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Abstract—Semantic change detection (SCD) involves temporal
changes and spatial semantics. Its working principle and
processing flow usually include land semantic segmentation (LSS)
and binary change detection (BCD). Due to its significant impact
and practical value, SCD has received consistently wide attention
in Earth observation. Nowadays, remote sensing data in various
modalities are proliferating, calling for an urgent need to develop
intelligent algorithms for multimodal remote sensing data.
However, no efficient multimodal SCD methods exist currently.
To address this limitation, this work proposes the first deep
learning-based multimodal SCD method: MSCD-Net. MSCD-Net
extracts multi-scale semantic and difference features after fusing
multimodal features, and then aggregates and refines these
features to output high-quality semantic segmentation and
change maps. Additionally, a semantic difference decoder (SDD)
module is designed to model semantic and difference features
jointly. It can be integrated with existing methods to increase
accuracy. Experimental results demonstrate that MSCD-Net
achieves state-of-the-art performance on both multimodal and
unimodal SCD datasets, and SDD has strong feature learning
ability and compatibility. These findings imply that MSCD-Net is
expected to promote the development and application of
multimodal SCD.

Index Terms—Land semantic segmentation, change detection,
multimodal data, semantic change detection, remote sensing

[. INTRODUCTION

EMANTIC change detection (SCD) is a specialized task
within change detection (CD) that provides detailed
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information on land-cover/land-use (LCLU) changes. SCD
involves spatial semantics and temporal changes, with its
principles and workflow typically including land semantic
segmentation (LSS) and binary change detection (BCD).
Consequently, SCD plays a significant role in, and fulfills the
extensive requirements of, land resource surveys, emergency
response, disaster monitoring, military reconnaissance, map
updating and various other scenarios [1], [2], [3]. SCD has
experienced significant growth in recent years, driven by rapid
advances in computing power, artificial intelligence and
contributions from the research community [4], [5], [6].

BCD has been consistently the most common and widely
researched sub-task of CD. Early BCD methods included
image difference, ratio and log operations [7]. During the
same period, the intuitive and effective post-classification
comparison method emerged. These methods leveraged the
spectral properties of remote sensing (RS) data to identify
changes by comparing images from different time points.
Subsequently, more sophisticated algorithms, such as those
based on decision trees, CVA [8], MAD [9] and MRF [10]
were developed. These methods are primarily data-driven,
often utilizing small datasets tailored to specific types or
scenarios. They focus on analyzing the distribution patterns of
changes in specific images based on physical characteristics,
such as reflectance and spatial shape [11], [12]. As machine
learning began to be incorporated into change detection,
transform-based and object-based methods became gradually
mainstream. Representative methods involve IR-MAD [13],
RCVA [14], SFA and DSFA [15]. These methods,
characterized by weak artificial intelligence, provide a more
nuanced understanding of changes and enhance BCD accuracy
through manual feature engineering. In the past decade, deep
learning (DL) -based methods have been developed and
applied widely, such as SST-Former [16], SSN-Siam-conc
[17], STS-STAM-CMR [18] and FDCNN [19]. These
methods excel at automatically learning features from large
datasets, reducing the need for well-designed manual features
and significantly improving BCD accuracy and efficiency.

The purpose of BCD is only to identify the location and
area of changes, without concern for the property of those
changes. However, in many situations, it is crucial not only to
know where changes have occurred, but also to understand the
detailed semantics before and after the change event. This is
the focus of SCD. Due to the complexities and challenges of
the SCD task compared to BCD, early SCD studies focused
primarily on small areas and single LCLU categories, with
very limited public datasets available [20], [21]. As a result,
SCD developed more slowly and produced fewer research
results than BCD. Remarkably, there has been no DL-based



SCD method for a long time. During this period, high-impact
traditional SCD methods include ICC [22] PCA [23],
C2VA[24] and S2CVA[25]. This situation changed after the
HRSCD [26] and SECOND [27] datasets were introduced in
2019. Many DL-based SCD methods, such as TCRPN [28],
Bi-SRNet [29], SAAN [30], ChangeMask [31] and CLAFA
[32], have been proposed within the last few years. These
methods produced outstanding performance compared to
traditional SCD methods.

Modality refers to the way in which something expressed or
perceived. Each source or form of information can be regarded
as a modality. Multimodal involves multiple modalities, which
typically manifests in three forms: 1) multimedia data
describing the same object, such as images, audio, text, and
videos; 2) the same type of media data from different sensors,
such as image data captured by various imaging sensors; 3)
symbolic representations and information with distinct
structural or representational characteristics, such as different
languages [33]. With the expansion of sensor types, platforms
and data volumes, coupled with the extension of application
scenarios, demand for the development of high-performance
algorithms has become imperative [34], [35], [36], [37].
Additionally, the explosion of “big data” and the rise of strong
artificial  intelligence methodologies have established
multimodality as a significant trend. Generally, unimodal data
processing can be seen as a special case of multimodal
processing. Therefore, constructing a high-performance SCD
method suitable for both multimodal and unimodal data is
crucial for enhancing the influence and applicability of SCD.
However, after reviewing the current state of SCD
development, we found that predominantly existing methods
were designed to process merely unimodal RS data but neglect
multimodal RS data, and no DL-based research has been
conducted on multimodal SCD. As a result, the development
of multimodal SCD has not kept pace with community
demands.

In light of this motivation, we propose a pioneering
multimodal SCD method, MSCD-Net, which unifies the SCD
tasks for multimodal and unimodal RS data. The MSCD-Net
can efficiently process multimodal or unimodal data and
output accurate SCD maps in a fully end-to-end manner.
Furthermore, we build a practical semantic difference decoder
(SDD) that features strong intrinsic feature learning ability and
high compatibility. The SDD can be integrated with existing
methods to enhance accuracy significantly. Experimental
results manifest that MSCD-Net achieves the highest accuracy
across multimodal and unimodal SCD datasets, and it holds
significant potential to advance the development and
unification of SCD methods.

The remainder of this paper is organized as follows. Section
II details related work. Section III elaborates on the principles
of MSCD-Net. Section IV demonstrates the experiments and
results, while Section V draws the conclusions.

