A DYNAMIC STATE-SPACE HAR MODEL

MIKE TSIONAS!, AYA GHALAYINI?, MARWAN IZZELDIN!, AND LORENZO TRAPANI?

ABSTRACT. The Heterogeneous AutoRegressive model for the logs of Realised Volatility
(HARL) has established itself as the benchmark specification for modelling and forecasting
return volatility, owing to its parsimony and ability to capture the strong persistence typi-
cally observed in RV. To address potential concerns such as measurement errors, nonlineari-
ties, and non-spherical residuals, numerous variants of the baseline HARL model have been
developed in the literature. This paper contributes to this body of work by proposing a new
class of dynamic state-space models with time-varying parameters. The parameter dynamics
are assumed to follow an autoregressive process, with or without stochastic volatility, giving
rise to two specifications: SHARP and SHARP-SV. Both models are designed to capture the
evolving nature of return volatility and are estimated via Bayesian inference using Particle
Gibbs sampling. Empirical applications to high-frequency data on SPY, sector ETFs, repre-
sentative NYSE stocks, and the VIX index demonstrate that our proposed models on average
outperform alternative HARL-based specifications in forecasting volatility, particularly at
medium- and long-term horizons. An extensive Monte Carlo analysis further illustrates the

advantages of our approach in terms of both estimation accuracy and predictive performance.

1. INTRODUCTION

The presence of time-varying parameters and time-varying volatility in economic and fi-

nancial data (see, inter alia, Buccheri and Corsi, 2021, and their literature review) is a very

'LANCASTER UNIVERSITY MANAGEMENT SCHOOL, LANCASTER, UK

2COLLEGE OF BUSINESS AND SOCIAL SCIENCES, ASTON UNIVERSITY, BIRMINGHAM, UK

3UNIVERSITA’ DEGLI STUDI DI PaAviaA, Pavia, ITALY, AND UNIVERSITY OF LEICESTER, LEICESTER, UK
E-mail addresses: m.tsionas@lancaster.ac.uk, a.ghalayini@aston.ac.uk,
m.izzeldin@lancaster.ac.uk, lorenzo.trapani@unipv.it.

Key words and phrases. Time-varying coefficients, HAR models, Particle Gibbs sampling, State Space mod-
els, volatility forecasting.

Acknowledgement. This paper was started (and virtually completed, although in a different form than the
current one) when Mike was still alive; he proposed the new SHARP and SHARP-SV models, and developed
the Bayesian, Particle Gibbs based, inferential procedure. We are grateful to the Editor, Michael Jansson,
to the Guest Editor, Subal Kumbhakar, and to two anonymous Referees for very helpful and constructive
feedback.



well-documented stylised fact. Models that fail to account for changes in the data generating
process are liable to produce biased estimates and inaccurate predictions. Thus, it is essen-
tial to analyse and account for parameter behaviour in the statistical modelling of such data.
The importance of taking such features into account has been emphasised in several studies,
including those by Koop and Potter (2004), D’Agostino et al. (2013), Clark and Ravazzolo
(2015), Bekierman and Manner (2018), Chen et al. (2018), and Buccheri and Corsi (2021).
As far as time variation is concerned, the use of Time Varying Parameters (TVP) models
has been long proposed as a more flexible (and, possibly, more realistic) alternative to mod-
els with abrupt breaks. Several applications have shown the superior forecasting ability of
TVP models, also in the context of high-dimensional Vector AutoRegressive models; whilst
a comprehensive literature review goes well beyond the scope of this paper, we refer to the
contributions by Doan et al. (1984), Sims (1993), Stock and Watson (1996), and Cogley and
Sargent (2005), as seminal papers, and to the more recent works by Carriero et al. (2019)
and Tsionas et al. (2022), also for an up-to-date list of references. Alongside this strand
of the literature, modelling time variation in the volatility is also a very important topic,
e.g. in finance (owing to its significance in risk management, portfolio selection, and as-
set pricing), and also in macroeconomic forecasting (see, for example, the papers by Clark,
2011; Koop and Korobilis, 2013; Carriero et al., 2015; Clark and Ravazzolo, 2015; and Koop
et al., 2019 - where accounting for heteroskedasticity is shown to yield dramatic improve-
ments in forecasting). In particular, in the context of financial econometrics, nonparametric
approaches based on the so-called Realised Volatility (RV) are often preferred to paramet-
ric approaches, based e.g. on GARCH-type models (Bollerslev, 1986).

Since the seminal contributions by Andersen and Bollerslev (1998), Barndorff-Nielsen and
Shephard (2002), and Liu et al. (2015), modelling realised volatility has advanced markedly,
with the Heterogeneous Autoregressive (HAR) model by Corsi (2009) becoming the empiri-

cal workhorse. By employing daily, weekly, and monthly RV averages, HAR parsimoniously
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captures persistence and heterogeneity across horizons. Corsi (2009) notes that modelling
the logs of RV, as well as ensuring non-negativity, also improves forecast accuracy. We take
this HAR-log (HARL) specification as the cornerstone of our contribution. Despite its suc-
cess, the (linear) HARL can suffer from measurement error, nonlinearities, and autocorre-
lated, heteroskedastic residuals, motivating extensions such as regime-switching (McAleer
and Medeiros, 2008), dynamic model averaging (Wang et al., 2016), and TVP variants
(Bekierman and Manner, 2018; Chen et al., 2018; and Buccheri and Corsi, 2021).

We address the aforementioned limitations of the HARL framework by building on (and ex-
tending) the approaches mentioned above, accounting for nonlinearities, time variations in
the parameters (and possible heteroskedasticity in the law of motion of the coefficients), and
autocorrelation and heteroskedasticity in the residuals. Specifically, we present a novel dy-
namic state-space model with time-varying coefficients, assumed to follow an AutoRegres-
sive (AR) process with or without Stochastic Volatility (SV) - henceforth, we refer to the
former specification (that is, a model with TVP but no SV in the law of motion of the coef-
ficients) as the SHARP model; and to the latter (i.e., a model with TVP and SV in the law
of motion of the coefficients) as its SHARP-SV variant. An integral part of our methodol-
ogy is the use, in both cases, of Bayesian inference with Particle Gibbs sampling, following
the procedure by Creal and Tsay (2015), which allows for efficient computation of the latent
variables (see also Andrieu et al., 2010). However, even though our main focus - as far as
inference is concerned - is Bayesian, we also study in depth the dependence structure of our
model. Indeed, the SHARP and SHARP-SV models produce observations - owing to the
presence of time-varying parameters and stochastic volatility - whose dependence structure
is highly complex. Still, we show that our proposed models generate observations which
belong in a wide class of weakly dependent processes, which do not exhibit persistence or

pseudo-long-memory behaviour.

Tn order not to overshadow the main results in this paper, we relegate these results in Section I in the
Supplement.
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Empirically, we embed these new features into the HARL framework to improve RV forecasts.
Our results show that this approach outperforms standard methods in predicting the volatil-
ity of both index and individual stock returns. In an extensive empirical analysis, we exam-
ine daily RV from the SPY-ETF—a tradable U.S. market index—alongside 10 sector ETFs
(2006-2023), 20 representative NYSE stocks (2000-2016), and the VIX index (2003-2023).
Across all datasets, both the SHARP and SHARP-SV models significantly outperform the
HARL model and its time-varying extensions, as confirmed by the predictive ability test of
Giacomini and White (2006). While SHARP-SV provides a moderate forecasting edge over
SHARP, both consistently belong in the Model Confidence Set of Hansen et al. (2011). Re-
sults are broadly confirmed via a Monte Carlo simulation, where we study the performance
of our estimation methodology, and the forecasting accuracy of our proposed models (and of
Bayesian estimation cum Particle Gibbs) under possible misspecification, using several Data

Generating Processes (DGPs henceforth) exhibiting the typical features of financial data.

The remainder of the paper is organised as follows. Section 2 provides an overview of the Re-
alised Variance measure and existing extensions to the HARL model with dynamic and time-
varying parameters. In Section 3, we introduce our proposed models and provide details on
the estimation method. In Section 4, we apply and evaluate the proposed models in forecast-
ing stock volatility using real data. A comprehensive Monte Carlo study is reported in Sec-
tion 5, where we assess the performance of our Bayesian estimator under correct specification
(Section 5.1), and predictive accuracy under possible mis-specification (Section 5.2). Section
6 concludes. Further results are in the Supplement where we: report the detailed forecasting
results and some misspecification analysis (Section A), and further Monte Carlo evidence
(Section B); present the posterior derivations (Section C'); provide details on the Particle Fil-
tering algorithm (Section D); study the dependence structure of the SHARP and SHARP-

SV models (Section E), and present technical lemmas (Section I') and proofs (Section G).
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2. VOLATILITY MEASURE AND HARL FAMILY OF MODELS

Consider an asset whose log-price In(P;) follows the stochastic differential equation:
dIn(Ps) = pyds + 0,dWs, (2.1)

where u, denotes the drift, os is the instantaneous volatility and W; a standard Wiener

process. The (latent) integrated variance for day t is defined as:

¢
ﬂ/;:/ o2ds, (2.2)
t—1

and its nonparametric, ex-post estimate based on the realised variance, RV}, is calculated

by aggregating intra-daily squared returns over a one-day horizon, ¢, using M sub-intervals:
RV, = 55,15, (2:3)

where 754 = In(Py_1)pm+;) — In(Py—1)m4(j—1)) is the intra-day return of the j-th sub-interval
within the ¢-th day, and P;_1)ar4; is the asset price at the start of the j-th interval computed
as the average of the closing and opening prices of intervals 5 — 1 and j, respectively.?
Several models can be used in order to forecast the daily RV; our benchmark model is the

Heterogeneous Autoregressive (log) Realised Variance (HARL) of Corsi (2009) defined as:
RVy =By + BoRVLy + B3RV, g+ BBV, o + v, with vy~ N(0,07),  (2.4)

where RV} denotes the log-transformation of daily RV, and RVUZM and eriht denote the

weekly and monthly log-transformations of the RV realised at time ¢, respectively, computed

2We point out that Zhang et al. (2005) provide a discussion on optimising the sampling frequency for
the estimation of RV;. However, Buccheri and Corsi (2021) show that the relative forecast performance
of models with time-varying coeflicients, such as the ones discussed in this paper, is independent of the
sampling frequency. Therefore, for conciseness, we use sub-intervals of length 300 seconds in constructing
the daily RV series. The latter defines 78 intraday sub-intervals and combines balanced information from
high-frequency data and microstructure effects Andersen et al. (2001).
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over a recursive rolling window of fixed length (week or month) as RV}, = X7 RV}’ ;/5 and
RV,fZ’t = Y2 RV! ,/22 respectively. As common wisdom would suggest, by using the log-
transformation, the HARL model of equation (2.4), and indeed all the other variants esti-
mated on the log series, are less affected by the huge peaks of RV. Nevertheless, the HARL
model is liable to suffer, albeit less severely, from several issues such as measurement error,
time variation in the parameters, etc... Hence, the literature has developed several extensions
of the basic HARL, which we also use in our paper by way of comparison and which we briefly
review here. Bollerslev et al. (2016) and Bollerslev et al. (2018) propose an extension (called
the HARQ model) in order to deal with the estimation error of the RV, using the “realised
quarticity” defined as RQ); = %ij‘ilr;{t. This approach has the major advantage of being
estimable using OLS, and it can be naturally extended to the HARL set-up (resulting in a
model which we call the HARLQ specification). Further, again in order to address the mea-
surement error, Bekierman and Manner (2018) - building on the original works by Barndorft-
Nielsen and Shephard, 2002 and Bollerslev et al., 2016 - propose the HARSL model, which,
in essence, is a state-space HARL model which assumes a latent Gaussian AR(1) process for
the daily coefficient 3,. The model is estimated using maximum likelihood with a standard
Kalman filter, and it on average outperforms the HARL model in forecasting the RV. The
success of the HARSL model is due to its ability to capture other sources of temporal varia-
tion in addition to the variance of the measurement error. However, Bekierman and Manner
(2018) note that the maximum likelihood estimator of the model is inefficient, and allow-
ing all coefficients to follow an AR process is computationally challenging to perform using
their employed estimation method. Thus, in a related contribution, Chen et al. (2018) intro-
duce a novel approach - based on a local linear smoothing method - to estimate the HARL
model (called the TVCHAR model), which assumes time-varying coefficients of an unknown
functional form. The TVCHAR specification is found to also outperform the benchmark

HARL model, especially over longer forecasting horizons. In a similar vein, Buccheri and
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Corsi (2021) propose the SHARK model, which accounts for time-varying coefficients and
heteroskedastic error terms while also handling measurement errors. They find that their
model produces moderate improvements in one-day-ahead forecasts but is more effective for
longer-term forecasting. In Table 2.1, we summarise the set of HARL versions that we con-

sider in this paper to compare alongside our proposed models, described in the next section.



TABLE 2.1. Summary of competing models

Model Name Author(s) Model Estimation Method
(benchmark model) Corsi (2009) RVY =1+ BoRVi_1 + B3RVyy 41 + B4RV o1 + v ve ~ N(0,0%) OLS
inspired by RV} =B, + By, RV/_1 + B3RV i1 + B4RV i1+ vi; ve ~ N(0,0%)
HARLQ Bollerslev et al. (2016) OLS
& Buccheri and Corsi (2021) where ,, = f, + ,y\/;‘ffi—ll
Maximum
RV} =B, 4 (By + M)RV} + B3RV v 1 + ByRVih o1 +ve; ve ~ N(0,02) Likelihood
HARSL Bekierman and Manner (2018) using
where Ay = ¢X\i—1 +1,; 1, ~ N(O, 0,27) Kalman
filter
RV} = B,(¢) + Bo(Te) RViL1 + B3(7¢) RViy i1 + Ba(Te) RVi o1 + 45 v ~ N(0,07)
) Local
TVCHAR Chen et al. (2018) Using first-order Taylor expansion: 3,(7:) ~ 8;(1) + 8,(7)(1¢ — 7) Linear
Method
where ﬂ; (7) is the first-order derivative of 3,(7)
RV} = ar 4+ ve; v~ N(0,hy)
Qo = 51,,5 + 52,tRV;5[—1 + ﬂ3,tRV1i,t—1 + ﬁ4,tRVTln,t—l +mi5 M~ N(0,q¢)
Let f; = (/61,t,ﬁ2,t7ﬂ3,t7B4,t»l09qt) Maximum
] Likelihood
SHARK Buccheri and Corsi (2021) The update rule is: fii1 = fi + Cse using
Kalman
where s; is a function of the Kalman filter filter

prediction error and its covariance matrix.

oM _pd . .
Vi = ﬁ, a consistent estimate of the measurement
j=1"j,t

error variance of RV, is selected as a proxy for h;.




3. METHODOLOGY

As the (short) literature review in the previous section demonstrates, research within the
HARL family of models has been very active. In this section, we: propose two variants of the
benchmark HARL model of equation (2.4), which account for the possible mis-specifications
in the HARL set-up by considering a quite general specification for the law of motion of
the time-varying coefficients (Section 3.1); briefly discuss (Bayesian) estimation (Section
3.2) and the priors we have chosen for our empirical exercise; and report the forecasting

algorithm using both variants of the basic HARL model (Section 3.3).

3.1. The SHARP and SHARP-SV models. We describe the two variations of the pro-
posed model. In order for the presentation not to be overshadowed by model complexity,
here we present a simplified version of our model, where innovations are i.7.d. and Gaussian.
However, the measurement equation (3.1) below is quite flexible, and the model can be ex-
tended to include autoregressive structure, deterministics such as a constant, (linear or non-
linear) trends, or seasonal dummies. Also, in principle, other specifications than equation
(3.5) below for time-varying heteroskedasticity are possible. For extensions, we refer to Sec-
tion 5, where we show that using Bayesian estimation with the Particle Gibbs sampler within
this simplified class of dynamic state-space models is sufficient to capture several features of
financial time series, such as: correlation between innovations, presence of diffusive leverage
and multiple regimes, and heavy tails. Further, as mentioned in the Introduction, in Section
E in the Supplement, we derive a characterisation of the dependence structure of the obser-
vations y; under a more complex version of the model below, which also nests (3.1)-(3.5).

Consider the following state-space specification,

e = 2,8 + v, (3.1)
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where 1 <t < n, and v; ~ 1.i.d.N(0,02); we model the law of motion of 3, as

Bjs =i+ piBi1 + €t (3.2)

where ‘ ,aj‘ < 1for 1 < j < k. Whilst spelt out for a general model in terms of {y;,z}},
in our context the measurement equation (3.1) describes the dependent variable y, = RV}
in terms of the covariates 2, = (1, RV}!{, RV, ,_,, RV#L’,;_I)/ in (2.4), of the state vector, S3,,
and of the disturbances, v;. The transition equation (3.2) describes the evolution of the
coefficients over time, with the (stationary) AR process of the intercept also capturing the
residuals autocorrelation in the measurement equation.

In the state equations (3.2), we use two different specifications, which characterise the
SHARP and the SHARP-SV model respectively; in the former case (SHARP), we model

the innovations as i.i.d. Gaussian, viz.
gju ~ ii.dN(0,0%)), (3.3)

independent across 1 < j < k, whereas in the latter case (SHARP-SV), we assume a

stochastic volatility (SV), equation-by-equation, process, i.e.

e = hiin;,. (3.4)
In hj,t = ’}/j + (Sj In hj,t—l + Ujt, (35)

where {nj,t, 1<j<k1<t< n} is a mean zero, unit variance process independent across
j and ¢, and independent of {u;;,1 < j <k,1 <t <n}, with u;; ~ i.i.d.N(0, aiJ) also in-
dependent across j, and |0;| < 1. While the unconditional first and second moments of the
stationary solution of (3.2) can be shown to be constant, its conditional second moment

can change over time; hence, (3.4)-(3.5) allows for (a) conditional heteroskedasticity in the
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main equation (3.1), through the intercept term (say 3, ,); and (b) also for conditional het-
eroskedasticity in the coefficients process. Model (3.4)-(3.5) is a standard (univariate) sto-
chastic volatility model (see Taylor, 1982); we refer to Harvey et al. (1994) for extensions to

multivariate settings, and to Kokoszka et al. (2025) for a functional version.

3.2. (Bayesian) estimation of SHARP and SHARP-SV models. We review the es-
timation technique employed, and the the priors used in our empirical exercise.

In order to estimate the model, we use a modified version of the sequential Monte Carlo
method known as the Particle Gibbs (PG) sampler discussed in Andrieu et al. (2010).
Whilst the details are in Section C of the Supplement, here we offer a bird’s-eye view on
the estimation algorithm. The latent variables in our model are A\, = (3}, h})" where 3, =
(ﬁlyt, o ,Bk’t)/ and hy; = (R, ..., i)', whose prior can be described by p(A¢|\;_1,8), with
0 a vector containing all the static parameters; the joint posterior is denoted as p(0, A1.7|y1.1)
and also studied in Section C of the Supplement; finally, in the PG sampler, we draw the
structural parameters, as usual, from their posterior conditional distributions p (6| A1.7, y1.7),
reported again in Section C of the Supplement. By doing so, we can avoid mixture approx-
imations or other Monte Carlo procedures that need considerable tuning and may not have
good convergence properties. The latent variables can be integrated out of the joint poste-
rior using the procedure by Creal and Tsay (2015), described in Section D of the Supplement.

Our choice of conjugate priors is as follows:
Qy, ’}/j ~ N(O, 1) 3 pj7 6j ~ N (05, 1) I[ij(O,l)]I(SjE(O,l); O'ij ~T (65, 05) 3 0'3 ~T (65, 05) y
for all 1 < j <k, where I' (a,b) denotes the Gamma distribution with shape a and scale

b. In the above set of priors: we restrict the estimation range of p and ¢ between (0,1), to
11



guarantee stationarity and also to reflect the belief that coefficients are positively autocor-
related; we note that the prior of v and § can be made more flexible in this exercise with a
prior mean of 0; we choose the conjugate prior specification of the variances, ai’j and o2, to
have a low mean, reflecting the prior belief that while the coefficients are time-varying, we

do not expect high jumps in the magnitude of the coefficients from one day to another.?

3.3. Forecasting the log-RV using SHARP and SHARP-SV. To reduce the compu-
tational cost of the model, we implement an efficient strategy in our MCMC and particle
filtering process. Instead of running the full MCMC and particle filtering for each observa-
tion, we perform these computations every 10 observations. During these runs, we use 100
particles for the particle filtering, and the estimated posterior statistics are then applied to
the following 10 observations. Within these 10 observations, we estimate the states by run-
ning the particle filtering using 1, 000 particles, so as to balance computational efficiency and
model accuracy. We use an in-sample estimation window of approximately four years, and
conduct 1,000 MCMC iterations, with the first 300 iterations discarded as burn-in. By only
updating the MCMC estimates every 10 observations, and using the resulting estimates for
the subsequent 10, we significantly reduce computational demands while maintaining fore-
casting capabilities.

We report below the algorithm for the forecasting of RV using both the SHARP and
SHARP-SV models. Recall that n is the total number of observations, and let: is be the in-
sample estimation window size (approximately four years), nsim be the number of MCMC
iterations, and nburn the burn-in sample.

