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Summary

� Canopy reflectance captures plant traits related to ecological processes, which may reflect

the composition of soil microbial communities. However, the extent to which canopy reflec-

tance can help elucidate soil microbial community composition and diversity across biomes

remains unclear.
� Using data from 14 National Ecological Observatory Network ecoregions (domains), we

linked plant traits to soil microbial composition and diversity (characterised by phospholipid

fatty acids and 16S rRNA gene sequencing) and built partial least squares regression models

to predict soil microbial attributes from airborne imaging spectroscopy at the continental

scale.
� The ability of remote sensing to predict soil microbial communities was mediated by plant

attributes that both directly influence microbial communities and reflect shared responses to

soil and climate gradients. Model validation accuracy varied with taxonomic resolution (nor-

malised root mean squared error, 10.1–24%; coefficient of determination, 0.27–0.86), with

models of broad soil microbial groups performing best, although bacterial community compo-

sition and diversity could also be modelled with moderate levels of accuracy (normalised root

mean squared error, 12.5–18.6%; coefficient of determination, 0.43–0.61).
� Models using full-spectrum hyperspectral data consistently outperformed those based on

simple vegetation indices, highlighting the value of imaging spectroscopy for soil microbial

research.

Introduction

Soil microbial communities are fundamental to biological diver-
sity and play a pivotal role in maintaining ecosystem functioning
and health (Delgado-Baquerizo et al., 2018a). Understanding the
distribution of these communities at regional and global scales is
essential for gaining insights into how soil microbial commu-
nities vary across ecosystems and environmental gradients and
how they may influence or respond to large-scale shifts in vegeta-
tion, climate or land use (Wallenstein & Hall, 2012). However,
the identification of soil microbial communities across large spa-
tial scales through in situ sampling presents significant logistical
challenges and is often prohibitively expensive. Attempts to quan-
titatively predict soil microbial communities in unobserved loca-
tions are frequently hindered by an incomplete understanding of
the factors governing the spatial and temporal patterns in their
composition, diversity and functioning (Bardgett & van der Put-
ten, 2014; Averill et al., 2021). At continental and global scales,
climate, land use and soil abiotic properties such as organic car-
bon, pH and nutrient content, shape the composition and diver-
sity of soil microbial communities (Tedersoo et al., 2014;
Delgado-Baquerizo et al., 2018b; Bickel & Or, 2020). However,

evidence also points to the importance of plant community com-
position and functional diversity (i.e. the type and distribution of
plant functional traits) as important determinants of soil micro-
bial communities over large spatial extents (102–103 km) where
differences in plant traits between species or functional groups
are often most pronounced (Wardle & Zackrisson, 2005; de
Vries et al., 2012; Delgado-Baquerizo et al., 2018a; Crowther
et al., 2019).

Empirical and theoretical evidence suggest that plant commu-
nities dominated by acquisitive traits, such as high specific leaf
area (SLA) and elevated leaf nitrogen content, are associated with
higher rates of photosynthesis and growth, more fertile soils
with a higher abundance of bacteria relative to fungi, accelerated
decomposition and faster nutrient cycling (Wardle et al., 2004;
de Vries et al., 2012; Grigulis et al., 2013). Conversely, in plant
communities characterised by more conservative traits, such as
low SLA, nitrogen-poor leaves and lower rates of growth and
photosynthesis, soil microbial communities are dominated by
fungi, including mycorrhizal fungi, relative to bacteria and rates
of decomposition and nutrient cycling are slower (Wardle
et al., 2004; de Vries et al., 2012; Grigulis et al., 2013). Yet,
many field-based studies have focused on specific ecosystems
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(predominantly grasslands), and the nature and significance of
the reported aboveground to belowground associations are not
always consistent (Grigulis et al., 2013; Porazinska et al., 2018;
Buzzard et al., 2019). The extent to which the aboveground plant
community characteristics are predictably associated with changes
in soil microbial communities across large spatial extents and
diverse land cover types, therefore, requires further investigation.

Large-scale geographic predictions lend themselves well to the
use of remotely sensed data. A plant’s reflectance signature
encompasses numerous foliar chemical, structural and physiolo-
gical traits crucial for resource acquisition and stress tolerance.
Yet, whilst many studies have utilised canopy reflectance to assess
aboveground biodiversity or elucidate ecosystem functions
(Kokaly et al., 2009; Williams et al., 2021; Zheng et al., 2023),
and some have attempted to link plant spectral reflectance to soil
abiotic properties such as moisture and pH (Dehaan & Tay-
lor, 2002; Uno et al., 2005), fewer studies have used the notion
of plant–soil microbe associations to link plant spectra to soil
microbial communities. Those that have either used plant canopy
reflectance to characterise the overlying habitat or environmental
niche (Madritch et al., 2020; Lin et al., 2021; Sousa et al., 2021;
Skidmore et al., 2022, 2025; Yu et al., 2024), or to predict eco-
system productivity and foliar traits that are thought to be asso-
ciated with the soil microbiome (Cavender-Bares et al., 2022).
Both approaches rely on the presence of close associations
between aboveground and belowground systems, although few
remote sensing studies explicitly include in situ measurements of
both plant and soil microbial attributes when linking soil micro-
bial communities with spectral reflectance and those that do have
focused on specific ecosystems such as forests or grasslands
(Madritch et al., 2020; Cavender-Bares et al., 2022). There
remains a gap in our understanding as to the likely drivers of
model performance across a wider range of ecosystems and thus
where and when such models could be applied more broadly.

Our primary goal was to determine the potential of imaging
spectroscopy to predict soil microbial community composition
and diversity across a broad range of ecosystem types at the conti-
nental scale. Using open-source continental-scale data collected
by the National Ecological Observatory Network (NEON), we
first used field-measured observations to determine the extent to
which foliar traits are associated with microbial community com-
position and diversity. We subsequently used airborne imaging
spectroscopy to predict microbial composition and diversity
directly from canopy spectral reflectance and used model coeffi-
cients together with field-measured data to interpret the spectrally
based models. We tested our ability to model broad-scale patterns
in soil microbial biomass and key functional groups characterised
by phospholipid fatty acids (PLFAs), together with bacterial taxo-
nomic microbial composition and diversity measured using 16s
rRNA gene sequencing, to provide a comprehensive understand-
ing of the extent to which spectral reflectance may hold potential
for predicting soil microbial communities and their diversity.

