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Abstract

We consider a stochastic, dynamic job scheduling problem, formulated as a queueing control
problem, in which a single server processes jobs of different types that arrive according to
independent Poisson processes. The problem is defined on a network, with jobs arriving at
designated demand points and waiting in queues to be processed by the server, which travels
around the network dynamically and is able to change its course at any time. In the context
of machine scheduling, this enables us to consider sequence-dependent, interruptible setup and
processing times, with the network structure encoding the amounts of effort needed to switch
between different tasks. We formulate the problem as a Markov decision process in which the
objective is to minimize long-run average holding costs and prove the existence of a stationary
policy under which the system is stable, subject to a condition on the workload of the system.
We then propose a class of index-based heuristic policies, show that these possess intuitively
appealing structural properties and suggest how to modify these heuristics to ensure scalability
to larger problem sizes. Results from extensive numerical experiments are presented in order

to show that our heuristic policies perform well against suitable benchmarks.
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1 Introduction

Job scheduling and server scheduling problems have been very widely studied in operations
research. Stochastic, dynamic versions of such problems typically draw upon both scheduling
and queueing theory (Leung| (2004)), Pinedo (2016)), Blazewicz et al.[(2019))). A classical problem
formulation involves a system of N parallel queues, each with its own arrival process, and a

single server with the ability to switch dynamically between queues. Jobs at queue i arrive at a
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rate of A\; and can be processed at a rate of u;, i = 1, ..., N. A holding cost ¢; is incurred for each
unit of time that a type ¢ job spends in the system. The server is able to observe queue lengths
continuously and can provide service to one queue at a time. This type of formulation induces a
well-known cpu-rule, whereby the queues are ranked in descending order of the product ¢;u;, and
the server always selects a job from the queue with the largest c;u; value among the non-empty
queues. The optimality of the cu-rule in various queueing settings has been well-documented
(Smith et al.| (1956]), Baras et al.| (1985), Buyukkoc et al.| (1985), [Van Mieghem| (1995)).

In recent decades, researchers have sought to extend the applicability of the cu-rule to
address more complex scheduling problems. Mandelbaum and Stolyar| (2004) introduced a
generalized version of the rule for systems with convex delay cost structures, reflecting more
realistic scenarios where penalties for delays increase at an accelerating rate. |Atar et al.| (2010)
modified the classical cu-rule to incorporate abandonment effects, resulting in the cu/#-rule.
This rule considers both service rates and abandonment rates, prioritizing queues based on
the ratio of the cost-weighted service rate to the abandonment rate. [Saghafian and Veatch
(2015)) proposed a cu-rule for a parallel flexible server system with a two-tier structure. In
this model, the first tier consists of job classes that are assigned to specific servers, while the
second tier includes a class of jobs that can be served by any available server. In more recent
years, applications of the cu-rule have continued to attract a lot of attention. |Lee and Vojnovic
(2021) established a learning-based variant of the rule, where the algorithm learns the job
parameters over time and adapts its scheduling decisions to minimize cumulative holding costs,
even when the statistical parameters of the jobs are initially unknown. [Cohen and Sahal (2022)
also considered uncertain model parameters, and showed that the cu-rule attains a type of
asymptotic optimality. |Ozkan| (2022)) investigated the performance of the cpu-rule in systems
with non-parallel configurations, such as tandem queues.

Job scheduling and server scheduling problems have broad applications in several real-world
domains including cloud computing, communications networks and manufacturing (Shaw and
Singh! (2014), Zhang et al. (2019)), Xu et al.| (2021))). In this paper we consider a stochastic,
dynamic job scheduling problem formulated on a network of nodes and edges, in which certain
nodes are designated as ‘demand points’ and act as entry points for jobs of specific types. There
is a single server, which may represent a machine (for example) that needs to process jobs one
at a time. In this context, the time needed for the server to move from one demand point to
another represents the setup time required for the machine to switch from processing one type
of job to another. The design of the network may be seen as a way to encode the amounts of
effort needed for the server (or machine) to switch between jobs of different types.

As an example of our network-based approach, consider the situation shown in Figure
The white-colored nodes are demand points, at which new jobs arrive according to independent
Poisson processes, and the gray-colored nodes are ‘intermediate stages’, which must be traversed
in order to move from either of the left-hand demand points to the right-hand demand point or
vice versa. A single server occupies one node in the network at any given time, and can either
remain at its current node or attempt to move to an adjacent node. In order to process jobs
of type ¢ (for i € {1,2,3}), it must be located at node i. The times required to process jobs

and switch between adjacent nodes are random, and jobs waiting to be processed incur linear
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holding costs. We provide a detailed problem formulation in Section [2}

Key:
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Figure 1: A network with 3 demand points, 3 intermediate stages and a single server. White-
colored nodes represent demand points at which new jobs arrive, and gray-colored nodes repre-
sent intermediate stages.

An important feature of our network formulation is the fact that the server is always free to
choose a new action (i.e. a new direction to move), regardless of actions chosen at previous time
points. This implies that it can interrupt the processing of a particular job, or the transition
between different job types, in order to follow a different course. For example, suppose the server
is located at node 1 in Figure [I} but wishes to move to node 3 so that it can process jobs of type
3. To accomplish this, it must pass through the intermediate nodes 4, 5 and 6. We assume that
the amount of time needed to switch between any two adjacent nodes is randomly distributed
(further details are provided in Section . However, suppose that after arriving at node 5, it
decides to change course and move towards node 2 instead. (This may happen, for example,
if new jobs have recently arrived at node 2.) In the job scheduling context, we would say that
the setup time needed to prepare to process jobs of type 3 is interrupted so that the server can
prepare to process jobs of type 2 instead. Moreover, our network formulation not only allows
setup times to be interrupted, but also allows them to depend on any partial progress made on
interrupted setup attempts. For example, in Figure [1} job types 1 and 2 may be regarded as
having similar setup requirements, as they are located close to each other in the network. If the
server begins at node 3 and initially moves towards node 1, but then decides to move to node
2 instead, then any progress made in setting up jobs of type 1 (i.e. moving towards node 1) is
helpful in reducing the amount of time needed for setting up jobs of type 2. On the other hand,
if the server begins at node 1 and initially moves towards node 3, but then decides to move to
node 2 instead, then any progress made in setting up jobs of type 3 actually delays the setting
up of type 2 jobs. Accurate modeling of complex setup time requirements (including the effects
of interrupted setups) is important in settings where new jobs arrive frequently and randomly,
requiring the server to allocate its time efficiently.

While our network formulation is intuitively quite simple, it allows consideration of features
that are not particularly common in job scheduling problem formulations, such as sequence-
dependent, interruptible setup times that are affected by partial setup progress. These kinds of
generalizations can be particularly relevant in production and manufacturing applications, where
the reallocation of a server from one task to another can involve complicated reconfigurations or
the assembly of specialized tools and equipment (Allahverdi et al.| (1999)), Gholami et al.| (2009)).
We also note that although job scheduling applications are a primary motivation for our study,

our formulation is sufficiently general to allow potential applications to other common operations
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research problems. For example, one could consider a dynamic vehicle routing problem in which
a vehicle provides service to customers in geographically distinct locations (Ulmer et al.| (2020))),
or a security problem in which a defensive agent responds to threats that appear in a computer
network (Hunt and Zhuang (2024)).

The stochastic, dynamic nature of our problem implies that a Markov decision process
(MDP) formulation is appropriate, although (as in many other problems formulated as MDPs)
it is not possible to compute optimal solutions unless the scale of the problem is very small;
thus, we must consider heuristic approaches. Several previous studies have also used MDP
formulations in job scheduling contexts, although their assumptions are usually quite different
from ours. [Zhang et al. (2017) considered a problem in which jobs with different processing
requirements arrive randomly and wait in queues to be processed by machines, and at each
decision epoch a job must be chosen to be processed next. The machines are relatively ‘static’
in this setting, rather than being assigned dynamically to different tasks. |Luo (2020) (see also
Lei et al.[(2023), Zhao et al.| (2023)) formulated a dynamic flexible job shop scheduling problem
with new job insertions and used a Q-learning approach, but their objective is quite different
from ours as it is based on minimizing the total tardiness of a given set of jobs with fixed
processing times. Elsayed et al.|(2022) also considered the processing of a given set of jobs on
multiple machines and used a novel graph-based MDP formulation, but their study does not
consider the stochastic factors present in our model. Fan| (2012) considered a single machine
scheduling problem (SMSP) with transportation costs and used an MDP algorithm to minimize
the overall cost of processing jobs in a sequence and transporting the finished products to a
single customer; however, their problem (unlike ours) is based on a finite set of jobs. [Yang et al.
(2022)) formulated an SMSP in which the machine’s state is subject to uncertainty, resulting in
job time parameters being expressed in probabilistic terms. Their problem is also of a finite-
time nature, with an objective based on minimizing the makespan. In summary, our paper
addresses an important research gap by making a connection between job scheduling problems
with random arrivals and infinite-horizon queueing control problems.

A particularly relevant paper to ours is Duenyas and Van Oyen| (1996), which considers the
problem of dynamically allocating a single server to process jobs of different types that arrive
according to independent Poisson processes and wait in parallel queues. As in our problem, the
authors consider random processing times and switching times (between different queues), and
the time horizon of interest is infinite. However, they do not allow processing times or switching
times to be interrupted. Furthermore, they do not use a network formulation, and the time
required to switch from one queue to another depends only on the destination queue; thus, there
are no sequence-dependent setup times. Despite these differences, their approach of developing
index heuristics is similar to the approach that we pursue in this study, and their algorithms
use certain steps and conditions that we aim to adapt and generalize for use in our problem
(full details can be found in Section [3)). We also note that the study of [Duenyas and Van Oyen
(1996) makes use of certain results from the classical literature on ‘polling systems’, in which a
single server visits a set of queues according to a predefined sequence (Boxma and Groenendijk
(1987)), Browne and Yechiali (1989)), |Altman et al.| (1992), Yechiali (1993)). In Section [2| we

also draw upon this body of research to show that our system possesses an important stability
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property.