(1) For T =is,is+10,..,n — 1

(a) For i = 1,..,nsim

3We fixed the hyperparameters primarily to allow for more straightforward implementation of the Gibbs
sampler and reduce the computational burden. In a set of unreported experiments, we tried varying the
hyperparameters, but we noted no material differences in the empirical findings, which seems to suggest
that our results are not sensitive to the specific choice of hyperparameters.
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(i) Draw A for t =is —T +1,..,T, as illustrated in Section D of the Supple-
ment.
(ii) Sample the parameters of equations (3.2) and (3.5) using their posterior
distributions (see Section C of the Supplement).
(iii) Forecast the states in equation (3.2) and (3.5) then forecast RV lpyy, for
1 = nburn + 1, ..., nsim accordingly.
(b) Estimate §‘75T+1 = mﬁlﬁ%umﬂﬁ%ﬂd
(2) For T =is+1,is +9,is + 11, ...
(a) Draw A\, for t =is — T + 1,..,T, as illustrated in Section D of the Supplement.

(b) Forecast the states in equation (3.2) and (3.5) then forecast RV 741 accordingly.

Forecasts of the Realised Variance are then computed based on the expectation of a log-

normal distribution,* as follows:

~2
—_— — w
RV .1 = exp (RVlt+1 + t;t> , (3.6)
where:

Wity = &12; + Va7’<51,t+1\t) + (thz)z X Var(ﬁQ,t—H\t)

+ (Rvul;,t)Q X Var(ﬁ&t—‘,—l\t) + (Rvnlz,t)2 X Var(ﬁ4,t+1|t>‘

2

Here, the first term in the expression of &7 11t - denoted as &, - is the variance of the

measurement equation, whereas the subsequent terms represent the variance of each of

the state equations entering through the coefficients in the measurement equation. In the

—

SHARP model, Var (Bj,tJrllt) = Aij, for j = 1,...,4; conversely, in the SHARP-SV model,

Var (@jﬁl‘t) = exp (ln(hﬂﬂ) + &i,j/2>.

4We note that we always compute forecasts based on the Gaussianity assumption, which can of course be
mis-specified. As our simulations in Section 5.2 show, however, this does not impair the predictive accuracy
of our methodology.
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4. EMPIRICAL STUDY

In this section, we: describe the datasets employed in Section 4.1; analyse the estimated
coefficients of our volatility model(s) in Section 4.2; and report a comprehensive out-of-
sample forecasting analysis in Section 4.3. For brevity, we report only a selection of the

main results; the full-blown set of results is in Section A of the Supplement.

4.1. Data. We use two datasets, and the VIX index. The first dataset comprises 4,451
trading days of SPY-ETF, representing the US stock market, and ten ETFSs representing its
ten economic sectors, spanning from January 3rd, 2006 to September 8th, 2023. The second
dataset includes 4, 277 trading days of twenty individual NYSE stocks, covering the period
from January 3rd, 2000 to December 31st, 2016. We also use the VIX index, from July 1st,
2003 to December 29th, 2023, with a sample size of 5,161 observations. For both datasets
and the VIX index, daily RV was computed from tick-level price observations obtained from
TickWrite.> The selected stocks represent different market sectors and vary in terms of
market activity and volatility: the SPY serves as a widely recognized proxy for aggregate
market behaviour; the sector ETFs and stocks offer insight into cross-sectional and sector-
specific volatility dynamics; and the inclusion of the VIX adds a fundamentally different type
of volatility measure (one that is anticipatory /forward-looking, rather than historical), which
contrasts with the RV-based metrics - thus striking a balance between coverage, relevance,
and comparability. The chosen sample period includes significant market events such as the
STickWrite is a commercial database that provides data for futures, index, and equity markets. Tick data is
sourced from NYSE’s TAQ (Trade and Quote) database and is adjusted for ticker mapping, code filtering,
price splits, and dividend payments. More information can be found at https://www.tickdata.com/

In the construction of our databases, the selection criteria for individual stocks were as follows: (a) only
stocks continuously traded over the full sample period were considered; (b) in order to address liquidity and
staleness biases, we selected stocks ranking in the top 15th percentile by trading volume, which also tend to
fall in the bottom 20th percentile for zero returns; (c) in order to capture potential sector-specific intraday
dynamics, we ensured representation from all GICS sectors, choosing two qualifying stocks per sector.

The data were aggregated from the tick level using previous-tick interpolation, and sampled at 5-minute
intervals, a standard frequency in the high-frequency literature that balances bias and variance (see Ait-

Sahalia et al., 2005; and Hansen and Lunde, 2006).
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2008 global financial crisis and the COVID-19 pandemic, providing a diverse range of market
conditions. Table A.1 in Section A of the Supplement contains the descriptive statistics of

RV for all datasets.

4.2. Analysis of temporal volatility coefficients. Using a rolling window approach with
an estimation window of 1,000 daily observations (approximately four years), we plot the
estimated coefficients from the SHARP and HARL models, used in the out-of-sample fore-
casting period for the realised variances of the SPY-ETF and the VIX respectively, in Fig-
ures 4.1 and 4.2 respectively.

We note that the estimated intercept Bl,t fluctuates significantly, dropping during calm peri-
ods and rising during crises (in fact, Bu tends to drop below its corresponding average dur-

ing tranquil periods), while the intercept of the HARL model remains fixed; this suggests

Figure 4.1. Out-of-sample estimated coefficients, Btj, by SHARP and HARL models on
SPY-ETF realised variance in the period January 1st, 2006 to September 8th, 2023.
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Figure 4.2. Out-of-sample estimated coefficients, Bt]—, by SHARP and HARL models on

VIX realised variance in the period July 24th, 2007 to December 29th, 2023.
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that SHARP better adapts to changing baseline levels of realised volatility. Indeed, SHARP
shows varying persistence across daily, weekly, and monthly horizons, reflecting evolving in-
vestor responses at different frequencies. HARL, by contrast, imposes static weights, miss-
ing this flexibility. The daily coefficient becomes more prominent during periods of uncer-
tainty, such as the COVID-19 period, whereas the weekly coefficient shows a decline during
these times; further, the monthly coefficient increases during the COVID-19 period. This
phenomenon during times of financial market uncertainty can be attributed to the “primacy”
and “recency” effects; the current long-term conditions, reflected in the monthly average of
RV'! can be considered primary information, while recent information is represented by the
daily RV!. When predicting short-term (daily) volatility during periods of uncertainty, pri-
mary and recent information become more relevant than intermediate information, such as

the weekly average volatility.
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In Tables 4.1 and 4.2, we report the correlations between estimated parameters in the
SHARP and SHARP-SV models for the realised variances of the SPY-ETF and the VIX
respectively. The tables indicate a negative correlation between the weekly and daily coef-
ficients, as well as between the weekly and monthly coefficients, whereas the correlation be-

tween the daily and monthly coefficients is only weakly negative.

TABLE 4.1. Correlation matrix of B,; parameters obtained by estimating the SHARP
and SHARP-SV models on SPY-ETF realised variance in the period January 1st, 2000 to
September 8th, 2023.

SHARP SHARP;,
By By Bs B | By By Bs By
31 1 -0.1740  0.7049 -0.0389 31 1 -0.1431  0.6355 -0.0243
B, -0.1740 1 -0.5772 -0.1763 | B, -0.1431 1 -0.4675 -0.1212
By 0.7049 -0.5772 1 -0.4095 | B3 0.6355 -0.4675 1 -0.3840

B, -0.0388 -0.1763 -0.4095 1 B, -0.0243 -0.1212 -0.3840 1

TABLE 4.2. Correlation matrix of B,; parameters obtained by estimating the SHARP
and SHARP-SV models on VIX realised variance in the period July 24th, 2007 to December
29th, 2023.

SHARP SHARP;,
31 32 Ba 34 ‘ Bl Bz B?, B
[31 1.0000 0.6318 -0.7545 -0.8420 B1 1.0000 0.6292 -0.7552 -0.8427
B, 0.6318 1.0000 -0.9344 -0.3613 | B, 0.6292 1.0000 -0.9342 -0.3562

[33 -0.7545 -0.9344 1.0000 0.4049 | 55 -0.7552 -0.9342 1.0000 0.4063
B, -0.8420 -0.3613 0.4049 1.0000 | 5, -0.8427 -0.3562 0.4063 1.0000

4.3. Out-of-sample comparative analysis. We report an out-of-sample analysis of the
SHARP and SHARP-SV models, along with a set of competing models, in forecasting the
daily, weekly, and monthly realised Variance (RV) of SPY-ETF, VIX, twenty NYSE indi-

vidual stocks, and ten economic sector ETFs. We report the out-of-sample forecasts using
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a rolling window approach with an estimation window of 1,000 daily observations (approxi-
mately four years).® For the NYSE stocks dataset, the in-sample period covers 1,000 observa-
tions, approximately from January 2000 to December 2003. The out-of-sample period spans
from January 2004 to December 2016. For the SPY-ETF and sector ETFs dataset, the in-
sample period also uses the first 1,000 observations, approximately from January 2006 to De-
cember 2009, with the out-of-sample period from January 2010 to September 2023. For the
VIX series, the in-sample period also uses the first 1,000 observations, approximately from
July 2003 to July 2007, with the out-of-sample period from August 2007 to December 2023.
In our horse-race, we evaluate the performance of our SHARP and SHARP-SV models, also
in comparisons with other, existing set-ups. For example, the comparison between HARL
and HARLQ investigates whether accounting for measurement error in the RV' series im-
proves the forecasts by HARL, as observed by Bollerslev et al. (2016) when replacing the
HAR model with their HARQ specification. Additionally, comparing HARSL and HARLQ
outlines whether modelling the daily coefficient as an AR(1) process provides better forecast-
ing performance than the more restrictive yet straightforward HARLQ model. The analysis
between TVCHAR, SHARK, and SHARP demonstrates which time-varying specification of
the coefficients yields better forecasts when compared to each other and to the aforemen-
tioned models. Finally, the comparison between SHARP and SHARP-SV reveals whether
the inclusion of the stochastic volatility (SV) feature in the AR process of the coefficients
enhances the forecasts. These comparisons are designed to evaluate the robustness and fore-

casting accuracy of the proposed models in relation to existing benchmarks.

6Specifically, this involves continuously updating the dataset by removing the oldest observation and adding
the most recent one, thus maintaining a constant window of 1,000 observations. While in real-time forecast-
ing one should ideally jump 5 and 22 observations for weekly and monthly forecasts respectively, we adopted
the aforementioned method for the sake of simplicity - especially when updating the state equations for
longer horizons. This ensures continuous updating of the dataset with the latest data, thereby maintaining
the robustness and uniformity of our forecasts. In an unreported set of experiments, we note that the rela-
tive performance of our SHARP and SHARP-SV models compared to their competitors remains unaltered
even when using the alternative approach.
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We compare the accuracy of each model in forecasting RV over three horizons: daily, weekly,
and monthly. The forecasts are compared with their corresponding actual values exp (RV}}),
exp (RVul}’t), and exp (RVT£L7t), respectively. Since we perform direct forecasting for all the
models, we do not report the SHARK recursive forecasting for weekly and monthly horizons
to maintain consistency across the models.

In order to provide a comprehensive analysis of forecast accuracy, we use the following loss
functions: (i) the Mean Squared Error (MSE); (i) the Mean Absolute Error (MAE); (iii)
the heteroskedasticity-adjusted version of the mean squared error (HMSE), designed to ad-
just for the variability in 1, thus being less sensitive to periods of high volatility and pro-
viding a scale-invariant measure of forecast accuracy (e.g. Wang et al., 2015), defined as

1 - A%
HMSE = 1—=
n—is Z ( ) ’

t=is+1 b

where, as customary, we denote the actual and the predicted values as y; and 3; respectively,
and is is defined in Section 3.2; (iv) the heteroskedasticity-adjusted version of the Mean
Absolute Error (HMAE), defined as

n

1
HMAFE =
n —1s Z
t=is+1

Yi

Yt

9

and (v) the Quasi-Likelihood (QLIKE) loss function, defined as

1 & Ut (yt) )
LIKE = : P () 1),
QuikE - = 3 (%o (2

t=1s+1

which penalises under-predictions of volatility. In all cases, in order to facilitate comparisons,
we report the relative loss measures (say RLy, referring to model M), where we evaluate

the relative loss compared to the benchmark HARL specification, viz.

LF)y

RLy = ———,
M LFyarL

(4.1)
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where LF); denotes the value of the relevant loss function of model M, and LFy sy, the value
taken by the same loss function for the HARL model. We present the RLy; for SPY-ETF
and VIX data in Tables 4.3 and 4.4, respectively, where we also use the Model Confidence

Set methodology of Hansen et al. (2011).”

TABLE 4.3. Out-of-sample relative loss measure (4.1) of the models (with HARL being
the benchmark) obtained by estimating the models on SPY-ETF realised variance over a
rolling window of 1000 observations in the period January 3, 2006, to September 8, 2023.

Panel (a): Daily

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

MSE 1* 1.0631 0.9986* 0.9982* 1.0007*  1.0454 1.0479
MAE 1 1.0069 0.9970 1.0000 0.9998 0.9764 0.9624*
HMSE 1 0.9994 0.9712 1.0002 0.9787 0.8579 0.7121%*
HMAE 1 0.9990 0.9845 0.9998 0.9890 0.9290 0.8549%*
QLIKE 1 0.9981 0.9833 0.9999 0.9873 0.9163 0.8325*
Panel (b): Weekly
MSE 1 0.9921 0.7744 0.9937 0.7138* 0.9561*
MAE 1 0.9975 0.9596 0.9991 0.7706 0.7022%*
HMSE 1 0.9993 0.6262 0.9984 0.4452 0.2866*
HMAE 1 0.9994 0.7583 0.9992 0.6867 0.5550%*
QLIKE 1 0.9999 0.6726 0.9989 0.5353 0.3820*
Panel (c): Monthly
MSE 1 0.9916 0.8111 0.9973 0.6109 0.4890*
MAE 1 0.9967 0.8126 0.9990 0.6151 0.4381%*
HMSE 1 0.9992 0.5094 0.9958 0.2632 0.1015%*
HMAE 1 0.9993 0.6089 0.9975 0.5230 0.3183*
QLIKE 1 0.9995 0.4977 0.9968 0.3336 0.1379*

“*” indicates that the model is included in the M75% Model Confidence Set.

Figures 4.3 and 4.4 summarize the RL,, for the sector ETFs and the twenty NYSE individ-
ual stocks respectively; the full-blown set of numerical results is also reported in Tables A.2

and A.3 in Section A the Supplement, respectively.®

"In essence, this approach tests the null hypothesis that all models are equally effective against the alternative
that a smaller subset of models is superior. We select a p-value threshold of 0.25 based on range statistics:
models with p-values below the 0.25 threshold are excluded from the superior subset, denoted by M75%. In
Tables A.2 and A.3 in Section A of the Supplement, we also report the frequency with which each model is
included in the M75% for the sector ETFs and individual NYSE stocks, respectively.

8In Section A of the Supplement, we also present detailed results for the individual ETFs (Tables A.4-A.8)
and the individual stocks (Tables A.9-A.13).
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TABLE 4.4. Out-of-sample relative loss measure (4.1) of the models (with HARL being
the benchmark) obtained by estimating the models on VIX realised variance over a rolling
window of 1,000 observations in the period July 1, 2003, to December 29, 2023.

Panel (a): Daily

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv
MSE 1 1.0132 1.2956 1.0001 1.0086 0.9998  1.0055*
MAE 1 0.9970 1.3442 1.0001 1.0044 0.9708 0.9559%*
HMSE 1 0.9399 4.7839 0.9995 1.0099 0.7337 0.6619*
HMAE 1 0.9818 1.6925 1.0000 1.0048 0.8622 0.8206*
QLIKE 1 0.9719 2.2312 0.9999 1.0057 0.8394 0.7929*
Panel (b): Weekly
MSE 1 0.9919 7.0596 1.0000 0.8219 0.6069*
MAE 1 0.9924 0.8709 1.0000 0.9396 0.7443%*
HMSE 1 0.9628 0.4948 0.9999 0.8002 0.3729*
HMAE 1 0.9861 0.5660* 1.0000 0.9051 0.6341
QLIKE 1 0.9777 0.4192*  0.9999 0.8137 0.4675
Panel (c): Monthly
MSE 1 0.9916 1.2366 0.9999 0.7417 0.6994*
MAE 1 0.9971 0.4589*  0.9999 0.7727 0.8311
HMSE 1 0.9973 0.1573*  0.9996 0.3808 0.5881
HMAE 1 0.9964 0.3508*  0.9999 0.6599 0.8018
QLIKE 1 0.9918 0.1724* 0.9997 0.5090 0.6427

“*” indicates that the model is included in the M75% Model Confidence Set.
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Figure 4.3. Box plots of relative loss functions comparison - using the ten-sectors ETFs dataset.
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Box plots of relative loss measures for five loss functions (MSE, MAE, HMSE, HMAE, QLIKE) across three forecasting
horizons (Daily, Weekly, and Monthly) for each model, using the HARL as the benchmark model. The models were
estimated on the realised variance for each of the ten sector ETFs over a rolling window of 1,000 observations during
the period from January 3, 2006, to September 8, 2023. One outlier point was removed from each series for the weekly
and monthly forecasting horizons when computing the MSE for the HARSL model to prevent inflation of the measure.
Applying the same principle to other models did not impact the MSE, so this adjustment was only done for the HARSL
model.
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Figure 4.4. Box plots of relative loss functions comparison - using the twenty individual NYSE stocks dataset.
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Box plots of relative loss measures for five loss functions (MSE, MAE, HMSE, HMAE, QLIKE) across three forecasting
horizons (Daily, Weekly, and Monthly) for each model, using the HARL as the benchmark model. The models were es-
timated on the realised variance for each of the twenty NYSE individual stocks over a rolling window of 1,000 observa-
tions during the period from January 3, 2000, to December 31, 2016. One outlier point was removed from each series for
the weekly and monthly forecasting horizons when computing the MSE for the HARSL model to prevent inflation of the
measure. Applying the same principle to other models did not impact the MSE, so this adjustment was only done for
the HARSL model.

IVINH 3SINH EV IS

IMITO



We also use the unconditional predictive ability (uCPA) test by Giacomini and White (2006)
to evaluate the out-of-sample predictions produced by the models. We perform pairwise
tests of unconditional predictive ability over the full out-of-sample (OOS) period with a
significance level of @ = 0.05. To ensure robustness, we conduct the same test using five

different loss functions and examine the results across three forecasting horizons (see Figure

4.5).
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Figure 4.5. Heatmap of Model Rankings Based on uCPA (Unconditional Conditional Pre-
dictive Ability)
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Results of the uCPA test for out-of-sample forecasting performance between models, with
each selected loss function obtained by estimating the models on SPY-ETF realised variance
over a rolling window of 1000 observations during the period from January 1st, 2006 to
September 8th, 2023. The rankings range from 1 (best) to 7 (least). A darker color indicates
a better model performance. If two models have the same rank (i.e., color), they are
considered equally good. The results are shown for three forecasting horizons in panels a,
b, and c, representing daily, weekly, and monthly forecasts, respectively.
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Overall, our results obtained using the RV'! of SPY-ETF, sector ETFs, individual stocks and
the VIX are consistent throughout. For most individual stocks, incorporating some form
of time-varying specification of the coefficients generally enhances the models forecasting
accuracy, especially for longer forecasting horizons. With the exception of the MSE loss
function in the case of daily forecasting, the SHARP and SHARP-SV models almost always
exhibit the lowest relative loss (RL) using the SPY-ETF data and the average relative loss
using both the sector ETFs and the twenty individual stocks data. A partial exception is
encountered with the VIX, where, at lower frequencies, results are less clear-cut - although,
at a daily frequency, our proposed models still deliver a superior forecasting performance
than the other models. Introducing the SV feature to the AR process of the coefficients
yields a further moderate improvement compared to the forecasts by the SHARP model.
Thus, we find that the general specification of the time-varying coefficients in the SHARP-
SV model leads to the most significant improvement in the forecasts of RV across all three
forecasting horizons. These results are also robust across the five loss function measures used.
As far as the other specifications are concerned, the HARSL model shows some moderate
improvements - mainly at weekly and monthly horizons - suggesting that accounting for time
variation in coefficients is more effective than simple corrections for measurement error. By
contrast, HARLQ, TVCHAR, and SHARK generally fail to deliver meaningful improvements
over the baseline HARL. Taken together, these results demonstrate that the flexibility of
time-varying parameters, and especially the incorporation of stochastic volatility, is critical
for achieving reliable forecast improvements across a wide cross-section of assets. Note also
that our models, particularly the SHARP-SV model, are almost always included in the

confidence set, while other models are frequently excluded with few exceptions.

In conclusion, we note that our model assumes Gaussianity of all innovations. Whilst as-
suming Gaussianity may not have an impact on the inference on coefficients, inference on

the volatility process may be distorted in the presence of departures from normality such as
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excess kurtosis or nonzero skewness.” Seeing as our data are likely to exhibit such features,
by way of misspecification analysis we carry out a test for Gaussianity inspired by Koop-
man and Scharth (2012). Whilst originally designed for a different specification, the test is
based on a parametric bootstrap which we also use here, generating the pseudosamples us-
ing the estimated parameters and simulating all innovations from Gaussian distributions.
Results in Tables A.14 and A.15 in Section A.l in the Supplement show that the assump-
tion of Gaussianity is indeed most often rejected; on the other hand, our empirical results
show some degree of robustness to such misspecification, which are also reinforced by our

Monte Carlo analysis in Section 5.2.