II. RELATED WORK

A. Binary Change Detection

1) Unimodal BCD: Recently, there has been much research
on unimodal BCD. Typically, Zhang and Shi [19] pioneered a

high-resolution RS image CD framework using a deep feature
difference convolutional neural network (FDCNN), which
learns the deep features and then generates multi-scale and
multi-depth feature difference maps for CD. Liu et al. [38]
presented the local restricted CNN (LRCNN) to detect
changed areas in multi-temporal polarimetric synthetic
aperture radar (SAR) images by imposing a local spatial
constraint on the output layer of the CNN. However, high-
resolution RS BCD remains challenging due to the complexity
of objects in the scene. To this end, Li et al. [39] proposed a
deep-supervised dual discriminative metric network (SDMNet)
by combining a discriminative implicit metric module and
multiple losses. The SDMNet can effectively distinguish
changes of interest and pseudo-changes in high-resolution RS
images. Cao et al. [40] proposed a multi-scale weakly
supervised learning method, which utilizes a large number of
single-temporal high-resolution images and image-level labels
to detect changes in built-up area.

Because BCD pipelines based on CNNs fail to adequately
capture long-range concepts in space-time, Chen et al. [41]
proposed a bitemporal image transformer (BIT) to model
contexts within the spatial-temporal domain. Furthermore,
CNN methods often focus on the extraction of spatial
information, but ignore important spectral and temporal
sequences. To deal with this limitation, Wang et al. [16]
proposed a joint spectral, spatial and temporal transformer for
hyperspectral image change detection, named SST-Former.
Considering that the CD task commonly has the problem of
class imbalance (i.e., unchanged samples far outnumber
changed samples), Mou et al. [42] explored the one-class CD
and proposed a data-enclosing-ball minimizing autoencoder
(DebM-AE) that is trained with reconstruction error and a
minimum volume criterion.

To alleviate the labeling cost, numerous unsupervised BCD
methods have been developed, especially for SAR data, as
obtaining a substantial number of labeled samples for SAR
data is challenging. Zhang et al. [43] proposed an
unsupervised approach to small area BCD using multi-scale
superpixel reconstruction and a two-stage centre-constrained
fuzzy c-means clustering algorithm. Subsequently, Zhang et
al. [44] proposed an unsupervised BCD method called
adaptive contourlet fusion clustering based on adaptive
contourlet fusion and fast non-local clustering for multi-
temporal SAR images. Nevertheless, unsupervised methods
usually exhibit low accuracy due to lacking constraints or
guidance during training. To tackle this limitation, Ji et al. [17]
proposed an end-to-end unsupervised BCD network based on
self-adaptive superpixel segmentation. Yan et al. [45]
proposed a domain knowledge-guided self-supervised learning
BCD by associating the domain knowledge of RS.

2) Multimodal BCD: Currently, the amount of data available
in various modalities has increased rapidly with the
development of new types, and additional numbers, of sensors
and platforms [46], [47], [48], [49], [50]. The availability and
quality of unimodal data are often constrained in specific
scenarios. Additionally, many practical applications require
fine temporal resolution, such as military reconnaissance and
disaster assessment, whereas acquiring multi-temporal
unimodal data usually requires a long period. In this context,
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Fig. 1. The SCD paradigms of unimodal and multimodal data. (a) unimodal data and (b) multimodal data.

multimodal BCD brings obvious utility.

Some multimodal BCD research focused on supervised
methods. For example, Lv et al. [51] proposed a hierarchical
attention feature fusion (HAFF) -based network by integrating
multi-scale convolution fusion filters to explore the global
semantic features of the targets of interest from multiple
perspectives. Because pairing and annotating multimodal RS
images is both expensive and time-consuming, much research
has aimed to develop unsupervised methods for multimodal
BCD. These unsupervised multimodal BCD methods can be
divided broadly into three classes: classification,
transformation and discrimination. The classification methods
first classify multimodal images. Subsequently, the derived
classification outcomes can be compared directly to identify
changes, such as the multidimensional evidential reasoning
method, post-classification comparison method and compound
classification method [52], [53]. Since unsupervised
classification models struggle to obtain accurate classification
results, the classification methods are susceptible to the
accumulation of classification errors [54].

In general, the core objective of transformation methods is
to make the multimodal images comparable. Most
transformation methods aim to either transfer “incomparable”
images to a common domain or transform one image to the
domain of another, thereby rendering them “comparable” [55].
The former transformation approaches can be categorized into:
1) feature space-based methods [56], [57], [58], and 2) DL-
based methods [59], [60], [61]. The latter transformation
approaches can be viewed as image regression or image
translation, and can be categorized into: 1) classical signal-
processing methods [62], [63], [64] and 2) DL-based methods
[65], [66], [67].

The discrimination methods are an emerging approach. The
methods are intuitive and represented by self-supervised
contrastive learning methods [2], [68], [69], which
discriminate the characteristics between the dual stream
outputs of the network by designing appropriate positive and
negative samples and a loss function. When the distance
between the positive and negative samples is maximized while
the loss is minimized, one obtains the best model, thereby
inferring the difference image and change map [45], [2].

The above BCD works have greatly expanded the CD
method library and enhanced CD applicability in various
scenarios. However, they do not provide the semantic
properties of the changed targets, which are in great demand in
engineering applications.

B. Semantic Change Detection

Nowadays, representative methods exist for unimodal SCD.
Daudt et al. [26] proposed four SCD strategies, among which
the two most effective strategies are HRSCD-str3 and -str4.
The str3 fuses bitemporal data early and inputs them into the
CD branch, while str4 is based on str3 and appends the
features extracted by the LSS encoder into the CD decoder.
Mou et al. [5] proposed a recurrent convolutional neural
network architecture, which is trained to learn a joint spectral-
spatial-temporal feature representation in a unified framework
for CD in multispectral images. These two works have
sparked enthusiasm for subsequent SCD research. Zheng et al.
[31] proposed the ChangeMask by exploring two inductive
biases: sematic-change causal relationship and temporal
symmetry. Xia et al. [70] proposed a deep Siamese post-
classification fusion network to alleviate the accumulation of
misclassification errors in post-classification method. Ding et
al. [29] summarized four feasible CNN architectures for the
SCD. These derivative researches exhibit higher accuracy.

In addition, many researchers believe that multi-level
feature interaction benefits the performance of SCD task.
Wang et al. [32] proposed an approach characterized by two
attentive feature aggregation schemes that handle cross-level
features in different processes. Guo et al. [30] designed a
similarity-aware attention flow network (SAAN). The SAAN
incorporates a similarity-guided attention flow module with
deeply supervised similarity optimization to achieve effective
change detection. Zhang et al. [71] presented the VFM-
ReSCD architecture, which combines vision foundation
models and multi-level decoder for SCD on RS images to
learn sufficient LCLU transition information.