Specifically, our objectives were: (1) to determine whether
aboveground foliar trait variation is linked to soil microbial com-
munity composition and diversity at the continental scale and (2)
to determine whether soil microbial community composition

and diversity can be predicted across multiple ecosystems at the
continental scale using canopy spectral reflectance, and if so, to
determine which microbial community attributes are likely to be
predicted most accurately.

We expected strong relationships between measured foliar
traits associated with resource acquisition and conservation strate-
gies and the composition and diversity of soil microbial commu-
nities, given the substantial structural and phytochemical
differences among plant communities at the continental scale,
which both influence or are influenced by soil properties.
Furthermore, because plant canopy spectral reflectance is sensi-
tive to both structural and chemical attributes of the canopy, we
also anticipated that canopy spectra would be indirectly related to
soil microbial communities through associations with plant attri-
butes and soil conditions. Additionally, we hypothesised that
broad soil microbial community and functional groups (e.g.
characterised by PLFAs) would be better predicted by canopy
reflectance than finer-scale taxonomic estimates of community
composition and diversity (e.g. based on 16S sequencing), consis-
tent with patterns observed in other studies and among
macro-organisms (Averill et al., 2021).

Materials and Methods

Spatial and temporal sampling design

NEON constitutes a continental-scale ecological observatory infra-
structure employing standardised protocols for robust spatiotem-
poral data collection across North America (Keller et al., 2008).
NEON’s sampling strategy follows a nested design structured
across four spatial levels: domains, sites, plots and cores, ranging
from broad regional coverage to fine-scale local measurements.
The United States, including Alaska, Hawaii and Puerto Rico, is
divided into 20 ecoclimatic domains using multivariate geographic
clustering based on nine environmental variables, including seaso-
nal precipitation and solar insolation (Hargrove & Hoff-
man, 2004). Each domain contains one permanent core site and
up to two additional sites that are designed to move location every
5–10 yr. There are a total of 47 terrestrial sites (5–215 km2)
located within the 20 NEON domains (Kao et al., 2012; Thorpe
et al., 2016). Each terrestrial site encompasses up to 34 base plots
(40 m 9 40 m) that contain a central 20 m 9 20 m area that is
designated for co-located measurements including plant foliar
chemistry. Soil samples are collected from randomly selected loca-
tions within the remaining 10 m outer margin of each plot (Meier
et al., 2023). Foliar traits are collected every 5 yr, soil biochemical
sampling occurs annually and soil microbial sampling occurs
annually at core sites and every 5 yr at other sites. NEON’s Air-
borne Observation Platform (AOP) uses a small aircraft outfitted
with remote sensing equipment (including an imaging spectro-
meter) to fly over sites annually, weather permitting.

Plot selection based on near-synchronous observations

For our analyses, we obtained information on soil microbial com-
munities, soil biochemical properties, site-level climate, selected

New Phytologist (2025)
www.newphytologist.com

� 2025 The Author(s).

New Phytologist� 2025 New Phytologist Foundation.

Research

New
Phytologist2



foliar traits and hyperspectral airborne data from NEON’s open
access data portals (Supporting Information Table S1). At the
time of data acquisition, NEON had only been operating for a
relatively short period. Since the datasets we used followed differ-
ing sampling schedules, there was limited spatial and temporal
overlap among some of the datasets, meaning that not all vari-
ables were collected for each plot simultaneously. Consequently,
we developed a targeted data selection strategy and applied filter-
ing criteria aimed at maximising both the number and geo-
graphic coverage of plots where soil microbial and airborne data
were jointly available, while also minimising the time lag between
their respective sampling events. Specifically, we obtained
near-synchronous soil microbial community composition and
airborne data by first obtaining all available airborne imagery and
microbial data collected between 2014 and 2021, that is, from
the start of NEON’s soil microbial sampling campaign to the
most recent data available at the time of access. These data were
subsequently filtered to retain only plots where soil microbial
data were available within �60 d of an airborne image. The
�60-d threshold was chosen through trial and error as a balance
between minimising temporal discrepancies and retaining a suffi-
cient number of plots for analysis. We further restricted the data-
set to natural land covers by removing plots classified by NEON
as cultivated land and only selected plots sampled during
NEON-defined peak greenness periods, excluding those collected
during seasonal transitions. We used the timing and location of
these core near-synchronous observations as a reference point for
filtering all other datasets used in the analyses (i.e. soil properties,
climate and foliar traits) to maximise temporal alignment. Plots
were included if, in addition to microbial data, either soil proper-
ties or foliar trait data were also available (long-term climate data
were available for all plots as they were collected at the site level).
Consequently, all data were aligned with the airborne imagery
within a �60-d window and with each other within �120 d.
The largest temporal mismatches occurred between the foliar trait
and soil datasets, which resulted in eight plots where foliar data
were collected between 61 and 70 d before or after the corre-
sponding soil sampling event. We pooled data from all available
years to maximise data availability. However, where a plot was
sampled in multiple years, we retained only the year with the
smallest time gap between the airborne and soil microbial data-
sets. Further details on additional filtering, such as quality control
exclusions, handling of missing variables and managing uncer-
tainty in aggregating soil core and leaf-level measurements to the
plot scale, as well as any data sub-setting that was required for
particular statistical analyses, are provided in the subsequent
methodological subsections.

After all filtering criteria had been applied, the final dataset
contained plots from 34 terrestrial NEON sites, which spanned
16 ecoclimatic domains within the NEON network and included
diverse habitat types such as forests, grasslands and wetlands
(Figs 1, 2; Table S2). A total of 232 plots were available for mod-
elling soil microbial community composition from spectral
reflectance based on PLFAs, and 255 plots were available for
modelling soil bacterial composition and diversity from 16S
rRNA gene sequencing (Fig. 2).

Microbial biomass and coarse-level functional groups

To enable direct comparison between soil biogeochemical and
microbial datasets, all analyses are conducted on the same mate-
rial whenever possible. Details regarding sampling, storage and
processing of all soils used in the analyses can be found in Meth-
ods S1 and references therein.

