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Abstract—Semantic change detection (SCD) involves temporal 
changes and spatial semantics. Its working principle and 
processing flow usually include land semantic segmentation (LSS) 
and binary change detection (BCD). Due to its significant impact 
and practical value, SCD has received consistently wide attention 
in Earth observation. Nowadays, remote sensing data in various 
modalities are proliferating, calling for an urgent need to develop 
intelligent algorithms for multimodal remote sensing data. 
However, no efficient multimodal SCD methods exist currently. 
To address this limitation, this work proposes the first deep 
learning-based multimodal SCD method: MSCD-Net. MSCD-Net 
extracts multi-scale semantic and difference features after fusing 
multimodal features, and then aggregates and refines these 
features to output high-quality semantic segmentation and 
change maps. Additionally, a semantic difference decoder (SDD) 
module is designed to model semantic and difference features 
jointly. It can be integrated with existing methods to increase 
accuracy. Experimental results demonstrate that MSCD-Net 
achieves state-of-the-art performance on both multimodal and 
unimodal SCD datasets, and SDD has strong feature learning 
ability and compatibility. These findings imply that MSCD-Net is 
expected to promote the development and application of 
multimodal SCD. 

 
Index Terms—Land semantic segmentation, change detection, 

multimodal data, semantic change detection, remote sensing 
 

I. INTRODUCTION 

EMANTIC change detection (SCD) is a specialized task 
within change detection (CD) that provides detailed 
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information on land-cover/land-use (LCLU) changes. SCD 
involves spatial semantics and temporal changes, with its 
principles and workflow typically including land semantic 
segmentation (LSS) and binary change detection (BCD). 
Consequently, SCD plays a significant role in, and fulfills the 
extensive requirements of, land resource surveys, emergency 
response, disaster monitoring, military reconnaissance, map 
updating and various other scenarios [1], [2], [3]. SCD has 
experienced significant growth in recent years, driven by rapid 
advances in computing power, artificial intelligence and 
contributions from the research community [4], [5], [6]. 

BCD has been consistently the most common and widely 
researched sub-task of CD. Early BCD methods included 
image difference, ratio and log operations [7]. During the 
same period, the intuitive and effective post-classification 
comparison method emerged. These methods leveraged the 
spectral properties of remote sensing (RS) data to identify 
changes by comparing images from different time points. 
Subsequently, more sophisticated algorithms, such as those 
based on decision trees, CVA [8], MAD [9] and MRF [10] 
were developed. These methods are primarily data-driven, 
often utilizing small datasets tailored to specific types or 
scenarios. They focus on analyzing the distribution patterns of 
changes in specific images based on physical characteristics, 
such as reflectance and spatial shape [11], [12]. As machine 
learning began to be incorporated into change detection, 
transform-based and object-based methods became gradually 
mainstream. Representative methods involve IR-MAD [13], 
RCVA [14], SFA and DSFA [15]. These methods, 
characterized by weak artificial intelligence, provide a more 
nuanced understanding of changes and enhance BCD accuracy 
through manual feature engineering. In the past decade, deep 
learning (DL) -based methods have been developed and 
applied widely, such as SST-Former [16], SSN-Siam-conc 
[17], STS-STAM-CMR [18] and FDCNN [19]. These 
methods excel at automatically learning features from large 
datasets, reducing the need for well-designed manual features 
and significantly improving BCD accuracy and efficiency. 

The purpose of BCD is only to identify the location and 
area of changes, without concern for the property of those 
changes. However, in many situations, it is crucial not only to 
know where changes have occurred, but also to understand the 
detailed semantics before and after the change event. This is 
the focus of SCD. Due to the complexities and challenges of 
the SCD task compared to BCD, early SCD studies focused 
primarily on small areas and single LCLU categories, with 
very limited public datasets available [20], [21]. As a result, 
SCD developed more slowly and produced fewer research 
results than BCD. Remarkably, there has been no DL-based 
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SCD method for a long time. During this period, high-impact 
traditional SCD methods include ICC [22] PCA [23], 
C2VA[24] and S2CVA[25]. This situation changed after the 
HRSCD [26] and SECOND [27] datasets were introduced in 
2019. Many DL-based SCD methods, such as TCRPN [28], 
Bi-SRNet [29], SAAN [30], ChangeMask [31] and CLAFA 
[32], have been proposed within the last few years. These 
methods produced outstanding performance compared to 
traditional SCD methods. 

