsa_grp=162959131080&hsa_cam=20071001649&hsa_tgt=pla-362587409677&hsa_acc=3301071309&hsa_mt=&hsa_net=adwords&gad_source=1&gclid=Cj0KCQjwhr6_BhD4ARIsAH1YdjDBtM11GPkhRf75rc9OK_OyFZ1jE0SBESyGVDo-IYbwhOMVRqe8nDMaAnupEALw_wcB
https://www.carcinus.co.uk/product/ping360-scanning-imaging-sonar/?utm_source=adwords&utm_term=&utm_campaign=Blue+Robotics+-+Shopping+Std&utm_medium=ppc&hsa_kw=&hsa_ad=695390233902&hsa_src=g&hsa_ver=3&hsa_grp=162959131080&hsa_cam=20071001649&hsa_tgt=pla-362587409677&hsa_acc=3301071309&hsa_mt=&hsa_net=adwords&gad_source=1&gclid=Cj0KCQjwhr6_BhD4ARIsAH1YdjDBtM11GPkhRf75rc9OK_OyFZ1jE0SBESyGVDo-IYbwhOMVRqe8nDMaAnupEALw_wcB
https://www.carcinus.co.uk/product/ping360-scanning-imaging-sonar/?utm_source=adwords&utm_term=&utm_campaign=Blue+Robotics+-+Shopping+Std&utm_medium=ppc&hsa_kw=&hsa_ad=695390233902&hsa_src=g&hsa_ver=3&hsa_grp=162959131080&hsa_cam=20071001649&hsa_tgt=pla-362587409677&hsa_acc=3301071309&hsa_mt=&hsa_net=adwords&gad_source=1&gclid=Cj0KCQjwhr6_BhD4ARIsAH1YdjDBtM11GPkhRf75rc9OK_OyFZ1jE0SBESyGVDo-IYbwhOMVRqe8nDMaAnupEALw_wcB
https://www.carcinus.co.uk/product/ping360-scanning-imaging-sonar/?utm_source=adwords&utm_term=&utm_campaign=Blue+Robotics+-+Shopping+Std&utm_medium=ppc&hsa_kw=&hsa_ad=695390233902&hsa_src=g&hsa_ver=3&hsa_grp=162959131080&hsa_cam=20071001649&hsa_tgt=pla-362587409677&hsa_acc=3301071309&hsa_mt=&hsa_net=adwords&gad_source=1&gclid=Cj0KCQjwhr6_BhD4ARIsAH1YdjDBtM11GPkhRf75rc9OK_OyFZ1jE0SBESyGVDo-IYbwhOMVRqe8nDMaAnupEALw_wcB
https://dx.doi.org/10.1016/j.biosystemseng.2022.05.011
https://www.ncbi.nlm.nih.gov/pubmed/9440325
https://dx.doi.org/10.1016/j.eurpolymj.2014.11.024
https://link.springer.com/article/10.1007/s10856-007-3007-8


64 
 

[75] H. M and S. M.N, "A Review on Evaluation Metrics for Data Classification 
Evaluations," International Journal of Data Mining & Knowledge Management 
Process, vol. 5, (2), pp. 1–11, 2015. Available: 
https://doi.org/10.5121/ijdkp.2015.5201. DOI: 10.5121/ijdkp.2015.5201. 

[76] Supertex inc, "High Speed, Dual MOSFET Datasheet," Microchip Technology, 
2012. Available: https://www.microchip.com/en-us/product/md1211. 

[77] N. Castillo, "Application of Lookup Tables and their implementation FPGAs," . 

 

 

https://doi.org/10.5121/ijdkp.2015.5201
https://www.microchip.com/en-us/product/md1211