We used the NEON soil microbe biomass data product
(DP1.10104.001; Table S1) to obtain quantitative proxy esti-
mates of broad soil microbial groups measured by PLFA. In brief,
soil samples collected in the field were kept moist before analyses
at a domain laboratory, where they were homogenised to mini-
mise spatial heterogeneity within each horizon and coarse debris
was removed. A chloroform-methanol extraction method was
used to extract microbial lipid biomarkers from a representative
subsample, which were subsequently analysed against a reference
standard for quantification using either gas chromatography mass
spectrometry (before 2018) or gas chromatography (from 2019
onwards). Following correction for extraction efficiency, we
summed the concentrations of i14:0, i15:0, i16:0, i17:0, a15:0
and a17:0 for Gram-positive bacteria, cyclo17:0 and cyclo19:0
for Gram-negative bacteria; 10Me16:0, 10Me17:0, 10Me18:0
for Actinomycetales (Gram-positive); 16:1x7 cis, 18:2x6,
18:3x6 for saprophytic fungi (SF) and 16:1x5 for arbuscular
mycorrhizal (AM) fungi. We also calculated the total amount of
PLFAs as a measure of the total viable microbial biomass (Fros-
teg�ard et al., 1991); the ratio of fungal to bacterial PLFAs (F : B),
which is commonly used as an indicator of shifts in the relative
abundance of fungi and bacteria and their relative roles in nutri-
ent cycling and channelling of energy through the soil food web
(Bardgett & McAlister, 1999; de Vries et al., 2013; Chomel
et al., 2022); and finally the ratio of Gram-positive to
Gram-negative bacteria PLFAs (G+ : G�) as an indicator of the
relative carbon availability for soil bacterial communities in
organic soils, where a higher ratio can indicate a shift towards
more stable and complex carbon sources in the soil and a lower
ratio can indicate a reliance on simpler, more labile carbon com-
pounds (Fanin et al., 2019). All measured lipids were present in
each of the samples, and summed concentrations (nmol g) and
ratios of PLFAs were calculated for individual soil cores before
aggregating from the core to the plot (see details in Methods S2).
Further details regarding NEON’s soil microbe biomass proces-
sing chain and quality assurance can be found in Stanish (2025).

Bacterial community composition and diversity

We complemented the PLFA with 16S rRNA gene sequencing to
provide information regarding the members of the bacterial
community that are present, their relative abundance and their
diversity. Sequencing data were obtained from the NEON
soil microbe community composition data product
(DP1.10081.001; Table S1). Briefly, after field collection, sam-
ples were frozen on dry ice and transported to ultra-low freezers
at the NEON field laboratories and subsequently shipped to an
analytical laboratory where DNA extraction, sample library pre-
paration and DNA sequencing occurred (Methods S1).
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Sequencing data were quality filtered and processed using the
DADA2 pipeline and dereplicated into Amplicon sequence
variants (ASVs) before being assigned to taxonomic groups using
the SILVA database (https://www.arbsilva.de/fileadmin/silva_
databases/qiime/Silva_132_release.zip). Complete information
on sample processing, DNA extraction, sequencing library pre-
paration and DNA sequencing can be found in Stanish (2025b).
We subsequently removed any undefined taxa and those assigned
as Archaea before rarefying the observations to 5000 reads per
sample (mean = 16 258, SD = 10 911) and removed samples
with fewer than 5000 reads from the analysis.

We measured bacterial community composition at the phylum
and individual sequencing levels (i.e. ASV) given that previous
studies have indicated that predictability may depend on taxo-
nomic scale (Averill et al., 2021). At the level of phylum, we
modelled the dominant phyla defined as those that were present
across all plots and represented the top 10% of phyla when
ranked by relative abundance (i.e. rRNA reads). We summed all
other phyla within each sample to generate the category ‘Other’.
The relative abundance per phylum (per sample) was calculated
by dividing the raw reads of each phylum by the total number of
reads in the sample. We also characterised bacterial community
composition based on an abundance matrix of ASVs and applied
non-metric multidimensional scaling (NMDS) analysis using
Bray–Curtis dissimilarities (VEGAN package; Oksanen et al.,
2022) to represent gradients of bacterial community composition
in low-dimensional space (e.g. Griffiths et al., 2011;
Cavender-Bares et al., 2022). Finally, we calculated bacterial

richness (the number of ASVs) as an indicator of bacterial diver-
sity (Delgado-Baquerizo et al., 2018a).

Soil properties, foliar traits and climate data

We used the NEON soil physical and chemical properties pro-
duct (DP1.10086.001; Table S1) to obtain data on soil pH,
organic carbon and nitrogen content, the carbon-to-nitrogen
ratio (C : N) and soil moisture (SM) for samples with horizon
depths of 30 cm or less. We obtained information on 17 plant
physical and chemical foliar traits from the NEON foliar traits
product (DP1.10026.001; Table S1), which included pigments,
carbon, nitrogen, key elements, cellulose and lignin. Full details
of all the traits measured can be found in Table S3, and further
details regarding foliar sampling are provided in Methods S3. We
also obtained site-level information on long-term mean annual
temperature (MAT) and mean annual precipitation (MAP) from
the NEON field site documentation available from https://www.
neonscience.org/field-sites/explore-field-sites (Table S3).

To facilitate integration of field data with airborne imagery
and to aid comparisons between field datasets collected across dif-
ferent spatial extents (e.g. soil cores vs individual plants), we
employed a spatial scaling approach using Bayesian models to
estimate plot-level Bayesian average values for foliar traits, soil
properties, soil microbial biomass, soil community composition
at the phylum level and measures of bacterial richness (Averill
et al., 2021, see details in Methods S2). Plot-level community
matrices of ASVs were obtained by simple averaging across the

Fig. 1 Locations of the 34 sites (yellow dots) sampled over 16 National Ecological Observatory Network ecoclimatic domains (highlighted and labelled)
across the continental United States and Alaska. The site and domain code names are listed in Supporting Information Table S2.
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cores within each plot, due to the high number of ASVs present
across the dataset (> 270 000).