Modality refers to the way in which something expressed or 
perceived. Each source or form of information can be regarded 
as a modality. Multimodal involves multiple modalities, which 
typically manifests in three forms: 1) multimedia data 
describing the same object, such as images, audio, text, and 
videos; 2) the same type of media data from different sensors, 
such as image data captured by various imaging sensors; 3) 
symbolic representations and information with distinct 
structural or representational characteristics, such as different 
languages [33]. With the expansion of sensor types, platforms 
and data volumes, coupled with the extension of application 
scenarios, demand for the development of high-performance 
algorithms has become imperative [34], [35], [36], [37]. 
Additionally, the explosion of “big data” and the rise of strong 
artificial intelligence methodologies have established 
multimodality as a significant trend. Generally, unimodal data 
processing can be seen as a special case of multimodal 
processing. Therefore, constructing a high-performance SCD 
method suitable for both multimodal and unimodal data is 
crucial for enhancing the influence and applicability of SCD. 
However, after reviewing the current state of SCD 
development, we found that predominantly existing methods 
were designed to process merely unimodal RS data but neglect 
multimodal RS data, and no DL-based research has been 
conducted on multimodal SCD. As a result, the development 
of multimodal SCD has not kept pace with community 
demands. 

In light of this motivation, we propose a pioneering 
multimodal SCD method, MSCD-Net, which unifies the SCD 
tasks for multimodal and unimodal RS data. The MSCD-Net 
can efficiently process multimodal or unimodal data and 
output accurate SCD maps in a fully end-to-end manner. 
Furthermore, we build a practical semantic difference decoder 
(SDD) that features strong intrinsic feature learning ability and 
high compatibility. The SDD can be integrated with existing 
methods to enhance accuracy significantly. Experimental 
results manifest that MSCD-Net achieves the highest accuracy 
across multimodal and unimodal SCD datasets, and it holds 
significant potential to advance the development and 
unification of SCD methods. 

The remainder of this paper is organized as follows. Section 
II details related work. Section III elaborates on the principles 
of MSCD-Net. Section IV demonstrates the experiments and 
results, while Section V draws the conclusions. 

II. RELATED WORK 

A. Binary Change Detection 

1) Unimodal BCD: Recently, there has been much research 
on unimodal BCD. Typically, Zhang and Shi [19] pioneered a 

high-resolution RS image CD framework using a deep feature 
difference convolutional neural network (FDCNN), which 
learns the deep features and then generates multi-scale and 
multi-depth feature difference maps for CD. Liu et al. [38] 
presented the local restricted CNN (LRCNN) to detect 
changed areas in multi-temporal polarimetric synthetic 
aperture radar (SAR) images by imposing a local spatial 
constraint on the output layer of the CNN. However, high-
resolution RS BCD remains challenging due to the complexity 
of objects in the scene. To this end, Li et al. [39] proposed a 
deep-supervised dual discriminative metric network (SDMNet) 
by combining a discriminative implicit metric module and 
multiple losses. The SDMNet can effectively distinguish 
changes of interest and pseudo-changes in high-resolution RS 
images. Cao et al. [40] proposed a multi-scale weakly 
supervised learning method, which utilizes a large number of 
single-temporal high-resolution images and image-level labels 
to detect changes in built-up area. 

Because BCD pipelines based on CNNs fail to adequately 
capture long-range concepts in space-time, Chen et al. [41] 
proposed a bitemporal image transformer (BIT) to model 
contexts within the spatial-temporal domain. Furthermore, 
CNN methods often focus on the extraction of spatial 
information, but ignore important spectral and temporal 
sequences. To deal with this limitation, Wang et al. [16] 
proposed a joint spectral, spatial and temporal transformer for 
hyperspectral image change detection, named SST-Former. 
Considering that the CD task commonly has the problem of 
class imbalance (i.e., unchanged samples far outnumber 
changed samples), Mou et al. [42] explored the one-class CD 
and proposed a data-enclosing-ball minimizing autoencoder 
(DebM-AE) that is trained with reconstruction error and a 
minimum volume criterion. 

To alleviate the labeling cost, numerous unsupervised BCD 
methods have been developed, especially for SAR data, as 
obtaining a substantial number of labeled samples for SAR 
data is challenging. Zhang et al. [43] proposed an 
unsupervised approach to small area BCD using multi-scale 
superpixel reconstruction and a two-stage centre-constrained 
fuzzy c-means clustering algorithm. Subsequently, Zhang et 
al. [44] proposed an unsupervised BCD method called 
adaptive contourlet fusion clustering based on adaptive 
contourlet fusion and fast non-local clustering for multi-
temporal SAR images. Nevertheless, unsupervised methods 
usually exhibit low accuracy due to lacking constraints or 
guidance during training. To tackle this limitation, Ji et al. [17] 
proposed an end-to-end unsupervised BCD network based on 
self-adaptive superpixel segmentation. Yan et al. [45] 
proposed a domain knowledge-guided self-supervised learning 
BCD by associating the domain knowledge of RS. 