By summarizing the related works for the SCD task, we
found that no DL-based methods related to multimodal SCD
have been proposed. However, given the massive amount of
multimodal data in current engineering applications, there is a
need for methods capable of efficiently obtaining high-
precision semantic changes for LCLU. Therefore, constructing
a high-performance SCD method suitable for both multimodal
and unimodal data is of great significance for increasing the
influence and applicability of SCD.

To deal with the above limitations, we aimed to develop a
method suitable for both multimodal and unimodal SCD.
Rethinking related SCD methods, we found that the
architecture commonly adopted in the SCD task is a three-
branch structure, as shown in Fig. 1 (a). The bitemporal
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Fig. 2. Overview of the MSCD-Net.

unimodal data passes through two LSS branches and one BCD
branch, outputting the following five products: bitemporal

semantic segmentation maps M. and M., binary change map
M., bitemporal semantic change maps M. and MZ..

Although some existing methods have achieved a good
performance, most of them do not focus on mining deep
difference features in the CD branch and, rather, rely too
heavily on the features extracted by the LSS branch. This is
reflected in the CD decoder, which typically processes the
semantic features extracted by the LSS branch through simple
convolution blocks [28], [72], [26], [30], [32], concatenation
or mapping [31], [29], [5], before outputting the binary
changes. In addition, most existing SCD methods use a patch-
based pure convolutional architecture, which cannot model
long-range correlations [26], [31], [28], [29], [71], [5], [30],
[32], [72]. This leads to an excessive focus on specific local
details and difficulty in capturing global context.
Consequently, the generated change maps often contain many
missed detections and false alarms.

[II. METHODOLOGY

First, we conceived a paradigm for multimodal SCD by
considering the key components and challenges of multimodal
data processing, as shown in Fig. 1 (b). Its main characteristics
include: 1) multiple Siamese encoders that extract features
from multimodal data; 2) a module dedicated to the fusion of
multimodal features; 3) a SCD decoder responsible for
extracting global context and modeling the intrinsic
association between semantic features and change features. In
this way, the model not only receives the semantic features
extracted by the LSS branch but also incorporates the fused
features, thereby avoiding over-reliance on semantic features
and increasing the quality of difference features and the
robustness of the change maps.

Subsequently, we proposed the MSCD-Net based on the
conceived paradigm for multimodal SCD. An overview of the
MSCD-Net is shown in Fig. 2. It contains two Siamese
encoders corresponding to the two input data with different
modalities, which extract multi-scale features from the
multimodal data. Two multimodal fusion blocks (MFBs) are
built to fuse the multimodal features. The multimodal
semantic distillation (MSD) module and LSS predictor are
responsible for distilling the high-quality multi-scale land

semantic features and predicting semantic map, respectively.
A semantic difference modeling (SDM) module is designed to
aggregate and refine multi-scale semantic difference features.
The SCD predictor outputs the binary change map. Finally, the
SCD map is derived by the binary change map and bitemporal
land semantic maps.

During the optimization process, we designed four different
loss functions to provide extensive supervision signals,
involving the semantic map, the BCD map, the semantic
consistency and the SCD map. All modules collaborate to
distill, fuse and enhance various features embedded in the
multimodal data and guide the model to learn numerous task-
specific patterns, thereby enabling the model to acquire
profound knowledge for SCD.

A. Encoder

The purpose of the encoder is to extract multimodal features
preliminarily. We employ two weight-shared networks (i.e.,
Siamese network) for each modal data to extract features of
each modality independently at different times. Let X and Y be
the data in different modalities, we have F' =E,(X') and

G =E,(Y"), where X' and Y’ are the input modalities X
and Y at time ¢ respectively; E  (-) denotes the encode

function, which can be implemented with most mainstream
architectures like the CNN or Transformer; F and G! are

the output features with respect to modalities X and Y at scale
s and at time ¢, respectively.

Noteworthy, traditional encoders in image processing with
DL adopt downsampling at every stage to reduce
computational load and extract multi-scale features.
Nevertheless, this also causes a loss of local details, so a skip
connection from encoder to decoder is used to alleviate this
problem. Since the features extracted from multimodal data
differ greatly before and after fusion, retaining directly the
pre-fusion features for the post-fusion decoder will impair
performance. Therefore, we discard the downsampling
operation and skip connection in the encoder after s reaching 2,
to preserve details and more accurately identify boundaries
and small objects.

B. MFB

The function of MFB is to fuse the features extracted from
the multimodal data. For clarity of presentation, we illustrate
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the MFB pipeline at the first time (~=1), as shown in Fig. 3 (a).
The MFB contains three conv blocks and two cross-
attention blocks (CABs) to interact and fuse multimodal
features, with its operation defined as:
F' = CB(CAT(CAB(CB(CAT(F,,F,,F)),
CAT(F, FLLF)))
where CB(-), CAT(-), and CAB(-) represent the conv block,
the concatenation and the cross-attention block, respectively.
The features of any modality at the last three stages of the
encoder are initially merged through the conv block after
concatenating. Subsequently, cross-attention interactions are
performed to associate multimodal features globally. Then, the
multimodal features are concatenated into one feature, and the

M

fused features F," are output after being refined by a conv

block. The conv block is illustrated in Fig. 3 (b), which
comprises several ResConv blocks, a batch normalization and
a rectified linear unit (ReLU) activation function.

It should be noted that the attention mechanism in CAB is
not a vanilla cross-attention. In the CAB, the query Q and key
K come from the same modality, whereas the value V' comes
from another modality. By contrast, in the vanilla cross-
attention, the O comes from one modality, but the K and V
from another. Although this seems to be a minor difference,
the adopted attention mechanism retrieves information from
another modality based on its own correlation rather than the
correlation between itself and the other modality. Given that
the correlation between multimodal data or features is often
weak, but their spatial relationships are similar, this strategy is
more suitable for multimodal feature fusion.

C. MSD and LSS Predictor

The MSD module can be considered a semantic
segmentation sub-task, providing high-quality multi-scale land
cover semantic features for CD tasks. The pipeline of a single
MSD branch is illustrated in Fig. 4. The MSD module consists
of two stages, each corresponding to a different feature scale,
and both stages include a conv block and an upsampling
operation.