Processing NEON Airborne Observation Platform (AOP)
imagery

The NEON spectrometer orthorectified surface direction reflec-
tance mosaic product (DP3.30006.001; Table S1) was used to

obtain plot-level spectral data for model development and valida-
tion. The hyperspectral instrument collects visible to shortwave
infrared data with a spatial resolution of 1 metre. The Full Width
at Half Maximum for each band is c. 5 nm, with a total of 426
bands spanning from 380 to 2500 nm. Before mosaicking, each
flight line is orthorectified and atmospherically corrected to sur-
face reflectance using ATCOR-4 (Richter & Schl€apfer, 2002;
Schl€apfer & Richter, 2002). The central wavelengths for each
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spectral band are slightly different for image data collected in dif-
ferent years due to annual sensor calibration; thus, we resampled
all spectra to a common wavelength range using the year 2019.
For each selected plot, we generated a 20 m diameter circular
buffer around the centre of the plot (i.e. the area designated for
non-destructive sampling) and averaged the spectra within the
buffer to obtain one mean reflectance signature per plot. We
removed noisy and atmospheric absorption bands and retained
spectral data spanning 403–1334, 1450–1785 and
1971–2396 nm ranges. We also removed plots with low vegeta-
tion coverage by deleting plots with a Normalised Difference
Vegetation Index (NDVI) value < 0.4, calculated as (R804 �
R673)/(R804 + R673), where R804 and R673 are the reflectance at
804 and 673 nm, respectively. We vector-normalised the
retained spectra by dividing the reflectance at every wavelength
by the full-spectrum reflectance norm so that the effects of inter-
nal canopy shade were minimised (Feilhauer et al., 2010; Wang
et al., 2020). The range of vector-normalised reflectance for each
domain and land cover type is illustrated in Figs S1 and S2.

Statistical analyses and modelling

Our primary goal was to determine the potential of imaging spec-
troscopy to quantify soil microbial community composition and
diversity at the continental scale. Given that any links between
reflectance and the soil microbial community would be indirect
via plant canopies and their relationship with soil properties, we
also investigated the strength and nature of associations between
soil microbial community attributes and measured foliar traits,
climate and soil abiotic properties.

We first conducted exploratory ordination analyses (principal
component analysis (PCA) and NMDS) to observe how foliar
traits, soil properties and soil microbial community composition
and diversity varied across the study area. A centred log-ratio
transformation was applied to phylum-level data before PCA to
account for their compositional nature. We then used variation
partitioning modelling to disentangle the relative contributions
of foliar traits, land cover, soil properties, climate and location, in
explaining variation in the soil microbiome (Table S3). To
reduce collinearity within predictor groups, we performed PCA
and used the leading axes (explaining > 80% of variance) as
inputs for variation partitioning for each predictor group. To
assess the statistical significance of the unique contributions of
each variable group, we conducted permutation-based tests using
partial redundancy analysis (partial RDA). Specifically, for each
group of predictors, a partial RDA was run while conditioning
on the remaining groups. We used 999 permutations to assess
significance. Phylum-level relative abundance and ASV commu-
nity data were Hellinger-transformed before variation partition-
ing to reduce the influence of highly abundant taxa and to meet
the assumptions of RDA. Since not all field variables were mea-
sured in conjunction with the soil microbial data, we used a sub-
set of plots where all data were available (n = 96 and n = 53 for
PLFA and 16S rRNA sequencing data, respectively).

We complemented our variation partitioning modelling with
correlation analysis (Spearman’s rank and partial correlations) to

allow us to assess the direction and strength of associations
between specific foliar traits and soil microbial communities (i.e.
PLFA groups, bacterial phyla, richness and community composi-
tion). We selected pH, SM, MAT, MAP and C : N ratio as con-
founding variables for the partial correlations, as each was
strongly correlated (rho < 0.7) with one or more of the other
measured soil properties, but not with each other. Highly corre-
lated variables were identified using the Caret package in R
(Kuhn, 2008). The complete correlation matrices between indivi-
dual variables are shown in Fig. S3.

To predict soil microbial community composition and diver-
sity from spectral reflectance, we developed a series of partial least
squares regression (PLSR; Haaland & Thomas, 1988) models.
Separate models were constructed for each measure of the soil
microbiome. PLSR has been widely used in developing spectral
models where there is a multi-collinearity issue in the predictor
variables (i.e. spectra), and the number of predictors largely
exceeds the number of observations (Serbin et al., 2014; Asner &
Martin, 2016; Ely et al., 2019; Wang et al., 2019, 2020). Before
model development, we followed the approach of Wang
et al. (2020) to remove model outliers by running each PLSR
model 200 times, calculating the mean absolute error between
the measured and predicted values and subsequently removing
5% of data with the highest errors in each model. We split the
resulting dataset into calibration (70%) and out-of-sample valida-
tion (30%) datasets. The out-of-sample validation dataset was
not used at any point in model development. We used the cali-
bration dataset in a jackknife data permutation approach to first
determine the optimal number of PLSR model components for
each model. Specifically, for each microbial community, we built
200 PLSR models using random subsets (70%) of the calibration
dataset and validated each model using the remaining 30% of
data. The prediction residual error sum of squares statistic was
calculated for each component across all PLSR models and used
to identify the optimal number of model components for each
final SMC model (Burnett et al., 2021). We developed the final
PLSR models by permuting the calibration data, randomly select-
ing 70% of the data each time to build 200 separate models per
microbial community. Each of the 200 models was then applied
to the withheld out-of-sample validation dataset to calculate the
mean and SD of the model estimates, with the latter being used
to estimate uncertainty of the model predictions for each soil
microbial community. All model performances were evaluated
using the coefficient of determination (R2) between measured
and predicted soil microbial community composition values, the
root mean squared error of prediction (RMSE), the normalised
RMSE (NRMSE = RMSE/range) and model bias. As a baseline
to compare with the performance of the PLSR models, we also
created separate linear models using just the NDVI or normalised
difference water index (NDWI; Gao, 1996) spectral indices as an
indicator of vegetation biomass/productivity and SM, respec-
tively. We calculated NDWI as (R860 � R1240)/(R860 + R1240),
where R860 and R1240 are the reflectance at 860 and 1240 nm,
respectively.