2) Multimodal BCD: Currently, the amount of data available 
in various modalities has increased rapidly with the 
development of new types, and additional numbers, of sensors 
and platforms [46], [47], [48], [49], [50]. The availability and 
quality of unimodal data are often constrained in specific 
scenarios. Additionally, many practical applications require 
fine temporal resolution, such as military reconnaissance and 
disaster assessment, whereas acquiring multi-temporal 
unimodal data usually requires a long period. In this context,  
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multimodal BCD brings obvious utility.  
Some multimodal BCD research focused on supervised 

methods. For example, Lv et al. [51] proposed a hierarchical 
attention feature fusion (HAFF) -based network by integrating 
multi-scale convolution fusion filters to explore the global 
semantic features of the targets of interest from multiple 
perspectives. Because pairing and annotating multimodal RS 
images is both expensive and time-consuming, much research 
has aimed to develop unsupervised methods for multimodal 
BCD. These unsupervised multimodal BCD methods can be 
divided broadly into three classes: classification, 
transformation and discrimination. The classification methods 
first classify multimodal images. Subsequently, the derived 
classification outcomes can be compared directly to identify 
changes, such as the multidimensional evidential reasoning 
method, post-classification comparison method and compound 
classification method [52], [53]. Since unsupervised 
classification models struggle to obtain accurate classification 
results, the classification methods are susceptible to the 
accumulation of classification errors [54].  

In general, the core objective of transformation methods is 
to make the multimodal images comparable. Most 
transformation methods aim to either transfer “incomparable” 
images to a common domain or transform one image to the 
domain of another, thereby rendering them “comparable” [55]. 
The former transformation approaches can be categorized into: 
1) feature space-based methods [56], [57], [58], and 2) DL-
based methods [59], [60], [61]. The latter transformation 
approaches can be viewed as image regression or image 
translation, and can be categorized into: 1) classical signal-
processing methods [62], [63], [64] and 2) DL-based methods 
[65], [66], [67]. 

The discrimination methods are an emerging approach. The 
methods are intuitive and represented by self-supervised 
contrastive learning methods [2], [68], [69], which 
discriminate the characteristics between the dual stream 
outputs of the network by designing appropriate positive and 
negative samples and a loss function. When the distance 
between the positive and negative samples is maximized while 
the loss is minimized, one obtains the best model, thereby 
inferring the difference image and change map [45], [2]. 

The above BCD works have greatly expanded the CD 
method library and enhanced CD applicability in various 
scenarios. However, they do not provide the semantic 
properties of the changed targets, which are in great demand in 
engineering applications.  

B. Semantic Change Detection 

Nowadays, representative methods exist for unimodal SCD. 
Daudt et al. [26] proposed four SCD strategies, among which 
the two most effective strategies are HRSCD-str3 and -str4. 
The str3 fuses bitemporal data early and inputs them into the 
CD branch, while str4 is based on str3 and appends the 
features extracted by the LSS encoder into the CD decoder. 
Mou et al. [5] proposed a recurrent convolutional neural 
network architecture, which is trained to learn a joint spectral-
spatial-temporal feature representation in a unified framework 
for CD in multispectral images. These two works have 
sparked enthusiasm for subsequent SCD research. Zheng et al. 
[31] proposed the ChangeMask by exploring two inductive 
biases: sematic-change causal relationship and temporal 
symmetry. Xia et al. [70] proposed a deep Siamese post-
classification fusion network to alleviate the accumulation of 
misclassification errors in post-classification method. Ding et 
al. [29] summarized four feasible CNN architectures for the 
SCD. These derivative researches exhibit higher accuracy. 

In addition, many researchers believe that multi-level 
feature interaction benefits the performance of SCD task. 
Wang et al. [32] proposed an approach characterized by two 
attentive feature aggregation schemes that handle cross-level 
features in different processes. Guo et al. [30] designed a 
similarity-aware attention flow network (SAAN). The SAAN 
incorporates a similarity-guided attention flow module with 
deeply supervised similarity optimization to achieve effective 
change detection. Zhang et al. [71] presented the VFM-
ReSCD architecture, which combines vision foundation 
models and multi-level decoder for SCD on RS images to 
learn sufficient LCLU transition information.  