As an alternative to index heuristics, one can also consider reinforcement learning (RL)
approaches, and several recent studies have applied RL to machine scheduling problems (Li
et al.| (2020), [Wang et al| (2021), Kayhan and Yildiz (2023)), |Li et al| (2024)). Although RL
methods are undoubtedly powerful, they also have some drawbacks in comparison to alternative
approaches (Dulac-Arnold et al| (2019)). Solutions given by RL algorithms tend to be less
interpretable than those given by simpler heuristics, and therefore less appealing to system
operators. Additionally, there is the issue of online replanning, as discussed in Bertsekas| (2019).
If the parameters of the problem (e.g. job arrival rates or setup time distributions) change
suddenly and unexpectedly, RL methods may struggle to adapt ‘on-the-fly’ as they require
expensive offline training in order to be able to discover strong-performing policies, whereas
index heuristics can quickly adapt to the new parameters of the problem. Thus, whilst we
acknowledge the potential of RL methods, these are not within the scope of our current study.

The main contributions of this paper are as follows:

e We provide a novel formulation of a stochastic, dynamic job scheduling problem in which
the setup time distributions for different types of jobs are encoded by a network structure,

allowing them to be both sequence-dependent and interruptible.

e We prove that there always exists a decision-making policy under which the system is

stable, subject to a condition on the total workload of the system.

e We propose a class of index-heuristics, referred to as K-stop heuristics, which are suitable
for our network-based problem as they make decisions by taking the topological structure

of the network into account.

e We prove that our heuristics possess a pathwise consistency property which ensures that
the server always proceeds to a demand point in finite time. Moreover, we show that these

heuristics attain both system stability and optimality under certain conditions.

e We propose a further class of heuristics, known as (K from L)-stop heuristics, that scale

much more readily to large network sizes than the K-stop heuristics.

e We present extensive results from numerical experiments in order to compare the relative
performances of our heuristics, comparing them (where possible) to optimal values given
by dynamic programming and also to the performance of the unmodified heuristic policy
in [Duenyas and Van Oyen (1996).

The rest of the paper is organized as follows. In Section [2] we formulate our stochastic,
dynamic job scheduling problem as an MDP and prove an important stability property. In
Section [3] we derive index heuristics and prove some useful properties of these heuristics, such
as pathwise consistency. In Section [ we present the results of our numerical study. Finally,

our concluding remarks can be found in Section
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2 Problem Formulation

The problem is defined on a connected graph, referred to as a network. Let V and E
denote the sets of nodes and edges respectively, and let D C V' be a subset of nodes referred to
as demand points (the white nodes in Figure[l]). Let N := V\ D denote the other nodes (the gray
nodes in Figure [I]), referred to as intermediate stages. We use d = |D| and n = |N| to denote
the numbers of demand points and intermediate stages, respectively. We will also assume
that the demand points are numbered 1,2,...,d and the intermediate stages are numbered
d+1,d+2,....,d+n. Jobs arrive at demand point ¢ € D according to a Poisson process with
intensity rate A; > 0, referred to as an arrival rate, and wait in a first-come-first-served queue
until they are processed. Arrivals at different demand points are assumed to occur independently
of each other. Additionally, a linear holding cost ¢; > 0 per unit time is incurred for each job
waiting to be processed at node i € D.

Jobs are processed by a single server (or machine, resource etc.) which can move around
the network and, at any given time, is located at a single node in V. At any point in time, the
server can either remain at its current node or make an attempt to move to an adjacent node.
In the latter case, the server must also decide which node to move to. Thus, if the server’s
current node is adjacent to k other nodes then there are k 4 1 possible decisions for the server.
If the server decides to remain at a node i € D (i.e. at a demand point) and this node has a
number of jobs x; > 0 waiting to be processed, then the jobs are processed at an instantaneous
rate p; > 0, where p; is the processing rate for demand point ¢. If the server remains at a
demand point i with no jobs present (i.e. x; = 0), then the server is said to be idle. Likewise,
idleness can also occur when the server chooses to remain at some intermediate stage 7 € N.
On the other hand, if the server chooses to move (or ‘switch’) to an adjacent node, then the
switch occurs at an instantaneous rate 7 > 0, referred to as a switching rate. Switching and
processing times are assumed to be independent of the arrival processes for demand points in
D.

The assumption of instantaneous processing and switching rates implies that processing
and switching times are exponentially distributed, but they are also interruptible because the
server can change its decision at any point in time. For example, it can choose to remain
at a non-empty demand point but then choose to switch before any further jobs have been
processed. Alternatively, it could choose to switch from one node ¢ to another node j, but then
change direction and attempt to switch to a different node k before the switch to j is complete.
We note that, although the switching time between two adjacent nodes has the memoryless
property in our model, the time to switch from one demand point to another (which, in general,
requires passing through a sequence of intermediate stages) is instead distributed as a sum of
i.i.d. exponential switching times, implying that it has an Erlang distribution. Throughout this
paper we assume exponential processing times and switching times (between adjacent nodes),
with the latter assumption implying Erlang-distributed setup times (between demand points).
However, later in this section we also comment on how the formulation could be extended to
the more general case of phase-type processing and switching times.

Under the above assumptions, the system can be formulated as a continuous-time Markov
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decision process (MDP). The state space can be written as
S = {('l), (xlv ...,$d)) ’ Ve ‘/7 €T; Z 0 for 4 € D},

where v is the node currently occupied by the server and z; is the number of jobs waiting to
be processed (including any job currently being processed) at demand point ¢ € D. We will
use vectors such as x and y to represent generic states in S and use v(x) to denote the server’s
location under state x € S. In order to simplify notation we will sometimes write v instead of
v(x) if the state associated with v is clear. Considering that the server cannot be processing
jobs whilst also switching and also cannot serve more than one demand point at a time, the
total of the transition rates under any state is at most » ;. A; +max{p1, ..., iq, 7} and we can
therefore use the technique of uniformization (Serfozo| (1979))) to transform the system into a

discrete-time counterpart that evolves in time steps of size

A= (Z i —i—max{ul,...,ud,r}) . (1)

€D

Let R(x) be the set of nodes adjacent to node v(x) (not including v(x) itself) and Ax =
{v(x)} U R(x) be the action set available under state x € S at a particular time step. We
can interpret action a € Ax as the node that the server tries to move to next, with a = v(x)
indicating that the server remains where it is. Then, for any pair of states x,y € S with x # y,
the transition probability of moving from x := (v(x),(z1,...,24)) to y = (v(¥), (Y1,---,¥d))

following the choice of action a € Ax can be expressed as

(

MNA,  ify; =x;+1 and y; = z; for j # 1,

wi,  ify;=ax;,—1, y; =z, for j #i and a = v(x) =1,
px,y(a) = (2)
TA, ify; =x;forall j € D, v(y) € R(x) and a = v(y),

0, otherwise,

with px x(a) =1— Zy;éX Px,y(a) being the probability of remaining at the same state. Since the
units of time are arbitrary, we will assume A = 1 without loss of generality. This implies that
parameters such as \;, u; and 7 can be interpreted as probabilities in our uniformized MDP,
rather than transition rates.

At each time step, the single-step cost f(x) is calculated by summing the holding costs of

jobs that are still waiting to be processed or currently being processed, so that

Fx) = cimi. (3)

€D
Let 0 denote a decision-making policy for the MDP. In a general sense, 6 can take actions
that depend on the history of the process thus far and might also be randomized (see Puterman
(1994)). The policy is said to be stationary and deterministic if action (x) € Ax is always

chosen under state x € S. The expected long-run average cost per unit time (or average cost
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for short) under policy 6, given that the initial state of the system is x € S, can be expressed

as

T-1
go(x) = liminf T E,

T—00

J(x(1)) | x(0) = x] (4)

t=
where x(t) denotes the state of the system at time step ¢t € Ny. The theory of uniformization
implies that under a stationary policy €, the discretized system has the same average cost gg(x)
as that incurred by its continuous-time counterpart, in which we allow actions to be chosen
every time the system transitions from one state to another. In the continuous-time system,
after choosing an action a € Ax in state x € S, the amount of time until the next transition is
exponentially distributed with mean 1/¢(x,a), where ¢(x, a) is the sum of the transition rates
(for example, if the server is processing a job at demand point i then g(x,a) =3 ;cp Aj + fi)-
On the other hand, in the uniformized system (with A = 1), there is a fixed time step of unit
length until the next transition, and we also allow ‘self-transitions’ into the same state. It can be
seen from that the probability of a self-transition is 1 — ¢(x, a) and hence the total number
of time steps until the next change of state (assuming that the decision-maker continues to
choose action a) is geometrically distributed with mean 1/¢(x,a). Thus, the expected amount
of time (and also the cost incurred) until the next change of state is the same in both systems.
This provides an intuitive justification for the uniformization method, and we defer to |[Lippman
(1975) and |Serfozo, (1979) for full technical details.

The objective of the problem is to minimize the long-run average cost gp(x); that is, to find
a policy #* such that

go+(x) < go(x) VOe€O, x€S,

where O is the set of all admissible policies.

Remark 2.1. The MDP model that we describe in this section can be extended without great
difficulty to the case of phase-type processing and switching times. In order to consider phase-

type processing times, suppose the processing time of a job at node i is distributed as a sum of

(r)

%

r=1,....k;. The state variable x; should then be the number of service phases remaining to be

k; > 2 exponentially-distributed service phases, with ;' being the service rate for the r'* phase,
processed, rather than the number of jobs. Thus, if a new job of type i arrives at a particular time
step (with probability \;), this causes x; to increase by k;. One can define y; = [x;/k;] as the
number of jobs remaining (including any that are partially complete). Since jobs are processed
in first-come-first-served order, if x; = 2k; + 1 (for example) and the server remains at node
(ki)

i at a particular time step then a service phase completion occurs with probability p; ", since
there is a partially complete job with only one phase remaining. The cost function should still
be based on job counts rather than phase counts, so the single-step cost function is ) ;. ciy;.
The uniformization parameter in can be adjusted in an obvious way. To incorporate phase-
type setup times (between demand points), one can allow the switching rates between adjacent
nodes to be edge-dependent and also (if desired) direction-dependent, so that the setup times are
distributed as sums of independent exponential random variables with non-identical rates. This
is a powerful generalization because phase-type distributions can approximate any continuous

distribution to an arbitrary degree of accuracy (Asmussen| (20035)).
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Given that our MDP has an infinite state space, the average cost gp(x) can only be finite if
the system is stable under 6, in the sense that 6 induces an ergodic Markov chain on S. Let p

denote the traffic intensity of the system, defined as

p= Z Aif i
€D
Our first result establishes that the condition p < 1 is sufficient to ensure the existence of a

deterministic stationary policy under which the system is stable.