All statistical analyses were undertaken in R. PCA was imple-
mented using the package FACTOMINER (Lê et al., 2008), NMDS,
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variation partition modelling and RDA were implemented using
the package VEGAN (Oksanen et al., 2022), and partial correlation
analysis was implemented using PPCOR (Kim, 2015). The PLSR
modelling was implemented using the SPECTRATRAIT package
(Burnett et al., 2021).

Results

Continental-scale patterns of foliar traits, soil properties
and soil microbial communities

Across the sampled locations, there was substantial variation in
plant traits, soil properties and climate as well as in soil microbial
communities (Figs S4–S7). Exploratory PCA analyses of the data
revealed that many foliar traits, soil properties and PLFAs asso-
ciated with key microbial groups were spatially clustered accord-
ing to NEON domains rather than land cover class (Figs 3, S8).
Continental-scale variation in PLFA groups was primarily driven
by overall microbial group abundance (PC1) and the ratio of
Gram-positive to Gram-negative bacteria (PC2; Fig. 3a;
Table S4). In comparison, variation in foliar traits broadly fol-
lowed the leaf economic spectrum (Wright et al., 2004), with
acquisitive traits such as nitrogen, SLA, sulphur and potassium
loading positively on PC1, while high carbon-to-nitrogen ratios
indicated more conservative strategies (Fig. 3c; Table S5). Varia-
tion in lignin concentration contributed to the separation of plots
along foliar PC2. Soil properties also showed clear spatial
clustering, with PC1 capturing gradients in carbon, nitrogen and
moisture and PC2 reflecting a trade-off between pH and the
carbon-to-nitrogen ratio (Fig. 3d; Table S6). Bacterial commu-
nity composition based on ASV data was similarly spatially struc-
tured along both NMDS axes, with NMDS axis 2 negatively
associated with bacterial richness (i.e. number of ASVs; Fig. 3e).
By contrast, the relative abundance of bacterial phyla did not
exhibit clear spatial clustering by NEON domain (Fig. 3b). Var-
iation along PC1 reflected opposing relative abundances of Acid-
obacteria, Actinobacteria and Proteobacteria, with Acidobacteria
negatively correlated with relative abundances of both Actinobac-
teria and Proteobacteria. PC2 captured variation in the relative
abundance of the ‘other’ less dominant bacterial phyla that were
present within the plots (Fig. 3b; Table S7).

The relative importance of foliar traits in explaining soil
microbial community composition

Variation partitioning indicated that foliar traits were a signifi-
cant explanatory factor underlying the variation in broad PLFA
groups and ratios (Fig. 4a; Table S8). Foliar traits explained the
greatest share of unique explained variation across the 8 PLFA
soil microbial attributes, followed by soil, climate and location
and land cover, respectively (41%, 33%, 14% and 12%, respec-
tively). Furthermore, when considering both the unique variation
explained by foliar traits and the variation they share with envir-
onmental factors (including land cover, soil properties and cli-
mate and location), foliar traits accounted for half of the total
observed variation in the PLFA data across the NEON domains.

Foliar traits were particularly good unique predictors of the PLFA
biomarkers, indicating the G+ : G� ratio (26%), the abundance
of Actinomycetes (16%) and the F : B ratio (12%; Fig. 4a).

Soil properties explained the greatest share of the unique
explained variation in the relative abundance across all bacterial
phyla (58%). In comparison, foliar traits accounted for 26%,
while climate, location and land cover type each explained
< 10%. Soil properties, rather than foliar traits, were more
important in explaining variation in the relative abundance of
both Proteobacteria and Actinobacteria, whereas the opposite
was true for Acidobacteria (Fig. 4b; Table S8). Soil properties
also explained the greatest proportion of unique variation in the
first bacterial NMDS axis (6%) and foliar traits explained
the most for the second axis (13%), although variation that was
shared between foliar traits and all other environmental factors
consistently contributed to most of the explained variation in
both axes (78% and 31%; for axis 1 and 2, respectively; Fig. 4b;
Table S8). Foliar traits explained a far higher proportion of
unique variation in bacterial richness than soil properties (37%
and 5%, respectively). Foliar traits were also better unique predic-
tors than soil properties in explaining the variation in the more
complex ASV bacterial community matrix (4% and 1%, respec-
tively; Table S8). While all variation partitioning models were
statistically significant (P < 0.001), the models of bacterial rela-
tive abundance and the ASV community composition matrix
exhibited higher levels of unexplained variation.

Fig. 5 shows the results of Spearman and partial Spearman cor-
relation analysis, which was used to complement variation parti-
tioning by providing insight into the specific foliar traits most
strongly associated with microbial composition and diversity,
beyond what was captured by the multivariate models of grouped
variables. We initially found significant associations between sev-
eral foliar traits that can be linked to the plant economics spec-
trum and microbial PLFA group abundances and ratios (Fig. 5a).
Significant trait associations were generally positive for all broad
taxonomic groups and mirrored the patterns of association
observed for soil carbon, nitrogen and moisture (Fig. 5c). Magne-
sium and potassium were exceptions, showing negative correla-
tions with Gram-negative bacteria PLFAs. Magnesium was also
negatively correlated with SF. By contrast, both PLFA ratios and
the ratio of fungi-to-bacteria in particular, showed more nuanced
relationships with plant traits. For example higher relative levels
of fungi were negatively associated with resource-acquisitive traits
(e.g. SLA, sulphur, magnesium, potassium and nitrogen) but
positively correlated with foliar carbon. When the influence of
soil and climate was reduced through partial correlations
(Fig. 5b), several previously significant correlations became insig-
nificant, indicating that some of the observed foliar trait associa-
tions were either driven by shared dependence with soil and/or
climatic conditions or soil and/or climate variation had a similar
effect on both the soil microbiome and foliar traits. Some foliar
traits (e.g. boron) remained significantly correlated with the
PLFA groups, or showed greater significance (e.g. zinc), whilst
other correlations reversed direction. For example, after account-
ing for climate and soil properties, higher foliar carbon was asso-
ciated with lower abundances of all PLFA microbial groups, and
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Fig. 3 Ordinations (principal components (PCA) and non-metric multidimensional scaling (NMDS)) of (a) phospholipid fatty acids (PLFA) groups
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most significantly with Gram-positive bacteria and the two fungal
groups (SF and AM), although the relationship with the fungi-
to-bacteria ratio remained positive (Fig. 5b).