By summarizing the related works for the SCD task, we 
found that no DL-based methods related to multimodal SCD 
have been proposed. However, given the massive amount of 
multimodal data in current engineering applications, there is a 
need for methods capable of efficiently obtaining high-
precision semantic changes for LCLU. Therefore, constructing 
a high-performance SCD method suitable for both multimodal 
and unimodal data is of great significance for increasing the 
influence and applicability of SCD.  

To deal with the above limitations, we aimed to develop a 
method suitable for both multimodal and unimodal SCD. 
Rethinking related SCD methods, we found that the 
architecture commonly adopted in the SCD task is a three-
branch structure, as shown in Fig. 1 (a). The bitemporal 

 
Fig. 1. The SCD paradigms of unimodal and multimodal data. (a) unimodal data and (b) multimodal data. 
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unimodal data passes through two LSS branches and one BCD 
branch, outputting the following five products: bitemporal 

semantic segmentation maps 1
SM  and 2

SM , binary change map 

BCM , bitemporal semantic change maps 1
SCM  and 2

SCM . 

Although some existing methods have achieved a good 
performance, most of them do not focus on mining deep 
difference features in the CD branch and, rather, rely too 
heavily on the features extracted by the LSS branch. This is 
reflected in the CD decoder, which typically processes the 
semantic features extracted by the LSS branch through simple 
convolution blocks [28], [72], [26], [30], [32], concatenation 
or mapping [31], [29], [5], before outputting the binary 
changes. In addition, most existing SCD methods use a patch-
based pure convolutional architecture, which cannot model 
long-range correlations [26], [31], [28], [29], [71], [5], [30], 
[32], [72]. This leads to an excessive focus on specific local 
details and difficulty in capturing global context. 
Consequently, the generated change maps often contain many 
missed detections and false alarms.  

III. METHODOLOGY 

First, we conceived a paradigm for multimodal SCD by 
considering the key components and challenges of multimodal 
data processing, as shown in Fig. 1 (b). Its main characteristics 
include: 1) multiple Siamese encoders that extract features 
from multimodal data; 2) a module dedicated to the fusion of 
multimodal features; 3) a SCD decoder responsible for 
extracting global context and modeling the intrinsic 
association between semantic features and change features. In 
this way, the model not only receives the semantic features 
extracted by the LSS branch but also incorporates the fused 
features, thereby avoiding over-reliance on semantic features 
and increasing the quality of difference features and the 
robustness of the change maps. 

Subsequently, we proposed the MSCD-Net based on the 
conceived paradigm for multimodal SCD. An overview of the 
MSCD-Net is shown in Fig. 2. It contains two Siamese 
encoders corresponding to the two input data with different 
modalities, which extract multi-scale features from the 
multimodal data. Two multimodal fusion blocks (MFBs) are 
built to fuse the multimodal features. The multimodal 
semantic distillation (MSD) module and LSS predictor are 
responsible for distilling the high-quality multi-scale land 

semantic features and predicting semantic map, respectively. 
A semantic difference modeling (SDM) module is designed to 
aggregate and refine multi-scale semantic difference features. 
The SCD predictor outputs the binary change map. Finally, the 
SCD map is derived by the binary change map and bitemporal 
land semantic maps. 

During the optimization process, we designed four different 
loss functions to provide extensive supervision signals, 
involving the semantic map, the BCD map, the semantic 
consistency and the SCD map. All modules collaborate to 
distill, fuse and enhance various features embedded in the 
multimodal data and guide the model to learn numerous task-
specific patterns, thereby enabling the model to acquire 
profound knowledge for SCD. 

A. Encoder 

The purpose of the encoder is to extract multimodal features 
preliminarily. We employ two weight-shared networks (i.e., 
Siamese network) for each modal data to extract features of 
each modality independently at different times. Let X and Y be 

the data in different modalities, we have E ( )t t
s XF X  and 

E ( )t t
s YG Y , where tX  and tY  are the input modalities X 

and Y at time t, respectively; E( ) ( )  denotes the encode 

function, which can be implemented with most mainstream 

architectures like the CNN or Transformer; t
sF  and t

sG  are 

the output features with respect to modalities X and Y at scale 
s and at time t, respectively. 