Theorem 2.2. (Stability.) Suppose p < 1. Then there exists a deterministic stationary policy
0 such that gg(x) =: g9 < oo for allx € S.

Details of the proof can be found in Appendix A. It relies upon results from the literature
on polling systems, but these results cannot be applied directly to our system because it is not
possible to construct a stationary policy 6 that visits the demand points ¢ € D in a fixed cyclic
pattern and serves each point exhaustively on each visit. To illustrate this point, consider a
network with only two demand points (D = {1,2}) separated by a single intermediate stage
(N = {3}) as shown in Figure Suppose we wish to implement a simple ‘polling system’
type of policy under which the server moves between the two demand points in an alternating
pattern (1,2,1,2,...) and, each time it arrives at point ¢ € D, stays there until all jobs have
been processed (z; = 0) before moving directly to the other point. Unfortunately, in order to
know which action to choose under the state (3,(0,0)) (or any other state x with v(x) = 3),
the server must know which demand point was the last to be visited. Since this information is
not included in the system state, the server is forced to follow a nonstationary policy in order

to achieve the required alternating pattern.

1 3 2

Oava®

Figure 2: A network with 2 demand points and 1 intermediate stage.

Our proof circumvents this difficulty by considering a new MDP with a modified state space,
in which the system state includes an extra variable indicating the most recent demand point ¢ to
have had no jobs present while the server was located there. This enables ‘polling system’ type
policies, like the one described above, to be represented as stationary policies. The condition
p < 1 is known to ensure that, under an exhaustive ‘polling’-type policy, the system is stable
(Altman et al. (1992))). We can then use the ‘approximating sequence’ approach developed
by Sennott (Sennott| (1997, (1999)) to compute an optimal policy for the modified MDP using
value iteration. Finally, we use an inductive argument to show that the decisions taken under
the optimal policy for the modified MDP are independent of the extra information that we
included in the state space, and therefore the optimal policy #* for the modified MDP (under
which the system is stable) also qualifies as an deterministic stationary (and optimal) policy for
the original MDP.

It is interesting to note that, by Theorem the condition p < 1 is always sufficient to
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ensure that the system is stable under an exhaustive polling regime, regardless of how long it
takes for the server to switch between different demand points. In our model, switching times
generally become longer if the switching rate 7 is reduced or extra intermediate stages are
inserted in the network. Intuitively, if switching times become longer, then the number of jobs
present when the server arrives at any particular demand point tends to increase. However,
under the exhaustive regime, the server is committed to processing all jobs at a demand point
before moving to the next one. Suppose the expected switching times between demand points
are large but finite. If the system is unstable, then there must be at least one demand point at
which the number of jobs present tends to infinity over time, but this implies that the overall
proportion of time that the server spends processing jobs (as opposed to switching between
nodes) tends towards 1. This is not possible if > . A;/p; < 1, since the proportion of time spent
processing jobs at any node ¢ € D cannot be greater than \;/u;. Thus, regardless of how large
the expected switching times are, the system is indeed stable under exhaustive polling when
p <1l

In theory, the ‘approximating sequences’ approach discussed in the proof of Theorem can
be combined with value iteration in order to compute an optimal policy for our MDP, assuming
that p < 1. In practice, however, the well-known ‘curse of dimensionality’ prevents us from be-
ing able to compute optimal policies in systems with more than (roughly) three or four demand
points. Therefore we need to develop heuristic methods to obtain easily implementable policies
that can achieve strong performances across a range of different possible system configurations.

Our proposed heuristic methods are introduced in Section

3 Index heuristics

As mentioned in Section (1, Duenyas and Van Oyen (1996) considered a job scheduling
problem that has some similarities to ours, although their problem is not defined on a network
and does not allow switching or processing times to be interrupted. The approach used in
Duenyas and Van Oyen| (1996]) (see also Bell (1971)), [Harrison| (1975))) is based on a well-known
equivalence between the minimization of congestion-based costs and the maximization of a
reward criterion under which the server obtains rewards at a constant rate while it is processing
jobs at a particular demand point. We will show that a similar equivalence holds in our problem,
despite the inclusion of novel features such as interruptible setup and processing times. In order
to motivate the approach, it is necessary to begin by discussing how the problem formulated in
Section [2| would be modified if the objective was to minimize expected total discounted cost,
rather than long-run average cost. Let a be a discount factor satisfying 0 < o < 1 (values
close to 1 are typically assumed). We will consider a deterministic, stationary policy 6 and use
0(x) to denote the action a € Ax selected by 6 under state x € S. Then the expected total
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discounted cost under an admissible policy 6 can be expressed as

Vix) =Eg |3 alf(x(1)) ] x(0) = x]
Lt=0

= Eg Z at Z C; [mZ(O) -+ Al(t) — Bz(t)] ‘ X(O) = X] s (5)
t=0

Lt= €D

where z;(0) is the initial number of jobs at demand point i € D, A;(¢) is the total number of
new jobs of type i that arrive by time step ¢ and B;(t) is the total number of jobs of type i
that are completely processed by time step ¢. Since z;(0) and A;(t) (for all ¢ € D, t > 0) are
independent of the server’s actions, it is clear from that minimizing V' (x) is equivalent to
maximizing a weighted sum of expected departure counts, B;(t). Furthermore, if the server is
processing a job of type i at time step ¢, then with probability p; the number of jobs at i is
reduced by one and this implies an expected cost saving of p; Y oo, a¥c; = e /(1 — a)
compared to a passive policy which allows this job to remain in the system forever. It follows

that minimizing V' (x) is equivalent to maximizing

W(x) := Ey Zatw(x(t),ﬁ(x(t))) ‘ x(0) = x] , (6)
t=0

where the single-step reward function w(x, a) is defined for x = (v, (21, ...,24)) € S, a € Ax by

%, if v =1 for some i € D, z; > 1 and a = v,
_)1l—-«a
w(x,a) = v
0, otherwise.

It is also important to note that this equivalence holds under quite general conditions. The
fact that setup and processing times are interruptible in our formulation does not cause any
complications, as the function B;(t) in is a step function that increases only when jobs are
finally completed and exit from the system.

It is clear from @ that the single-step reward associated with processing a job of type ¢ tends
to infinity as a — 1, because the extra cost associated with holding a job in the system forever
becomes infinite. Therefore, following Duenyas and Van Oyen (1996), we derive a bounded
‘reward rate’ by dividing the expected total discounted cost saving from choosing action a under
state x (namely, w(x,a)) by the discounted length of the time horizon, > ;0 af = (1 —a)7L,

to obtain the following reward function for undiscounted problems:

) ¢y, ifv=1iforsomeie D, x; >1and a=wv,
r(x,a) = lim (1 — a)w(x,a) =
a—1 0

(8)

otherwise.

Remark 3.1. If an extension to phase-type processing times is to be considered (as discussed
n Remark: one can derive an expression for the reward rate r(x,a) similar to the one in

@, except that the condition x; > 1 should be replaced by x; = 1 (mod k;), since a service
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completion is possible only if the job at the front of the queue has one phase remaining.

The reward rates r(x,a) are useful in the development of index heuristics because they
depend only on the server’s current location and choice of action. On the other hand, the
cost function , despite its simple appearance, has a disadvantage in that the aggregate cost
incurred by the system at any given time step must be calculated according to the number of
jobs present at every demand point in the system. Thus, it is more convenient to use reward
rates when seeking to develop index heuristics, which operate by associating easily computable
scores (or indices) with the decision options under any given state. Throughout this section,
the index heuristics that we develop are based on the reward rates defined in . However, in
our numerical experiments in Section |4, we evaluate and compare the performances of different

policies according to the original cost formulation presented in Section

3.1 The DVO heuristic

We refer to the heuristic policy proposed in Duenyas and Van Oyen| (1996) as the ‘DVO
heuristic’ for short. The DVO heuristic does not allow processing or switching times to be
interrupted, and therefore decision epochs occur only if (1) the server finishes processing a job,
(2) the server arrives at a demand point, or (3) the server is idle and a new job arrives in the
system. As such, we cannot represent the DVO heuristic as a stationary policy in our system,
since the action chosen at a particular time step constrains the actions chosen at future time
steps. For example, if the server begins switching from one demand point to another, then it
must continue to do so until it arrives at the new demand point. Similarly, if the server remains
at a non-empty demand point then it must continue to do so until a job is processed. However,
despite its lack of compatibility with our MDP formulation, we can still consider the DVO
heuristic as a nonstationary policy in our system and estimate its performance using simulation
experiments. We use this approach to provide a useful benchmark for our heuristic policies in
Section Ml

The complete steps of the DVO heuristic are described in [Duenyas and Van Oyen| (1996)).
For the reader’s convenience, we provide a summary of how the heuristic makes decisions at the

three different types of decision epoch (1)-(3) mentioned above in Appendix B.

3.2 K-stop heuristics

Although the DVO heuristic can be applied to our problem and its performance in a par-
ticular system can be simulated, it is unlikely to achieve near-optimal performances in general.
There are two main reasons for this: (i) it over-constrains the action sets by not allowing switch-
ing or processing times to be interrupted; (ii) it chooses the next demand point to switch to
without considering the proximity of that demand point to other demand points in the network.
The latter of these two properties implies that the heuristic works in a short-sighted (myopic)
way, and fails to recognize the potential benefits of moving to demand points that are located
near other demand points. This is not a weakness in the problem studied by Duenyas and
Van Oyen| (1996), since in their model, the switching (or setup) time to move from node i to

node j only depends on the destination node j, so the currently-occupied node does not have



Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 13

any effect on future switching times. In our network-based formulation, however, it clearly
makes sense to consider heuristic policies that can take the network topology into account when
making decisions.

In this subsection we introduce a class of heuristic policies designed to exploit the novel
features of our problem. We refer to these policies as K-stop heuristics, since the decision
at any particular time step is made by assuming that the server will visit a sequence of up
to K demand points (where K is a pre-determined integer) and serve these demand points
until exhaustion. The name ‘K-stop’ derives from the fact that the server is assumed to visit a
sequence of demand points in the same way that a public transport service visits different ‘stops’
along its route; however, it is important to emphasize that the optimal sequence to be followed
by the server is calculated only for the purposes of making a single decision at a particular
time step, and the server is not actually committed to following this route in future time steps.
Thus, given that each time step is also a decision epoch in our problem formulation, routes are
continuously re-optimized and therefore switching and processing times can be interrupted.