Fewer foliar traits showed consistent associations with the rela-
tive abundance of the dominant bacterial phyla, and the direction
of these associations varied among phyla, unlike the more uni-
form patterns observed with broad PLFA microbial groups and
ratios (Fig. 5a). Initial correlations showed that several resource-
acquisitive foliar traits (e.g. boron, sulphur and potassium), were
associated with the relative abundance of all three dominant bac-
terial phyla. Specifically, these traits were positively correlated
with Acidobacteria and Proteobacteria, but negatively
correlated with Actinobacteria. In comparison to the phylum-
level taxa, initial observations indicated that a greater number of
foliar traits were correlated with bacterial composition repre-
sented by ASVs. For example, both bacterial richness and the first
NDMS axes were positively correlated with increases in the con-
centrations of several resource-acquisitive foliar traits, including
potassium and phosphorus, and negatively correlated with more
resource-conservative traits such as carbon and manganese. The
second NDMS axis was associated with fewer foliar traits and was
positively correlated with concentrations of resource-conservative
traits such as cellulose and negatively associated with acquisitive
traits such as phosphorus (Fig. 5b). As observed for the broad
microbial PLFA groups and phylum-level data, once climate and
soil were accounted for, fewer significant correlations remained,
and some relationships were reversed. For example, bacterial

richness switched from being negatively to positively associated
with concentrations of resource-conservative traits (e.g. lignin
and calcium). The first axis of NDMS1 remained characterised
by increasing concentrations of the acquisitive trait phosphorus,
and the strength and direction of correlations between NDMS
axes two and foliar traits remained largely unchanged (Fig. 5b).

The performance of spectral models for predicting soil
microbial community composition

PLSR was used to determine whether canopy spectral reflectance
data could be used to predict soil microbial community composi-
tion and diversity. Canopy reflectance was able to model the
abundance of broad microbial groups and ratios measured via
PLFAs with a moderate to good level of predictive accuracy
(R2 = 0.67–0.86; P < 0.001; NRMSE 10.1–14.2%; Fig. 6;
Table S9). The abundances of Gram-positive bacteria, Actinomy-
cetales and AM fungi were modelled with the highest accuracies
(R2 > 0.8, P < 0.001, NRMSE < 11%), although there was
some under-prediction across all models at low PLFA concentra-
tions. The composition of bacterial communities at higher taxo-
nomic resolutions (derived from 16S rRNA sequencing) could
also be modelled from canopy reflectance, specifically when char-
acterised by ASVs (Fig. 7d–f). Bacterial community composition
gradients (i.e. NMDS axes) were modelled with the highest level
of accuracy (R2 = 0.6–0.61, P < 0.001; NRMSE 12.5–15.5%;
Table S9), although richness was also reasonably well modelled
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(R2 = 0.43; P < 0.001; NRMSE 15.5%). The relative abun-
dance of bacterial phyla was less well modelled, although all phyla
models were still statistically significant (R2 = 0.27–0.3;

P < 0.001; NRMSE > 18%; Fig. 7a–c; Table S9). As a point of
contrast, common multispectral indices that are based on several
spectral bands as opposed to hundreds of spectral bands, such as
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the NDVI and NDWI, were only able to explain ≤ 15% of varia-
tion in soil microbial community composition and diversity,
regardless of how the soil microbiome was characterised (Figs S9,
S10).

Fig. 8 provides information on the wavelengths that have the
most significant impact on predicting soil microbial commu-
nities, as indicated by the PLSR model coefficients and Variable
Importance in Projection (VIP) scores (Fig. S11). For most mod-
els, the most important wavelengths were often situated in the
near infrared (NIR; 720–1130 nm) and shortwave infrared
(SWIR, 1130–2500 nm). Many important wavelengths also
coincided with absorption features identifiable in a typical vegeta-
tion spectral signature. For example, we observed negative regres-
sion coefficients related to known water absorption features in
the SWIR at c. 1140 nm across all PLFA and ASV models, and

Proteobacteria, suggesting that an increase in reflectance in this
region of the spectrum (indicative of drier conditions) has a sig-
nificant effect on soil microbial composition and diversity.

Discussion

Soil microbial communities are fundamental components of bio-
diversity and are essential to ecosystem processes such as nutrient
cycling, organic matter decomposition and the maintenance of
soil health (Delgado-Baquerizo et al., 2018a). Gaining insight
into their distribution over large spatial scales is crucial for under-
standing how microbial community composition and diversity
shift across ecosystems and environmental gradients, and how
they influence, or are influenced by, broad-scale changes in vege-
tation, climate and land use. We provide evidence that imaging
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SD of the observed mean estimate (a–d), whereas horizontal error bars represent �1 SD of the predicted mean estimate (n = 200) for each validation plot.
The 1 : 1 relationship is shown in black and the line of best fit is shown in red.
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Fig. 8 Partial least squares regression (PLSR) model coefficients for (a–h) broad soil microbial groups, (i–k) dominant bacterial phyla, (l) bacterial amplicon
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spectrometry can capture spatial variation in soil microbial com-
munity attributes, including the abundance of key microbial
groups, and the diversity and composition of bacterial commu-
nities. Our results are in broad agreement with previous studies
that point to the potential for imaging spectroscopy to aid in
mapping and characterisation of the soil microbiome (e.g.
Madritch et al., 2020; Sousa et al., 2021; Cavender-Bares et al.,
2022; Skidmore et al., 2022, 2025), but we advance our under-
standing by demonstrating the wider applicability of the
approach across a greater range of diverse ecoregions and land
covers at a continental scale. Furthermore, by combining PLFA
data with high-resolution 16S rRNA gene sequencing, together
with field-measured ancillary data, we show that the effectiveness
of such models depends not only on how soil microbial commu-
nities are characterised (e.g. functional biomass, relative abun-
dance or diversity), but also on how closely plant attributes are
linked to soil microbial communities, either directly or indirectly
through environmental factors that similarly shape microbial
patterns.