Due to the large feature size, a dilated convolution block is
utilized in the second stage to expand the convolutional

receptive field and enhance multi-scale context information.
Lastly, the semantic features F," are processed by LSS

predictor to generate the semantic segmentation maps M.

D. SDM and SCD Predictor

The structure of the SDM module is shown in Fig. 5 (a).
SDM takes as input the bitemporal features and multi-scale
fused semantic features generated by the MSD and MFB
modules. These features are merged through differentiation
and concatenation operations to form a unified feature, which
is then fed into the Semantic Difference Decoder (SDD) for
joint modeling of both semantic and change features.

The SDD (see Fig. 5 (b)) we built is similar to the
Transformer architecture, but the main difference is that SDD
uses multilayer embedding, semantic-aware attention (SAA),
shortcut with linear projection (LP) and upsampling. The
multilayer embedding outputs feature embeddings suitable for
SAA processing through multiple convolutional layers, while
the upsampling converts feature scales.

In SAA, long-range associations and global information can
be perceived in the entire image by performing attention
operations in overlapped windows, which means that more
samples are used for calculation and the associations between
all targets can be obtained. This mechanism produces
semantically strong and contextually rich difference
representations and suppresses pseudo-change. The distinction
between different categories is further expanded through
multiplication and convolution operations.

Since deep features usually lack details, retaining the pre-
fusion features in the post-fusion decoder weakens the feature
quality and the final accuracy. To deal with this deficiency, we
designed a shortcut operation with LP in SDD. This operation
not only preserves high-quality features from the previous step,
but also offers greater flexibility in reconstructing details. In
particular, the linear projected embedding in the SAA is a
weighted sum with globally long-range semantic association,
and the semantic embedding is further strengthened through
the conv block so that the SDD can reconstruct fine semantic
difference features.

Algorithm 1. Forward of MSCD-Net
Input: multimodal data X’ and Y’

Operation:

1: F' and G! are extracted from E,(X') and E,(Y"),
respectively.

2: F' is derived by fusing F and G! with MFB

3: E'" and F, are generated via MSD, and then F," is
transformed to M by the LSS predictor

4: F)', F" and F,' are integrated via SDM and SCD
predictor to produce M .

50 Mg, BC
M. is determined by comparing M., and M.,
Output: M., M., , M,.. M!

is derived by masking Mg with M ., and then

sSC»

In this way, the semantic features and difference features in
the spatiotemporal domain are jointly modeled by the
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Fig. 5. The structure of the (a) SDM and (b) SDD modules.

interaction, differentiation and fusion of multi-temporal spatial
features, and the dependency between the semantic features
and the difference features is explored thoroughly. Multi-level
recurrent aggregation can integrate the feature representations
of wvarious scales and dimensions, refine the semantic
differences and enhance the CD robustness. Finally, the BCD

map M . is produced by processing the ultimate difference
feature F, through the SCD predictor. After we obtain M
and M,., Mg, and M . can be readily derived. The

forward of MSCD-Net can be summarized as Algorithm 1.

E. Loss Function

We adopted four types of loss functions for MSCD-Net:
semantic segmentation loss L, binary change detection loss
L,. , semantic consistency loss L. and semantic change
detection loss L., . The semantic segmentation loss £, can

be estimated by the cross-entropy between the bitemporal
predicted land cover semantic maps and target labels, i.e.,

Lss ZE(/:;S"'LZS)

. . (2)
=-E (MSl log(softmax (M})) + M log(softmax (M, ))) ,

where M and ]\;[; denote the predicted and target semantic

map at time ¢, respectively.
The binary change detection loss £,. can be calculated by

the binary cross-entropy with the predicted and target binary
change map M. and M. as follows:

Lye =My log(l_MBC)"‘(I_MBC)IOg(MBC)~ (3)

The semantic consistency loss £y can be estimated with

the My, M and M., i.e.,

1-cos(M{, M),  My.=0
{max(O, cos(Mg, M3)), My.=1
The L. synergistically increases the accuracy of LSS and

BCD by ensuring that the bitemporal semantic predictions in
unchanged regions are as consistent as possible, while
minimizing the similarity of bitemporal predictions in changed
regions.

Additionally, the semantic change detection loss L., is

“)

derived by the predicted semantic change map M. and target
M., ie.,
Lsep = Bllsep) (©))
where
_ {O.S(MSC ~My )y, for| Mg - Mg |<y
P My - M |05y, ’

and yis a balance coefficient that ranges in the interval (0, +o0).
Finally, we obtain the total loss £ as follows:

Ly =L+ Lye + Lye + Lsep - (7

These four loss functions provide comprehensive

supervision signals, and their collaboration fosters a closer

relationship between semantic and difference features.

Consequently, the model can achieve accurate results in all
LSS, BCD and SCD outputs.

(6)

otherwise

IV. EXPERIMENTS AND RESULTS

In this section, we conducted experiments on both
multimodal and unimodal datasets to evaluate the performance
of the proposed MSCD-Net. All experiments were performed
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on a single PC equipped with an Intel Core 19-10850K CPU
operating at a clock rate of 3.6 GHz and two NVIDIA
GeForce RTX 3090 GPUs.

A. Description of Datasets

1) SMARS-SCD: The SMARS-SCD multimodal dataset
contains pairs of scenes with urban changes, and it was built
based on the SMARS dataset [73]. The SMARS dataset is
simulated based on the topographies of two European cities,
Paris and Venice, and includes two pairs of scenes named
SParis and SVenice, respectively. These scenes come with
associated orthoimages and DSMs. The dataset features two
different spatial resolutions of 30 cm and 50 cm, in which
urban land cover is classified into five categories: building,
streets, trees, lawns and others. The sizes of both the SParis
and SVenice rasters with 30 cm spatial resolution are 5600 x
5600 pixels, and their sizes with 50 cm resolution are 4500 x
3560 pixels and 5600 x 5600 pixels, respectively.

The labels for the BCD and SCD maps were derived by
calculating the difference between the bitemporal labels of the
land semantic maps. The division methods and parameters for
training, validation and test sets in all scenes are consistent
with those recommended by the original SMARS dataset. The
window size is 512 x 512 and the stride is 256 x 256. The
SMARS-SCD dataset includes rasters in GeoTIFF format for
all maps and contains six types of files: optical images, DSM,
semantic label, semantic change area (SCA) label, BCD label
and SCD label. The optical images are rendered in 24-bit RGB
format, the DSMs are stored with float precision, and
reference labels as discrete integers.