Let K > 1 be a pre-determined integer. At any given time step we consider all non-empty
sequences of demand points with length not exceeding K; that is, we consider sequences of
the form s = (s1,$2,...,5m), where 1 < m < K and s; € D for each j = 1,2,...,m. We also
require that all elements of the sequence are distinct (that is, s; # s for j, k € {1,...,m} with
j # k), and furthermore the first element s; must be different from the server’s current location
v. For each sequence s we calculate a ‘reward rate’, also referred to as an indexr, and this
index is calculated by assuming that the server visits demand points in the order s, ..., s, and
serves each demand point exhaustively before moving to the next one. Some further conditions
related to stability and idling (described below) are also used to decide which sequences should
be considered ‘eligible’. After identifying the eligible sequence with the highest index, we choose
an action at the current time step by assuming that this sequence should be followed.

Before providing full details of the K-stop heuristic, it will be useful to introduce some extra
notation. Given a state x = (v, (21, ...,24)) and a sequence s, we define sy = v for notational
convenience; that is, sg is the server’s current node (which may not be a demand point). We
also use 6(, j) to denote the length of the shortest path (in terms of the number of nodes that
must be traversed) from node i € V to j € V, with §;; := 0 for i € V. For a given state x,

sequence s and each j = 1,..., |s|, we define two quantities Tj(x, s,t) and R;(x,s,t) as follows:

Ts; + Ag; [+ Ei;ll (0(Sk—1,8K)/7T + Tk(x,5,t)) + (sj—1,55)/T
MSJ' - )\Sj ’
Rj(x,5,t) = cs; s, Tj(%, 5, ), t>0. (10)

Tj(x,s,t) =

In words, Tj(x, s, t) is an approximation for the expected amount of time required for the server
to process all jobs at node s; after arriving there, assuming that it remains idle for ¢ time units
at the current node v before beginning to follow the sequence s. This approximation is obtained
by assuming a fluid-type model of the system dynamics in which jobs arrive at node i € D at a
continuous rate \; and are processed at a continuous rate p;, and the server requires 1/7 time

units to move between any adjacent pair of nodes in the network. On the other hand, R;(x, s, )
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is the total reward earned while the server is processing jobs at node s; in this fluid model. To
make sense of equation @, note that the number of jobs present at node s; when the server
arrives there is given by adding the original number of jobs under state x (that is, zs,) to the
number of new jobs that arrive while the server is either idling, traveling to one of the earlier
demand points in the sequence, processing jobs at one of the earlier demand points, or traveling
towards s;. Furthermore, once the server arrives at node s;, the number of jobs at s; decreases
at a net rate of us; — As;. We note that the equations |§| and can also be adapted quite
easily to more general models with edge-dependent switching rates, implying phase-type setup
times, as discussed in Remark In this case, the expression d(sk_1, sg)/7 should be replaced
by the minimum possible expected amount of time to travel from node s;_1 to s, taking into
account the rates of travel on individual edges.

It is important to clarify that t is interpreted as a certain amount of ‘idle time’ before the
server begins to follow the sequence s. During this idle time, the server remains idle at its
current node v and (in the event that v is a demand point) does not process any jobs there.
This is somewhat contrary to our MDP formulation in Section 2] which assumes that if the
server remains at a non-empty demand point then it must be processing jobs there. However,
we make this ‘idle time’ assumption only for the purpose of deriving index quantities for use in

our heuristics. Next, for a given state x and sequence s, we define

‘Ics':l Rk‘(Xv S, t)
t+ Zf‘ﬂ [0(sk—1,56) /T + Ti(x, 5,1)]

‘ Zi:l Ry(x,s,t)
t+ >0 [0(sk—1,s6) /7 + Ti(x, s,t)] + d(sj,v) /T

P(x,s,t) = t>0, (11)

bj(x,s,t) = , t>0,7€{1,..,[|s|}. (12)
We can interpret ¥ (x, s,t) as the average reward per unit time earned while the server follows
sequence s. On the other hand, ¢;(x,s,t) is the average reward earned during a truncated
sequence that visits the demand points sq, s2,...,s; and then returns to the starting node v.
In this case, the average reward calculation includes the time taken to switch back to node v.
The quantities 1 (x, s,t) and ¢;(x, s,t) are used for slightly different purposes in our heuristics.
Recall that we only consider sequences in which the first node s; differs from the server’s current
location sg, and therefore the denominators in and are always non-zero.

Before presenting the algorithmic steps for the K-stop heuristic, we prove a useful property

of the average reward (X, s,t).

Lemma 3.2. For any given state x € S and sequence s, the average reward (X, s,t) is a

monotonic function of t.

Proof. We prove the statement by showing that the derivative %w(x, s,t) has the same sign
(either positive, negative or zero) for all ¢ > 0. The state variables x1,..., 24 can be regarded
as constants. The system parameters (including arrival rates, processing rates, switching rate,
cost rates and the distances between nodes in the network) can also be regarded as constants.
Therefore, using a trivial inductive argument, we can show that the quantities Tj(x,s,t) de-
fined in @D are linear functions of ¢, for j = 1,...,|s|. Hence, the average rewards R;(x, s,t) in
are also linear in ¢. It follows that the quantity ¥(x,s,t) in is a ratio of two linear
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functions, with the general form (a; + b1t)/(ag + bat), where ay, ag, by, ba are positive constants.
Any such function can be represented graphically as a hyperbola, with a derivative of the form

(agby — a1bs)/(as + bot)?. Hence, the sign of the derivative is the same for any ¢ > 0. O

Next, we provide details of the steps used in the K-stop heuristic algorithm. Recall that
K > 1is a pre-determined, fixed integer and we let x = (v, (21, ..., #4)) denote the current state.
At each time step, there are three possible cases: (1) the server is at a non-empty demand point,
(2) the server is at an empty demand point, (3) the server is at an intermediate stage. The

details below explain how actions are chosen in each of these cases.

K-stop heuristic algorithm

1. If the server is at a non-empty demand point (v € D and x, > 0) then we perform the

following steps:

(a) Let S be the set of all sequences of the form s = (s, s2, ..., $p ), where 1 < m < K,
s;j € D for each j € {1,2,...,m}, s1 # v and s; # s; for any pair of elements s;,s; € s
with ¢ # j. Initialize 0 = () as a set of ‘eligible’ sequences from which we will later

select a reward-maximizing sequence.

(b) For each sequence s € S, define fj(x, s,t) for j =1,...,|s| as follows:

I R X, s,t .
?3’;_1 Tk((x t)p—i— cotly(1 = p), if v ¢ {s1,s2,...,55},
Bi(x,s,1) i= ¢ =1 TS (13)

0, otherwise.

If %w(x,s,t)‘tzo <0 and ¢;(x,s,0) > 5;(x,s,0) for all j € {1,...,]s|}, then add s to

the set 0. Otherwise, do not make any change to the set o.

(c) If o = 0, then the action chosen under state x should be to remain at node wv.
Otherwise, let s* denote the sequence in o with the largest value of ¥ (x, s,0), with
ties broken according to some fixed priority ordering of the demand points in D,
applied lexicographically to the sequences in ¢. The action chosen under x should be

to switch to the first node on a shortest path from v to sj.

2. If the server is at either an empty demand point (v € D and z, = 0) or an intermediate

stage (v € N) then we perform the following steps:

(a) Let S be defined in the same way as in step 1(a). Initialize o1 = () as a set of ‘high-

priority’ eligible sequences and o2 = ) as a set of ‘low-priority’ eligible sequences.

(b) For each sequence s € S, add s to o9 if and only if %w(x, s, t)‘t:O <0.
(c) For each sequence s € o3, define y(x, s,t) as follows
s Ry(x,s,t)
v(x,s,t) = k=L p, t>0. (14)

|]j‘:1 Tk (X7 S, t)



Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 16

Let y denote a state identical to x except that the server is located at s; (the first
node in sequence s) instead of v. If ¥(x,s,0) > v(x, s,0) and either (i) |s| = 1 or (ii)
|s| > 2and ¢¥(y,s,0) > ~(y,s,0), then remove s from o9 and add it to o;. Otherwise,

do not make any changes.
(d) If oy is non-empty, set o = o1. Otherwise, set o = os.

(e) Carry out step 1(c).

The steps presented above require some explanation. Consider the first case, where the
server is at a non-empty demand point. In this case, o is a set of ‘eligible’ sequences and
we choose a sequence from this set that yields the highest average reward, 1 (x,s,0), in the
fluid model. To determine whether some sequence s € S is eligible, we need to check two
)‘ o < 0 is satisfied, this indicates that we should begin

following sequence s immediately (i.e. we should take an immediate step towards the first node

conditions. If the condition %@ZJ(X, s, t

in s), as the average reward will not increase if we wait for some ‘idle time’ before following
s. Note that, due to Lemma we know that if %w(x,s,t)}tzo < 0 then %w(x,s,t) <0
for all ¢ > 0, so there is no advantage to be gained by waiting for any amount of idle time.
The second condition, ¢;(x,s,0) > 5;(x,s,0), is automatically satisfied if the server returns
to its current location v at some point in the first j stops of the sequence (since we define
Bj(x,s,t) = 0 in this case). In other cases, the condition is intended to provide a balance
between two important considerations. To elaborate on this, note that if p is close to 1 then

the condition ¢;(x,s,0) > f;(x,s,0) is almost equivalent to

| 7 Tr(x,5,0) -
Yot [0(sk—1,s) /7 + T(x,5,0)] 4+ d(sj,v) /T —

)

which states that if the server serves nodes s1, ..., s; exhaustively and then returns to node v,
then the proportion of time spent processing jobs (as opposed to switching between nodes)
during this time should be at least p. This is an important condition for system stability. On

the other hand, if p is close to zero, then ¢;(x,s,0) > 3;(x,s,0) is almost equivalent to

‘ i:l Ry(x,s,0)
D oke1 [0(sk—1,8K) /7 + Ti(x, 5,0)] + d(s5,v) /T

> Cyly,

which states that the average reward earned while serving nodes s1,...,s; and then returning
to v should be at least as great as the average reward that would be earned by continuing to
process jobs at the current node; that is, ¢, u,. Effectively, this states that the server should only
move away from node v to process jobs at other demand points if there exists a sequence s for
which the average reward is greater than the average reward for remaining at v. The condition
¢j(x,5,0) > B;(x,s,0) is a generalization of a rule used by the DVO heuristic in Duenyas and
Van Oyen| (1996)), which effectively considers sequences of length 1 only.