5. MONTE CARLO STUDY

We evaluate the performance of our models (and of Bayesian estimation) via a compre-
hensive set of simulations. In Section 5.1, we assess the performance of the Particle Gibbs
estimator under correct model specification; in Section 5.2, we evaluate predictive accuracy

under a possibly misspecified model.

5.1. The performance of the Particle Gibbs estimator. We study the performance of
Particle Gibbs estimation under correct model specification. In particular, we evaluate (a)
the ability to recover true parameters and latent states, and (b) the comparative performance
of SHARP estimation via Particle Gibbs versus a Kalman filter based estimation.

Data are generated according to equations (3.1)-(3.3), reported here for convenience

v = 2B, vy, v ~ii.dN(0,02),

.. 2
ﬁj,t = pjﬁj’ti1 + €ty Eji ™ i.3.d.N (O, Uw‘) ,

9We are grateful to an anonymous Referee for pointing this out to us, and suggesting the testing approach
used herein.
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with 1 < ¢ < n. Recall that the vector z; = (1, RV;",, RV], ,, RV}, |) includes the
daily, weekly, and monthly (lagged) log-realized RV, and that the innovations v, and &, ;
are mutually independent. The parameter values are set as p; = 0.96 for 1 < j < 4, and
(0c1,0c2,0-3,0:4) = (0.15,0.08, 0.08,0.08); further, we set o, = 0.02 for the measurement
error standard deviation. Initial values are set to 8;; = —0.5, 85, = 0.4, B3, = 0.3, and
B41 = 0.15, and are based on estimates from fitting a standard HARL model to the daily
log-RV of the SPY index. These choices also align with decay structures documented in the
literature (e.g. Andersen et al., 2007; and Corsi, 2009). We initialize the log-RV process v,
by generating the first 1 <t < 22 observations as i.i.d.N (0,1). Our experiments are based
on a sample size n = 1,000, and on 1,000 replications.

Figure 5.1 summarizes the estimation accuracy for the four time-varying coefficients £, ;
across three key metrics: normalized RMSE, 95% interval coverage, and interval width.
As can be seen, using the SHARP specification with Particle Gibbs systematically achieves
the lowest estimation error, with average normalised RMSEs of 0.428, 0.724, 0.894, and
0.949 for 3, ; through 3, ,, respectively. Estimation via Kalman filter performs comparably
well for the short-horizon coefficients §,; and f3,,, but it exhibits higher errors for f,
and f;, (1.101 and 1.570 respectively), reflecting its limited flexibility in tracking longer-
term dynamics. Turning to interval calibration, using the Particle Gibbs estimator achieves
reasonably balanced coverage across all coefficients, with coverage rates ranging from 0.707
to 0.781, accompanied by normalized interval widths of 0.774, 1.541, 2.165, and 2.367 for
B;1 through B, ,, respectively. In contrast, Kalman filter estimation yields wider intervals
1.153, 2.527, 2.677, and 2.770 for 3, through $, ;; while delivering better coverage for 3, ;

and B;, (0.866 and 0.919 respectively), it still under-covers 3,5 and $,, (with coverages

. 2
0The normalised RMSE is defined by computing (the square root of) Zthl (ﬂt,j — Bt,j) /T, and then

dividing it by o ;; we use the same normalisation also for coverage.
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0.758 and 0.712 respectively).!’ Hence, Kalman filter estimation does not consistently yield
better-calibrated coverage, especially for longer-horizon components, despite substantially
wider intervals, which is reinforced by the variability in coverage across coefficients and
replications (especially as far as higher-lag coefficients are concerned). Conversely, Particle
Gibbs estimation exhibits tighter dispersion and fewer outliers across all metrics, suggesting
robustness across simulated series.

In Figure 5.2, we assess the recovery of fixed parameters persistence (p;, 1 < j < 4), in-
novation volatilities (0. ;), and measurement error (o,). Similarly to the previous results,
Kalman filter estimation recovers the persistence coefficients p; accurately for short-horizon
coefficients (0.958 and 0.954 on average across simulations for p; and p,) but it underesti-
mates persistence in 85 and [, (with p; and p, being, on average, 0.895 and 0.873). Par-
ticle Gibbs estimation displays more balanced estimates across all lags (with p,, on aver-
age, equal to 0.946, 0.927, 0.918, and 0.913 for 1 < j < 4), despite having a slight down-
ward bias. In terms of state innovation volatilities o, ;, Kalman filter estimation yields av-
erage values of estimates (0.146,0.079, 0.071,0.071), closely matching the true values; Par-
ticle Gibbs also also performs well, but with a larger downward bias, delivering average esti-
mates (0.118,0.069,0.067,0.067). Finally, turning to the the measurement error variance o,
Kalman filter recovers the true value nearly exactly, whereas Particle Gibbs slightly overes-
timates (estimated values are 0.020 and 0.032 respectively). As before, Particle Gibbs cor-
responds to tight, symmetric distributions around the true values, with very few outliers,
indicating robust and consistent performance; Kalman filter performs comparably, though

it shows slightly greater dispersion in the longer-lag persistence estimates.

HNaturally, the Kalman filter produces frequentist confidence intervals, based on the conditional state
covariance matrices, while the particle filter generates Bayesian credible intervals from posterior samples.
Although these intervals differ in interpretation, comparing their coverage and width offers insight into how
each method quantifies uncertainty in recovering the latent states.
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The distilled essence of our simulations is that the relative strengths of Kalman filter and
Particle Gibbs are complementary. The former performs better at estimating fixed parame-
ters, and it is also superior in terms of coverage for the “short-run” parameters - i.e. the inter-
cept ,; and the coefficient multiplying the daily log RV, 3, 5. On the other hand, the Parti-
cle Gibbs estimator performs better in terms of RMSE when estimating “long-run” parame-
ters (i.e. B3 and j3, 4, associated to the weekly and monthly log RVs), and it has - in general
- less dispersion and fewer outliers across experiments relative to the Kalman filter. As we
show in the next section,'? these relative advantages of Particle Gibbs translate into supe-
rior predictive accuracy. Hence, while the Kalman filter remains useful for efficient inference
on fixed parameters and near-term components, Particle Gibbs offers a more robust alter-

native when the primary objectives are accurate state recovery and predictive performance.

12Gee also Section B.2 in the Supplement.
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Figure 5.1. Time-Varying coefficients - estimation performance
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(ii) Coverage rate using the constructed 95% intervals for the true values
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(iii) Normalised width of the constructed 95% intervals
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Estimation results obtained under Particle Gibbs and Kalman filter are indicated as SHAR-P and SHAR-
K respectively. The dotted red lines represent theoretical benchmark values (1 for RMSE, 0.95 for coverage,
and 2 for interval width), corresponding to the expected variability of the latent coefficients under the DGP.
Coverage values closer to one reflect correctly calibrated 95% intervals.
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Figure 5.2. Fixed parameters - estimation performance
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The blue dotted line in panels (a) and (b) indicates the true value of p = 0.96 used in the data-generating
process (DGP). Recall that estimation results obtained under Particle Gibbs and Kalman filter are indicated
as SHAR-P and SHAR-K respectively. Panel (c) and (d) show boxplots of the estimated innovation standard
deviations o ; and the measurement error standard deviation ¢, under SHAR-P and SHAR-K, respectively;
the blue dotted line corresponds to the true value of o 1 = 0.15, the green line marks the true value of o, ;,
7 =2,3,4, and the red line marks the true value of the measurement error standard deviation o, = 0.02.
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5.2. Forecasting accuracy with mis-specified models. In order to assess the robustness
of our approach, we now investigate predictive accuracy under a possibly mis-specified model.
We consider the following DGP, where we generate a series of returns along similar lines to

Jacquier et al. (2004) and Koopman and Scharth (2012), viz.

h
Yy = [+ exp (é) Ve + J 2P (5.1)

In (5.1): A is a scaling factor which we model according to two schemes, with A\, = 1 for all

t, or drawn from an inverse-Gamma distribution, i.e.
v v

A~ iid.T (-,—); 5.2

t ™~ g 979 ( )

Jy is an 4.7.d. Bernoulli random variable representing the jump times with P (J, = 1) = &,
and the jumps Z/ are generated as Z{ ~ i.i.d.N (p,,02). We generate ¢ according to
€ ~ i.i.d. N (0,1); this entails that, when (5.2) is used, the innovations v/A\¢; are 4.i.d. with
a Student’s t distribution with v degrees of freedom. We extend the specification in (5.1)

by following a similar approach to Stroud and Johannes (2014); we model the log of the

diffusive, non-jump variance h; as
he = (y, + 78t) + 1 + o, (5.3)

where: p;, + vs; is a mean level depending on a regime variable s; € {0,1} following a
Markov chain with transition probabilities P (s; = i[s;_1 = j) = pi;;'® 71, is a “slow” variance
component generated as

Tige1 = Q1T14 + 01Uy, (5.4)

I3We introduce a regime-switching dynamics in (5.3) following Vo (2009); this can be viewed as an extension
of the model considered in Stroud and Johannes (2014).
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with a “large” partial autocorrelation coefficient 0 < ¢, < 1 and innovations u; ; ~ .2.d.N (0, 1);

and zo, is a “fast” variance component generated as

To 41 = PaToy + 02 (Pet ++v1-= PQUQ,t> + J: 22, (5.5)

with a “small” partial autocorrelation coefficient 0 < ¢, < ¢, innovations ug; ~ i.i.d. N (0, 1),
and jumps Z7 ~ i.i.d.N (uy,03). In (5.1), (5.4) and (5.5), {e;, —00 < t < oo}, {2/, —00 < t < 00},
{ur; — oo <t < oo}, {ugy, —00 <t < oo} and {27, —00 <t < oo} are five mutually inde-
pendent groups; hence, p in (5.5) represent a measure of diffusive leverage, via the correla-
tion between the innovations in the returns DGP ¢, and the fast variance component ;.
The DGP in (5.1)-(5.5) thus considers a comprehensive specification designed to capture the
key empirical features observed in financial market volatility, and in particular in the dynam-
ics of the realised variance, and it builds - as well as on the references cited above - on several
contributions in this literature including, inter alia, Harvey and Shephard (1996), Jacquier
et al. (2004), Chib et al. (2006), McAleer and Medeiros (2008), and Koopman and Scharth
(2012). Several models are nested within (5.1)-(5.5); in Table B.1 in the Supplement, we
summarise five variants, each incorporating different empirical features. The baseline “SV”
model assumes normal return innovations with two volatility factors; the “SVt” specification
extends this by allowing for heavier tails; “SVL” considers the presence of a leverage effect be-
tween returns and volatility; “SVLJ” allows for jumps in both returns and volatility (as well as
leverage effects); finally, “SVML” combines leverage effects with Markov-switching regimes.
In Table B.2 in the Supplement, we report the values of the parameters used in our simula-
tions, which largely follow the estimated values in Table 3 of Stroud and Johannes (2014),

allowing our DGP to be more adherent to the features of real data.
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In addition to the above five SV-based DGPs, we also consider a further DGP, based on a

HAR-type model to account for correlations between state innovations in a SHARP model:
RV; = B1+ Ba RVier + B3, RV + 5o, RV + e,

Biv=9iBji1 T vie, J=1,2,3,4,

with state innovations vy = (vy4, Vay, vay, vay) ~ N (0,3,), ¢ = (0.92,0.92,0.90,0.90)" and

0.0400  0.0008 —0.0010 0.0240
0.0008  0.0014 —0.0010 0.0004
—0.0010 —0.0010 0.0050 —0.0040
0.0240  0.0004 —0.0040 0.0250

For each of the six DGPs mentioned above: we generate a synthetic realised volatility (RV)
series of length n = 1,440, with the last 440 observations used for out-of-sample forecast-
ing via a rolling window approach; we estimate our proposed models, SHARP and SHARP-
SV, against “traditional” alternatives, including the HARL model, as well as more advanced
benchmarks like HARSL and TVCHAR; and we compare the forecasting ability of the mod-
els mentioned above using standard loss functions (MSE, HMSE, HMAE, and QLIKE). Each
experiment is based on 100 Monte Carlo simulations for the sake of computational efficiency.
We report our main results in Figures B.1 and B.2 in the Supplement. The figures show
that both the SHARP and SHARP-SV models consistently deliver the lowest loss function
values across all DGPs, thereby demonstrating superior predictive accuracy. The only ex-
ception was the simplest SV-based DGP, where the HARLQ model performed marginally
better on average but exhibited substantial outliers, making its performance less reliable
across different simulations. Among the competing models, HARSL and TVCHAR showed

more stable performance across DGPs; however, both the SHARP and SHARP-SV models
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outperformed them on average, with lower mean loss function values in almost all cases.

Further results are also in the Supplement. In Section B.2, along similar lines as in the pre-
vious Section 5.1, we assess the impact of the estimation technique on the performance of
our proposed model - in essence, by estimating the SHARP model via MLE cum Kalman
filtering (Table B.3). Results are decidedly worse, which reinforces the findings in Section 4:
the superior forecasting ability associated with the SHARP model and with Particle Gibbs
estimation holds also in a set of controlled scenarios using synthetic data. Further, in Table
B.4 in Section B.3, we report computational times for the baseline SV DGP, showing that

our Bayesian estimator remains feasible for large-scale applications.

6. CONCLUSION

This paper develops two new dynamic state-space models for realised volatility forecasting
- SHARP and SHARP-SV - which extend the heterogeneous autoregressive framework of
Corsi (2009) by allowing time-varying coefficients governed by autoregressive processes, with
SHARP-SV further incorporating stochastic volatility in the coefficient dynamics. We follow
Creal and Tsay (2015), using Gibbs particle filtering as a computationally efficient approach
(Andrieu et al., 2010). We study the structure of our proposed models, characterising their
dependence and deriving a set of asymptotic results which could be of independent interest.
In a comprehensive set of empirical studies, we apply the SHARP and SHARP-SV models
to the realised variance of the SPY index, sector ETFs, representative NYSE stocks, and
the VIX index over long samples. Across all datasets, horizons, and loss functions (MSE,
MAE, HMSE, HMAE, and QLIKE), SHARP and SHARP-SV on balance outperform HARL
and its extensions, including HARSL (McAleer and Medeiros, 2008), HARLQ (Wang et al.,
2016), TVCHAR (Bekierman and Manner, 2018), and SHARK (Buccheri and Corsi, 2021);
these gains are confirmed by predictive ability tests (Giacomini and White, 2006) and Model

Confidence Set analysis (Hansen et al., 2011). SHARP and SHARP-SV remain robust
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even in the presence of non-Gaussian innovations. Monte Carlo evidence further validates
these conclusions: under correct specification, Particle Gibbs accurately recovers model
parameters and latent states, outperforming Kalman filtering in terms of RMSE and interval
calibration for long-horizon coefficients. Under misspecification, we show that SHARP and
SHARP-SV maintain superior predictive accuracy - under various forms of misspecification
- compared with other, competing models, with SHARP-SV showing particular strength.

These findings establish SHARP and SHARP-SV as versatile and effective tools for volatility
forecasting, with direct implications for risk management, asset allocation, and derivative

pricing.
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A. TABLES AND FURTHER EMPIRICAL EVIDENCE



TABLE A.l. Descriptive statistics for Realised Variance series

Stock names Ticker Sector Mean Median St. Dev. Skewness Kurtosis Min Max
Panel (a): Individual NYSE stocks (January 37¢, 2000 to December 31°¢, 2016)
Constellation Energy Group AEE Utilities 1.8275 1.0614 3.4532 14.5795 362.0346  0.1089  113.4878
Brown-Forman Corp. BFB Consumer Staples 1.9203 1.1517 4.8608 32.2490 1449.2850 0.0742 240.4141
BT Group plc (ADR) BT Communications Services  2.3113 1.1621 3.2277 4.7116 47.6503  0.1004  59.5677
Exelon Corp. EXC Utilities 2.6354 1.4288 4.7911 9.4223 161.6486  0.1585  130.8746
Freeport-McMoran FCX Materials 8.0344 4.3266 12.2786 5.6708 50.4463  0.3168 188.5795
General Dynamics GD Industrials 2.2370 1.2810 3.2592 6.2650 67.3871 0.0807  63.2822
General Electric GE Industrials 3.0201 1.3030 6.9818 10.3833 172.3605 0.1077  180.3886
The Home Depot HD Consumer Discretionary 3.1214 1.5733 4.9381 6.7444 83.0200  0.1557  103.4768
TECO Energy HES Energy 4.4738 2.5702 8.6746 12.7967 280.6983  0.2109 271.5113
Humana Inc. HUM Health Care 6.6787 2.6090 11.3665 4.4673 33.5169  0.2404  157.5287
IBM IBM Information Technology 2.0255 0.9862 3.5274 7.4383 92.6942  0.1019  71.2926
Coca-Cola KO Consumer Staples 1.5608 0.8355 2.5353 8.6219 138.4686  0.0456 58.8085
Marriott Int’l. MAR Consumer Discretionary 3.5370 1.7819 5.3635 5.4536 55.7000  0.1543  104.5781
Nucor Corp. NUE Materials 4.9098 2.7544 10.5817 13.8696 279.0002  0.3337  266.8244
Pfizer PFE Health Care 2.3324 1.3819 3.2242 6.4660 77.5016  0.1498  62.6970
AT&T T Communications Services  2.6549 1.1840 4.7673 9.4248 195.7955 0.1082  141.8456
Travelers -Travelers Group Inc TRV Financials 2.9683 1.1863 7.8664 15.2588 379.9201 0.1020  263.9287
Wells Fargo WEFC Financials 4.3023 1.3299 12.1389 8.2667 94.9689  0.1036  226.6092
ExxonMobil XOM Energy 1.9866 1.1409 3.9555 15.8314 430.8596  0.1067  141.1297
Panel (b): Sectors ETFs (January 37%, 2006 to September 8¢, 2023)
SPDR S&P 500 ETF Trust SPY US Market Index 0.9136 0.3515 2.3943 10.2282 155.3431  0.0102  59.8630
Apple Inc. AAPL  Information Technology 5.2923 2.5776 7.8061 4.4878 37.8812 0.0791 126.1716
iShares US Real Estate ETF IYR Real Estate 2.1185 0.7179 5.4011 7.1884 74.4394  0.0610  89.8417
iShares US Telecommunications ETF IYZ Telecommunication 1.3845 0.6666 6.0169 44.1633 2464.7837 0.0801  347.1409
Materials Select Sector SPDR Fund XLB Materials 1.6320 0.7701 3.5186 9.4764 134.6835 0.0694  81.3017
Energy Select Sector SPDR Fund XLE Energy 2.4324 1.3051 4.9089 10.2001 162.7808 0.0721  123.5975
Financial Select Sector SPDR Fund XLF Financials 2.1276 0.7227 5.9090 10.7814 196.4172  0.0464  162.3466
Industrial Select Sector SPDR Fund XLI Industrials 1.2672 0.5728 2.9961 10.5326 168.8990  0.0356 71.4864
Consumer Staples Select Sector SPDR Fund XLP Consumer Staples 0.7733 0.3580 2.6630 18.8287 504.9143  0.0422  95.5998
Utilities Select Sector SPDR Fund XLU Utilities 1.2840 0.6695 3.4659 13.0561 242.6988 0.0918  88.8259
Health Care Select Sector SPDR Fund XLV Health Care 0.8953 0.4551 1.9639 10.1240 144.4243  0.0488  43.1275
Consumer Discretionary Select Sector SPDR Fund  XLY Consumer Discretionary 1.3945 0.5658 3.1129 8.9484 123.1008  0.0291 66.5541
Panel (c): VIX (July 15¢, 2003 to December 29", 2023)
Chicago Board Options Exchange’s Volatility Index VIX 22.3416  12.0669 44.4396 14.5572 344.9257  0.4354 1421.9150

The table presents the descriptive statistics for the realised variance series of selected individual NYSE stocks over January 3,
2000 to December 31, 2016 in Panel (a); sector ETFs over January 3, 2006 to September 8, 2023 in Panel (b); and the VIX series
between July 1st, 2003 to December 29th, 2023 in Panel (¢). It Includes stock names, tickers, sectors, and statistical measures:

mean, median, standard deviation, skewness, kurtosis, minimum, and maximum.