2) SECOND: The semantic change detection (SECOND)
dataset [27] employs semantic labeling and targets six distinct
object types for annotation: ground, trees, low vegetation,
water, buildings and playgrounds. This dataset sources its
optical imagery from multiple platforms and sensors, featuring
4,662 pairs of aerial images with spatial resolutions ranging

TABLE I
EVALUATION METRICS FOR THE LSS, BCD AND SCD OUTPUTS

Task  Metric Equation

mloU = E(IoU)

IoU= TP/(TP + FP+TN)
Kappa =(OA—PE)/(1-PE)
_ TP+ TN
TP+ TN +FP+FN

(TP +FN)(TP + FP) + (TN + FP)(TN + FN)

(TP +TN +FN + FP)?

The equation of cloU is the same as the IoU, but only
for the change class.

bmloU =(IoU,, +I0U,)/2
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LSS
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cloU

N N
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N N N N
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Pro=— 12 __
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N N N
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from 0.5 to 3 m. All images have a size of 512 x 512 pixels.
The dataset was divided randomly into training, validation and
test sets in a ratio of 7:1:2.

3) OSCD-S1S2: The OSCD-S1S2 dataset contains Sentinel-
1 SAR and Sentinel-2 multispectral data collected from 24
cities around the world from 2015 to 2018. The SAR data
include VV and VH polarization with a spatial resolution of
10 m. The multispectral data include 13 bands with the
multiple spatial resolutions of Sentinel-2. The labels indicate
binary change.

B. Comparison Methods

We selected leading existing unimodal SCD and BCD
methods for comparison. For unimodal SCD methods, we
concatenated the multimodal data along the channel dimension
before inputting them into these methods. For unimodal BCD
methods, we not only performed the same concatenation
operation, but also replaced all the loss functions with those
used in MSCD-Net to adapt them to the multimodal SCD task.
The selected unimodal SCD methods contain SAAN [30],
CLAFA [32], ChangeMask [31], HRSCD-str4 and -str3 [26],
and ResNet-LSTM [5]. The selected unimodal BCD methods



include FC-Siam-conv and FC-EF [74]. On the SECOND
dataset, more advanced methods—including MTSCD [75],
SMNet [76] and EGMS-Net [77]—were adopted to ensure a
fairer and more comprehensive comparison.

On the OSCD-S1S2 dataset, we selected the unimodal BCD
methods of STADE [78], DKSSCD-EF [45] and SiamUnet-
diff-EF [74]. Additionally, the multimodal BCD methods
including SiamU-conc [79], HFA-PANet [80] and Semi-MCD
[81] were also evaluated.

C. Implementation Details and Evaluation Metrics

1) Implementation details: We constructed the encoders
using the classic ResNet-34 model to balance efficiency and
accuracy. For both the SMARS-SCD and SECOND datasets,
we used a small batch size of 2 for training and 4 for testing
due to the large input image size (512 x 512 pixels). Our data
augmentation strategy included random rotations and flipping
while loading image pairs. Performance was measured on all
datasets by calculating evaluation metrics on the test set.
Moreover, the balance coefficient yin £ ., was setto 1. We

employed an optimization algorithm based on stochastic
gradient descent to train MSCD-Net. The learning rate,
initially set at 0.1, was decayed by 10% every 2 epochs. The
weight decay and momentum coefficients were set to Se-4 and
0.9, respectively.

2) Evaluation Metrics: In the experiments, we not only
compared the accuracy of the final SCD results, but also
collected the accuracy of the intermediate LSS and BCD
outputs (M and M ). Specifically, two metrics, i.e., mean

intersection over union (mloU) and Cohen’s Kappa coefficient
for LSS (Kappa), were used to evaluate the performance of
LSS quantitatively. Four metrics, i.e., IoU for change class
(cIoU), balanced mloU (bmloU), Cohen’s Kappa coefficient
for CD (KC) and F1 score (F1), were used for the BCD. For
SCD, we used two comprehensive quality metrics, i.e.,
separated kappa (SeK) and F1 score for SCD (Fscd), to
measure the performance quantitatively.

Let O ={g,} be the confusion matrix, where g, denotes

the number of pixels predicted as class i while the true label is
classj (i, j) €{0,1,---,N} (0 indicates unchanged). To exclude

the true positive no-change pixels, whose number is dominant,
we let g, =g, but without g,, . Then, we can derive all the

above metrics, with the equations presented in Table 1. A
larger value means better performance for all metrics.

D. Results and Analysis

1) SMARS-SCD dataset. The metric statistics of all methods
on the SMARS-SCD dataset are listed in Tables II to V. Due
to space limitations, we present the visualized outputs of
representative methods on four input pairs in Fig. 6. The
visualized outputs are shown in Figs. 7 to 10. From Tables II
to V and Figs. 7 to 10, we obtain the following insights:

1) The proposed MSCD-Net shows optimal performance

across all scenes, outperforming other methods in SCD,
BCD and LSS outputs. Overall, small or linear objects
are more accurately identified, the boundaries of
changed areas are more precise, and semantic changes
are identified with improved accuracy.

TABLE 1T

METRIC STATISTICS ON THE SPARIS 30 CM OF THE SMARS-SCD DATASET
LSS BCD SCD

Method 10 Kappa | cloU bmloU KC __F1 | SeK Fsed
MSCD-Net | 88.53 93.25 |94.63 96.72 96.64 97.24|82.21 93.64
CLAFA 85.83 91.42 193.13 95.65 95.68 96.44|78.24 92.25
SAAN 78.59 87.01 [94.45 96.61 96.52 97.14|76.03 89.28
HRSCD-str4 | 83.24 89.84 [93.54 96.04 95.93 96.6676.09 90.12
ChangeMask |75.72 84.42 |93.92 96.28 96.18 96.86|76.22 89.94
HRSCD-str3 | 41.64 50.12 {91.96 95.04 94.86 95.80|56.26 77.33
FC-Siam-conv |79.67 87.23 |92.16 9524 95.06 95.93|73.65 89.67
ResNet-LSTM | 79.86 87.14 [90.96 94.48 94.25 95.27|71.56 89.28
FC-EF 71.75 80.55 |87.26 92.23 91.68 93.20|62.79 85.58