From a computational standpoint, we note that it is not necessary to derive expressions for
the derivatives %Q/J(X, s,t) in terms of the system parameters. Indeed, these expressions become
very complicated as the sequence length |s| increases. Instead, we can simply compare the values

of ¥(x,s,0) and ¥(x, s, ), where ¢ is some small positive number. This approach is justified by
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Lemma which implies that %w(x, s, t)‘t:O < 0 if and only if ¥(x, s,e) < P(x,s,0).

Next, consider case 2, where the server is at either an empty demand point or an intermediate
stage. In this case, by using two different sets o; and o9, we effectively separate the eligible
sequences into two different subsets, with sequences in o7 being given a higher priority for
selection than those in o3. The DVO heuristic in Duenyas and Van Oyen (1996)) also separates
the decision options into two sets when the server is at an empty demand point, but the
conditions that we use in our sequence-based algorithm are quite different. Firstly, as in case 1,
=g <0
in order to be included in o3. This condition implies that there is no benefit to be gained by

we introduce a derivative-based condition and require sequence s to satisfy %LZ)(X, s, t

waiting for some ‘idle time’ before following s. In order to be included in the higher-priority
set o1, sequences must also satisfy the condition 1(x,s,0) > v(x,s,0) and (for sequences of
length greater than one only) ¥(y,s,0) > ~(y, s,0), where y is a state identical to x except
that the server is located at node s; instead of v. We defer discussion of these conditions to the
proof of Theorem [.3] where it is shown that they are sufficient to ensure that the sequence s
remains included in the set o at all stages while the server travels from v to s1, provided that
no further jobs arrive in the meantime. This is useful in order to ensure that the server follows a
consistent path through the network, rather than changing direction without an obvious reason.
We also note that the condition v¥(x,s,0) > y(x,s,0) is somewhat similar to the condition
¢j(x,5,0) > Bj(x,s,0) used in case 1, but there are some differences. Firstly, the condition
applies to the entire sequence s, rather than the subsequences (s,...,s;) for 1 < j < |s], so
in this sense it is more relaxed than the condition used in case 1. Secondly, the expression
for v(x, s,t) does not include the extra term c,u,(1 — p) that can be seen in the expression for
Bj(x, s,t), implying that we do not wish to ensure that the average reward obtained by following
sequence s is greater than c,p,. Indeed, this is logical since there are no jobs present at node
v, and therefore it is not possible to earn any immediate reward by remaining there.

It is worthwhile to emphasize that even if a sequence s fails to satisfy the conditions for
inclusion in o7, it may still be included in o2, in which case it may be selected in step 2(e) if
o1 is empty. The conditions for inclusion in o; (that is, ¥(x, s,0) > v(x,s,0) and ¥(y, s,0) >
(¥, s,0)) are primarily intended to promote system stability. However, even if sequence s fails
to satisfy these conditions, it may still be better to follow s rather than remaining idle at node
v. This is intuitive, since idling at an empty demand point or at an intermediate stage is not
necessarily helpful for maintaining stability, so following sequence s should not be seen as a
worse option in this regard.

Our next result states that the K-stop heuristic has the property of pathwise consistency,
which implies that the server follows a consistent path through the intermediate stages of the
network as long as the number of jobs in the system remains unchanged. This is an intuitively
appealing property, as it means that the server avoids wasting time (by going back and forth

between intermediate stages, for example) when moving between demand points.

Theorem 3.3. (Pathwise consistency.) Suppose the server is located at an intermediate
stage v € N and the system operates under the K-stop heuristic policy. Then there exists a
demand point j* € D such that the server moves directly along a shortest path to node j* until

either (i) it arrives at node j*, or (ii) a new job arrives in the system.
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Proof of Theorem [3.3] can be found in Appendix C. It is important to clarify that if a new
job arrives in the system while the server is moving towards the demand point j* referred to in
the theorem, then the server may change direction and move towards a different demand point
instead. This does not contradict the theorem; indeed, the theorem does not make any claim
about what happens after the next job arrival. The theorem essentially states that the server
follows a consistent path until the next time a new job arrives, and we are able to use this in
order to prove that the expected amount of time until it arrives at a demand point must be

finite. We state this as a corollary below and provide a proof in Appendix D.

Corollary 3.4. Suppose the conditions of Theorem [3.3 apply. Then the expected amount of
time until the server arrives at a demand point is finite. More specifically, if Tswiten denotes the

amount of time until the server arrives at a demand point, then

M [A+7)\2MD

IE[Tswitch} < — ( ) )
T T

where A := Z?Zl Ai and M = maxycn, jepy 6(4,7) denotes the mazimum distance between an

intermediate stage and a demand point.

The next result concerns a special case of the problem in which job types are homogeneous,
which means that the arrival rates \;, service rates u; and holding costs ¢; are identical for all
i € D. In this scenario, we are able to prove that the system is stable under the policy given
by the K-stop heuristic. Furthermore, if V' is a complete graph (so that all demand points are
directly connected to each other) then the policy given by the K-stop heuristic is optimal. We
emphasize that these statements hold for any number of demand points and any K > 1, and

the stability part of the result also holds for any network layout.

Theorem 3.5. Suppose we have a homogeneous system in which \y = ... = Ag, b1 = ... = Uq
and c1 = ... = ¢q. Then, for any K > 1, the system is stable under the K-stop heuristic policy
when p < 1. Furthermore, if V is a complete graph then the K-stop heuristic policy is optimal.

Proof of the theorem can be found in Appendix E. Subject to the conditions of the theorem,
it can be shown that the server visits all demand points infinitely often under the K-stop policy
and also serves demand points exhaustively on each visit. This ensures that the system is stable.
In the case where V is a complete graph, it can also be shown that the K-stop policy directs
the server to switch to the demand point with the largest number of jobs if it is currently at an
empty demand point, and the same rule is used by an optimal policy. In the latter scenario,
the optimal policy is a type of ‘Serve the Longest Queue’ (SLQ) policy, and we note that SLQ
policies have previously been studied in certain kinds of polling systems. In particular, [Liu
et al.| (1992)) showed that a SLQ policy is optimal for a ‘symmetric’ polling system, similar to
the one described in Theorem |3.5| in which arrival and service rates are the same at all demand
points. However, to the best of our knowledge, no similar result has previously been proved for
a system with interruptible switching and processing times.

It should be noted that if K > 2 then the number of sequences in § increases rapidly with
the number of demand points d, implying that the computational requirements of the K-stop

heuristic become unmanageable in large-scale problems. In the next subsection we propose
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an alternative heuristic under which the number of indices to be calculated at any time step

increases only linearly with d, enabling greater scalability.

3.3 (K from L)-stop heuristic

As explained in Section the K-stop heuristic considers all possible sequences of demand
points (s1, 2, ..., S;m) at each time step, for each 1 < m < K. The only restrictions are that all
demand points in the sequence are distinct and the first demand point must be different from
the server’s current location. This implies that the number of sequences to be considered at
each time step is of order d¥, which grows polynomially with the number of demand points d
(for fixed K) and grows exponentially with K. Hence, in order for the K-stop heuristic to be
computationally feasible, d and K must be relatively small. In our numerical experiments in
Section [| we restrict attention to systems with d < 8 and consider K € {1, 2, 3,4}.

In this subsection we propose a modified version of the K-stop heuristic in which the number
of sequences considered at each time step increases only linearly with d. Note that if K =1
then the K-stop heuristic already has this property, since it considers only sequences of the
form (j), for 7 € D. Our modified heuristic works as follows: suppose the system is in state
x € S at an arbitrary time step. First, we carry out the same steps as if we are using the K-stop
heuristic with K = 1, and calculate the indices 9 (x, (j),0) for each j € D. In this step we also
allow the demand point j to be equal to the server’s current location v (unlike in the standard
K-stop heuristic) and set ¥(x, (v),0) equal to ¢,y if v is non-empty, and zero otherwise. After
computing 1 (x,(7),0) for each j € D, we then form a set £ of size L (where L < d is a pre-
determined integer) consisting of a limited number of demand points. We consider a couple of

different ways of selecting the demand points to be included in L:

e Impartial method: In this method, we simply choose the L demand points with the
highest indices ¥ (x, (j),0), regardless of their positions in the network. (Ties are broken
arbitrarily.)

e Stratified method: In some systems, there may be a natural way of dividing the net-
work into ‘clusters’ of demand points, with any pair of demand points in the same cluster
being relatively close to each other. In this case, we can select a pre-determined number
of demand points from each cluster (taking the ones with the highest indices), in such a

way that the total number of demand points selected is L.

In the impartial method we also enforce the following rule: if the server is at an empty
demand point or an intermediate stage then we divide the demand points into two sets. The
first set consists of sequences (j) such that ¥ (x, (j),0) > v(x, (j),0) and the second set consists
of sequences (j) such that v(x, (j),0) < v(x, (j),0), where () is defined in (14)). If the first
set includes at least L sequences then we select the L sequences with the highest values of
¥(x,(7),0) to be included in L. Otherwise, all of the sequences in the first set are included in
L and we obtain the remaining sequences by choosing the sequences with the highest indices

in the second set. This is consistent with the prioritization rule described in step 2(c) of the
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K-stop heuristic. In the stratified method a similar rule is used, except the two sets are formed
for each cluster separately, and in each cluster we choose a pre-determined number of demand
points from the two sets, with the first set being given priority over the second set as in the
impartial method.

After forming the set £, we then consider all possible sequences (s1, ..., $p) for 1 <m < K,
where s; € £ for each j = 1,...,m, and carry out the rest of the steps in the K-stop heuristic as
described in Section The sequences are required to satisfy the same eligibility conditions
described in Section B.2]in order to be selected.