TABLE A.2. Summary Statistics of Out-of-Sample Relative Loss Measures for realised
Variance of the Ten Sectors ETFs Dataset

Panel (a): Daily

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

MSE
Mean 1.0000 1.0979 1.0105 0.9977 1.0147 1.0482 1.0244
Median 1.0000 1.0784 0.9991 0.9979 1.0106 1.0466 1.0227

M75% 3 1 6 7 3 1 1
MAE
Mean  1.0000 1.0202  0.9973  0.9997 1.0051  0.9874  0.9701
Median 1.0000 1.0159  0.9969  0.9997 0.9963  0.9856  0.9691
M75% 0 0 0 0 0 0 10
HMSE
Mean ~ 1.0000 1.0006  0.9857  0.9998 0.9319  0.8448  0.7551
Median 1.0000 1.0003  0.9865  0.9998 0.9349  0.8362  0.7522
M75% 0 0 0 0 0 0 10
HMAE
Mean  1.0000 0.9993  0.9932  0.9998 0.9670  0.9245  0.8816
Median 1.0000 0.9996  0.9939  0.9998 0.9681 09223  0.8799
M75% 0 0 0 0 0 0 10
QLIKE
Mean  1.0000 0.9997  0.9910  0.9998 0.9621 09122  0.8650
Median 1.0000 0.9996  0.9918  0.9997 0.9630  0.9077  0.8640
M75% 0 0 0 0 0 0 10

Panel (b): Weekly

MSE

Mean  1.0000 1.0070  1.1231  0.9918 0.7547  0.5676

Median 1.0000 1.0071  0.8680  0.9923 07171  0.5687

M75% 0 0 0 0 1 10

MAE

Mean  1.0000 1.0014  1.0813  0.9991 07821  0.6867

Median 1.0000 1.0019  0.9951  0.9990 0.7777  0.6840

M75% 0 0 0 0 0 10
HMSE

Mean  1.0000 1.0029  0.9707  0.9990 0.5037  0.3933

Median 1.0000 1.0044  0.8820  0.9991 04925  0.3718

M75% 0 0 0 0 1 9
HMAE

Mean  1.0000 1.0005  0.8475  0.9994 0.7049  0.6087

Median 1.0000 1.0004  0.8424  0.9994 0.7036  0.6063

M75% 0 0 0 0 0 10
QLIKE

Mean  1.0000 1.0012  0.7982  0.9990 05473  0.4234

Median 1.0000 1.0023  0.7965  0.9990 05416  0.4253

M75% 0 0 0 0 0 10

Panel (c): Monthly

MSE
Mean  1.0000 0.9975  2.4021  0.9966 0.6455  0.4441
Median 1.0000 0.9978  1.5996  0.9971 0.6378  0.4139
M75% 0 0 0 0 1 10
MAE
Mean ~ 1.0000 0.9986  0.8084  0.9989 0.6255  0.4379
Median 1.0000 0.9988  0.7951  0.9988 0.6200  0.4355
M75% 0 0 0 0 0 10
HMSE
Mean ~ 1.0000 1.0022  0.5818  0.9959 0.2867  0.1295
Median 1.0000 1.0019  0.5791  0.9959 0.2746  0.1278
M75% 0 0 0 0 0 10
HMAE
Mean  1.0000 1.0000  0.6722  0.9979 0.5272  0.3467
Median 1.0000 1.0002  0.6748  0.9980 05224  0.3442
M75% 0 0 0 0 0 10
QLIKE
Mean  1.0000 1.0007  0.5640  0.9968 0.3326  0.1502
Median 1.0000 1.0011  0.5650  0.9967 0.3252  0.1463
M75% 0 0 0 0 0 10

This table presents the mean and median of out-of-sample relative loss measures using five loss
functions (MSE, MAE, HMSE, HMAE, and QLIKE) over three forecasting horizons: daily (Panel
A), weekly (Panel B), and monthly (Panel C). The models are estimated based on the realised
variance of ten sector ETFs, using a rolling window of 1,000 observations, from January 3, 2006, to
September 8, 2023. Additionally, the table reports the number of times out of the ten ETFs that
the model was included in the M75% model confidence set for each horizon.
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TABLE A.3. Summary Statistics of Out-of-Sample Relative Loss Measures for realised
Variance of the Twenty NYSE Stocks Dataset

Panel (a): Daily

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

MSE
Mean ~ 1.0000 1.1470  1.2348  0.9995 0.9939  1.0141  1.0324
Median 1.0000 1.1084  1.1866  0.9995 0.9962 1.0114  1.0194
M75% 8 6 0 13 15 4 0
MAE
Mean  1.0000 1.0098  1.0387  1.0003 1.0254  0.9739  0.9861
Median 1.0000 1.0108  1.0341  1.0003 1.0214  0.9719  0.9770
M75% 2 1 1 2 1 20 4
HMSE
Mean  1.0000 0.9774  1.0202  0.9991 1.0228  0.7617 0.7748
Median 1.0000 0.9774  1.0131  0.9992 1.0214  0.7690 0.7826
M75%  0.0000 0.0000  0.0000  0.0000 0.0000 16 6.0000
HMAE
Mean  1.0000 0.9933  0.9999  0.9996 1.0079  0.8775 0.8842
Median 1.0000 0.9945  1.0006  0.9997 1.0056  0.8803  0.8893
M75% 0 0 0 0 0 15 3
QLIKE
Mean  1.0000 0.9876  1.0025  0.9994 1.0100  0.8651 0.8726
Median 1.0000 0.9883  1.0028  0.9995 1.0076  0.8695 0.8777
M75% 0 0 0 0 0 16 4

Panel (b): Weekly

MSE
Mean 1.0000 0.9840 1.4364 0.9988 0.6351 0.5829
Median 1.0000 0.9741 1.1875 0.9992 0.6204 0.5672
M75% 0 0 0 0 9 12
MAE
Mean 1.0000 0.9930 0.8932 0.9996 0.6722  0.6952
Median 1.0000 0.9925 0.9043 0.9996 0.6703  0.6910
M75% 0 0 0 0 19 2
HMSE
Mean 1.0000 0.9825 1.2008 0.9977 0.4516 0.4092
Median 1.0000 0.9869 1.0684 0.9977 0.4147 0.3903
M75% 0 0 0 0 7 17
HMAE
Mean 1.0000 0.9944 0.8701 0.9988 0.5979  0.6141
Median  1.0000  0.9956 0.8882 0.9988 0.5950  0.6089
M75% 0 0 0 0 20 1
QLIKE
Mean 1.0000 0.9882 0.8329 0.9981 0.4198  0.4276
Median 1.0000 0.9915 0.8521 0.9981 0.4142  0.4158
M75% 0 0 0 0 15 8
Panel (c): Monthly
MSE
Mean 1.0000  0.9953 0.7952 0.9998 0.2335  0.2808
Median 1.0000 0.9967 0.7190 0.9997 0.2073  0.2772
M75% 0 0 1 0 16 6
MAE
Mean 1.0000 0.9972 0.6634 0.9990 0.4137  0.4387
Median  1.0000 0.9978 0.6916 0.9988 0.4099 0.4314
M75% 0 0 0 0 12 9
HMSE
Mean 1.0000 0.9941 0.6068 0.9935 0.1543 0.1385
Median  1.0000 0.9988 0.6315 0.9931 0.1527 0.1328
M75% 0 0 0 0 5 15
HMAE
Mean 1.0000 0.9980 0.6997 0.9966 0.3850 0.3602
Median  1.0000 0.9989 0.7375 0.9966 0.3867 0.3553
M75% 0 0 0 0 5 15
QLIKE
Mean 1.0000 0.9956 0.5756 0.9947 0.1763 0.1560
Median 1.0000 0.9975 0.6125 0.9949 0.1759 0.1504
M75% 0 0 0 0 5 15

This table presents the mean and median of out-of-sample relative loss measures using five loss
functions (MSE, MAE, HMSE, HMAE, and QLIKE) over three forecasting horizons: daily (Panel
A), weekly (Panel B), and monthly (Panel C). The models are estimated based on the realised
variance of twenty NYSE stocks, using a rolling window of 1,000 observations, from January 3,
2000, to December 31, 2016. Additionally, the table reports the number of times out of the twenty
stocks that the model was included in the M75% model confidence set for each horizon.
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TABLE A.4. Out-of-Sample Relative Loss Measure MSE using the Sectors ETFs dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

IYR  1.0000 1.1481 1.0239 0.9955* 0.9851* 1.0412 1.0268
IYZ  1.0000% 1.0026*  1.0008* 0.9999%* 1.0016* 1.0016* 1.0012*
XLB 1.0000 1.1015 0.9986* 0.9971%* 1.0408 1.0671 1.0245
XLE 1.0000 1.0085 1.0966 0.9969* 1.0165 1.1181 1.0196
XLF  1.0000 1.0145 0.9922*  0.9990 0.9957 1.0073 1.0051
XLI  1.0000 1.0985 0.9967* 0.9988 1.0578 1.0587 1.0210
XLP  1.0000 1.4164 0.9996 0.9983* 1.0101 1.0521 1.0479
XLU  1.0000 1.0699 1.0041 0.9955* 1.0235 1.0711 1.0447
XLV 1.0000 1.0870 0.9957*  0.9975 1.0111 1.0291 1.0329
XLY 1.0000% 1.0320 0.9971* 0.9982* 1.0045%* 1.0352 1.0203

Panel (b): Weekly

IYR  1.0000 1.0127 1.6624 0.9884 0.7187 0.5995%*
IYZ  1.0000  0.9859 0.7172 0.9928 0.6766* 0.6497*
XLB  1.0000 1.0024 0.8624 0.9937 0.6516 0.4428%*
XLE 1.0000 1.0119 2.3435 0.9917 0.7657 0.5390*
XLF  1.0000 1.0013 1.0973 0.9908 0.6627 0.4767*
XLI ~ 1.0000 1.0051 1.6651 0.9932 0.8403 0.5984%*
XLP  1.0000 1.0045 0.7624 0.9918 0.9602 0.7202%*
XLU 1.0000 1.0091 0.5359 0.9877 0.8493 0.6390*

XLV 1.0000 1.0247 0.7116 0.9935 0.7156 0.4923%*
XLY 1.0000 1.0125 0.8736 0.9945 0.7060 0.5184%*

Panel (c): Monthly

IYR 1.0000 1.0035 4.3168 0.9949 0.6482 0.4610%*
IYZ  1.0000  0.9953 1.5784 0.9975 0.6443 0.3509%*
XLB 1.0000  0.9961 1.2161 0.9983 0.6024 0.3576%*
XLE 1.0000 1.0050 1.6208 0.9943 0.6313 0.2479%*
XLF  1.0000 1.0021 1.5257 0.9957 0.5608 0.3016*
XLI  1.0000  0.9882 2.5037 0.9971 0.6732 0.5613%*
XLP 1.0000  0.9992 4.4646 0.9971 0.7901* 0.8337*

XLU 1.0000  0.9963 4.3259 0.9965 0.7320 0.4968%*
XLV 1.0000 1.0009 1.2166 0.9974 0.6184 0.4635%*
XLY 1.0000  0.9884 1.2525 0.9972 0.5540 0.3668%*

This table presents the out-of-sample relative loss measure MSE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the sector ETFs’ realised variance over a rolling
window of 1,000 observations for the period January 3, 2006, to September 8, 2023. The columns
represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP, SHARPSV),
and the rows correspond to various sector ETFs. An asterisk (*) indicates that the model is included
in the My50, model confidence set.



TABLE A.5. Out-of-Sample Relative Loss Measure MAE using the Sectors ETFs dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

IYR 1.0000 1.0250 0.9950 0.9994 0.9917 0.9842 0.9672%*
IYZ  1.0000 1.0090 0.9945 0.9998 0.9975 0.9819 0.9712%*
XLB 1.0000 1.0153 0.9931 0.9993 1.0048 0.9871 0.9637*
XLE 1.0000 1.0015 1.0102 0.9998 0.9948 1.0094 0.9723*
XLF 1.0000 1.0108 0.9877 0.9992 0.9784 0.9689 0.9589*
XLI  1.0000 1.0167 0.9969 0.9996 1.0192 0.9874 0.9707*
XLP 1.0000 1.0850 0.9999 1.0007 1.0650 1.0102 0.9908%*
XLU 1.0000 1.0171 1.0019 0.9992 1.0180 0.9972 0.9762*
XLV  1.0000 1.0165 0.9969 0.9997 0.9951 0.9753 0.9675%*
XLY 1.0000 1.0052 0.9972 0.9998 0.9862 0.9727 0.9628%*

Panel (b): Weekly

IYR 1.0000 1.0029 1.0635 0.9986 0.7749 0.6867*
IYZ  1.0000 1.0014 0.9514 0.9994 0.7479 0.6801%*
XLB 1.0000 1.0005 0.9379 0.9990 0.7561 0.6498%*
XLE 1.0000 1.0007 0.9964 0.9997 0.8208 0.7112%*
XLF 1.0000 1.0019 0.9937 0.9989 0.7512 0.6643*
XLI ~ 1.0000 1.0019 1.1403 0.9988 0.7806 0.6813*
XLP 1.0000 0.9941 1.5826 0.9990 0.8486 0.7235*
XLU 1.0000 1.0025 1.1999 0.9986 0.7878 0.7062*
XLV 1.0000 1.0062 0.9668 0.9990 0.7681 0.6724*
XLY 1.0000 1.0024 0.9802 0.9996 0.7852 0.6918%*

Panel (c): Monthly

IYR 1.0000 1.0017 0.8570 0.9988 0.6228 0.4464*
IYZ  1.0000 0.9989 0.7826 0.9986 0.5957 0.4126*
XLB 1.0000 1.0001 0.7751 0.9986 0.5820 0.4074*
XLE 1.0000 0.9987 0.8195 0.9993 0.6535 0.4363*
XLF 1.0000 1.0008 0.7905 0.9988 0.5844 0.4041%*
XLI  1.0000 0.9977 0.7997 0.9984 0.6172 0.4307*
XLP 1.0000 0.9962 0.8332 0.9984 0.7080 0.5005*
XLU 1.0000 0.9979 0.8601 0.9993 0.6521 0.4690*
XLV  1.0000 1.0006 0.7816 0.9994 0.6234 0.4369*
XLY 1.0000 0.9940 0.7847 0.9993 0.6156 0.4347*

This table presents the out-of-sample relative loss measure MAE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the sector ETFs’ realised variance over a rolling
window of 1,000 observations for the period January 3, 2006, to September 8, 2023. The columns
represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP, SHARPSV),
and the rows correspond to various sector ETFs. An asterisk (*) indicates that the model is included
in the My50, model confidence set.



TABLE A.6. Out-of-Sample Relative Loss Measure HMSE using the Sectors ETFs dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

IYR 1.0000 1.0105 0.9693 0.9997 0.9391 0.8345 0.7586%*
IYZ  1.0000 1.0317 0.9875 0.9997 0.9367 0.8336 0.7443%*
XLB 1.0000 0.9972 0.9754 0.9997 0.9194 0.8472 0.7679%*
XLE 1.0000 0.9771 0.9974 0.9999 0.9239 0.8850 0.7891%*
XLF 1.0000 1.0045 0.9746 1.0000 0.8988 0.8246 0.7458%*
XLI  1.0000 1.0017 0.9856 0.9994 0.9505 0.8370 0.7415%*
XLP 1.0000 0.9882 1.0061 1.0005 0.9684 0.8804 0.7634*
XLU 1.0000 1.0090 0.9761 0.9994 0.8968 0.8454 0.7665*
XLV 1.0000 0.9988 0.9934 0.9999 0.9332 0.8354 0.7409%*
XLY 1.0000 0.9876 0.9920 1.0001 0.9525 0.8245 0.7328%*

Panel (b): Weekly

IYR  1.0000 1.0106 1.0279 0.9990 0.5121 0.3943%*
IYZ  1.0000 1.0125 0.8069 0.9993 0.4770* 0.5499

XLB 1.0000 0.9971 0.7632 0.9985 0.4807 0.3654*
XLE 1.0000 0.9959 1.3362 0.9990 0.5377 0.4050%*
XLF 1.0000 0.9976 0.8000 0.9993 0.4923 0.3687%*
XLI ~ 1.0000 1.0054 1.3414 0.9984 0.4817 0.3566%*
XLP 1.0000 0.9873 1.1484 0.9998 0.5591 0.3750%*
XLU 1.0000 1.0081 0.9572 0.9985 0.5210 0.4061%*
XLV 1.0000 1.0110 0.7354 0.9993 0.4824 0.3491%*
XLY 1.0000 1.0034 0.7908 0.9994 0.4927 0.3624%*

Panel (c): Monthly

IYR 1.0000 1.0096 0.6128 0.9968 0.2778 0.1306%*
IYZ  1.0000 1.0049 0.5270 0.9956 0.3130 0.1383%*
XLB 1.0000 1.0013 0.5740 0.9948 0.2607 0.1171%*
XLE 1.0000 1.0026 0.6245 0.9957 0.2688 0.1264*
XLF 1.0000 1.0006 0.5492 0.9964 0.2423 0.1119%*
XLI  1.0000 1.0010 0.5739 0.9950 0.2714 0.1169%*
XLP 1.0000 0.9939 0.6161 0.9977 0.3875 0.1688%*
XLU 1.0000 1.0046 0.6264 0.9949 0.2845 0.1355%*
XLV 1.0000 1.0049 0.5295 0.9960 0.2910 0.1291%*
XLY 1.0000 0.9987 0.5842 0.9962 0.2698 0.1204*

This table presents the out-of-sample relative loss measure HMSE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the sector ETFs’ realised variance over a rolling
window of 1,000 observations for the period January 3, 2006, to September 8, 2023. The columns
represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP, SHARPSV),
and the rows correspond to various sector ETFs. An asterisk (*) indicates that the model is included
in the My50, model confidence set.



TABLE A.7. Out-of-Sample Relative Loss Measure HMAE using the Sectors ETFs
dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

IYR 1.0000 1.0022 0.9865 0.9997 0.9670 0.9204 0.8833*
IYZ  1.0000 1.0093 0.9941 0.9998 0.9717 0.9195 0.8766*
XLB 1.0000 0.9995 0.9895 0.9997 0.9667 0.9244 0.8882%*
XLE 1.0000 0.9965 0.9943 1.0000 0.9692 0.9407 0.8988*
XLF 1.0000 1.0008 0.9896 1.0000 0.9570 0.9106 0.8744*
XLI ~ 1.0000 0.9997 0.9936 0.9996 0.9747 0.9189 0.8733*
XLP 1.0000 0.9906 1.0018 1.0000 0.9813 0.9468 0.8867*
XLU 1.0000 1.0019 0.9896 0.9997 0.9410 0.9247 0.8879*
XLV  1.0000 0.9981 0.9976 0.9998 0.9665 0.9243 0.8760%*
XLY 1.0000 0.9939 0.9956 0.9999 0.9745 0.9152 0.8706*

Panel (b): Weekly

IYR 1.0000 1.0029 0.8418 0.9993 0.7094 0.6161*
IYZ  1.0000 1.0064 0.8710 0.9993 0.6871 0.6107*
XLB 1.0000 0.9992 0.8431 0.9991 0.6903 0.6019*
XLE 1.0000 0.9996 0.8825 0.9996 0.7222 0.6319*
XLF 1.0000 0.9994 0.8547 0.9999 0.6823 0.5994*
XLI  1.0000 1.0020 0.8308 0.9992 0.6886 0.5866%*
XLP 1.0000 0.9921 0.8108 0.9997 0.7570 0.6200%*
XLU 1.0000 1.0026 0.8728 0.9993 0.7045 0.6225*
XLV 1.0000 1.0009 0.8372 0.9995 0.7032 0.5999*
XLY 1.0000 0.9999 0.8303 0.9995 0.7041 0.5983*

Panel (c): Monthly

IYR 1.0000 1.0020 0.6874 0.9983 0.5277 0.3529*
IYZ  1.0000 1.0013 0.6640 0.9976 0.5188 0.3389*
XLB 1.0000 1.0008 0.7020 0.9972 0.5020 0.3334*
XLE 1.0000 1.0001 0.7358 0.9980 0.5096 0.3529%*
XLF 1.0000 0.9997 0.6969 0.9987 0.4889 0.3300%*
XLI ~ 1.0000 1.0004 0.6510 0.9973 0.5142 0.3293*
XLP 1.0000 0.9954 0.5908 0.9984 0.6236 0.3823*
XLU 1.0000 0.9999 0.6857 0.9979 0.5282 0.3586*
XLV 1.0000 1.0017 0.6471 0.9980 0.5330 0.3451%*
XLY 1.0000 0.9989 0.6609 0.9980 0.5260 0.3434*

This table presents the out-of-sample relative loss measure HMAE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the sector ETFs’ realised variance over a rolling
window of 1,000 observations for the period January 3, 2006, to September 8, 2023. The columns
represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP, SHARPSV),
and the rows correspond to various sector ETFs. An asterisk (*) indicates that the model is included
in the M75% model confidence set.



TABLE A.8. Out-of-Sample Relative Loss Measure QLIKE using the Sectors ETFs
dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

IYR 1.0000 1.0051 0.9822 0.9996 0.9644 0.9074 0.8681%*
IYZ  1.0000 1.0171 0.9919 0.9997 0.9656 0.9063 0.8591*
XLB 1.0000 0.9983 0.9857 0.9997 0.9571 0.9119 0.8705*
XLE 1.0000 0.9910 0.9948 0.9999 0.9613 0.9332 0.8854*
XLF 1.0000 1.0033 0.9859 0.9999 0.9458 0.8993 0.8599*
XLI ~ 1.0000 1.0010 0.9916 0.9996 0.9722 0.9057 0.8541%*
XLP 1.0000 0.9859 1.0022 1.0001 0.9831 0.9359 0.8711%*
XLU 1.0000 1.0053 0.9854 0.9994 0.9381 0.9135 0.8733*
XLV 1.0000 0.9982 0.9959 0.9998 0.9616 0.9080 0.8563*
XLY 1.0000 0.9916 0.9944 0.9999 0.9715 0.9010 0.8523*

Panel (b): Weekly

IYR 1.0000 1.0055 0.8015 0.9988 0.5580 0.4347*
IYZ  1.0000 1.0086 0.8113 0.9989 0.5176 0.4366*
XLB 1.0000 0.9991 0.7793 0.9987 0.5284 0.4136*
XLE 1.0000 0.9969 0.8590 0.9990 0.5649 0.4416*
XLF 1.0000 1.0004 0.7915 0.9994 0.5272 0.4144*
XLI  1.0000 1.0040 0.8056 0.9987 0.5344 0.4047*
XLP 1.0000 0.9880 0.7611 0.9993 0.6101 0.4304*
XLU 1.0000 1.0048 0.8290 0.9985 0.5441 0.4317*
XLV 1.0000 1.0036 0.7651 0.9992 0.5390 0.4063*
XLY 1.0000 1.0011 0.7780 0.9992 0.5490 0.4201%*

Panel (c): Monthly

IYR 1.0000 1.0043 0.5826 0.9974 0.3364 0.1556*
IYZ  1.0000 1.0027 0.5491 0.9964 0.3266 0.1460%*
XLB 1.0000 1.0011 0.5927 0.9962 0.3075 0.1398*
XLE 1.0000 1.0012 0.6434 0.9965 0.2989 0.1448%*
XLF 1.0000 1.0011 0.5797 0.9974 0.2963 0.1376*
XLI  1.0000 1.0008 0.5567 0.9962 0.3232 0.1417*
XLP 1.0000 0.9931 0.4847 0.9976 0.4373 0.1817*
XLU 1.0000 1.0014 0.5656 0.9963 0.3366 0.1592%*
XLV 1.0000 1.0028 0.5217 0.9972 0.3393 0.1487*
XLY 1.0000 0.9988 0.5644 0.9969 0.3238 0.1466*

This table presents the out-of-sample relative loss measure QLIKE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the sector ETFs’ realised variance over a rolling
window of 1,000 observations for the period January 3, 2006, to September 8, 2023. The columns
represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP, SHARPSV),
and the rows correspond to various sector ETFs. An asterisk (*) indicates that the model is included
in the M75% model confidence set.