TABLE III

METRIC STATISTICS ON THE SPARIS 50 CM OF THE SMARS-SCD DATASET. *
SIGNIFIES USING THEIR ORIGINAL LOSS FUNCTIONS

Method LSS BCD SCD
mloU Kappa | cloU bmloU KC F1 | SeK Fscd
MSCD-Net | 82.44 89.77 [91.92 95.01 94.83 95.79|74.06 90.19
CLAFA 77.76 85.95 190.45 94.07 93.81 94.94(69.12 87.64
SAAN 75.55 84.26 {89.33 93.40 93.08 94.36|67.64 87.57
HRSCD-str4 | 73.20 83.41 [91.28 94.56 94.31 95.35]|66.86 85.01
ChangeMask | 71.33 81.99 |90.53 94.11 93.86 95.03 (66.18 85.15
HRSCD-str3 | 61.07 72.28 [81.85 88.49 87.35 90.14|51.41 78.09
ResNet-LSTM | 68.75 81.14 |86.14 91.36 90.81 92.55|57.05 81.33
FC-Siam-conv |73.06 83.89 |87.08 91.92 91.48 93.13(61.03 83.96
FC-EF 61.81 74.15 |84.35 90.25 89.58 91.51(52.60 79.13
FC-Siam-conv* 86.39 91.57 91.04 92.69
FC-EF* 81.98 88.85 87.94 90.23
TABLE IV

METRIC STATISTICS ON THE SVENICE 30 CM OF THE SMARS-SCD DATASET. *
SIGNIFIES USING THEIR ORIGINAL LOSS FUNCTIONS

Method LSS BCD SCD
mloU Kappa | cloU bmloU KC F1 | SeK Fscd
MSCD-Net | 86.97 92.96 |93.28 9543 95.3 96.52|79.48 92.93
CLAFA 81.76 89.78 191.96 94.48 94.28 95.81|74.92 90.66
SAAN 79.73 87.97 [92.42 94.79 94.63 96.06|73.74 89.28
HRSCD-str4 | 79.34 88.27 |91.34 93.99 93.77 95.47|72.76 89.31
ChangeMask | 81.68 89.16 |91.92 94.45 94.28 95.8 [73.16 89.28
HRSCD-str3 | 63.33 77.07 |82.50 87.81 86.18 90.41|53.26 80.81
ResNet-LSTM | 68.42 82.05 |85.02 89.85 89.34 91.90|61.24 85.52
FC-Siam-conv |79.86 88.35 |88.90 92.47 92.10 94.12|68.91 88.89
FC-EF 60.08 75.42 (8543 89.83 89.18 92.14|55.61 79.57
FC-Siam-conv* 89.04 92.53 92.17 94.20
FC-EF* 80.85 86.88 85.69 89.28
TABLE V
METRIC STATISTICS ON THE SVENICE 50 CM OF THE SMARS-SCD DATASET
LSS BCD SCD
Method mloU Kappa | cloU bmloU KC F1 | SeK Fscd
MSCD-Net | 72.06 84.51 |{90.78 93.94 93.69 95.16|67.25 85.55
CLAFA 69.58 84.36 [87.09 91.64 91.16 93.10|63.59 86.44
SAAN 71.18 84.06 [87.33 91.48 90.98 93.17[62.24 84.88
HRSCD-str4 | 67.08 81.22 [87.09 91.67 91.02 93.11 [62.07 84.83
ChangeMask |64.81 81.80 [86.95 91.49 90.96 93.02 |61.68 84.96
HRSCD-str3 |42.96 61.36 [71.81 80.92 78.32 83.59(28.76 62.30
ResNet-LSTM | 56.99 7490 |79.73 86.47 84.98 88.72|46.53 77.75
FC-Siam-conv |60.43 78.36 |83.77 89.32 88.52 91.17|53.74 80.46
FC-EF 46.38 63.31 |71.42 80.52 77.88 83.33]33.85 69.69

2) For almost all methods, the accuracy at 30 cm spatial
resolution is greater than that at 50 cm resolution within
the same city of the SMARS-SCD dataset. The primary
reason for this is that object edges at 50 cm resolution
are more blurred, and there are more small objects
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Fig. 7. Visualization of SC results on the scene of SParis 30 cm of SMARS-SCD dataset. The legend is the same in Figs. 7 to 10.
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Fig. 9. Visualization of SCD results on the scene of SVenice 30 cm of SMARS-SCD dataset.
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Fig. 10. Visualization of SCD results on the scene of SVenice 50 cm of SMARS-SCD dataset.
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Fig. 11. Visualization of SCD results on the SECOND dataset across representative methods.
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TABLE VI
METRIC STATISTICS ON THE SECOND DATASET

Method SeK Fscd bmloU

MSCD-Net 22.49 61.94 72.71

EGMS-Net 21.51 60.65 72.10

MTSCD 20.57 60.55 71.68

CLAFA 21.55 60.72 72.16

SMNet 20.29 60.34 71.95

SAAN 18.03 5791 70.48

HRSCD-str4 16.20 55.66 69.80

ChangeMask 17.89 57.60 70.41

HRSCD-str3 7.73 45.83 62.29

FC-Siam-conv 15.84 54.75 69.32

ResNet-LSTM 13.25 52.66 68.04

FC-EF 9.98 47.77 64.25

TABLE VII
BCD RESULTS ON THE OSCD-S1S2 DATASET

Method cloU KC F1
MSCD-Net 32.66 46.17 49.23
HFA-PANet 28.16 41.26 43.91
STADE 19.10 27.65 32.07
DKSSCD-EF 17.84 23.74 30.28
Semi-MCD 26.32 38.96 41.69
SiamU-conc 30.1 42.97 46.27
SiamUnet-diff-EF 22.25 34.01 36.34

MSCD-Net

3)

4)

5)

HFA-PANet DKSSCD-EF SiamU-conc  SiamU-diff-EF

(especially trees). In particular, the surface coverage of
SVenice 50 cm is more crowded and complex, with
more shadow coverage areas, resulting in the lowest
accuracy for SVenice 50 cm.

The intermediate output of BCD is more accurate than
that of LSS for most methods, indicating that the binary
classification task is easier than the multi-class
classification task on the SMARS-SCD dataset. Most of
the compared methods achieve high segmentation and
CD accuracy for buildings, but the accuracy is less
effective for trees, others and lawns due to the presence
of shadows and overlaps.

Because SMARS-SCD is a simulated dataset, it
maintains high data quality and minor intra-class
variance despite incorporating various illumination
conditions and effects. Consequently, most methods
achieve high accuracy, and the performance differences

in SCD among the unimodal methods are minimal.