Noteworthy, traditional encoders in image processing with 
DL adopt downsampling at every stage to reduce 
computational load and extract multi-scale features. 
Nevertheless, this also causes a loss of local details, so a skip 
connection from encoder to decoder is used to alleviate this 
problem. Since the features extracted from multimodal data 
differ greatly before and after fusion, retaining directly the 
pre-fusion features for the post-fusion decoder will impair 
performance. Therefore, we discard the downsampling 
operation and skip connection in the encoder after s reaching 2, 
to preserve details and more accurately identify boundaries 
and small objects.  

B. MFB 

The function of MFB is to fuse the features extracted from 
the multimodal data. For clarity of presentation, we illustrate 

 
Fig. 2. Overview of the MSCD-Net. 
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the MFB pipeline at the first time (t=1), as shown in Fig. 3 (a). 
The MFB contains three conv blocks and two cross-

attention blocks (CABs) to interact and fuse multimodal 
features, with its operation defined as: 

 
1f 1 1 1

2 4 3 2

2 2 2
4 3 2

CB(CAT(CAB(CB(CAT( , , ),

  CAT( , , )))))

F F F F

F F F


 (1) 

where CB(), CAT(), and CAB() represent the conv block, 
the concatenation and the cross-attention block, respectively. 
The features of any modality at the last three stages of the 
encoder are initially merged through the conv block after 
concatenating. Subsequently, cross-attention interactions are 
performed to associate multimodal features globally. Then, the 
multimodal features are concatenated into one feature, and the 

fused features f
2

tF  are output after being refined by a conv 

block. The conv block is illustrated in Fig. 3 (b), which 
comprises several ResConv blocks, a batch normalization and 
a rectified linear unit (ReLU) activation function.  

It should be noted that the attention mechanism in CAB is 
not a vanilla cross-attention. In the CAB, the query Q and key 
K come from the same modality, whereas the value V comes 
from another modality. By contrast, in the vanilla cross-
attention, the Q comes from one modality, but the K and V 
from another. Although this seems to be a minor difference, 
the adopted attention mechanism retrieves information from 
another modality based on its own correlation rather than the 
correlation between itself and the other modality. Given that 
the correlation between multimodal data or features is often 
weak, but their spatial relationships are similar, this strategy is 
more suitable for multimodal feature fusion.  

C. MSD and LSS Predictor 

The MSD module can be considered a semantic 
segmentation sub-task, providing high-quality multi-scale land 
cover semantic features for CD tasks. The pipeline of a single 
MSD branch is illustrated in Fig. 4. The MSD module consists 
of two stages, each corresponding to a different feature scale, 
and both stages include a conv block and an upsampling 
operation. 

Due to the large feature size, a dilated convolution block is 
utilized in the second stage to expand the convolutional 

receptive field and enhance multi-scale context information. 

Lastly, the semantic features f
0

tF are processed by LSS 

predictor to generate the semantic segmentation maps 
S
tM . 

D. SDM and SCD Predictor 

The structure of the SDM module is shown in Fig. 5 (a). 
SDM takes as input the bitemporal features and multi-scale 
fused semantic features generated by the MSD and MFB 
modules. These features are merged through differentiation 
and concatenation operations to form a unified feature, which 
is then fed into the Semantic Difference Decoder (SDD) for 
joint modeling of both semantic and change features. 

The SDD (see Fig. 5 (b)) we built is similar to the 
Transformer architecture, but the main difference is that SDD 
uses multilayer embedding, semantic-aware attention (SAA), 
shortcut with linear projection (LP) and upsampling. The 
multilayer embedding outputs feature embeddings suitable for 
SAA processing through multiple convolutional layers, while 
the upsampling converts feature scales. 

In SAA, long-range associations and global information can 
be perceived in the entire image by performing attention 
operations in overlapped windows, which means that more 
samples are used for calculation and the associations between 
all targets can be obtained. This mechanism produces 
semantically strong and contextually rich difference 
representations and suppresses pseudo-change. The distinction 
between different categories is further expanded through 
multiplication and convolution operations. 

Since deep features usually lack details, retaining the pre-
fusion features in the post-fusion decoder weakens the feature 
quality and the final accuracy. To deal with this deficiency, we 
designed a shortcut operation with LP in SDD. This operation 
not only preserves high-quality features from the previous step, 
but also offers greater flexibility in reconstructing details. In 
particular, the linear projected embedding in the SAA is a 
weighted sum with globally long-range semantic association, 
and the semantic embedding is further strengthened through 
the conv block so that the SDD can reconstruct fine semantic 
difference features. 

Algorithm 1. Forward of MSCD-Net 

Input: multimodal data tX  and tY  

Operation: 

1: t
sF  and t

sG  are extracted from E ( )t
X X  and E ( )t

Y Y , 

respectively. 