10



TABLE A.9. Out-of-Sample Relative Loss Measure MSE using the NYSE individual
stocks dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

AAPL  1.0000 1.0036 1.2112 0.9986* 0.9881* 1.0107 1.0107
AEE 1.0000 1.2857 1.6152 0.9995* 1.0211 1.0112 1.0112
BFB 1.0000 0.9973*  1.0084 0.9999 1.0054 1.0069 1.0075
BT 1.0000 0.9754* 1.0818 0.9989* 0.9819* 0.9946* 1.0115
EXC 1.0000* 1.2609 1.5486 0.9981* 1.0182* 1.0029* 1.0190
FCX 1.0000* 1.0400 1.0903 0.9996* 0.9966* 1.0170 1.0710
GD 1.0000* 0.9949* 1.1169 0.9992* 1.0050* 1.0012* 1.0147
GE 1.0000 1.1094 1.3427 0.9994* 1.0258 1.0115 1.0350
HD 1.0000* 1.2017 1.1631 0.9998* 0.9919* 1.0127 1.0144
HES 1.0000 1.3180 1.0918 0.9999 0.9539* 1.0398 1.0678
HUM  1.0000% 1.0075% 1.0340 0.9994* 0.9917* 1.0112 1.0120
IBM 1.0000* 1.2177 1.2112 0.9997* 1.0035* 1.0296 1.0351

KO 1.0000 0.9837* 1.0636 0.9993 0.9958 1.0127 1.0223
MAR  1.0000* 1.0157* 1.0808 1.0000* 0.9991*  1.0056* 1.0264
NUE 1.0000 1.0756 1.1920 0.9997 0.9148*  1.0091 1.0197
PFE 1.0000 1.1678 1.1812 0.9999 0.9712* 1.0138 1.0063
T 1.0000 1.5255 1.3692 0.9993 0.9559*  1.0082 1.0103

TRV 1.0000* 1.1448 1.5015 1.0000* 1.0517 1.0144 1.0330
WFC 1.0000 1.1073 1.2108 0.9998* 1.0395 1.0535 1.2002
XOM  1.0000 1.5081 1.5816 0.9995 0.9672* 1.0153 1.0208

Panel (b): Weekly

AAPL  1.0000 0.9936 4.3356 0.9941 0.7829 0.5483*
AEE 1.0000 0.9602 1.0227 0.9991 0.8260 0.6612*
BFB 1.0000 0.9191 1.1888 0.9999 0.6486 0.6070*
BT 1.0000 0.9701 1.3175 0.9987 0.4584*  0.4871
EXC 1.0000 1.0164 0.9389 0.9979 0.4882* 0.5155
FCX 1.0000 0.9880 1.1780 0.9995 0.5705* 0.5617*
GD 1.0000 0.9674 1.5742 0.9988 0.5253 0.5061*
GE 1.0000 1.0395 2.4967 1.0005 0.7039 0.6795*
HD 1.0000 0.9551 1.1863 1.0004 0.6766 0.5780*
HES 1.0000 1.0256 0.5791 0.9997 0.4983*  0.5989
HUM  1.0000 1.0126 0.9346 1.0009 0.6845 0.7962*
IBM 1.0000 0.9888 1.3576 0.9990 0.6351 0.5727*
KO 1.0000 0.9602 1.0815 0.9993 0.6560 0.5365*
MAR  1.0000 1.0102 0.9034 1.0002 0.4774* 0.5378
NUE 1.0000 0.9566 0.6566 0.9964 0.5088*  0.5802
PFE 1.0000 0.9738 1.5651 0.9957 0.5202 0.5016*
T 1.0000 0.9985 0.8094 0.9997 0.5099*  0.5482
TRV 1.0000 0.9580 1.9222 1.0013 0.6231*  0.6657
WFC 1.0000 0.9744 1.0440 1.0010 0.6515* 0.7773
XOM  1.0000 1.0599 1.9201 0.9982 0.6178 0.5436*

Panel (c): Monthly

AAPL  1.0000 0.9991 0.4168 0.9953 0.3238 0.2915*
AEE 1.0000 0.9816 1.7673 0.9992 0.3599* 0.3022
BFB 1.0000 0.9727 0.8989 0.9996 0.2516* 0.2651
BT 1.0000 1.0114 0.7191 0.9998 0.1815% 0.2245
EXC 1.0000 1.0109 0.7189 0.9997 0.2128* 0.2551
FCX 1.0000 1.0109 0.3414 1.0015 0.2019*  0.3042
GD 1.0000 1.0173 0.7697 1.0003 0.2072* 0.2523
GE 1.0000 0.9928 0.5624 1.0027 0.2060*%  0.3020
HD 1.0000 0.9943 0.5853 1.0004 0.1927* 0.2651
HES 1.0000 0.9696 0.2312 1.0055 0.1533*  0.3004
HUM  1.0000 0.9906 0.8990 0.9949 0.1800 0.2581*
IBM 1.0000 1.0222 0.6825 0.9991 0.3099 0.2799*
KO 1.0000 0.9870 1.4590 1.0020 0.3139* 0.2604
MAR  1.0000 1.0110 0.3753*  1.0031 0.1805*  0.2860
NUE 1.0000 0.9732 0.2174 0.9975 0.2074*  0.2746
PFE 1.0000 1.0023 0.9399 0.9958 0.1986* 0.2391*
T 1.0000 1.0279 0.7504 0.9989 0.2814* 0.2812
TRV 1.0000 0.9473 2.3932 1.0041 0.2598*  0.3547
WFC 1.0000 0.9795 0.3168 0.9982 0.1758 0.3576*
XOM  1.0000 1.0034 0.8601 0.9980 0.2713 0.2615

This table presents the out-of-sample relative loss measure MSE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the twenty NYSE stocks realised variance
over a rolling window of 1,000 observations for the period January 3, 2000, to December 31, 2016.
The columns represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP,
SHARPSYV), and the rows correspond to various individual stocks. An asterisk (*) indicates that
the model is included in the M75% model confidence set.
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TABLE A.10. Out-of-Sample Relative Loss Measure MAE using the NYSE individual
stocks dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

AAPL  1.0000 1.0031 1.0435 0.9999 1.0240 0.9574*  0.9590
AEE 1.0000 1.0314 1.0681 1.0005 1.0312 0.9791 0.9770*
BFB 1.0000 0.9879 1.0105 1.0001 1.0436 0.9602 0.9571*
BT 1.0000 0.9999 1.0101 0.9998 1.0144 0.9598*  0.9675
EXC 1.0000 1.0265 1.0634 1.0001 1.0375 0.9682*  0.9765
FCX 1.0000 0.9923 1.0341 1.0004 1.0259 0.9870* 1.0225
GD 1.0000 0.9892 1.0341 0.9999 1.0135 0.9619*  0.9633
GE 1.0000 1.0276 1.1006 1.0005 1.0556 0.9904* 1.0225
HD 1.0000 1.0146 1.0221 1.0001 1.0153 0.9706* 0.9742
HES 1.0000%* 1.0170*  1.0086*  1.0005* 1.0166*  0.9949* 1.0152*
HUM  1.0000 0.9894 1.0066 1.0004 1.0166 0.9588*  0.9629
IBM 1.0000 1.0202 1.0343 1.0004 1.0221 0.9736*  0.9802
KO 1.0000 0.9950 1.0211 1.0004 1.0031 0.9678* 0.9726
MAR  1.0000 0.9925 1.0064 1.0003 1.0130 0.9668* 0.9770
NUE 1.0000 1.0117 1.0310 1.0006 1.0081 0.9834*  0.9997
PFE 1.0000 1.0100 1.0204 1.0002 1.0114 0.9680 0.9665%
T 1.0000 1.0284 1.0459 1.0001 1.0207 0.9745*  0.9771
TRV 1.0000 1.0072 1.0968 1.0007 1.0591 0.9732*  0.9889
WFC  1.0000* 1.0117 1.0599 1.0002* 1.0342 1.0028* 1.0782
XOM  1.0000 1.0405 1.0567 1.0002 1.0431 0.9800* 0.9849

Panel (b): Weekly

AAPL  1.0000 0.9988 0.9554 0.9987 0.6760* 0.6835
AEE 1.0000 0.9854 0.9159 0.9998 0.6896* 0.7013
BFB 1.0000 0.9760 0.9702 1.0000 0.6838*  0.6902
BT 1.0000 0.9942 0.8850 0.9991 0.6274*  0.6587
EXC 1.0000 0.9998 0.8751 0.9990 0.6612*  0.6905
FCX 1.0000 0.9901 0.7366 1.0003 0.6772* 0.7253
GD 1.0000 0.9926 0.9553 0.9992 0.6595*  0.6736
GE 1.0000 1.0090 0.9745 0.9999 0.6959* 0.7214
HD 1.0000 0.9845 0.8893 0.9991 0.6640*  0.6868
HES 1.0000 0.9993 0.7517 1.0001 0.6624* 0.7171
HUM  1.0000 1.0023 0.8534 0.9999 0.7085 0.7057*
IBM 1.0000 0.9924 0.8956 0.9995 0.6697*  0.6821
KO 1.0000 0.9883 0.9080 1.0001 0.6562*  0.6607
MAR  1.0000 0.9914 0.8427 0.9998 0.6436* 0.6858
NUE 1.0000 0.9973 0.7295 0.9994 0.6749*  0.7256
PFE 1.0000 0.9956 0.9625 0.9988 0.6475*  0.6579
T 1.0000 0.9842 0.9006 0.9997 0.6709*  0.6946
TRV 1.0000 0.9851 0.9536 1.0003 0.6672*  0.6950
WFC  1.0000 0.9986 0.8090 1.0002 0.6834*  0.7496
XOM  1.0000 1.0099 0.9936 0.9994 0.6938* 0.6915*

Panel (c): Monthly

APL 1.0000 1.0012 0.6104 0.9977 0.4084 0.4673*
AEE 1.0000 0.9915 0.8143 0.9986 0.4631 0.4135%*
BFB 1.0000 0.9889 0.8114 0.9989 0.4564* 0.4241%*
BT 1.0000 0.9994 0.7257 0.9973 0.4015* 0.3996
EXC 1.0000 1.0029 0.6730 0.9997 0.4099*  0.4230
FCX 1.0000 1.0011 0.4107 1.0002 0.3683 0.5125*
GD 1.0000 1.0068 0.7564 0.9979 0.4168* 0.3947
GE 1.0000 0.9947 0.6020 0.9996 0.3893*  0.4389
HD 1.0000 0.9970 0.6682 0.9975 0.4100*  0.4387
HES 1.0000 0.9894 0.4828 1.0015 0.3794*  0.4954
HUM  1.0000 0.9894 0.6308 0.9985 0.3854 0.4554*
IBM 1.0000 1.0038 0.7101 0.9990 0.4474 0.4176*
KO 1.0000 0.9952 0.7864 1.0000 0.4431* 0.3995
MAR  1.0000 0.9983 0.5998 0.9997 0.4070* 0.4628
NUE 1.0000 0.9968 0.4504 0.9994 0.3870 0.4611*
PFE 1.0000 1.0001 0.7722 0.9985 0.4112 0.3910*
T 1.0000 1.0116 0.7204 0.9983 0.4224* 0.4115
TRV 1.0000 0.9781 0.7905 1.0002 0.4423* 0.4616
WFC  1.0000 0.9973 0.4758 0.9983 0.3708 0.5083*
XOM  1.0000 1.0011 0.7775 0.9984 0.4539 0.3970

This table presents the out-of-sample relative loss measure MAE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the twenty NYSE stocks realised variance
over a rolling window of 1,000 observations for the period January 3, 2000, to December 31, 2016.
The columns represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP,
SHARPSYV), and the rows correspond to various individual stocks. An asterisk (*) indicates that
the model is included in the M75% model confidence set.
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TABLE A.11. Out-of-Sample Relative Loss Measure HMSE using the NYSE individual
stocks dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

AAPL 1.0000  1.0035 1.0177 0.9987 1.0582 0.7012%  0.7023*
AEE 1.0000  0.9826 1.0634 0.9996 1.0074 0.7861* 0.7861*
BFB 1.0000  0.9271 1.0091 1.0001 1.1000 0.7338 0.7269*
BT 1.0000  0.9953 1.0206 0.9984 1.0019 0.7789*  0.7909
EXC 1.0000  0.9706 1.0826 1.0001 1.0327 0.7518%  0.7535%
FCX 1.0000  0.9679 1.0076 0.9995 1.0293 0.7897*  0.8416
GD 1.0000  0.9764 1.0143 0.9984 1.0178 0.7488* 0.7501
GE 1.0000  0.9941 1.0463 0.9987 1.0245 0.7733*  0.8065
HD 1.0000  1.0068 1.0056 0.9987 1.0002 0.7772% 0.7893
HES 1.0000  0.9380 1.0232 1.0000 1.0332 0.7974*% 0.8213
HUM  1.0000  0.9469 1.0001 0.9989 1.0202 0.6911%  0.6924*
IBM 1.0000  1.0204 0.9853 0.9994 1.0013 0.7693*  0.7790
KO 1.0000  1.0018 1.0482 0.9995 0.9845 0.7659% 0.7777
MAR  1.0000  0.9596 1.0066 0.9990 1.0093 0.7516* 0.7583
NUE 1.0000  0.9734 1.0015 0.9994 1.0227 0.7813* 0.8043
PFE 1.0000  0.9785 1.0611 1.0000 1.0105 0.7806 0.7736*
T 1.0000  0.9792 1.0119 0.9987 1.0564 0.7687* 0.7967
TRV 1.0000  0.9757 1.0364 1.0001 1.0515 0.7359%  0.7471
WEFC 1.0000  0.9431 0.9736 0.9964 0.9651 0.7688* 0.8016
XOM  1.0000 1.0069 0.9880 0.9990 1.0287 0.7833* 0.7970

Panel (b): Weekly

AAPL 1.0000  1.0055 2.1047 0.9964 0.3876 0.3501%*
AEE 1.0000  0.9784 1.3924 0.9989 0.5704 0.4651%*
BFB 1.0000  0.9122 1.2190 1.0000 0.5524 0.5259*
BT 1.0000  1.0020 1.1675 0.9966 0.3994 0.3930*
EXC 1.0000  0.9761 0.9910 0.9986 0.4739 0.4316*
FCX 1.0000  0.9758 0.6892 0.9989 0.4075% 0.4510
GD 1.0000  0.9907 1.3790 0.9970 0.3948 0.3618*
GE 1.0000  1.0065 1.8214 0.9971 0.4828 0.4041%*
HD 1.0000  0.9857 0.8359 0.9963 0.6037 0.3848*
HES 1.0000  0.9609 0.9796 0.9986 0.4677*  0.4678*
HUM  1.0000  1.0030 0.4975 0.9967 0.2882 0.3595%
IBM 1.0000  1.0103 0.8138 0.9985 0.3764 0.3641%*
KO 1.0000  1.0040 0.8541 0.9981 0.3644*  0.3645*
MAR  1.0000  0.9652 1.1494 0.9971 0.3919 0.3863*
NUE 1.0000  0.9784 0.7545 0.9976 0.4219*% 0.4419
PFE 1.0000  0.9917 1.1545 0.9980 0.4506 0.3835%
T 1.0000  0.9973 0.8504 0.9973 0.3479*%  0.3529
TRV 1.0000  0.9775 0.8621 0.9979 0.3624* 0.3629*
WFC 1.0000  0.9881 0.7160 0.9966 0.3842* 0.3877*
XOM  1.0000  0.9960 3.1356 0.9978 0.5060 0.3967*

Panel (c): Monthly

AAPL 1.0000  1.0061 0.6012 0.9924 0.1424 0.1301*
AEE 1.0000  0.9748 0.7351 0.9953 0.1890 0.1337*
BFB 1.0000  0.9708 0.7813 0.9963 0.1925 0.1534%
BT 1.0000  1.0122 0.7818 0.9923 0.1660 0.1428*
EXC 1.0000  1.0037 0.5507 0.9939 0.1675* 0.1394
FCX 1.0000  0.9954 0.2497 0.9945 0.1160 0.1948*
GD 1.0000  1.0019 0.8288 0.9902 0.1571 0.1120*
GE 1.0000  1.0011 0.5337 0.9924 0.1518 0.1231*
HD 1.0000  0.9994 0.6286 0.9927 0.1477* 0.1319
HES 1.0000  0.9865 0.3992 0.9956 0.1494* 0.1989
HUM  1.0000 0.9723 0.6700 0.9924 0.1508 0.1674*
IBM 1.0000  1.0090 0.6204 0.9931 0.1661 0.1127*
KO 1.0000  0.9910 0.6343 0.9954 0.1561 0.1162*
MAR  1.0000 0.9731 0.5389 0.9920 0.1448* 0.1348
NUE 1.0000  0.9892 0.3769 0.9932 0.1300 0.1618*
PFE 1.0000  0.9987 0.7326 0.9957 0.1537 0.1195*
T 1.0000  1.0023 0.6711 0.9929 0.1517 0.1161*
TRV 1.0000  0.9931 0.6560 0.9943 0.1556* 0.1174
WEFC 1.0000 1.0024 0.3916 0.9933 0.1261 0.1540*
XOM  1.0000 0.9989 0.7542 0.9930 0.1720 0.1098

This table presents the out-of-sample relative loss measure HMSE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the twenty NYSE stocks realised variance
over a rolling window of 1,000 observations for the period January 3, 2000, to December 31, 2016.
The columns represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP,
SHARPSYV), and the rows correspond to various individual stocks. An asterisk (*) indicates that
the model is included in the M75% model confidence set.
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TABLE A.12. Out-of-Sample Relative Loss Measure HMAE using the NYSE individual
stocks dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

AAPL 1.0000 1.0019 1.0036 0.9993 1.0217 0.8466* 0.8482
AEE 1.0000  0.9970 1.0011 0.9999 1.0039 0.8913* 0.8928
BFB 1.0000 0.9823 1.0015 0.9999 1.0427 0.8546 0.8482*
BT 1.0000  1.0009 0.9984 0.9992 1.0004 0.8899*  0.8981
EXC 1.0000 0.9934 0.9942 0.9999 1.0076 0.8744% 0.8746*
FCX 1.0000 0.9873 1.0061 0.9997 1.0140 0.8934* 0.9183
GD 1.0000  0.9907 1.0031 0.9992 1.0058 0.8700* 0.8709
GE 1.0000 1.0011 1.0008 0.9993 1.0051 0.8842*  0.8984
HD 1.0000 0.9975 0.9972 0.9993 0.9947 0.8878* 0.8937
HES 1.0000 0.9778 1.0011 0.9999 1.0165 0.8993* 0.9113
HUM  1.0000 0.9798 0.9983 0.9997 1.0103 0.8296* 0.8295*
IBM 1.0000  1.0036 0.9925 0.9998 0.9979 0.8867* 0.8922
KO 1.0000  0.9982 1.0003 0.9997 0.9929 0.8777* 0.8864
MAR  1.0000 0.9866 1.0020 0.9996 1.0054 0.8794* 0.8835
NUE 1.0000 0.9894 0.9993 0.9997 1.0084 0.8883*  0.8995
PFE 1.0000  0.9952 1.0029 0.9997 1.0028 0.8811* 0.8834
T 1.0000  0.9938 1.0004 0.9993 1.0196 0.8791*  0.8864
TRV 1.0000  0.9909 1.0055 0.9997 1.0024 0.8597* 0.8654
WFC  1.0000 0.9966 0.9952 0.9991 0.9997 0.8793*  0.8986
XOM  1.0000 1.0014 0.9940 0.9995 1.0068 0.8982*  0.9042