Additionally, because most of the change areas in the
SMARS-SCD dataset are related to buildings and the
surface objects are relatively regular, there is little
difference in BCD accuracy among the various methods.
The accuracy of unimodal BCD methods (FC-Siam-
conc and FC-EF) was evaluated on the SParis 50 cm
and SVenice 30 cm datasets using their original loss
functions, without substitution with those employed in
MSCD-Net. The results reveal that MSCD-Net's loss



TABLE VIII
INPUT DATA IN DIFFERENT MODALITIES AND THEIR COMBINATION
SVenice 30 cm SParis 50 cm
Input
SeK Fscd mloU F1 | SeK Fsecd mloU Fl1
Opt 70.86 89.64 78.84 94.70 (69.13 86.96 73.85 95.46
DSM 51.27 79.33 59.79 89.96 |49.64 74.87 58.48 92.25
Opt & DSM 79.48 92.93 86.97 96.52 (74.06 90.19 82.44 95.79
TABLE IX
THE PERFORMANCE OF DIFFERENT FUSION STRATEGIES IN MFB
. SVenice 30 cm SParis 50 cm
Fusion strategy
SeK Fscd mloU F1 | SeK Fscd mloU Fl1
Siam-EF 73.83 89.41 71.21 96.01|68.16 87.82 77.15 94.48
Without CAB 69.98 88.85 77.64 94.64165.21 86.17 73.24 94.06

Conv block rep. CAB
Without conv block
Vanilla cross-attention

71.39 89.64 74.72 95.03 (67.66 87.46 76.01 94.43
72.09 89.43 71.40 95.44 (68.89 87.22 76.09 95.13
75.58 91.49 84.57 95.69(69.46 87.14 74.21 95.48
68.13 87.72 74.22 94.35|66.44 86.39 74.15 94.47
75.52 90.34 81.51 96.24|70.07 88.07 82.37 95.15
79.48 92.93 86.97 96.52|74.06 90.19 82.44 95.79
77.45 92.36 85.12 96.05|72.07 88.98 79.38 95.58

Fusion layers-1
Fusion layers-2
Fusion layers-3

Fusion layers -4

TABLE X
THE PERFORMANCE OF DIFFERENT STRUCTURES IN THE SDM

SVenice 30 cm SParis 50 cm

Structure

SeK Fscd mloU F1 [ SeK Fscd mloU Fl1

Only the features in scale
0

Contains the features in
scale 0 and 1

Contains the features
from scale 0 to 2
Without difference in
merge block

Without concatenation in
merge block

Conv block rep. SAA
SDD using vanilla
attention

Without window context
interaction

Shortcut without LP

76.84 91.38 83.75 96.24|70.38 87.56 76.53 95.63

78.56 92.50 84.63 96.41|72.74 89.3 80.59 95.68

79.48 92.93 86.97 96.52(74.06 90.19 82.44 95.79

73.23 89.29 81.93 95.81(66.76 87.25 75.72 94.13

77.21 92.06 85.29 96.07|71.49 89.19 80.94 95.23
74.64 91.09 79.01 95.56|67.88 87.9 80.14 94.28
76.49 91.27 82.88 96.17|70.15 88.77 79.81 94.84

78.10 91.57 83.02 96.36|72.24 89.99 81.88 95.12
78.53 91.72 86.36 96.71|72.87 89.48 80.16 95.66

function achieves superior accuracy compared to the
original loss functions, while simultaneously providing
LSS and SCD outputs.

2) SECOND dataset: We performed experiments on the
SECOND dataset to evaluate the generalization performance
of the MSCD-Net on the unimodal SCD dataset. The results
are shown in Fig. 11, and accuracy metrics are listed in Table
VI. From these results, it is evident that the MSCD-Net
achieves the highest accuracy. MSCD-Net is more precise in
dividing the boundaries of different classes and excels in
identifying details, especially in scenes with complex spatial
coverage. Owing to the insufficient exploration of long-range
associations and global context, CLAFA and EGMS-Net still
lag behind MSCD-Net.

3) OSCD-S1S2 dataset: The results on OSCD-S1S2 dataset
are shown in Fig. 12, and metric statistics are listed in Table
VII. It can be seen that the cloU, KC and F1 of MSCD-Net
exceed the optimal comparison method by 2.88, 3.13 and 3.37,
respectively, indicating that our method is the most accurate
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TABLE X1
THE IMPACT OF DIFFERENT LOSS FUNCTIONS ON PERFORMANCE

. SVenice 30 cm SParis 50 cm
Loss function
SeK Fscd mloU Fl SeK Fscd mloU Fl
Ly & Ly 76.18 90.92 84.45 96.20 |69.82 87.02 76.11 95.66
+ Ly 78.69 91.81 8590 96.75 |72.94 89.29 80.33 95.78
+ Licp 78.25 91.51 84.01 96.71 |72.27 89.10 81.09 95.61
Four Losses 79.48 92.93 86.97 96.52 |74.06 90.19 82.44 95.79

on the OSCD-S1S2 dataset. This result also shows that
MSCD-Net has outstanding performance across different
modalities and maintains proficiency in BCD tasks.

E. Ablation Study

To explore the role and working mechanism of important
modules within MSCD-Net, we conducted a variety of
ablation studies. We present typical results for the scenes of
SVenice 30 cm and SParis 50 cm from the SMARS-SCD
dataset.

1) Input data: First, we studied the impact of different input
modalities and multimodal combinations on model
performance. The results are shown in Table VIII. Note that,
for inputs of either Opt or DSM, the cross-attention block in
MEFB is replaced by a self-attention block, and MFB operates
without concatenation at the end, outputting bitemporal
features. We observed that the SeKs of using only DSM are
51.27 and 49.64 on SVenice 30 cm and SParis 50 cm,
respectively; while the SeKs of using only optical data are
70.86 and 69.13 on corresponding scenes, showing suboptimal
accuracy. By contrast, the combination of optical data with
DSM yields superior accuracy, with all indicators reaching
their highest values and the SeKs showing a significant
improvement. This finding underscores the effectiveness of
multimodal data fusion for common Earth observation tasks.