2: f
2

tF  is derived by fusing t
sF  and t

sG  with MFB 

3: f
1

tF  and f
0

tF  are generated via MSD, and then f
0

tF  is 

transformed to S
tM  by the LSS predictor 

4: f
2

tF , f
1

tF  and f
0

tF  are integrated via SDM and SCD 

predictor to produce BCM  

5: SCA
tM  is derived by masking S

tM  with BCM , and then 

SCM  is determined by comparing 1
SCAM  and 2

SCAM  

Output: SCM , SCA
tM , BCM , S

tM  

In this way, the semantic features and difference features in 
the spatiotemporal domain are jointly modeled by the 

(a) 

 
(b) 

Fig. 3. The structure of the (a) MFB module and (b) conv block. 

 

 
Fig. 4. The pipeline of the MSD module. 
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interaction, differentiation and fusion of multi-temporal spatial 
features, and the dependency between the semantic features 
and the difference features is explored thoroughly. Multi-level 
recurrent aggregation can integrate the feature representations 
of various scales and dimensions, refine the semantic 
differences and enhance the CD robustness. Finally, the BCD 

map BCM  is produced by processing the ultimate difference 

feature CDF  through the SCD predictor. After we obtain S
tM  

and BCM , SCA
tM  and SCM  can be readily derived. The 

forward of MSCD-Net can be summarized as Algorithm 1. 

E. Loss Function 

We adopted four types of loss functions for MSCD-Net: 

semantic segmentation loss SS , binary change detection loss 

BC , semantic consistency loss SC  and semantic change 

detection loss SCD . The semantic segmentation loss SS  can 

be estimated by the cross-entropy between the bitemporal 
predicted land cover semantic maps and target labels, i.e., 

 

 

1 2
SS SS SS

1 1 2 2
S S S S

ˆ ˆlog(softmax( )) log(softmax( )) ,M M M M

 

  





  
 (2) 

where S
tM  and S

ˆ tM  denote the predicted and target semantic 

map at time t, respectively. 

The binary change detection loss BC  can be calculated by 

the binary cross-entropy with the predicted and target binary 

change map BCM  and BCM̂  as follows: 

 BC BC BC BC BC
ˆ ˆlog(1 ) (1 ) log( )M M M M    . (3) 

The semantic consistency loss SC  can be estimated with 

the 1
SM , 2

SM  and BCM , i.e., 

 

1 2
S S BC

SC 1 2
S S BC

1 cos( , )          =0

max(0,cos( , )) =1

M M M

M M M

 
 


，

，
 . (4) 

The SC  synergistically increases the accuracy of LSS and 

BCD by ensuring that the bitemporal semantic predictions in 
unchanged regions are as consistent as possible, while 
minimizing the similarity of bitemporal predictions in changed 
regions.  

Additionally, the semantic change detection loss SCD  is 

derived by the predicted semantic change map SCM  and target 

SCM̂ , i.e.,  

 SCD SCD( )l   (5) 

where 
2

SC SC SC SC

SCD

SC SC

ˆ ˆ0.5( ) / ,    for | |

ˆ| | 0.5 ,     otherwise

M M M M
l

M M

 



   
 

 

,   (6) 

and  is a balance coefficient that ranges in the interval (0, +∞). 

Finally, we obtain the total loss T  as follows: 

 T SS BC SC SCD        . (7) 

These four loss functions provide comprehensive 
supervision signals, and their collaboration fosters a closer 
relationship between semantic and difference features. 
Consequently, the model can achieve accurate results in all 
LSS, BCD and SCD outputs.  

IV. EXPERIMENTS AND RESULTS 

In this section, we conducted experiments on both 
multimodal and unimodal datasets to evaluate the performance 
of the proposed MSCD-Net. All experiments were performed 

 
(a) 

 
(b) 

Fig. 5. The structure of the (a) SDM and (b) SDD modules. 
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on a single PC equipped with an Intel Core i9-10850K CPU 
operating at a clock rate of 3.6 GHz and two NVIDIA 
GeForce RTX 3090 GPUs. 

A. Description of Datasets 

1) SMARS-SCD: The SMARS-SCD multimodal dataset 
contains pairs of scenes with urban changes, and it was built 
based on the SMARS dataset [73]. The SMARS dataset is 
simulated based on the topographies of two European cities, 
Paris and Venice, and includes two pairs of scenes named 
SParis and SVenice, respectively. These scenes come with 
associated orthoimages and DSMs. The dataset features two 
different spatial resolutions of 30 cm and 50 cm, in which 
urban land cover is classified into five categories: building, 
streets, trees, lawns and others. The sizes of both the SParis 
and SVenice rasters with 30 cm spatial resolution are 5600  
5600 pixels, and their sizes with 50 cm resolution are 4500  
3560 pixels and 5600  5600 pixels, respectively.  