We note that the impartial method is simpler and might often perform better than the
stratified method, but the stratified method offers a potential advantage in that it forces the
server to consider moving to other clusters in the network. Under the impartial method, there
is a risk that if all of the L demand points selected are in close proximity to the server’s current
location then the server acts in a short-sighted way, as (given that demand points are selected
based on indices for sequences of length one only) it fails to detect the potential benefits of
moving to another cluster and serving multiple demand points within that cluster.

As an example, consider the system shown in Figure [3] with 8 demand points and 4 inter-
mediate stages. Suppose we use the (K from L)-stop heuristic with K = 2 and L = 4. For
each demand point j = 1, ...,8 we calculate the index 1(x, (j),0). Under the impartial method,
assuming that the server is at a non-empty demand point, we choose the 4 demand points j
with the highest indices and then consider all possible sequences of length 1 or 2 involving these
4 demand points only. The total number of sequences to consider is 4 4 (4!/2!) = 16. If the
server is at an empty demand point or an intermediate stage then the process is similar except
we prioritize sequences (j) that satisfy the condition ¢ (x, (5),0) > v(x,(j),0). In this case we
still obtain 16 sequences. Under the stratified method, a logical approach (given the layout of
the network) is to define {1,2,3,4} as one cluster and {5,6,7,8} as another cluster, and select
two demand points from each according to their index values. Suppose, for example, we choose
2 and 3 from the first cluster and 6 and 7 from the second cluster. Then, in the next step,
we consider all possible sequences of length 1 or 2 consisting of demand points from the set

{2,3,6,7}. Thus, we again consider 16 sequences in total.

1 5
9 9 10 11 12 6
3 7
4 8

Figure 3: A network with 4 demand points on the left, 4 demand points on the right and 4
intermediate stages.

In general, in large systems (with a lot of demand points), the bulk of the computational

effort required is in the calculation of indices 1(x,(j),0) for each j € D. Following this, the
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number of sequences to be considered is 25:1(11! /(L —m)!), which is independent of d and can
be kept relatively small. Thus, if K and L are fixed then the computational effort required by
the (K from L)-stop heuristic increases only linearly with d. If L = d then the (K from L)-stop
heuristic becomes equivalent to the K-stop heuristic. Thus, it is obvious that the (K from
L)-stop heuristic should perform worse than the K-stop heuristic in general, since it considers
a smaller number of possible sequences. However, in the next section, we show that it may be

able to achieve a similar performance at smaller computational expense.

4 Numerical results

In this section we report the results of numerical experiments in order to compare the
performances of the heuristics described in Section [3] In Section we focus on a specific
network layout, with two ‘clusters’ of demand points separated by a series of intermediate
stages. In Section we present results from problem instances with randomly-generated
network layouts. Finally, in Section [4.3] we provide additional details of the computational

requirements of our heuristics.

4.1 Two clusters of demand points

In this subsection we consider a relatively simple network layout, shown in Figure [ in which
two distinct ‘clusters’ of demand points are separated by a chain of n intermediate stages. The
demand points on the left-hand side belong to a cluster denoted by D1 of size di, and similarly
the demand points on the right-hand side form a cluster D5 of size ds. In order to move from
D1 to D5 or vice versa, the server must pass through all of the intermediate stages in succession.
Also, as the figure indicates, in order to move from one demand point to another point in the
same cluster, it must pass through one intermediate stage (it is not possible to move directly
from one demand point to another). By adjusting the value of n we can vary the distance
between the two clusters. In the case n = 1, we obtain a special case where all demand points
are equidistant from each other. In these experiments we consider 1 <n <6, 1 < d; < 4 and
1 < dy < 4. Thus, the number of demand points d satisfies 2 < d < 8.

Our numerical study is based on 11,250 randomly-generated problem instances. In each
instance we uniformly sample the values of di, do and n from the ranges specified above. We
also randomly generate the values of p, 7, A;, u; and ¢; (for each ¢ € D) using a method that
ensures consideration of a wide range of different scenarios for the system parameters. For full
details of our parameter generation methods, please refer to Appendix F.

In each problem instance, we test the performances of the heuristic policies in Section [3]
using simulation experiments. The DVO heuristic described in Section 3.1 can be regarded as a
nonstationary policy for our MDP and its performance can be simulated. This provides a useful
benchmark for our other heuristics. We test the K-stop heuristic for each K € {1,2,3,4}. We
note that in instances where d < K (i.e. the number of demand points is smaller than K),
the K-stop heuristic becomes equivalent to the (K — 1)-stop heuristic, as it is not possible to

define a sequence of length K such that all demand points in the sequence are distinct (but the
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D, D,

Figure 4: A diagrammatic representation of the network with d; demand points on the left, dy
demand points on the right and n intermediate stages.

definition of the heuristic allows it to consider sequences of length smaller than K). For example,
if d = 2 then the 2-stop, 3-stop and 4-stop heuristics are equivalent. We also implement the (K
from L)-stop heuristic with K = 2 and L = 4 in each instance, using both the impartial and
stratified methods. In the stratified case, we adopt the obvious stratengOf defining Dy and Do
as separate clusters.

In each problem instance, the simulation process for each heuristic consists of two phases:
a warm-up period and a main simulation run. Since the traffic intensity p is randomly sampled
from a continuous distribution on (0.1,1) (see Appendix F), it may approach 1, potentially
leading to very large average queue sizes and possible system instability under some of our
heuristics. For this reason, in systems with p > 0.9, we allow the warm-up period to continue
until either the system appears to stabilize or a termination condition is reached. To determine
the point at which the system stabilizes, we sample the average costs after r, 2r, 3r, ... time steps
(with » = 1000) and, at each of these stages, apply the Mann—Kendall test with the Hamed—Rao
correction (see Hamed and Rao| (1998), Gocic and Trajkovic (2013)), a nonparametric method
for detecting monotonic trends in time series while accounting for the presence of autocorrela-
tion. This test determines whether or not the sequence of average costs shows a monotonically
increasing trend, and the warm-up period ends at the point where such a trend is no longer
detected. For instances with p < 0.9, a fixed warm-up length of 10,000 steps is applied, which
is generally sufficient for steady state conditions to be reached. For implementation details of
our simulation experiments, please refer to Appendix G.

In instances where d is small, it may be possible to compute the optimal long-run average cost
g* using dynamic programming (specifically, relative value iteration). Although DP algorithms
require a finite state space, the ‘approximating sequence’ method of |Sennott| (1997) can be used
to obtain the infinite-state optimal value as a limit of finite-state optimal values (for further
explanation, see the proof of Theorem . In each problem instance we have used an iterative
method, described in Appendix H, to test whether or not it is computationally feasible to obtain
g* using DP. We have found that it is usually only feasible to compute ¢g* if d < 3 and p is not
too large. In total, we have been able to compute g* in 1229 of the 11,250 instances.

Table (1 shows, for each heuristic policy, a 95% confidence interval for the mean percentage
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suboptimality of the heuristic in comparison to the optimal value g* computed using relative
value iteration, based on the results from 1229 ‘small’ problem instances. For each heuristic
policy 6 € {DVO, 1-stop, 2-stop, 3-stop}, the percentage suboptimality is calculated as 100 x
(90 — g%)/g*. The 10th, 25th, 50th, 75th and 90th percentiles of the distribution of percentage
suboptimality for each heuristic are also reported. Given that d < 3 in all of these small
instances, the 4-stop policy is equivalent to the 3-stop policy, so we do not include it in the
table. Similarly, the (2 from 4)-stop heuristics are equivalent to the 2-stop heuristic because
they always consider all demand points in the network as potential sequence elements, so we
do not include them either. The table shows that the DVO heuristic (which does not allow
switching or processing times to be interrupted) is about 22% suboptimal on average in these
instances. The K-stop heuristics are able to improve upon the DVO heuristic very significantly.
The K =2 and K = 3 policies are within 4% of optimality on average, and in more than 50%
of instances they are within 3%. As expected, the performance tends to improve as K increases
(at the expense of greater computation time), although increasing K from 2 to 3 gives only a

small additional improvement.

Table 1: Percentage suboptimalities of heuristic policies in 1229 ‘small’ problem instances.

Heuristic Mean 10th pct.  25th pct.  50th pct.  75th pct.  90th pct.

DVO 22.05+0.83 6.61 11.68 19.50 28.88 40.03
1-stop 5.97 £ 0.45 0.73 1.92 3.93 7.20 13.08
2-stop 3.96 £ 0.24 0.42 1.49 2.92 5.01 8.44
3-stop 3.73+£0.24 0.35 1.39 2.75 4.64 7.80

Table [2| shows a comparison between the heuristic policies across all 11,250 instances, with
the DVO heuristic used as a benchmark. In each instance we report 95% confidence intervals for
the mean percentage improvements of the K-stop and (K from L)-stop heuristics over the DVO
heuristic, and also report the 10th, 25th, 50th, 75th and 90th percentiles of the distributions
for the percentage improvement. We find that all of the K-stop and (K from L)-stop heuristics
that we consider are able to improve significantly over the DVO heuristic, with the mean
improvements ranging from about 8% to 10%. Clearly, the ability to interrupt switching and
processing times offers major advantages, as the decision-maker is able to respond more rapidly
to the arrivals of new jobs. We also observe again that the performance of the K-stop heuristic
tends to improve as K increases, although for K > 3 the marginal extra improvements become
quite small. While larger values of K enable more long-sighted choices of actions, it is not
necessarily clear that these should result in dramatic improvements over smaller K values, as
the server is always able to change its direction at each time step and is never committed to
following a sequence through to its end. Indeed, the larger K is, the less likely it becomes
that the server follows a sequence through to completion. Nevertheless, the results do seem to
indicate a trend for larger K values to yield stronger policies. It is also encouraging to note
that both versions of the (2 from 4)-stop heuristic yield performances very close to that of the
2-stop heuristic. Recall that, in general, the (K from L)-stop heuristic is supposed to be a more
computationally scalable version of the K-stop heuristic. We accept a small loss of performance
in exchange for greater scalability. The results indicate that the simpler impartial version of the

(2 from 4)-stop heuristic tends to perform slightly better than the stratified version, indicating
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that there is no obvious benefit in forcing the server to consider moving to a different cluster in

the network.

Table 2: Percentage improvements of heuristic policies with respect to the DVO policy in 11,250
problem instances.