2) Fusion strategy in MFB: Next, we evaluated the
performance of different fusion strategies in the MFB module;
the results are shown in Table IX. Note that the Siam-EF
means that after the multimodal data from the same temporal
phase are concatenated, they are inputted into a Siamese
encoder; the subsequent structure remains consistent with the
unimodal input. “Conv block rep. CAB” means that the CAB
is replaced by the conv block. From Table IX, we can derive
the following insights:

1) Among all fusion strategies, those employing vanilla
cross-attention or Siam-EF demonstrate intermediate
accuracy, performing neither at the lowest nor highest
levels observed. This indicates that these intuitive
strategies can also achieve competitive performance.
Compared with the conv block, CAB outputs higher
accuracy.

2) The number of fusion layers positively correlates with
performance up to the fourth layer. The reason is that a
large gap exists among the multimodal original data or
shallow features, making it challenging to integrate
them into high-quality features. However, when the
number of fusion layers reaches 4, the subsequent MSD
and SDM modules need to start from the feature in scale
1. This results in only 1 and 2 sub-blocks in the MSD



TABLE XII
THE PERFORMANCE OF REPRESENTATIVE METHODS WITH SDD
SVenice 30 cm SParis 50 cm SECOND

Method SeK  Fsed mloU  FI | SeK  Fsed mloU  FI | SeK  Fsed bmloU
CLAFA 7492 90.66 81.76 9581 | 69.12 87.64 7776 9494 | 2155 60.72 72.16
CLAFA + SDD 76.85 9136 83.67 9625 | 71.17 8898 8037 952 | 22.14 6133 7258
HRSCD-str4 7276 8931 7934 9547 | 66.86 8501 732 9535 | 162  55.66 69.80
HRSCD-str4 + SDD 7593 91.16 8273 96.02 | 70.59 88.44 79.25 9521 | 18.03 5751 70.35
ChangeMask 7316 8928 81.68 958 | 66.18 85.15 7133 95.03 | 17.89 57.60 70.41
ChangeMask + SDD 7444 89.94 81.89 96.18 | 6841 8648 77.16 9529 | 1829 57.88 70.44
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and SDM, respectively, leading to insufficient capacity
to refine semantic and difference features and thereby
reducing overall accuracy.

3) Structure of SDM: The impact of different structures of
the SDM module on performance is shown in Table X. From
this table, one can observe that aggregating more scales of
semantic and difference features is more beneficial for
enhancing performance. In multimodal feature merging, the
difference operation contributes more to the final SCD
accuracy than concatenation. The convolutional block does
not increase accuracy as much as the proposed SAA, which
outperforms vanilla attention. Additionally, window context
interaction and shortcuts with LP in the SDD slightly improve
performance.

4) Loss function: We studied the impact of different loss
functions on performance; the obtained statistical metrics are
listed in Table XI. The results show that both £, and L.,
can increase overall performance when added to the two basic
losses of the SCD task, L and L., . The collaboration of all

four losses results in the highest accuracy.

5) Feature learning ability and compatibility of SDD:
Finally, we transferred the SDD module to other methods to
evaluate its intrinsic feature learning ability and compatibility.
We replaced the original CD decoder of these target methods
with the SDD. The accuracy metrics on the SVenice 30 cm,
SParis 50 cm, and SECOND datasets are shown in Table XII.
We observe that after incorporating the SDD, the SeKs of
CLAFA, HRSCD-str4 and ChangeMask increased by at least
1.93, 3.17 and 1.28, respectively, on the SVenice 30 cm and
SParis 50 cm datasets. On the SECOND dataset, the SeKs of
these methods increased by 0.59, 1.83 and 0.4, respectively.
The HRSCD-str4 method, which is entirely based on the UNet
network with a simple structure and feature extraction process,
showed the most significant accuracy increase after using
SDD. The results demonstrate that SDD possesses strong
intrinsic feature learning ability and compatibility. It can
leverage long-range associations and global information,
thoroughly explore the dependence between semantic features
and difference features, and effectively improve the quality of
semantic difference features and SCD results across multiple
methods.

6) Sensitivity of Hyperparameters: We conducted sensitivity
analysis of batch size and balance coefficient y, as illustrated
in Fig. 13. The experimental results reveal a positive
correlation between SeK and batch size, with this relationship
being pronounced on the lower-resolution SParis 50 cm
dataset. Interestingly, even-numbered batch sizes consistently
demonstrate higher accuracy compared to their adjacent odd-

numbered counterparts. Due to hardware memory constraints,
our evaluation was limited to batch sizes < 5. Regarding the
balance coefficient, our analysis indicates minimal accuracy
variation within the range of (0,10), but a significant
performance degradation occurs when balance coefficient
exceeds 10. Based on these findings, we recommend
implementing the balance coefficient within the range of [0.25,
8] and selecting the maximum feasible batch size according to

available hardware memory capacity.

—=— SVenice 30 cm —o— SParis 50 cm
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Fig. 13. Sensitivity of (a) batch size and (b) balance coefficient (the horizontal
axis uses log2 scale).

V. CONCLUSION

SCD is an important, but challenging task in Earth
observation. With the proliferation of sensor types, platforms
and data volumes, as well as the continuous expansion of
application scenarios, the demand for multimodal SCD
methods is increasingly urgent. Thus, we proposed the first
DL-based multimodal SCD method, named MSCD-Net. The
MSCD-Net contains two Siamese encoders to extract multi-
scale features from multimodal data. Two MFBs are built to
fuse the multimodal features. The MSD module and LSS
predictor are responsible for distilling high-quality multi-scale
land semantic features and predicting the semantic map,
respectively. A SDM module is designed to aggregate and
refine multi-scale semantic difference features, while a SDD
module jointly models semantic and difference features.
Moreover, a loss function incorporating four distinct
contributions is developed to provide extensive guidance. All
modules collaborate to distill, fuse and enhance various
features embedded in the multimodal data, guiding the model
to learn delicate SCD patterns.

Experimental results confirm that the MSCD-Net achieves
highest accuracy on both multimodal and unimodal SCD
datasets. The SDD has strong feature learning ability and
compatibility, can be used in multiple existing methods and
significantly increases accuracy. These findings reveal the
potential of MSCD-Net to advance the development and
unification of SCD methods.



This research serves as a pioneering effort in multimodal
SCD. However, constrained by the scarcity of available
datasets, the multimodal data types employed in this work lack
diversity. In the future, we will create a multimodal dataset
incorporating authentic point clouds, optical, SAR and other
modalities, aiming to provide the community with a high-
quality benchmark for evaluating remote sensing multimodal
tasks.
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