The labels for the BCD and SCD maps were derived by 
calculating the difference between the bitemporal labels of the 
land semantic maps. The division methods and parameters for 
training, validation and test sets in all scenes are consistent 
with those recommended by the original SMARS dataset. The 
window size is 512  512 and the stride is 256  256. The 
SMARS-SCD dataset includes rasters in GeoTIFF format for 
all maps and contains six types of files: optical images, DSM, 
semantic label, semantic change area (SCA) label, BCD label 
and SCD label. The optical images are rendered in 24-bit RGB 
format, the DSMs are stored with float precision, and 
reference labels as discrete integers.  

2) SECOND: The semantic change detection (SECOND) 
dataset [27] employs semantic labeling and targets six distinct 
object types for annotation: ground, trees, low vegetation, 
water, buildings and playgrounds. This dataset sources its 
optical imagery from multiple platforms and sensors, featuring 
4,662 pairs of aerial images with spatial resolutions ranging 

from 0.5 to 3 m. All images have a size of 512 × 512 pixels. 
The dataset was divided randomly into training, validation and 
test sets in a ratio of 7:1:2. 

3) OSCD-S1S2: The OSCD-S1S2 dataset contains Sentinel-
1 SAR and Sentinel-2 multispectral data collected from 24 
cities around the world from 2015 to 2018. The SAR data 
include VV and VH polarization with a spatial resolution of 
10 m. The multispectral data include 13 bands with the 
multiple spatial resolutions of Sentinel-2. The labels indicate 
binary change. 

B. Comparison Methods 

We selected leading existing unimodal SCD and BCD 
methods for comparison. For unimodal SCD methods, we 
concatenated the multimodal data along the channel dimension 
before inputting them into these methods. For unimodal BCD 
methods, we not only performed the same concatenation 
operation, but also replaced all the loss functions with those 
used in MSCD-Net to adapt them to the multimodal SCD task. 
The selected unimodal SCD methods contain SAAN [30], 
CLAFA [32], ChangeMask [31], HRSCD-str4 and -str3 [26], 
and ResNet-LSTM [5]. The selected unimodal BCD methods 

TABLE I 
EVALUATION METRICS FOR THE LSS, BCD AND SCD OUTPUTS 

 

Fig. 6. Visualization of representative input data on four scenes. 
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include FC-Siam-conv and FC-EF [74]. On the SECOND 
dataset, more advanced methods—including MTSCD [75], 
SMNet [76] and EGMS-Net [77]—were adopted to ensure a 
fairer and more comprehensive comparison. 

On the OSCD-S1S2 dataset, we selected the unimodal BCD 
methods of STADE [78], DKSSCD-EF [45] and SiamUnet-
diff-EF [74]. Additionally, the multimodal BCD methods 
including SiamU-conc [79], HFA-PANet [80] and Semi-MCD 
[81] were also evaluated.  

C. Implementation Details and Evaluation Metrics 

1) Implementation details: We constructed the encoders 
using the classic ResNet-34 model to balance efficiency and 
accuracy. For both the SMARS-SCD and SECOND datasets, 
we used a small batch size of 2 for training and 4 for testing 
due to the large input image size (512 × 512 pixels). Our data 
augmentation strategy included random rotations and flipping 
while loading image pairs. Performance was measured on all 
datasets by calculating evaluation metrics on the test set. 

Moreover, the balance coefficient  in 
SCD  was set to 1. We 

employed an optimization algorithm based on stochastic 
gradient descent to train MSCD-Net. The learning rate, 
initially set at 0.1, was decayed by 10% every 2 epochs. The 
weight decay and momentum coefficients were set to 5e-4 and 
0.9, respectively.  

2) Evaluation Metrics: In the experiments, we not only 
compared the accuracy of the final SCD results, but also 
collected the accuracy of the intermediate LSS and BCD 

outputs ( S
tM  and BCM ). Specifically, two metrics, i.e., mean 

intersection over union (mIoU) and Cohen’s Kappa coefficient 
for LSS (Kappa), were used to evaluate the performance of 
LSS quantitatively. Four metrics, i.e., IoU for change class 
(cIoU), balanced mIoU (bmIoU), Cohen’s Kappa coefficient 
for CD (KC) and F1 score (F1), were used for the BCD. For 
SCD, we used two comprehensive quality metrics, i.e., 
separated kappa (SeK) and F1 score for SCD (Fscd), to 
measure the performance quantitatively.  