We hypothesised that the capacity to predict soil microbial
community composition and diversity from canopy reflectance
would, at least in part, stem from strong associations between
foliar traits linked to plant resource acquisition and conservation
strategies; traits that also influence, or are shaped by, underlying
soil properties. Indeed, we found that the highest model predic-
tion accuracies aligned with microbial communities whose varia-
tion was well explained by a combination of field-measured foliar
traits (Figs 4, 6). Moreover, we found that the importance of
foliar traits in explaining soil microbial community composition
and diversity was often reinforced by shared responses of both
plant traits and microbial communities to underlying environ-
mental gradients such as soil properties and climate (Fig. 4). For
example, in comparison to broad taxonomic microbial groups
and ratios characterised by PLFA or microbial diversity and com-
position determined by ASVs, foliar traits (alone or when the var-
iance was shared with other environmental attributes) explained a
much smaller proportion of the variation in the relative abun-
dance of dominant bacterial phyla. This was reflected in a weaker
performance of the canopy reflectance models for predicting
phylum-level relative abundance. When the influence of climate
and soil properties was reduced (via partial correlation) several
foliar traits remained significantly correlated with specific micro-
bial community attributes, for example foliar carbon content
(e.g. low for G+, SF and AM fungi and high for high fungi-to-
bacteria ratios), SLA (low for high bacterial richness) and lignin
(high for high bacterial richness; Fig. 5). Many of these foliar
traits are considered key functional markers, as they relate to soil
fertility and the quantity and quality of plant-derived inputs to
the soil (Garnier et al., 2004). There was variation in the exact
nature of the correlations between specific traits and different
microbial community groups, which also suggests that different
environmental factors select for different microbial communities
and community groups (Averill et al., 2021; Malard et al., 2022).
Nevertheless, strong correlations between foliar traits and soil
microbial community attributes characterised by both PLFA and
ASVs, albeit often confounded by soil and/or climate gradients,

reveal that there are direct correlative links between aboveground
plant attributes and soil microbial communities at the continen-
tal scale. Both direct and indirect associations can contribute to
strong predictive models across large spatial scales, by reflecting
the common responses of vegetation and microbial communities
to underlying ecological drivers.

We hypothesised that differences in the ability to predict soil
microbial community composition and diversity may also be
related to the level of taxonomic resolution. Previous work has
suggested that soil microbial communities may become more
predictable as taxonomic resolution decreases and spatial scale
increases, as deterministic processes are likely to shape microbial
communities at greater levels of taxonomic and functional aggre-
gation (Averill et al., 2021). Our results provide partial support
for this hypothesis as crude measures of soil microbial commu-
nity composition and abundance of microbial groups measured
by PLFAs were among the most accurately modelled by canopy
reflectance (Fig. 6). This likely reflects the fact that PLFA profiles
represent the active microbial biomass and are sensitive to short-
term shifts in plant-derived inputs such as litter quality (Docherty
et al., 2015), as observed in the higher correlations between PLFA
groups and individual plant traits (Fig. 5). Consequently, our
results suggest that PLFA data are useful for capturing broad-
scale functional linkages between aboveground and belowground
communities at large spatial scales, particularly where plant traits
influence microbial responses through variation in resource qual-
ity, quantity, nutrient balance or carbon-to-nutrient stoichiome-
try.

We also expected bacterial communities characterised at the
phylum level to be better predicted than those at higher taxo-
nomic resolutions. However, in contrast to this we found that
bacterial communities and their diversity characterised by ASVs
were more predictable from spectral reflectance at the continental
scale than bacterial phyla (Fig. 7). Our results show that although
deterministic environmental filtering may have influenced plant
traits and bacterial richness and community composition, these
processes did not lead to strong covariation between plant attri-
butes and the relative abundance of dominant bacterial phyla
(Figs 4, 5). This likely reflects the broad functional and ecological
heterogeneity within phyla, which can mask finer-scale associa-
tions with plant communities and is consistent with findings by
Delgado-Baquerizo et al. (2018b), who showed that habitat pre-
ferences are not strongly linked to phylogeny at coarse levels of
taxonomic resolution. For example, dominant bacterial phyla
(e.g. Proteobacteria, Actinobacteria and Acidobacteria) often
include organisms with diverse ecological roles and environmen-
tal preferences. As a result, different members of a single phylum
may be related in opposite ways to the same plant trait, which
may obscure any consistent plant–microbe covariation at the
phylum level and thus their relative abundances are likely shaped
by factors beyond the scope of aboveground spectral cues. By
contrast, bacterial richness and ordination-based composition
metrics capture shifts at finer taxonomic resolution and therefore
may be more sensitive to deterministic environment–plant–
microbe linkages. Dominant phyla may maintain high overall
abundance across environments, while subtle changes within
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them account for most of the ecological signal. Consequently,
even under deterministic processes, plant traits may not relate to
phylum-level abundances but they may be indicative of change in
community structure.