Panel (b): Weekly

AAPL  1.0000 1.0008 0.8641 0.9983 0.5492* 0.5721
AEE 1.0000 0.9954 0.9153 0.9994 0.6274*  0.6339
BFB 1.0000 0.9789 0.9554 0.9996 0.6121* 0.6170
BT 1.0000  1.0007 0.8799 0.9983 0.5918*  0.6095
EXC 1.0000  0.9932 0.8957 0.9990 0.6152*  0.6305
FCX 1.0000 0.9898 0.6762 0.9991 0.6119* 0.6684
GD 1.0000  0.9966 0.9286 0.9983 0.5837* 0.5918
GE 1.0000  1.0034 0.8676 0.9983 0.5912*  0.6043
HD 1.0000  0.9940 0.8900 0.9982 0.5982*  0.6077
HES 1.0000  0.9890 0.7956 0.9993 0.6208*  0.6599
HUM  1.0000 1.0010 0.6928 0.9988 0.5671*  0.5520
IBM 1.0000  0.9999 0.8766 0.9990 0.6088* 0.6126
KO 1.0000  0.9994 0.8724 0.9990 0.5867*  0.5962
MAR  1.0000 0.9902 0.8863 0.9987 0.5885* 0.6107
NUE 1.0000 0.9884 0.7548 0.9988 0.6090* 0.6516
PFE 1.0000 0.9979 0.9329 0.9989 0.5883* 0.5918
T 1.0000 0.9957 0.8977 0.9986 0.5826* 0.5949
TRV 1.0000  0.9922 0.8914 0.9987 0.5819* 0.5891
WFC  1.0000 0.9979 0.8037 0.9983 0.5824*  0.6060
XOM  1.0000 1.0001 0.9141 0.9988 0.6075% 0.6084*

Panel (c): Monthly

AAPL 1.0000 1.0025 0.6759 0.9964 0.3688 0.3654*
AEE 1.0000  0.9961 0.7913 0.9981 0.4247 0.3533*
BFB 1.0000  0.9905 0.8450 0.9981 0.4217 0.3604*
BT 1.0000 1.0026 0.7715 0.9954 0.3889 0.3573*
EXC 1.0000  0.9999 0.7164 0.9974 0.4066* 0.3598
FCX 1.0000  0.9971 0.4216 0.9967 0.3322 0.4456*
GD 1.0000  1.0003 0.8034 0.9948 0.3890 0.3215*
GE 1.0000 1.0004 0.6609 0.9960 0.3782 0.3339%
HD 1.0000  0.9989 0.7403 0.9957 0.3830* 0.3521
HES 1.0000  0.9960 0.5639 0.9974 0.3754*  0.4343
HUM  1.0000 0.9887 0.6561 0.9970 0.3659 0.3964*
IBM 1.0000 1.0024 0.7404 0.9967 0.4082 0.3389*
KO 1.0000 0.9978 0.7347 0.9973 0.3905 0.3375%
MAR  1.0000 0.9929 0.6942 0.9964 0.3894* 0.3694
NUE 1.0000  0.9969 0.5309 0.9967 0.3546 0.3979*
PFE 1.0000  0.9992 0.7948 0.9978 0.3845 0.3273*
T 1.0000  0.9990 0.7555 0.9960 0.3830 0.3258*
TRV 1.0000 0.9957 0.7535 0.9964 0.3897* 0.3294
WFC  1.0000 1.0015 0.5826 0.9957 0.3590 0.3715%
XOM  1.0000 1.0010 0.7605 0.9966 0.4074 0.3271

This table presents the out-of-sample relative loss measure HMAE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the twenty NYSE stocks realised variance
over a rolling window of 1,000 observations for the period January 3, 2000, to December 31, 2016.
The columns represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP,
SHARPSYV), and the rows correspond to various individual stocks. An asterisk (*) indicates that
the model is included in the M75% model confidence set.
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TABLE A.13. Out-of-Sample Relative Loss Measure QLIKE using the NYSE individual
stocks dataset

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARPsv

Panel (a): Daily

AAPL 1.0000 1.0015 1.0065 0.9991 1.0298 0.8238*  0.8262
AEE 1.0000  0.9935 1.0114 0.9996 1.0053 0.8838* 0.8837*
BFB 1.0000  0.9675 1.0029 0.9998 1.0531 0.8458 0.8417*
BT 1.0000  0.9998 1.0012 0.9989 0.9982 0.8747*  0.8830
EXC 1.0000 0.9865 1.0013 0.9996 1.0080 0.8620% 0.8628*
FCX 1.0000  0.9790 1.0070 0.9996 1.0162 0.8827* 0.9112
GD 1.0000  0.9848 1.0049 0.9989 1.0071 0.8570* 0.8579
GE 1.0000  0.9984 1.0066 0.9990 1.0066 0.8690*  0.8854
HD 1.0000 0.9965 0.9988 0.9991 0.9950 0.8751* 0.8811
HES 1.0000 0.9617 1.0068 0.9998 1.0187 0.8885* 0.9014
HUM  1.0000 0.9689 0.9984 0.9995 1.0114 0.8236* 0.8245
IBM 1.0000  1.0081 0.9906 0.9995 0.9977 0.8734*  0.8790
KO 1.0000  0.9962 1.0056 0.9996 0.9911 0.8681* 0.8759
MAR  1.0000 0.9755 1.0028 0.9993 1.0045 0.8625* 0.8674
NUE 1.0000 0.9784 0.9979 0.9996 1.0103 0.8813* 0.8925
PFE 1.0000  0.9906 1.0114 0.9996 1.0033 0.8703* 0.8700*
T 1.0000  0.9879 1.0028 0.9991 1.0251 0.8667* 0.8764
TRV 1.0000 0.9852 1.0114 0.9998 1.0112 0.8436* 0.8494
WFC  1.0000 0.9887 0.9904 0.9985 0.9954 0.8700* 0.8948
XOM  1.0000 1.0031 0.9907 0.9993 1.0114 0.8811* 0.8873

Panel (b): Weekly

AAPL  1.0000 0.9997 0.8926 0.9975 0.3819* 0.3910
AEE 1.0000 0.9882 0.9152 0.9988 0.4552 0.4490*
BFB 1.0000 0.9587 0.9636 0.9994 0.4577* 0.4573*
BT 1.0000  1.0008 0.8739 0.9975 0.3959*  0.4099
EXC 1.0000  0.9846 0.8613 0.9984 0.4318* 0.4432
FCX 1.0000 0.9820 0.5475 0.9988 0.4163* 0.4762
GD 1.0000 0.9933 0.9378 0.9975 0.3997* 0.3976*
GE 1.0000  1.0039 0.8464 0.9976 0.4204*  0.4220*
HD 1.0000  0.9898 0.8201 0.9971 0.4284 0.4155*
HES 1.0000 0.9764 0.7263 0.9988 0.4409*  0.4747
HUM  1.0000 1.0028 0.5887 0.9980 0.3821 0.3772%
IBM 1.0000 1.0021 0.8178 0.9985 0.4120* 0.4144
KO 1.0000  0.9988 0.8248 0.9984 0.3961*  0.4043
MAR  1.0000 0.9777 0.8579 0.9978 0.4008*  0.4162
NUE 1.0000 0.9776 0.6398 0.9981 0.4249*%  0.4642
PFE 1.0000  0.9939 0.9181 0.9981 0.4108 0.4034*
T 1.0000 0.9932 0.8365 0.9980 0.3882*  0.4005
TRV 1.0000  0.9824 0.8286 0.9981 0.3946*  0.4002
WFC  1.0000 0.9943 0.7088 0.9973 0.4029*  0.4244
XOM  1.0000 0.9990 0.9495 0.9983 0.4275 0.4145*

Panel (c): Monthly

AAPL 1.0000 1.0018 0.5713 0.9949 0.1711 0.1616*
AEE 1.0000  0.9883 0.6945 0.9960 0.2095 0.1468*
BFB 1.0000 0.9832 0.7684 0.9966 0.2112 0.1597*
BT 1.0000 1.0061 0.6891 0.9940 0.1747 0.1491*
EXC 1.0000  1.0008 0.5700 0.9951 0.1907* 0.1569
FCX 1.0000  0.9951 0.2442 0.9956 0.1301 0.2168*
GD 1.0000  1.0003 0.7322 0.9923 0.1811 0.1280*
GE 1.0000 1.0008 0.5201 0.9939 0.1770 0.1417*
HD 1.0000 0.9998 0.6004 0.9935 0.1707* 0.1517
HES 1.0000  0.9924 0.3856 0.9960 0.1596*  0.2065
HUM  1.0000 0.9823 0.5192 0.9938 0.1649 0.1845*
IBM 1.0000  1.0041 0.6247 0.9943 0.1921 0.1330*
KO 1.0000 0.9956 0.6255 0.9959 0.1788 0.1334*
MAR  1.0000 0.9835 0.5588 0.9938 0.1741* 0.1568
NUE 1.0000 0.9875 0.3483 0.9949 0.1441 0.1799*
PFE 1.0000  0.9986 0.6958 0.9959 0.1748 0.1337*
T 1.0000 0.9963 0.6395 0.9943 0.1770 0.1354*
TRV 1.0000 0.9928 0.6328 0.9949 0.1866* 0.1377
WFC  1.0000 1.0013 0.4198 0.9941 0.1591 0.1781*
XOM  1.0000 1.0007 0.6717 0.9951 0.1988 0.1288

This table presents the out-of-sample relative loss measure QLIKE over three forecasting horizons:
daily, weekly, and monthly, for models estimated on the twenty NYSE stocks realised variance
over a rolling window of 1,000 observations for the period January 3, 2000, to December 31, 2016.
The columns represent different models (HARL, HARLQ, HARSL, TVCHAR, SHARK, SHARP,
SHARPSYV), and the rows correspond to various individual stocks. An asterisk (*) indicates that
the model is included in the M75% model confidence set.
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A.1. Misspecification analysis. Our specification (3.1)-(3.5) is based on assuming (i.i.d.)
Gaussian innovations throughout. A stylised fact of Bayesian inference is that, typically,
coefficient inference is robust to such an assumption; on the other hand, however, inference
on the volatility process can be affected if the assumption of Gaussianity is not satisfied by
the innovations, with posterior inference on volatility becoming invalid." Whilst results in
our empirical application seem to suggest some degree of robustness, in this section - by
way of misspecification analysis - we report a test for the normality of innovations. Our
test is constructed in a similar way to the one proposed (although for a different model) in
Koopman and Scharth (2012) - namely, we use a parametric bootstrap method where we
compare the skewness and kurtosis of the observations y; against the skewness and kurtosis
of a pseudosample y;;, generated using Gaussian innovations.

More specifically, we have generated the pseudosamples {y;4,1 < b < B} using

(A.1) Yeo = TypBrp+ Ves,

(A.2) Biww = 5+ 0;8;-1p+ Ejtps
(A.3) €itb = hj,t,bnj,t,m

(A.4) Inhp = A;+0; i1+,

with vy p, €516, 154 and w; e, all generated as zero mean, i.1.d. Gaussian with variance given
by the corresponding estimates - similarly, o, ﬁj, ﬁj and gj refer to the relevant estimates,
and we initialise setting 3, , equal to the full sample OLS estimator. The bootstrap scheme
constructed above lends itself to constructing an omnibus test, for the null hypothesis of
the correct specification of the distribution of all the innovations {v;}, {€;+5,1 < j < k} and
{uw;+p,1 < j <k} simultaneously, which - along the same lines as Koopman and Scharth
(2012) - we test by testing separately for the null hypotheses that (a) the skewness and (b)
mful to an anonymous Referee for bringing this point to our attention, and also for suggesting

the test by Koopman and Scharth (2012).
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the kurtosis of the observations y; are compatible with the DGP in (A.1)-(A.4). We report
results in Tables A.14 and A.15 for the NYSE stocks and the ETF sectors respectively,
using B = 499; as can be seen, the null hypothesis of Gaussian innovations is almost always
rejected. This can be read in conjunction with our results in Section 5, where the impact of

a non Gaussian distribution is studied (see in particular “DGP SVt”).

17
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TABLE A.14. Bootstrap-Based Normality Test Results - Twenty NYSE Stocks Dataset

Daily ‘Weekly Monthly
SHARP SHARPsv SHARP SHARPsv SHARP SHARPsv
Skewness Kurtosis Skewness Kurtosis | Skewness Kurtosis Skewness Kurtosis | Skewness Kurtosis Skewness Kurtosis
AAPL 0.3592 3.5029 0.3595 3.5038 0.4098 3.4611 0.4111 3.4668 0.5080 3.4949 0.5076 3.4938
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
AEE 1.1269 5.7151 1.1271 5.7176 1.4542 6.7707 1.4545 6.7716 1.7248 7.8640 1.7264 7.8725
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
BFB 1.0050 5.1443 1.0046 5.1402 1.0324 4.3939 1.0321 4.3921 1.2555 4.7105 1.2564 4.7153
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
BT 0.8292 4.3635 0.8299 4.3653 1.0518 4.7751 1.0516 4.7731 1.1766 5.0465 1.1767 5.0454
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
EXC 1.0795 5.1980 1.0807 5.2029 1.3941 6.2808 1.3921 6.2698 1.6080 6.9652 1.6088 6.9714
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
FCX 0.6848 3.8039 0.6847 3.8021 0.8076 3.9583 0.8078 3.9609 0.8584 4.0473 0.8584 4.0478
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
GD 0.9479 4.8276 0.9483 4.8274 1.2264 5.5295 1.2263 5.5288 1.5378 6.3040 1.5382 6.3043
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
GE 1.1534 4.9968 1.1538 4.9985 1.3655 5.3101 1.3662 5.3141 1.4688 5.3583 1.4694 5.3617
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
HD 0.9472 4.3307 0.9485 4.3351 1.2109 4.6988 1.2108 4.6960 1.4177 5.0224 1.4177 5.0201
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
HES 0.6077 3.9705 0.6071 3.9677 0.7678 4.2944 0.7676 4.2950 0.8397 4.4109 0.8420 4.4218
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
HUM 0.9103 4.1359 0.9101 4.1348 1.0577 4.4133 1.0577 4.4126 1.3774 5.2413 1.3769 5.2401
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
IBM 1.1413 5.4573 1.1421 5.4607 1.5331 6.5966 1.5350 6.6045 1.8440 7.7030 1.8454 7.7113
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
KO 1.0664 5.6224 1.0662 5.6242 1.3972 6.7393 1.3980 6.7437 1.7121 7.8873 1.7127 7.8903
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
MAR 0.7571 3.4387 0.7568 3.4376 0.9834 3.7516 0.9836 3.7526 1.1492 3.9617 1.1495 3.9637
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
NUE 0.7744 4.1587 0.7727 4.1501 0.9209 4.5132 0.9199 4.5062 0.9729 4.5252 0.9729 4.5240
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
PFE 0.8494 4.5775 0.8510 4.5849 1.0607 4.9848 1.0618 4.9905 1.3384 5.7667 1.3387 5.7672
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
T 1.0738 5.1614 1.0740 5.1632 1.3595 6.0616 1.3585 6.0557 1.6091 6.7064 1.6098 6.7094
(0.0000) (0.0000)  (0.0000) (0.0000) | (0.0000) (0.0000)  (0.0000) (0.0000) | (0.0000) (0.0000)  (0.0000) (0.0000)
TRV 1.1588 4.9155 1.1595 4.9173 1.3581 5.3843 1.3586 5.3871 1.4854 5.5865 1.4874 5.5953
(0.0000) (0.0000)  (0.0000) (0.0000) | (0.0000) (0.0000)  (0.0000) (0.0000) | (0.0000) (0.0000)  (0.0000) (0.0000)
WEFC 1.0539 4.0078 1.0545 4.0115 1.1876 4.1503 1.1880 4.1516 1.2435 4.1045 1.2444 4.1069
(0.0000) (0.0000)  (0.0000) (0.0000) | (0.0000) (0.0000)  (0.0000) (0.0000) | (0.0000) (0.0000)  (0.0000) (0.0000)
XOM  0.8984 4.9802 0.8980 4.9781 1.1041 5.4871 1.1036 5.4839 1.2179 5.8473 1.2197 5.8576
(0.0000) (0.0000)  (0.0000) (0.0000) | (0.0000) (0.0000)  (0.0000) (0.0000) | (0.0000) (0.0000)  (0.0000) (0.0000)

The table reports the skewness, kurtosis, and bootstrap p-values for testing the normality of the predicted residuals across individual stocks
under two models: SHARP and SHARP-SV.
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TABLE A.15. Bootstrap-Based Normality Test Results - Ten Sectors ETFs Dataset and the VIX index

Panel (a): Daily

Panel (b): Weekly

Panel (c): Monthly

SHARP SHARPsv SHARP SHARPsv SHARP SHARPsv
Skewness Kurtosis Skewness Kurtosis | Skewness Kurtosis Skewness Kurtosis | Skewness Kurtosis Skewness Kurtosis

IYR 0.8815 4.7333 0.8795 4.7233 1.0624 5.2604 1.0618 5.2595 1.1155 5.2189 1.1154 5.2157
(0.0000) (0.0000) (0.0000) (0.0000) (0.1440) (0.0000) (0.6520) (0.0000) (0.0000) (0.0000) (0.7180) (0.0000)

IYX 0.8726 5.9455 0.8727 5.9448 0.9337 5.5910 0.9347 5.5961 0.8783 5.2193 0.8808 5.2291
(0.0000) (0.0000) (0.0000) (0.0000) (0.0160) (0.0000) (0.7520) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

XLB 0.4368 3.5668 0.4373 3.5679 0.5520 3.7004 0.5515 3.6990 0.5965 3.6035 0.5946 3.5933
(0.0000) (0.6120) (0.0000) (0.5360) (0.0000) (0.0000) (0.0000) (0.0020) (0.0000) (0.0000) (0.0000) (0.0000)

XLE 0.5663 3.9685 0.5669 3.9695 0.6869 4.2335 0.6870 4.2336 0.6071 3.9528 0.6061 3.9449
(0.0000) (0.0500) (0.0000) (0.0240) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

XLF 0.5012 3.4568 0.5019 3.4574 0.5721 3.4147 0.5722 3.4151 0.5485 3.1686 0.5494 3.1707
(0.0460) (0.0000) (0.0180) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0040) (0.0000) (0.0000)

XLI 0.7897 4.7142 0.7889 4.7096 0.9408 4.8088 0.9411 4.8097 0.9948 4.7314 0.9940 4.7311
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

XLP 0.6311 4.2179 0.6314 4.2197 0.7551 4.4299 0.7564 4.4352 0.7720 4.3059 0.7756 4.3269
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.8560)
XLU 1.0861 6.1167 1.0881 6.1312 1.3057 6.9122 1.3037 6.8988 1.3265 6.8526 1.3278 6.8547
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.1700) (0.0000)

XLV 0.9301 6.2353 0.9324 6.2492 1.1953 7.5702 1.1962 7.5764 1.2117 7.6673 1.2049 7.6106
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
XLY 0.8189 4.5379 0.8190 4.5380 0.9637 4.9407 0.9635 4.9389 0.9440 4.7792 0.9419 4.7609
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0240)

SPY 0.5465 3.2629 0.5463 3.2640 0.6418 3.2217 0.6419 3.2219 0.6531 2.9830 0.6553 2.9943
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0220) (0.0060) (0.0000) (0.9280) (0.0000) (0.0000)

VIX 0.30133 3.40041 0.30070 3.39824 0.2975 3.3507 0.2975 3.3507 0.1059 3.0037 0.1059 3.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

The table reports the skewness, kurtosis, and bootstrap p-values for testing the normality of the predicted residuals across the sectors ETFs
(and, in the last line, the VIX index) under two models: SHARP and SHARP-SV. The bootstrap procedure assesses whether the distribution

of residuals deviates significantly from normality.



B. FURTHER MONTE CARLO RESULTS

B.1. Mnemonics, parameter values and figures for Section 5.2. In Table B.1, we

summarise five variants of the main model, each incorporating different empirical features.

TABLE B.1. Model specifications and mnemonics

DGP Distribution of et Leverage effect Jumps Multi-regime
SV Gaussian - A\t = 1 NO-p=0 NO-x=0 NO-~v=0
SVt Student’s t - A\t ~ ZG (v/2,v/2) NO-p=0 NO-xk=0 NO-~v=0
SVL Gaussian - A\t =1 YES-p#0 NO-k=0 NO-v=0
SVJ Gaussian - A\y =1 YES-p#0 YES-k>0 NO-~v=0
SVML Gaussian - A\t =1 YES-p#0 NO-k=0 YES-~#0

We report the values of the parameters used in our simulations, which - as mentioned
in Section 5.2 in the main paper - are based on Table 3 of Stroud and Johannes (2014).
Compared to Stroud and Johannes (2014), however, we do not consider seasonal dummies,
and we therefore use higher values for the volatilities parameters o7 and o5 in (5.5) and
(5.4), to account for such omitted factors; further, as mentioned above, we allow for regime
switching via v > 0.