Heuristic Mean 10th pct. 25th pct. 50th pct. 75th pct. 90th pct.
1-stop 8.57+0.18 -1.54 3.89 8.94 14.28 19.22
2-stop 9.66 +0.17 0.23 4.98 9.78 14.99 19.97
(2 from 4)-stop [imp.] 9.64 £0.17 0.11 4.93 9.77 14.97 19.94
(2 from 4)-stop [str.] 9.40 £0.18 -0.15 4.70 9.60 14.91 19.84
3-stop 10.09 +0.17 0.76 5.38 10.21 15.51 20.13
4-stop 10.30 £ 0.16 1.28 5.70 10.43 15.53 20.20

Next, we investigate the effects of the system parameters on these results by categorizing
the 11,250 problem instances according to the values of specific parameters. Three parame-
ters of particular interest to us are the number of intermediate stages n, the traffic intensity
p = >_; Ai/ui and the relative switching rate, which we define as n := 7/(3_; A;) (so that it
indicates the relative speed of switching compared to the frequency of new job arrivals). Table
summarizes the relative performances of the heuristics for each n € {1,2,3,4,5,6}. Note that
the first row of the table shows the improvements of the 1-stop policy over the DVO heuristic,
and the remaining rows show the additional improvements of the other heuristics over the 1-stop
heuristic. We have chosen to present the results in this way in order to neatly summarize the
benefits of allowing switching and processing times to be interrupted (shown in the first row
of the table) and also the additional benefits of allowing the heuristic policies to make longer-
sighted decisions (shown in the remaining rows). Tables 4] and [5{show similar results for p, and
Table [6] shows similar results for 1. Note that our method for randomly generating the system
parameter values (detailed in Appendix F) implies that, in any problem instance, p is equally
likely to fall within any of the 9 intervals shown as columns in Tables [4] and [5], and similarly n

is equally like to be fall within any of the 6 intervals shown as columns in Table [6]

Table 3: Percentage improvements of the 1-stop policy (vs. the DVO heuristic) and the 2-stop,
(2 from 4)-stop, 3-stop and 4-stop policies (vs. the 1-stop policy) for different values of n.

n=1 n=2 n=3 n=4 n=>5 n==6
Heuristic [1902 instances] [1854] [1855] [1917] [1870] [1852]
1-stop (vs. DVO) 9.49 £0.51 9.80+£0.41 9.32+£041 832+£042 7.49+045 6.99+0.47
2-stop (vs. 1-stop) 1.67£0.16 0.99+0.13 0.79+£0.18 0.79£0.17 0.99£0.18 1.15+0.21
(2 from 4)-stop [imp.] (vs. 1-stop) 1.53 £0.16 0.94+0.14 091£0.16 0.85+0.17 1.00£0.17 1.04=£0.20
(2 from 4)-stop [str.] (vs. 1stop) 1424015  0.81+£0.13 0.66+0.16 0544020 0.60+022 0.73+0.23
3-stop (vs. 1-stop) 2.26 +0.18 1.40+£0.14 1.344+0.16 1.28+£0.17 1.27+0.20 1.49+0.22
4-stop (vs. 1-stop) 2.39£0.20 1.58£0.14 1.51+0.17 1.384+0.20 1.61£0.20 1.84+0.22

The first row of Table [3| appears to suggest a trend for the improvements given by the
1-stop policy (compared to the DVO heuristic) to decrease as n increases. To make sense of
this, it is useful to bear in mind that under any policy and any network design, the simulated
proportion of time that the server spends processing jobs should be approximately equal to
p, assuming that the system is stable. Thus, regardless of how small or large n is, the server
should spend approximately the same proportion of time visiting the intermediate stages of the

network. In the n = 1 case, the server derives the maximum possible advantage from being able
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to switch direction, as it can switch from the intermediate stage to any of the demand points
in a single transition. Under the DVO heuristic, on the other hand, the server has no ability
to change direction. It is also worthwhile to note that the ‘impartial’ version of the (2 from
4)-stop heuristic appears to outperform the ‘stratified’ version across all values of n. Intuition
might suggest that the stratified version should become stronger as n increases, as the clusters
in the network become more distinct in this situation and the stratified version is designed to
ensure that demand points in both clusters are always considered as potential destinations for
switching. However, this intuition is not borne out by the results. It appears that allowing the
demand points in the set £ to be selected solely according to the indices given by the 1-stop

policy (regardless of their locations in the network) is consistently the most effective approach.

Table 4: Percentage improvements of the 1-stop policy (vs. the DVO heuristic) and the 2-stop,
(2 from 4)-stop, 3-stop and 4-stop policies (vs. the 1-stop policy) for p € [0.1,0.5).

01<p<02 02<p<03 03<p<04 04<p<05

Heuristic [1257 instances] [1191] [1219] [1295]

1-stop (vs. DVO) 18.23 £ 0.34 14.97 £ 0.33 12.43 +0.34 10.16 £ 0.35
2-stop (vs. 1l-stop) 0.50 £0.12 0.60 £0.13 0.74+0.16 0.84 £0.16
(2 from 4)-stop [imp.] (vs. 1-stop) 0.51 £0.12 0.62 £ 0.13 0.78 £0.15 0.87 £ 0.15
(2 from 4)-stop [str.] (vs. 1-stop) 0.48 +0.12 0.57 +0.12 0.68+0.15 0.73+0.15
3-stop (vs. 1l-stop) 0.81 £0.11 0.94 £0.14 1.22+0.17 1.30+£0.16
4-stop (vs. 1l-stop) 0.96 £0.12 1.15+0.15 1.40 £0.18 1.50 £0.18

Table 5: Percentage improvements of the 1-stop policy (vs. the DVO heuristic) and the 2-stop,
(2 from 4)-stop, 3-stop and 4-stop policies (vs. the 1-stop policy) for p € [0.5,1).

0.5<p<0.6 06<p<07 07<p<08 08<p<09 09<p<1.0

Heuristic [1247 instances] [1251] [1260] [1280] [1250]

1-stop (vs. DVO) 8.21 £0.32 5.80 +0.44 4.35+£0.35 2.20+£0.38 1.25+0.94
2-stop (vs. l-stop) 1.28 £0.18 1.47+£0.20 1.42 £0.18 1.37+0.20 1.32 £0.43
(2 from 4)-stop [imp.] (vs. 1-stop) 1.27+0.17 1.40+0.19 1.37+£0.17 1.28 £0.20 1.27 £ 0.41
(2 from 4)-stop [str.] (vs. 1-stop) 1.11+0.17 1.22 £0.19 1.00 £0.21 0.80 £0.26 0.56 + 0.46
3-stop (vs. 1-stop) 1.70 £0.20 1.98 £0.22 1.91+£0.20 1.84+£0.22 1.83 £ 0.42
4-stop (vs. 1-stop) 1.94 £0.20 2.24 £0.23 2.174+0.20 2.124+0.22 1.97£0.44

Next, we discuss the effect of the traffic intensity, p. By examining the first rows in Tables
and |5, we observe that the improvements given by the 1-stop policy (vs. the DVO heuristic)
are much greater when p is small than when it is large. Indeed, if p is small, then the server
spends a relatively large proportion of its time traversing the intermediate stages of the network.
In such situations, the ability to react immediately to the arrival of a new job (by changing
the direction of travel) clearly offers major advantages. On the other hand, when p is large,
queue lengths tend to become longer at the demand points and the server spends more of its
time processing jobs at the demand points. It is useful to bear in mind that the DVO heuristic
retains the ability to make new decisions every time the server finishes processing a job (which
happens often when p is large), whereas it does not have the ability to make new decisions
while the server is switching, so in this sense larger p values work in its favor. Therefore, it is
more difficult for the 1-stop policy to gain an advantage when p is large. The improvements
of the K-stop heuristics over the DVO heuristic are more clearly evident when p is of small or
moderate size, since the novel features of our problem (in particular, the network formulation

and the ability to interrupt switches) become more prominent under such circumstances. The
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remaining rows in Tables [] and [5] show that, in most cases, the improvements of the K-stop
and (K from L)-stop policies (for K > 2) over the 1-stop policy tend to be greatest when p is
between 0.6 and 0.7. This suggests that in order for the longer-sighted heuristics to show a clear
improvement over the 1-stop heuristic, p should be reasonably large (in order to ensure that
there is enough congestion in the system to penalize short-sighted policies that always move
towards the most congested demand point), but not so large that the server spends only a small

proportion of its time switching between nodes.

Table 6: Percentage improvements of the 1-stop policy (vs. the DVO heuristic) and the 2-stop,
(2 from 4)-stop, 3-stop and 4-stop policies (vs. the 1-stop policy) for different values of 7.

01<7n<04 04<n<07 07<n<1l 1<n<4 4<n<7 7<n<10

Heuristic [1806 instances] [1884] [1818] [1963] [1895] [1884]
1-stop (vs. DVO) 6.81 4+ 0.47 8.35+0.43 888+£041 10.31+043 8.61+047 831+£0.48
2-stop (vs. 1-stop) 1.64+0.20 1.47+0.18 1.33+£0.19 1.03+£0.15 0.62+0.16 0.33£0.17

(2 from 4)-stop [imp.] (vs. 1-stop) 1.53+0.19 1.43+0.17 1.40%+0.17 1.01+0.16 0.58+0.15 0.36+0.16
(2 from 4)-stop [str.] (vs. 1-stop) 1.20+£0.23 1.09+0.19 1.04+0.19 0.79+0.18 0.40+0.17 0.30+£0.17
3-stop (vs. 1-stop) 2.42+0.21 2.06 +£0.19 1.96£0.18 1.33+£0.17 0.81+0.17 0.55£0.16
4-stop (vs. 1-stop) 2.87+0.22 2404+0.19 225+£0.18 148+0.15 0.85+0.18 0.55£0.18

Finally, we discuss the effect of the switching rate parameter, . From Table [6] we observe
that the mean percentage improvement of the 1-stop policy (vs. the DVO heuristic) tends to
decrease as 1) becomes small, but also as n becomes large. Indeed, when 7 is small, switching
between nodes is relatively slow and the 1-stop policy is more likely to be deterred from changing
direction, as this will result in too much wasted time traversing the intermediate stages of the
network. On the other hand, when 7 is large, switching between nodes is relatively fast and
in this situation it becomes less likely that any arrivals occur while the server is traversing
the intermediate stages, so the server has no reason to change its course. In general, the
improvement over the DVO policy should be greater when direction changes are frequent. From
the remaining rows in Table @, we observe that the K-stop and (K from L)-stop heuristics (for
K > 2) are able to achieve greater improvements over the 1-stop policy when 7 is small. Indeed,
a primary motivation for using the longer-sighted heuristics is that they can recognize the effects
of distances between the demand points and plan a sequence of visits accordingly. When 7 is
large, distances become less important as the server is always able to switch quickly between
any two demand points and react quickly to new job arrivals, so it becomes more difficult for

the longer-sighted heuristics to achieve improvements over the 1-stop policy.