We used the full canopy reflectance spectrum to model soil
microbial communities because plant functions and strategies
directly influence or are closely linked to the optical properties of
plant canopies (Kattenborn et al., 2019; Kattenborn & Schmid-
tlein, 2019). The wavelengths that accounted for most of the var-
iation in our spectral models were primarily found in the NIR
and SWIR regions, which are known to reflect key foliar struc-
tural, physiological and chemical traits (Kokaly et al., 2009;
Ollinger, 2011; Fig. 8). Interpreting the physical meaning of spe-
cific wavelengths identified by our models is challenging as many
foliar traits relevant to soil microbial communities, including
those measured in our field data, lack distinct spectral features
and often do not show linear relationships with reflectance
(Kokaly et al., 2009; Ollinger, 2011). For instance, lignin and
cellulose concentrations have non-linear effects on spectral reflec-
tance. Both compounds exhibit strong absorption features in the
SWIR region (1500–2500 nm), but increasing concentrations
also affect leaf structural properties, altering light scattering (espe-
cially in the NIR) and thus influencing reflectance across multiple
spectral regions (Wang et al., 2020). Wavelengths near known
water absorption features in the SWIR (e.g. c. 1150 nm) were
important in many soil microbial community models, suggesting
that canopy moisture variations may help predict soil microbial
community composition and diversity. Previous research across
the western US identified SM as a key driver of canopy water
content dynamics (Lyons et al., 2021). Since both our results and
those of others indicate that SM strongly influences soil microbial
communities (Brockett et al., 2012; Guenet et al., 2012; Waldrop
et al., 2017), it is likely that the observed changes in canopy
reflectance are also associated with variations in SM. The impor-
tance of broad spectral regions (i.e. NIR and SWIR) in many of
our predictive models may suggest that more widely available
multispectral imagery, which contains fewer spectral bands, may
be equally as useful for predicting key soil microbial community
attributes. However, linear models based on standard multispec-
tral indices such as the NDVI (a general proxy for biomass/pro-
ductivity) and the NDWI (a general indicator of canopy
moisture) performed poorly on the same dataset (Figs S9, S10).
These results suggest that hyperspectral data provide more infor-
mative signals for predicting soil microbial community attributes
and highlight the benefits of hyperspectral data in ecological
research (Ustin et al., 2004; Kokaly et al., 2009; Serbin & Town-
send, 2020; Cavender-Bares et al., 2025).

At the canopy scale, reflectance is also affected by canopy
architecture, understory vegetation, and in some cases, the under-
lying substrate (Ollinger, 2011). While our results show that
negative PLSR coefficients in the NIR corresponded with known
water absorption features, several models also identified impor-
tant NIR wavelengths with positive coefficients associated with
increased reflectance (Fig. 8). High NIR reflectance results from
multiple scattering within mesophyll tissue at the leaf level as well
as canopy structural differences such as leaf and branch density,

total green vegetation cover and vegetation dry matter content
(Tucker, 1979). Although we vector-normalised our imagery and
applied an NDVI threshold (i.e. < 0.4) to remove sparsely vege-
tated and shadowed canopies (Figs S1, S2), it is possible that our
PLSR regression models may be capitalising on both direct effects
of pigments and water on plant reflectance (manifested as specific
absorption features) and indirect effects arising from associations
between plant physiological and chemical traits, and structural
features that influence canopy reflectance (Townsend et al., 2013;
Lepine et al., 2016; Wang et al., 2022). Previous research has
demonstrated the potential of LiDAR-derived measures of
canopy structural diversity to infer variations in soil microbial
composition (Lang et al., 2023). However, such relationships
have so far only been observed in hardwood forests, as current
aerial LiDAR technology cannot effectively measure the structure
of low-stature herbaceous vegetation (Li et al., 2021).

An additional challenge of linking remotely sensed data with
soil microbial community attributes is the vast differences in scale
between small spatial scale observations, usually at the level of
individual soil cores, and large spatial scale observations from air-
borne or satellite platforms. Whilst heterogeneity belowground
within the soil microbiome is several orders of magnitude greater
than in aboveground plant canopies (Bardgett & van der Put-
ten, 2014), we were still able to predict soil microbial community
attributes using in situ and airborne data aggregated to 20 m pix-
els (i.e. to match sampling within the NEON plots); similarly to
Skidmore et al. (2025) who used 30 m spaceborne imaging spec-
troscopy data to map soil microbial diversity across temperate
European forests and Wang et al. (2022) who used plot-level
aggregated spectral reflectance to map foliar traits across several
NEON sites. Aggregating soil microbial communities across lar-
ger spatial scales has also been shown to enhance the predictabil-
ity of certain bacterial and fungal groups, likely due to the
influence of deterministic environmental filtering (Averill et al.,
2022). Furthermore, at the continental scale, links between
aboveground and belowground communities have a greater
chance of being observed given that differences in plant traits and
attributes are likely to be significant (Delgado-Baquerizo
et al., 2018a). Predicting soil microbial communities from
canopy reflectance data alone may be more challenging as the
spatial extent across which predictions are made decreases.
Further work is thus required to look at how predictability varies
across spatial and temporal extents, both within and between eco-
systems.

We used PLSR models to predict microbial community com-
position and diversity from canopy spectral reflectance. Whilst
PLSR models are often used in the prediction of ecological attri-
butes from remotely sensed data, empirical models are often criti-
cised for their lack of transferability. Insufficient data prevented
us from exploring the transferability of our soil microbial attri-
bute models using approaches such as cross-domain validation
(Wang et al., 2020; Zhang et al., 2022) or testing our models on
truly independent datasets (i.e. from plots not within the NEON
network), and to explicitly link field-measured traits with reflec-
tance and soil microbial communities at scale. Recent studies also
indicate that foliar trait-based PLSR models work best when
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training data are representative of the data in the validation sam-
ple (Nakaji et al., 2019; Wang et al., 2020; Ji et al., 2024), and it
is likely that the same holds true for our PLSR models. Conse-
quently, there is a clear necessity to continue enhancing efforts to
develop extensive training datasets for imaging sensors, to ensure
reliable model performance over large spatial extents.

Conclusions

Although remote sensing cannot replace field-based measure-
ments, our results show that canopy reflectance can reliably cap-
ture variation in the composition and diversity of soil microbial
communities at continental scales. This predictive capacity is
underpinned by plant attributes, which influence microbial com-
munities directly and also reflect shared responses to underlying
edaphic and climatic gradients. We further show that model
accuracy depends on taxonomic resolution, peaking when micro-
bial communities are characterised at levels that correspond to
coherent habitat preferences detectable through canopy spectral
signatures. Models based on full-spectrum hyperspectral data
consistently outperform those using simple vegetation indices
such as NDVI and NDWI, highlighting the current and future
importance of imaging spectroscopy in ecological research. The
upcoming deployment of multiple satellite imaging spectro-
meters, including ESA’s Copernicus Hyperspectral Imaging Mis-
sion for the Environment (CHIME) and NASA’s Surface
Biology and Geology, both planned to launch in 2028, combined
with expanded field sampling, offers an unprecedented opportu-
nity to map soil microbial biogeography across diverse landscapes
and accelerate the development of rapid, accurate and cost-
effective ecosystem monitoring frameworks.
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