TABLE B.2. Parameter Values for Different Stochastic Volatility Specifications

SV SVt SVL SVJ SVML
n 0.0001 0.0000  0.0000 0.0000  0.0000
o 0.0600 0.0600  0.0600 0.0600  0.0600
¢;  0.9998 0.9998  0.9998  0.9998  0.9998
o1 0.0330 0.0330  0.0330 0.0330 0.0330
¢ 09270 0.9270  0.9270 0.9270  0.9270
o2  0.3000 0.3000  0.3000 0.3000  0.3000

p -0.0950 -0.1360 -0.1360
v 20.0000

K 0.0042

oy -0.0070

oy 0.2020

Ly 0.8160

) 1.2200

o 0.1000
P11 0.9500
D22 0.9000
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Figure B.1. Box plots of relative loss functions comparison - using the hundred simulated series for each DGP.
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Box plots of relative loss measures for five loss functions (MSE, MAE, HMSE, HMAE, QLIKE) across different DGPs
for each model, using the HARL as the benchmark model. The models were estimated using a Monte Carlo study with
1,440 simulated observations per iteration, where the first 1,000 observations were used for in-sample estimation, and
the last 440 observations were reserved for out-of-sample forecasting evaluation.
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Box plots of relative loss measures for five loss functions (MSE, MAE, HMSE, HMAE, QLIKE) across different DGPs
for each model, using the HARL as the benchmark model. The models were estimated using a Monte Carlo study with
1, 440 simulated observations per iteration, where the first 1,000 observations were used for in-sample estimation, and the
last 440 observations were reserved for out-of-sample forecasting evaluation. Note that we exclude HARLQ and SHARK
from DGP 6, as both require RQ in the estimated model, and in DGP 6 we only simulate RV series directly without

simulating intraday return series by design.
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B.2. Comparison with MLE cum Kalman filtering. We complement our Monte Carlo
exercise in Section 5.2 of the main paper by assessing the impact of our Bayesian estimation
(using Particle Gibbs) on the performance of our proposed models, using - as an alterna-
tive - a Maximum Likelihood Estimator cum Kalman filter to estimate the SHARP model.?
We note from the outset that the code executes without any numerical optimisation issues;
however, contrary to the case where our proposed Bayesian estimator is employed, when us-
ing MLE plus Kalman filtering, the model exhibits a tendency to over-forecast the depen-
dent variable at certain time points. In order to investigate this behaviour, we examined the
components of the forecasted values, including the bias correction term applied to account
for the log-normality of the data; our analysis revealed that the source of the overestimation
is not the bias correction per se, but rather the forecasted log-volatility component, which
in some cases was significantly inflated.

We include a summary table, Table B.3 offering a snapshot of the model’s performance. The
table reports the mean, standard deviation, minimum, and maximum of the mean squared
error (MSE) computed under each of the six data-generating processes (DGPs). Results
from alternative loss functions yielded even worse performance. To ensure that the reported
statistics are not unduly influenced by outliers, we excluded extreme forecasts by compar-

ing them to the maximum observed value in the actual data sample.

Results are decidedly worse when using Kalman filtering, which indicates that Particle Gibbs
sampling is not merely one of several possible estimation techniques for our proposed SHARP
and SHARP-SV models - it is in fact integral to their formulation and practical feasibility:
the models are specified as nonlinear state-space systems with time-varying parameters

2Routines have been coded in R. Implementation uses the KFAS package to construct the state space model
dynamically for each estimation window. At each step, the log-likelihood function is defined to optimise the
AR(1) parameters, the measurement variance, and the drift terms directly. The Kalman filter is used to
obtain the filtered state estimates, which are then used to forecast one-step-ahead coefficients and predict the
dependent variable using a bias-corrected exponential transformation. This forecasting process is embedded
in a rolling window framework and parallelised using FOREACH and DOPARALLEL to improve computational
efficiency. Further details are available upon request.
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(and stochastic volatility in the case of SHARP-SV), and Particle Gibbs allows to perform
Bayesian inference jointly over latent states and parameters, maintaining computational
tractability while accommodating the full complexity of the models. Without this approach,
the simultaneous estimation of latent volatilities and time-varying coefficients - central to
capturing the evolving structure of financial volatility - appears to be significantly more
limited or infeasible. All these findings confirm that our proposed models using Bayesian
approach effectively captures the key features of financial time series, offering robust and
practical improvements over traditional, competing estimation techniques.

TABLE B.3. Relative Forecast Error Summary (MSE) Compared to HARL Benchmark
Model

DGP1 DGP2 DGP3 DGP4 DGP5 DGP 6

Mean 4.4712 2.1888 3.0356 2.3119 3.2865 3.2865
Standard Deviation 1.8192 0.5894 1.2811 0.7680 1.0230 1.0230
Minimum 1.7362 1.2205 0.9966 1.2480 1.7077 1.7077
Maximum 9.8005 3.7561 8.3339 4.9219 7.5148 7.5148

This table reports summary statistics of the forecast mean squared error (MSE) of the Kalman filter-based
time-varying parameters model. Each value represents the ratio of the model’s MSE to that of HARL,
averaged across forecasts generated under each of the six data-generating processes (DGPs). The results
are computed after excluding all (extreme) predicted values, defined as exceeding the maximum observed
value in the actual data.
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B.3. Computational times. We report computational times for the basic SV DGP in

Table B.4; the results broadly support our claim that the Bayesian inference method remains

feasible for large-scale applications.’

TABLE B.4. The average computational time (in seconds) to produce forecasts for 440
out-of-sample observations in a series of the first DGP "SV" using different HPC configu-

rations. Some models were run in parallel, while others were executed serially.

Model Execution Node Parallelization = Number of
Time (s) Type Parameters*
HARSL 1159 **Unknown (serial execution)** No 7
TVCHAR 180 **Unknown (serial execution)** No 9
SHARK 1697 Intel Ivy Bridge/Haswell /Broadwell Yes 15
(16 cores, 64GB RAM, 10Gb low latency)
SHARP 10222 Intel Skylake/Cascade Lake Yes 13
(40 cores, 192GB RAM, 25Gb low latency)
SHARP-SV 10914 Intel Skylake/Cascade Lake Yes 21

(40 cores, 192GB RAM, 25Gb low latency)

* denotes the number of parameters required per out-of-sample observation.

SWhilst, for the sake of a concise presentation, we only consider one DGP, unreported experiments showed
that the computational times, when considering the other DGPs, exhibit essentially the same pattern as in

Table B.4.
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C. POSTERIOR DERIVATION

This appendix provides the detailed posterior derivations used in the estimation of the
volatility models. These derivations are crucial for understanding the underlying statistical
methods and ensuring the robustness of our results. We will walk through each step of the
derivation, providing context and highlighting key aspects.

Our SHARP-SV model reads as follows:

vy =8, tv; v ~N(0,0%), t=1,...,n
6tj :aj+pj/8t—1,j+€tj; 5tj|htj NN(O,htj), ]: 1,...,]{],t: 1,...,’)7,

lnhtj:’yj+(5jlnht,17j+utj; ut]’ NN(O,O’?U-), jzl,...,k,tzl,...,n
In what follows we will utilise the following symbols:
Let )\ = [3,,Inh)

where [, = [0, ...,0] and Inh, = [Inhy,...,Inhy
Let 0={01,..,0:}, where 0;={aj,p;,7;0;0u}, J=1,...k,

We assume the following prior for the parameters:

a;,v; ~N(0,1), j=1,...,k,
01205 ~ N (0.5, D, conls,c0n, 5=1o--k,
02 ~T(65,05), j=1,...,k
02 ~ T(6.5,0.5)
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Equivalently, the prior can be written as:

=1,k
=1,k
P NMpcony, J=1,....k
p(d;) o< exp(—5(d; — 0. 5)2)]15 o, J=1L...k
p(auj)oca;j.(ﬂﬂ)exp(—%i), j=1,...,k, n=65 and ¢=1

p(o )oca(nﬂ)exp(—%%), n=65 and ¢=1

uj

The posterior distribution is derived using Bayes’ theorem. This step is fundamental as it
combines prior information with the likelihood of the observed data to form the posterior

distribution. It is thus derived as follows:

n

P (Q,av, {)\}tT:1|Y) x (o,™) exp(— 2072 Z —36,)%)

t=1
kK n k n 1
H H hi) 1 exp(— Z 2h2 - Q; — piﬁi,t—1)2)
i=1 t=1 i=1 t=1 ~ it
k k 1 n
H ) exp(— Z 207 Z Inhy — v — 0iIn hi,t—l)Q)
= i=1 “C Ui =1
k k k k k
[ r(ew) []pl) [Tp(ro) T]pte) ] 206
j=1 i=1 i=1 i=1 i=1

In order to draw the posterior for each parameter, we use a mixed estimator approach
within Gibbs sampling. This method involves drawing each parameter sequentially within

each Monte Carlo iteration. Below, we demonstrate this process for each parameter.

(1) For v;| {{0\{~:}}, 00, {A}L, Y}
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In hi,g — (Sz In hi,l U;2
let Z = and u; =
In hi,T — 57, In hi,T—l U, T
Z 1, Uy U ol
then, = () Y ) ~ N(07 )
0 1 n n 1
where n =T — 1
Inh; r—Inh;1) o2
= 7| {0V} (YL V)~ N o)
(2) For &;[{{0\{di}}, 00, {N}1, Y }:
In hz"g — % In hi,l Ui 2
let Z — ' , K = and U; =
Inh;r — 7, Inh;ry Ui, T
then, = 0; + ) ~ N(0, )
0.5 1 n n 1

where n =T — 1

k' Z+0.502 o2 )

{{‘9\{51}}7 {A}?:l,Y} ~ N( K k+o? 7 K kto?

0w}y on (VL Y)

X

P (aui

o exp( =gty Sy (i — 5, = Gilnhig)?) - ou™ P exp (5% )

X

oo () eXp(_%?, (Z?:l(ln hit = 7; — 0iIn hi’t_l)Q + 2))

Uj
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Z?::l (Inhjp—vy;—d;iInh; ;1)
o2
w;

(4) For a;| {{6\{ou}}. (AL, Y )

—

51',2 - Piﬁi,l hia
let Z = '  H, =
i ﬁi,T - piﬁi,T—l ] i
A 1, €;
then, = () a; + :
0 1 n

where n =T — 1

T
t=2

1

—

(5) For p, {{9\{pl}} v AN Y
Bia — i Bia

let 7 = ' , K = ‘ ) HZ
_@T @i | _/BlTl_
€i,2

and ¢ =

€, T
A R € Uj

then, = pi + )
0.5 1 n n

29

{0\ foud} DN Y}~ Ny, st

,and €; =

)

{O\{oi}}, (AL Y~ XP(n+ 0+ 3)




Zit
S, 5t 405

O AN Y ~ N s e )

t=2h; t=2h; 4

= p;

(6)

P (o103 (L, Y)
XX
oy exp(— 5ty Sii (e — 2802 0™ exp (— o
XX

—(n+n+1 n
o " exp(— gk (D0 (9 — 718, + q))

T (ye—ziBe)’ +a {{6}, {0 LY} ~x*(n+n+3)

o3

—
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D. PARTICLE FILTERING WITHIN MCMC

Particle filtering is a simulation-based algorithm that sequentially approximates continu-
ous marginal distributions using discrete distributions. This is performed by using a set of
support points called “particles”and probability masses; see Creal (2012) for a review. The
PG sampler draws a single path of the latent or state variables from this discrete approxi-
mation. As the number of particles M goes to infinity, the PG sampler draws from the ex-
act full conditional distribution. The advantage of the algorithm is that it allows for draw-
ing paths of the state variables in large blocks.

As mentioned in Creal and Tsay (2015), the PG sampler is a standard Gibbs sampler but
defined on an extended probability space where a particle filter generates all the random
variables. Chopin and Singh (2015) analysed the theoretical properties of the PG sampler,
and showed that the sampler is uniformly ergodic. Unlike the standard particle filter, the
PG sampler involves a “conditionalresampling algorithm in the last step. Namely, for draws
from the particle filter to be a valid Markov transition kernel on the extended probability
space, the state variables drawn at the previous iteration must have a positive sampling
probability Andrieu et al. (2010). The conditional resampling step within the PG forces the
pre-existing path to survive the particle filter’s resampling steps. We use the conditional
multinomial resampling algorithm from Andrieu et al. (2010), although other resampling
algorithms exist (see, for example, Fearnhead et al., 2010 and Chopin and Singh, 2015).

Suppose the posterior is p(0, A\1.r|y1.7) where A1 denotes the latent variables whose prior
can be described by p(A|Ai—1,60). In the PG sampler, we can draw the structural parame-
ters 0| A7, y1.7 as usual, from their posterior conditional distributions. This is important
because, in this way, we can avoid mixture approximations or other Monte Carlo proce-
dures that need considerable tuning and may not have good convergence properties. Sup-
pose we have A% from the previous iteration. The particle filtering procedure consists of

two phases, forward and backward filtering.
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Phase I: Forward filtering Andrieu et al. (2010).
Fort=1,....T

e Draw a proposal Af{”) from an importance density q()\t|)\§7_nf, y), m=2,.., M.
e Compute the importance weights:

(D.1) S PN N, )
| b A A
q(Nitl A2 we)

, m=1,.... M.

(m)
e Normalise the weights: @™ = ﬁ, m=1,.., M.
m=1W¢

e Re-sample, conditionally, the particles {)\Em), m = 1, ..., M '} with probabilities {u?]gm), m =
1,..,M}.

In the original PG sampler, the particles are stored for ¢ = 1,...,T and a single trajectory is
sampled using the probabilities from the last iteration. An improvement upon the original
PG by drawing the path of the latent variables from the particle approximation is using the
backwards sampling algorithm of Godsill et al. (2004). In the forward pass, we store the
normalised weights and particles then we draw a path of the latent variables as we detail

below (the draws are from a discrete distribution).

Phase II: Backward filtering (Chopin and Singh, 2015; Godsill et al., 2004).

e At time t = T draw a particle A} = AU

e Compute the backward weights: wt(r';.,) o W™ p(Ar LA™, 6).

(m)

e Normalise the weights: IDETTI) = ;}L(m),m =1,...., M.
D m=1 Wy

) (m)

with probability thT :

e Draw a particle A}, = A"

Therefore, A\].;, = {\],...,A\}} is a draw from the full conditional distribution. When
the state vector dimension is large, we can draw A, .7, conditional on all other paths

A_i1r that are not path ¢. Therefore, we can draw from the full conditional distribution
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p(Nipr|A—ivr, yir, 0). The backwards step often results in dramatic improvements in com-
putational efficiency and strictly dominates the original PG (Chopin and Singh, 2015). For
example, Creal and Tsay (2015) find that M = 100 particles is enough.

There remains the problem of selecting an importance density q(A|A—1,y:). We use an
importance density implicitly defined by A\ = a; + 25:1 bipAyy_1 + £2i€;, where &, follows
a standard normal distribution (although a student t-distribution maybe more appropriate
in other applications). That is, we use polynomials in A;;_; of order P. We select the
parameters a;, b; and €); during the burn-in phase (using P = 1 and P = 2) so that the
weights {u?i(zn), m=1,...,M} and {u?t(gi), m = 1,..., M} are approximately not too far from

a uniform distribution.
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E. THE STRUCTURE OF THE SHARP MODEL

We begin by studying the dependence structure of the following model

(E.1) Y = 2B+,

(E.2) (Be—n) = T(Biy—p)+er,

(E.3) e = H/,

(E.4) vech(InH, — C) = Avech(lnH, ; — C) + uy,

where z; in (E.1) is a k& x 1 vector of exogenous regressors, and C in (E.4) is a symmetric
matrix. The structure of model (E.1)-(E.4) has not been analysed in the literature yet;
Aue et al. (2009) analyse the dependence structure of the stationary solution of (E.3)-(E.4),
considering a different notion of decomposability than the one we use herein (see Definition
E.1 below) and without studying the impact of the initial conditions; Kokoszka et al. (2025)
study a univariate version of the stationary solution of (E.3)-(E.4), again without assessing
the impact of the initial condition.

In order to make a closer comparison with our SHARP-SV model, we will also consider,

separately, the dynamic version of (E.1), namely
p
(E.5) Yt = Z Bj,tyt—j + U,
j=1

where, with reference to (E.2), we define 8, = (8, ..., ﬁp’t),. Model (E.2)-(E.5) encompasses
the SHARP-SV model of equations (3.1)-(3.5) in the main paper as a special case - and,
therefore, also the SHARP model. Equations (E.2)-(E.5) generalise our framework in the
main paper in at least three directions. Firstly, we do not assume Gaussian innovations
in any equation, and we refer to Assumptions E.1-E.4 below for further remarks on this -

although, as we show below, we do need the existence of the Moment Generating Function
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of (some of) the innovations in a sufficiently large neighbourhood of zero. Secondly, in
the law of motion in (E.2), we allow for a full-fledged VAR(1) specification, thus allowing
for feedback in the coefficient dynamics. Thirdly and finally, we do not impose a diagonal
structure in the dynamic covariance matrix H,. Equations (E.2) and (E.4) nest the equation-
by-equation specification in (3.2) and (3.5) respectively. We would like to point out that
the analysis of the dependence structure (and of the related asymptotics) for model (E.2)-
(E.5) is entirely novel in the literature. Indeed, in a series of related contributions, Professor
Lajos Horvath and his co-authors have studied a related model, i.e. the Random Coefficient
AutoRegressive (RCAR) model, but virtually all results are derived for the case where p = 1
in (E.5), and with independent random coefficients 3, - see, inter alia, Aue et al. (2006)
and Horvath and Trapani (2016); Horvath and Trapani (2023) study the case p > 1 under
stationarity, but again all their arguments rely heavily on the assumption of independent j,,

and cannot be immediately extended to the case of serially dependent random coefficients.

Henceforth, we let ||-|| denote the Euclidean norm of a vector, and the induced norm when
applied to a matrix; when using the £,-norm of a vector or matrix valued random variable
X, we define it as | X|, = (E || X|")"".

We begin with the following definition of weak dependence.

Definition E.1. The r-dimensional sequence {m;, —oo <t < oo} forms an L, -decomposable
Bernoulli shift if and only if it holds that m; = g (nt,nt_l, ), where: g(-) : S = R" is a
non random measurable function; {n,, —oo <t < oo} is an i.i.d. sequence with values in a
measurable space S; E (my) = 0 and |my|, < oo; and |m; — m,’;g|y < col™%, for some ¢y > 0
and a > 0, where my, = g (n,, ...,nt_g+17772<7&t7£777:7[717)&7(...), with {n:M, —00 < 5,0,t < oo}
i.i.d. copies of ng independent of {n,, —oo <t < oo}. Further, if |mt — mf’z}y < cop’ for
some ¢o > 0 and |p| < 1, the sequence {m;, —oco <t < oo} forms an L,-decomposable

Bernoulli shift with exponential rate.

We are grateful to an anonymous Referee for suggesting these generalisations.



The concepts of Bernoulli shift and decomposability appeared first in Ibragimov (1962);
we also refer to the works by Wu (2005), Liu and Lin (2009), and Berkes et al. (2011),
for further results and insights on this form of dependence. Bernoulli shifts have proven a
convenient way to model dependent time series, mainly due to their generality and to the
fact that it is much easier to verify whether a sequence forms a decomposable Bernoulli
shift than e.g. verifying mixing conditions. Aue et al. (2009), Liu and Lin (2009) and
Barigozzi and Trapani (2022) provide various theoretical results, and numerous examples of
data which satisfy Definition E.1, including ARMA models, ARCH/GARCH sequences, and
other nonlinear time series models (such as e.g. random coefficient autoregressive models
and threshold autoregressive models).

Henceforth, we define the bounds O (¢7%) and O (p*) as the rate function of the Bernoulli
shift.

We begin by studying (E.1)-(E.4). We require the following assumptions.

Assumption E.1. [t holds that: (i) x; is an L, -decomposable Bernoulli shift, for some
p' > 2 with rate function O ((=*) for some a > 0; (i) vy is an Ly -decomposable Bernoulli
shift, for some p" > 2 with rate function O (€~¢) for some ¢ > 0; (iii) {xy, —00 < t < 00},

{B,, —o00 <t < o0} and {vy, —00 < t < 00} are three mutually independent groups.

Assumption E.2. [t holds that: (i) |T|| < 1; (i) B, is independent of {e;, —00 < t < o0}

with |Bol, < oo for some p > 2.

Assumption E.3. [t holds that: (i) ||A| < 1; (i) w, is i.i.d. with mean zero and
Eexp (7 [luoll]) < oo for some 7> 0; (i) [InHo|, < oo for all ¢ > 0.

Assumption E.4. It holds that: (i), is an L+ -decomposable Bernoulli shift, for some

p > 2, € >0 and with rate function O (Z‘b) for some b > 0.

Some comments on Assumptions E.1-E.4 are in order. In Assumption E.1, we require that

x; be weakly dependent; the value of a in the rate function is specified below, but - in order
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to study the dependence structure of g, - it suffices to have a > 0. Assumption E.3 does
not require Gaussianity of the innovation u;, but by part (i) heavy tails are ruled out; in
principle, it would be possible to accommodate this important potential feature of the data
by modifying (E.3), moving e.g. from an exponential GARCH-type specification to a power-
type one. Finally, note that in Assumptions E.3 and E.4 we do not require independence

between H; and 7,.

The following results state that g, is weakly dependent in the sense of Definition E.1.

Consider (E.1)-(E.4), and define the stationary version of y; as
(E.6) Y, = 2,8, + v,

where B, is the stationary solution to (E.2). Let p = min {p, p’, p"}.

Theorem E.1. We assume that Assumptions E.1-E.J are satisfied, with T > (3/\/5) pe/ (1 +¢€)
in Assumption E.3(ii). Then it holds thaty, is an L-decomposable Bernoulli shift with rate
function O (min {6‘“, b, K_C}).

Theorem E.1 is, to the best of our knoweldge, the first full-fledged study of the dependence
structure of (the stationary solution of) a model with time-varying parameters and possible

conditional heteroskedasticity in the innovations of the law of motion of the parameters.