4.2 Randomly-generated network layouts

The results that we reported in Section [.1] were based on a specific network layout, depicted
in Figure[dl In order to investigate how well our heuristics perform on other network topologies,
we have also carried out 3,375 additional experiments based on randomly-generated network
layouts. In these experiments we used the same method for generating the values of arrival rates,
processing rates and switching rates as in Section (described in Appendix F) but changed
the method for generating the network layout. To generate a random network layout, we begin
by creating a 5 x 5 integer lattice in which 25 nodes are connected via horizontal and vertical

edges. We then randomly select d of these nodes, where 2 < d < 8, and designate these as
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demand points. Hence, the position of any demand point ¢ € D can be represented by a pair of
coordinates (a;, b;) with a;, b; € {1,2,3,4,5}, and the shortest path between two demand points
i,j € D is the Manhattan distance |a; — a;| + |b; — bj|. The remaining nodes in the lattice are
designated as intermediate stages, although some of these stages may be redundant (in the sense
that they will never be visited under a sensible policy), and therefore can be eliminated from

the network. Figure [5|shows 4 of the random network layouts generated in our experiments.

A
»é-00

Figure 5: 4 randomly-generated network layouts with demand points shown in white and inter-
mediate stages shown in gray, after removal of redundant intermediate stages.

As in Section we have used relative value iteration to compute exact suboptimalities
of our heuristics in ‘small’ instances where this is feasible. In total, 635 of the 3,375 instances
satisfied the feasibility criteria described in Appendix H, and these suboptimality percentages
are shown in Table [7] By comparing this table with Table [I] from earlier, we may observe that
all of the heuristics have slightly higher mean suboptimality percentages than in the previously-
considered network design. From a qualitative point of view, however, the results are similar,
with the K-stop heuristic tending to perform better as K increases. It is also interesting to
note that the 50" percentiles for the heuristics are similar to those in Table |1, and even lower
in some cases. This suggests that the increases in the mean suboptimalities are due to worse
tail performances; in other words, there may be some randomly-generated networks on which
our heuristics perform particularly poorly. One possible explanation for this is that, in the
randomly-generated networks, there may sometimes be multiple shortest paths between pairs
of demand points, and currently our heuristics select a shortest path based on an arbitrary
priority ordering of the nodes, without taking into account of which path(s) might leave the
server in a better position if a switch between demand points is interrupted. Selection of
the ‘best’ shortest path (which might depend on the current system state) would significantly
complicate our heuristics, and could be a direction for future work.

Table [§| shows the percentage improvements achieved by the K-stop and (K from L)-stop
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Table 7: Percentage suboptimalities of heuristic policies in 635 ‘small’ problem instances on
randomly-generated networks.

Heuristic Mean 10th pct.  25th pcet.  50th pet.  75th pet.  90th pct.
DVO 26.52 +1.95 5.82 10.62 21.07 33.83 50.87
1-stop 7.45+1.47 0.81 1.76 3.45 7.35 15.01
2-stop 4.72 +£0.53 0.62 1.43 2.85 5.00 9.48
3-stop 4.52+0.51 0.53 1.36 2.75 4.95 9.18

heuristics against the DVO policy in all of the 3,375 instances with randomly-generated net-
works. The table can be interpreted in the same way as Table 2] from Section [4.1] except that
we have excluded the ‘stratified’ version of the (2 from 4)-stop heuristic, because it was already
shown to perform worse than the impartial version of the heuristic in the previous results, and
additionally the division of demand points into ‘clusters’ does not work in such an obvious way
in the random networks. By comparing Table |8| with Table 2| from earlier, we may observe that
the improvements of our heuristics compared to the DVO policy are slightly greater than in the
previously-considered network design. As discussed earlier, the main weaknesses of the DVO
policy are that it works in a short-sighted way and does not allow interruptions of setup or
processing times. Thus, the results suggest that the benefits of interruptions are greater in the
randomly-generated networks. Indeed, it can be seen from the examples in Figure 5| that, while
moving from one demand point to another, the server might pass near (or through) another

demand point, in which case it might be advantageous to switch to that point.

Table 8: Percentage improvements of heuristic policies with respect to the DVO policy in 3,375
problem instances on randomly-generated networks.

Heuristic Mean 10th pct. 25th pct. 50th pct. 75th pct. 90th pct.
1-stop 11.62 +0.39 1.66 6.72 12.05 17.61 22.75
2-stop 12.89 +0.39 2.82 7.86 13.48 19.14 23.98
(2 from 4)-stop [imp.] 12.89 +0.40 2.76 7.74 13.42 19.14 24.04
3-stop 13.25 +0.40 3.17 8.20 13.84 19.40 24.37
4-stop 13.35 £+ 0.40 3.22 8.29 14.05 19.47 24.45

We have also investigated the effects of individual parameters (such as p and n) on the
results for the randomly-generated networks and found that, from a qualitative point of view,

the effects are similar to those discussed in Section [£.1] so we have omitted these for brevity.

4.3 Computational requirements of our heuristics

An advantage of using index-based heuristics, as proposed in our paper, is that they have
much lighter computational requirements than (for example) a reinforcement learning algorithm,
or any method that relies on extensive training in order to learn a strong decision-making
policy. However, as discussed previously, the computational requirements of the K-stop heuristic
increase rapidly as K increases (or as the number of demand points increases), due to the growth
in the size of S, the set of candidate sequences. This provides motivation for using the (K from
L)-stop heuristics that we propose in Section

In Table |§| we present a summary of the average computation times (in seconds) needed by

the various heuristics to select an action at a single time step. Our experiments were performed
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on 108 problem instances with randomly-generated networks and 8 demand points (d = 8). The
software used was Python 3.7.13, with the PyPy just-in-time compiler (http://pypy.org) used
to speed up computations, and all experiments were carried out on an Apple M1 Pro (8-core
CPU) with 16 GB unified memory, running macOS Sequoia. The times shown in the table are
average times (in seconds) needed to carry out all decision-making steps at a single discrete
time step. For example, in the case of the K-stop heuristic, this includes the time needed to
construct the set of sequences S and then select an action according to the steps described in the
algorithm as presented in Section The running times are averaged over all time steps within
each instance and then averaged over all instances. The results show that all of the heuristics
are able to make decisions within 0.001 seconds (and much less in some cases), which implies
that they are suitable for use in fast-changing systems with hundreds or even thousands of state
changes per second. As expected, the increase in running time as K increases is significant,
with the average running time tending to increase by a factor of between 4 and 10 each time
K increases by one. Notably, the (2 from 4)-stop heuristic has a very short running time and
is even faster than the 2-stop heuristic because, once the subset of 4 demand points has been
selected (which requires only a short amount of time), the number of sequences of length 2 to

be evaluated is much smaller than in the 2-stop heuristic.

Table 9: Average running times (in seconds per time step) for action selection by the DVO
policy, 1-stop, 2-stop, (2 from 4)-stop [imp.], 3-stop, and 4-stop heuristics, over 108 problem
instances with 8 demand points on randomly-generated networks.

Heuristic DVO 1-stop 2-stop (2 from 4)-stop [imp.] 3-stop 4-stop
Av.runtimes 7.19 x 107% 1.72x 1078 7.21 x 107° 3.17x 1076 6.36 x 1075 4.61 x 107*

5 Conclusions

The main novelty of the job scheduling problem studied in this paper lies in its network-
based formulation, which allows setup and processing times to be interruptible and also enables
the modeling of complex dependence structures between the setup requirements of different
tasks. We consider a highly stochastic, infinite-horizon problem in which jobs of different types
arrive at random points in time and the server’s setup and processing times are also random.
The dynamic nature of our problem implies that decision epochs occur very frequently, and
this creates some challenges. For example, as discussed in Section [2| we are unable to directly
leverage results from the literature on polling systems in order to prove the existence of a
deterministic, stationary policy under which the system is stable, because polling-type policies
are nonstationary under our MDP formulation. However, the stability result can be established
(provided that p < 1) by proving the equivalence of a similar MDP in which the system state
includes extra information.

The index policies that we develop in Section [3| are influenced by the heuristic approaches
used in Duenyas and Van Oyen|(1996)), but these approaches must be adapted in order to exploit
the novel features of our problem. In particular, our network-based formulation motivates the

use of a long-sighted, sequence-based algorithm that takes the topology of the network into
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account when making decisions. In addition, we ensure that the algorithm makes new decisions
at each time step, so that setup and processing times can always be interrupted. We also
introduce derivative-based conditions in the steps of the K-stop algorithm and use these to
show that the resulting policies possess the property of ‘pathwise consistency’, which ensures
that the server always proceeds to a demand point in finite time. Furthermore, we propose a
modified version of the algorithm (known as the (K from L)-stop algorithm) that scales much
more readily to systems with many demand points. In special cases of the problem we can prove
system stability and optimality of our heuristics (Theorem , but in more general cases we
must study their performance empirically.

The numerical results in Section |4 demonstrate the advantages of using heuristics that are
well-tailored to the novel features of our problem. In small problem instances, we are able to
show that the K-stop and (K from L)-stop heuristics are much closer to optimality than the
unmodified DVO heuristic. In larger systems, we are also able to observe the benefits of allow-
ing the server to make long-sighted decisions and to change its course of action when necessary.
From a practical perspective, it is encouraging to see that the impartial version of the (2 from
4)-stop heuristic performs almost as well as the more computationally intensive 2-stop heuristic,
which in turn offers considerable improvements over the more myopic 1-stop heuristic. Thus,
in larger problem instances, the (2 from 4)-stop heuristic may be seen as a strong candidate to
achieve significant cost savings over simpler alternatives, without incurring excessive computa-

tional costs.
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