Turning to the dynamic case of (E.2)-(E.5), let

Bu BQ,t Bp,t
1 0 0
(E.7) B, = 0 1 . ,
0
0 0
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and consider the following assumption, which extends parts of Assumptions E.1-E.4, where

/
we use Ty = (Y1, s Yt—p) -

Assumption E.5. It holds that: (i) Eln||Bol| < 0; (ii) |Bol,, <& <1 for all p” > 0;

(i1i) g is independent of {By, —00 <t < 0o}, and such that |zo|; < oc.

Theorem E.2. We assume that the assumptions of Theorem E.1 and Assumption E.5 are
satisfied. Then it holds that y,, defined as the stationary solution of (E.2)-(E.5), is an Ly-

decomposable Bernoulli shift with exponential rate function.

As mentioned above, the result in Theorem E.2 is entirely novel in the literature. Part-
nering the result in the theorem with the Hajek-Rényi inequality in the proof of Corollary
E.1, essentially all asymptotic results for limits involving averages of y; can be (readily) de-
rived. Indeed, using exactly the same method of proof with minor variations, the same re-

sults can be derived for virtually all models in the HAR class.

The theorems above immediately yields the following results for the partial sums of ;.

Corollary E.1. We assume that the assumptions of Theorems E.1 or E.2 are satisfied with
both a > 1 and b > 1. Then, for any v € R and T' € N, 1t holds that

T P

Zyt

t=vy+1

(E.8) < C5TP?,

where Cy is a constant that depends only on p and on the sequence {y;, —o0o <t < co}. Also

r

VT

< I 7‘/2

(E.9) max. ;;lyt < G5, T2,
=y

for all 2 < r < p, where Cy, is a constant that depends only on p, r and on the sequence

{yr, —00 < t < o0}.
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Corollary E.2. We assume that the assumptions of Theorem E.1 or E.2 are satisfied
with both a > 2 and b > 2. Then, on a suitably enlarged probability space, for each T
there exist two independent Wiener processes with the same long-run variance as y;, say

{Wra(k),1 <k <T/2} and {Wrs(k),1 <k <T/2}, such that

k
1
(E.10) RV, ;yt —Wra (k)] = Op(1),
1 T
(E.11) T/I211<%€};T (T——k)l/ﬁ t:zk;l ye — Wro (T—k) = Op(1).

The results in Corollaries E.1 and E.2 are, naturally, outside the scope of this paper, where
Bayesian estimation is proposed as the main tool to carry out inference. Nevertheless, Corol-
laries E.1 and E.2 completely characterize the whole asymptotics associated with SHARP
and SHARP-SV models, and, mutatis mutandis, with the whole class of HAR models.
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F. TECHNICAL LEMMAS

Henceforth, «2» denotes equality in distribution, and I is an identity matrix of conformable

dimensions with the other matrices involved in the same expression.

Some of our lemmas are similar to the ones in Aue et al. (2009), with the crucial differences
that we use a different definition of weak dependence (and, thus, need to adapt our proofs
thereto), and the further presence of equation (E.2).

We begin with a definition of the matrix exponential for a symmetric m x m matrix B

(F.1) exp(B) = E HB
k=0
: 1\"
(F.2) = lim (I+—B) ;
n—o00 n

for the ease of exposition, we collect some well-known facts on the matrix exponential in the
following lemma (see also Lemma B.3 in Aue et al., 2009, although we provide more details
on the perturbation bound in part (iv) of our lemma).
Lemma F.1. Let B be an m x m symmetric matriz. Then it holds that

(i): exp (B) is positive definite;

(ii): for any two real numbers a and b, exp (aB)exp (bB) = exp((a+0)B), and

exp (B)exp (—B) = I,,,;
(iii): (exp (B))'* = exp (B/2);

(iv): for any m x m matriz E, it holds that
lexp (B + E) — exp (B)|| < [[E| exp ([|BJ]) exp (|| E]) ;

(v): llexp (B)]| < exp ([|B]).

Proof. Parts (i) and (ii) are well-known (see e.g. Corollary 11.1.6 in Bernstein, 2009). Part

(#i) can be readily shown by using (F.2). As far as part (iv) is concerned, equation (3.5) in
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Van Loan (1977) yields
lexp (B + E) — exp (B)|| < [[E] [lexp (B)]| exp ([|E]) ;

further, by (F.1)

[e.o]

lexp (B)[| = L <3 S IBJF = exp (IB]).
k! k!
k=0 k=0
whence the desired result obtains. Part (v) also follows. g

We now present a (local) reverse Jensen’s inequality, which refines Lemma B4 in Aue et al.

(2009).

Lemma F.2. Given a random variable X for which E exp (T |X|) < oo, it holds that there

erist a 7' < T such that

Eexp (1|X|) <exp(27F|X])

forall0 <1< 7.

Proof. Lemma B4 in Aue et al. (2009) states that there exists a 7/ < 7 such that

Eexp(7|X]) <14+27E(|X]),

for all 0 < 7 < 7/. By the elementary inequality 1 + y < exp (y), valid for all y, it now
follows that
Eexp (T|X]) <1+27E(|X]|) <exp(27E(|X])).

We are now ready to present the main lemmas needed for our proofs.
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Lemma F.3. We assume that Assumption E.3 is satisfied. Then it holds that equation

(E.4) admits the following unique, non-anticipative, strictly stationary and ergodic solution
vech (ln H, - C) = Z Acuy_y,
s=0

which converges absolutely a.s. with probability 1.

Proof. The existence and the properties of the stationary solution follow from routine argu-
ments given the sufficient condition in Assumption E.3(7) (see e.g. Brandt, 1986). Here, we

show the absolutely summability of vech (ln H, - C’). It holds that
[vech (InHy — C) || < Y [[A[° lu_]l.
s=0

On account of Assumption E.3(7i), the Borel-Cantelli Lemma entails that for all v > 0 and

all —o0 < s < 00, |Jus|| = Oqs. (|s|1/”>, Hence, there exist two random variables Cy and s
such that
e’ so—1 00
DA usdll = D IAN lusl + Y IAI flus]
s=0 s=0 S=50
so—1 00
1/v
< Y A usll+ Co > IA7 s
s=0 $=80

The first term is obviously Op (1); further, by Assumption E.3(%) it holds that
YO IAL s < DAL s < e,
s=50 s=0

whence the desired result obtains. O

Lemma F.4. We assume that Assumption E.3 is satisfied, with part (ii) holding for some
T > (3/\/5) v. Then it holds that ﬁ:/Q 18 an L,-decomposable Bernoulli shift with exponen-

tial rate function for all v > 1.
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Proof. Define

(F3) gt = C + math [Z Asuts] s

s=0
where math (-) is the inverse of the operator vech(:) - that is, for any matrix B, B =
math (vech (B)). Clearly, the symmetry of C entails that S; is a symmetric matrix. Define

also the coupling construction

¢
S:¢ = C + math [Z Aduy_g

s=0

+ math [ Z Asut_s,g] ,

s={+1
where {u; s, —00 <t < oo} is an i.i.d. sequence independent of {u;, —0o < t < oo} and such

that {us,, —00 <t < o0} 2 {us, —00 < t < 0o}, and let
(F4> Ht! = vech (St’g) .
Note, finally, that H, = exp (gt) and H;, = exp (S;¢). It holds that

F71/2 1/2
HHt - Ht,é

exp [% (S: £ Stl)} XD [% (SM)} H

— 1 1,—
I5: = Sl xp (5 180l ex (5 5: = Sl ).

IN

having used Lemma F.1(iv). Hence, using Hélder’s inequality and the Cauchy-Schwartz

inequality, it holds that, for all v > 1

F71/2 1/2
‘Ht - Ht,/e

14

1
€xXp (5 ||St,£||)‘
3v

3v

< [Si =S

1.,.—
exp (5 HSt - SMH)

5
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Using the inequality ||A|| < /2 ||vech (A)||, we now have

St —Suel,
) S )
< V2| S At = S At <2V2 S AL fuol,, < collAJ
s={+1 s=(+1 3 s=(+1

having used Assumptions E.3(7)-(ii). Also,

1,.,—
o (515~ 5.

3v

1 _ |
< |exp (— vech (S; — Sie > = lexp | —= A® (s — Up—s0)
Tl =sal)| = |ew (75 S |
3v
o 00 1/3v
< ( LS Ay H) Be (3” S Al ||)]
> |€EXP | —= Ut—s — Ut—s,0 = Xp | —= Ut—s — Ut—s 0
\/5 s=0+1 3 \/§ s={+1
[ oo 1/3v
3v s
= | II Eexp (EHAH Hut—s—ut—s,dO]
| s=¢+1
M oo 1/3v 00
< | ew e IIAHS)] <exp ( > IIAHS> < s
| s=/+1 s=0+1

having used the independence of the wu;s in the fourth line, and Lemma F.2 in the fifth line.

By the same token (recalling the distributional equivalence between u; and u; )

1
(£.5) exp (315
3v
00 . 1/31/
< exp [ =[S A% < [Bep [ 223 A fue s
-~ X - = t—s -~ X - = t—s
\/5 s=0 3v \/5320

oo 3 1/3v 00 1/3v
v
Eexp | — ||A]]” ||wi—s < exp (¢ ||A]|?
Sllo p(ﬁH 17 [ ||>] < [l [ exp (ca Al )]

= exp (CQZ HA||S> < cs.
s=0
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The desired result now follows. O

Define now the stationary counterpart to ¢; in (E.3)

_ ==1/2
&t — Ht/ e

Lemma F.5. We assume that Assumptions E.3 and E./ are satisfied, with T > (3/\/5) pe/ (1 +¢€)
in Assumption E.3(ii). Then it holds that € is an L,-decomposable Bernoulli shift with rate
function O (E_b).
Proof. Consider the construction

Ete = Hz,/fnt,év

where H,, is defined in (F.4) and 7, , is defined similarly. Then it holds that

|gt - Et,Z’p

F71/2 1/2
= |H,/ n,— Ht/entz

1/2 1/2 1/2 1/2
:‘(H H) 0 - H P

F71/2 1/2 1 2
< <Ht - Ht,/é ) Ne| + ‘H ’ Th,z) ’p
7/2 1/2‘ ‘ 1/2‘ _
< |H; Ht,e pe/(140) |77t| (1+e) T ¢/(1+4¢) |77t ntrelp(l-‘re)
< olAl+e [HY e,
" Ipe/(1+e)
1/2

. . D ==
< cp; indeed, seeing as H,, = Hy,
pe/(1+e)

this is tantamount to showing that ‘Ht‘pe J(149) is finite. It holds that

<o (51511
)

having used Lemma F.4. We now show that ’H

Hilie0

= =S
(1)
exp (

pe/(1+e) pe/(1+€)

IA

<

pe/(1+e)
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vech C + Z Ay,

s=0

Sl -

1 — s
won (5211
s=0

pe/(14¢)



(1+€)/pe
S Cy,

M pe 5
& Eexp | ——— ||A]]” [|w—s
) N e A )

by similar arguments as above (note the use of Lemma F.1(v) in the second line). The

desired result now obtains. O

Define now the stationary counterpart to 3,, viz.
o
ﬁt = U+ Z I‘sgt_s.
s=0

Lemma F.6. We assume that Assumptions E.2-E.j are satisfied, with T > (3/\/5) pe/ (1+¢)
in Assumption E.3(i). Then it holds that j3, is an L,-decomposable Bernoulli shift with rate
function O (ﬁ_b).

Proof. Lemma F.5 entails that we can write

E&t=g (Ct:Ct—l? ) )

with g : $°** — R* a nonrandom function, S a measurable space and {(,, —0o < t < oo}

an 7.7.d. sequence taking values in R® for some s > 1. Let
oo
6t,£ = U + Z Fsgtfs,ﬁa
s=0
where

gt—&e =4 (Ct—s’ "'Ct—s—ﬁ’ g;—s—é—h C:&—s—é—Q"‘) )

with {(}, —0o0 < t < oo} an i.i.d. sequence with (} z ¢, whenever s < ¢, and

Et-st = (C;—s’ C:ﬁ—s—lv ) )
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otherwise. Then, by similar arguments as above
1B = Bl
< anu e Zatl + 3 IO i — Znd,

s=(+1

< colgo —Zoul, + e I < ez max {7, 1)}

which concludes the proof. U

Lemma F.7. We assume that Assumption E.3 is satisfied, with part (ii) holding for some
7> (3/V2)v. Then it holds that

-

< o |A|",
14

forallv > 1.

Proof. By routine calculations
vech (InH; — C) = A’ vech (InHy — C) + Z Aluy_g;

hence we define

t—1
S; =InH, = C [I — A'] + math [A" vech (InHy — C)] + math [Z Asut_S] :

s=0

It now holds that

[t -7

— 1= 1 =
I8~ S:llexp (58 ) exo (5180 =Sl )
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where S; is defined in (F.3). Thus

o

v

1. —
oo 3150

< |St_§t‘3u

3v

e (5150~ 51))

We now have

’St - §t}3u S Co (HA”t + ||A||t |1Il H0|3V +

00
s

E A Ut—s

s=t

) < co||A]l",
3v

by a similar logic to the above. We already know from (F.5) that |exp (% Hgt H) ’3’/ is bounded;

finally, following the same passages as above, it can also be shown that ’exp (% HSt — §t||) ‘31}

is bounded. O

Lemma F.8. We assume that Assumptions E.2-E.J are satisfied, with T > (3/\/5) pe/ (1 +¢€)
in Assumption E.3(ii). Then it holds that

|8, = By, < comax {|T|", [|A[}.

Proof. Note that

and
t—1 00
180 =Bl < ITI Bl + M) + DTN Nleems = Eesll + D ITI El -
s=0 s=t
Hence, we have

18, = Bi|, <o ITI" +exle — &,

Finally

et — &,
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1/2

1/2 = 1/2
= Ht/ n.—H, 0, ) < |77t|p(1+e)

H,” - H, <c A",

pe/(1+¢)

by Lemma F.7. Il

We now show that the stationary solution is a good approximation of y;. The first result

pertains to (E.1)-(E.4).

Lemma F.9. We assume that Assumptions E.1-E.j are satisfied, with T > (3/\/5) pe/ (1+¢)
in Assumption E.3(ii). Then it holds that

1Y = il mingpry < comax {|T]", [|A]} .
{pp'}

Proof. The proof follows immediately upon writing

Yo — Uy = 7 (Bt_Bt)7

and using Lemma F'.8. U

The next lemma extends the result above to model (E.2)-(E.5).

Lemma F.10. We assume that the assumptions of Theorem E.1 and Assumption E.5 are
satisfied. Then it holds that |y, — |5 - with J, defined as the stationary solution of (E.2)-

(E.5) - drifts exponentially fast to zero as t — oc.
Proof. Consider the recursive solution

t—1 t—1 t
Y, = (H B;‘f) Yo+ ( 11 B;) E. 1,
=0 k=0

=0 \j=t—k+1

where B7 is defined in the same way as B; but with /5, instead of ijt. It holds that

Yt - ?t
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t—1 oo t
= (HB;) Yo+ ( 1T Bj> E._\
=0 k=t \j=t—k+1
t—1
2
k=0

(L) (1 e

= I+I11+111.

E;

Finally, by Assumption E.5 (%), we have

t—1
fin)
j=0

Similar arguments as in the proof of Theorem E.2 also yield that [/[; < coexp (—cit).

t—1

< Yol [T B;

P 7=0

at < c¢pexp (—at).

Finally, the same result can be shown for /17 upon using Lemma F.8. U
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G. Proors

Proof of Theorem E.1. The proof is very similar to the proofs in the previous section. Define

the coupling constructions x;, and Bt,e, and

. =
Yo = xtjﬁt,é + Vg
Then we have
U — yt,€|j§

< |$;e (Bt - Bt,é) ‘5+ |Bt (zy — $t,é)‘5 + |ve — Vt,£|ﬁ

= ‘xt,dg ‘Bt - Bt,f‘ﬁ—i_ |Bt‘§’xt - xt,@’ﬁ_'_ vy — I/t,ﬁ‘ﬁa

whence the final result obtains. O

Proof of Theorem E.2. The proof is similar to those of Lemmas B.6 and B.7 in Horvath and
Trapani (2023), with the (important) difference that the random coefficients 3, are serially

dependent. Consider the following Markovian form of (E.5)
(Gl) Yt - Bth,I —|— Et,

where Yy = (yi, .., Yi—p11), Be = (v4,0,...,0) and By is defined in (E.7). Let

(G.2) Y, = i ( ﬁ Bj) | P

j=t—k+1

and consider

1
inf & ( In
neN n -+ 1

0
e

j=-n

j=-n

0
, 1
) < inf B (n—i—l > lnHBjH) = Eln||Bof <0,
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by stationarity and Assumption E.5(4). Then, by Brandt (1986), Y, converges a.s. and it

is the unique strictly stationary solution of (G.1). Consider now
12 t 00 t N
Yuzimiﬂ &)&%+§j<IIBJM%
k=0 \j=t—k+1 k=(+1 \j=t—k+1

where E] , is a coupling of E;_j, and ]§j is defined so as to the equal to B; whenever j </

and to its coupling B’ for j > £+ 1. Seeing as

o0 t
v -l <> 11 B

k=0+1 j=t—k+1

Y

By — Ef |

it follows that

Y=Yl
e’} t [e%¢) t
< E H ‘Bj = ¢y E exp E In ‘Bj .
Bk Bk
k=41 j=t—k+1 P k=t+1 j=t—k+1 P

Using Assumption E.5(7), let v = Ink < 0, and rewrite the above as
Y- Yo,
00 t "
Co Z exp ( Z (ln ‘Bj N j:v/Z))
k=041 j=t—k+1 Pk

< aen(/) Y exp( > (1[5,

k=0+1 j=t—k+1

IN

T 7/2)> < cpexp (—esl) .

Proof of Corollary E.1. Recall 7, defined in (E.6). It holds that

T P T P p

>y

t=1

T

Z (v — Y)

t=1

< ¢ +

p
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Theorem E.1 entails that 7, is an £z-decomposable Bernoulli shift, where recall that p > 2;

p -
hence, by Proposition 4.1 in Berkes et al. (2011), it follows that ‘ZtT:l 7, < cpTP2, for
P

some c¢; < 0o depending only on p. Note also that, using Minkowski’s inequality

Z (vt

t=1

T T
S Z |yt - yt P S Co |yt - yt|min{p’,p} S Cozma’X{HA”t ) ||]‘_‘||t} S (1,
1 t=1

t=1

where we have used Lemma F.9 (or Lemma F.10) in the last passage. The desired result

now follows immediately. U

Proof of Corollary E.2. We only show (E.10); (E.11) can be shown using exactly the same

logic, mutatis mutandis. Let 0 < ( < 1/2 be a yet unspecified number. It holds that

k
1
B2 e | 2~ Wea ()

k

D (w

t=1

1 1
< ~ ST - W (k) -
- 1%?%/2 k< tz Ye 71 (k) 1<k<T/2 k¢

where recall that 7, is defined in (E.6). Using the results in Aue et al. (2014), it holds that

J
fg]a;% Zlyt — Wra (.7) = Oa‘s. (kg) )
for some ¢ < 1/2. This entails that
k
Zyt - k) == Oa.s. (k<> ;
=1

in turn, this entails that there exist two random variables C' and kg such that, for all £ > kg

k

> 7 — W (k)

t=1

< CkS.

53



Therefore we may write

max
1<k<T/2 kf

1 1
< — 77, — .
< | Jnax o Z% Wra (k)| + max o

th — Wra (k>
t=1

1

< _ T —
< | T W () + Co

It is now not hard to see that

k
P <1<k<k0 1 kS Z_: +Cp < oo) =1,
whence it follows that
1<het 2 kE kc Zyt Wra (k)| =Op(1).

Also, letting [a] denote the largest integer after a, by standard arguments we receive

)

1
§IP’< max —
0<(<[In(T/2)] exp(z)<k<exp(4+1 ) kS

k

Z (v

t=1

1
P —
(m/ @

k
Zyt yt

t=1

[n(T/2)] 1 .

< P 1 NN
Z exp(€)<r£<a§>((p 0+1) k< tzl (yt yt) e)

[n(T/2)] L
- g )| > (41
= Z exp(f)ﬁrilﬁae)ip(ﬁ-i-l) ; (ye — 7,) eexp (¢ (0 + )))

|—h’l(T/2 -| EXp(€+1)
= Z P Z lye — 7| > eexp (C (£ + 1))

t=1
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Mn(T/2)] exp(£+1)

<e ! Z exp (—=C(£+1)) Z Ely. — v,

£=0 t=1
[n(T'/2)] exp(€+1)

et 3 exp(—¢(+1) [ S max{JAlL T} | < e
=0 t=1

for all ¢ > 0, having used Bonferroni inequality in the third line, and Lemma F.9 (or Lemma

F.10) in the last line. These passages entail that

Z (Yt — 7p)

t=1

1
max -——
1<k<T/2 K¢

=0p(1),

for all ¢ > 0. Finally, using Lemma 1 in Characiejus et al. (2025) and Theorem 2.1 in Berkes
et al. (2014), it follows that ¢ = 1/p. The independence between {Wr, (k),1 <k < T/2}
and {Wrs (k),1 <k <T/2} follows directly from the fact that the proofs in Aue et al.

(2014) use the blocking argument. O
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