Let { }ijQ q  be the confusion matrix, where ijq  denotes 

the number of pixels predicted as class i while the true label is 
class j ( , ) {0,1, , }i j N   (0 indicates unchanged). To exclude 

the true positive no-change pixels, whose number is dominant, 
we let ˆ

ij ijq q  but without 00q . Then, we can derive all the 

    
 

 

 
 

 
    
 

above  metrics, with the equations presented in  Table I. A
larger value means better performance for all metrics.

D. Results and Analysis

  1) SMARS-SCD dataset: The metric statistics of all methods 
on the SMARS-SCD dataset are listed in Tables II to V. Due 
to  space  limitations,  we  present  the  visualized  outputs of 
representative  methods  on  four  input  pairs  in  Fig.  6.  The 
visualized outputs are shown in Figs. 7 to 10. From Tables II 
to V and Figs. 7 to 10, we obtain the following insights:

1) The proposed MSCD-Net shows  optimal  performance
across all scenes, outperforming other methods in SCD, 
BCD  and  LSS  outputs.  Overall,  small  or  linear  objects 
are  more  accurately  identified,  the  boundaries  of 
changed  areas  are  more  precise,  and  semantic  changes 
are identified with improved accuracy. 

2) For almost all methods, the accuracy at 30 cm spatial 
resolution is greater than that at 50 cm resolution within 
the same city of the SMARS-SCD dataset. The primary 
reason for this is that object edges at 50 cm resolution 
are more blurred, and there are more small objects  
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Fig. 7. Visualization of SCD results on the scene of SParis 30 cm of SMARS-SCD dataset. The legend is the same in Figs. 7 to 10. 
 

 
Fig. 8. Visualization of SCD results on the scene of SParis 50 cm of SMARS-SCD dataset. 
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Fig. 9. Visualization of SCD results on the scene of SVenice 30 cm of SMARS-SCD dataset. 

 

 
Fig. 10. Visualization of SCD results on the scene of SVenice 50 cm of SMARS-SCD dataset. 

 



11 
 
 

 

 
 

 

 

  
  

 
 

 

(especially trees).  In particular,  the  surface coverage  of 
SVenice  50  cm  is  more  crowded  and  complex,  with 
more  shadow  coverage  areas,  resulting  in  the  lowest 
accuracy for SVenice 50 cm.

3) The  intermediate  output  of  BCD  is  more  accurate  than
that of LSS for most methods, indicating that the binary 
classification  task  is  easier  than  the  multi-class 
classification task on the SMARS-SCD dataset. Most of 
the  compared  methods  achieve high segmentation  and 
CD  accuracy  for  buildings,  but  the  accuracy  is less 
effective for trees, others and lawns due to the presence 
of shadows and overlaps.

4) Because SMARS-SCD  is  a  simulated  dataset,  it
maintains  high  data  quality  and  minor  intra-class 
variance  despite  incorporating  various  illumination 
conditions  and  effects.  Consequently,  most  methods 
achieve high accuracy, and the performance differences 
in  SCD among the unimodal methods are  minimal. 
Additionally,  because  most  of  the  change  areas  in  the 
SMARS-SCD  dataset  are  related  to  buildings  and  the 
surface  objects  are  relatively  regular,  there  is  little 
difference in BCD accuracy among the various methods.

5) The  accuracy  of  unimodal  BCD  methods  (FC-Siam-
conc  and  FC-EF)  was  evaluated  on  the  SParis  50  cm 
and  SVenice  30  cm  datasets  using  their  original  loss 
functions,  without  substitution  with  those  employed  in 
MSCD-Net.  The  results reveal that  MSCD-Net's  loss

 

 
Fig. 11. Visualization of SCD results on the SECOND dataset across representative methods. 

 

 
Fig. 12. Visualization of BCD results on the OSCD-S1S2 dataset across representative methods. White: true positives (TP); black: true negatives (TN); azure: 
false positives (FP); magenta: false negatives(FN). 
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function achieves superior accuracy compared to the 
original loss functions, while simultaneously providing 
LSS and SCD outputs. 

2) SECOND dataset: We performed experiments on the 
SECOND dataset to evaluate the generalization performance 
of the MSCD-Net on the unimodal SCD dataset. The results 
are shown in Fig. 11, and accuracy metrics are listed in Table 
VI. From these results, it is evident that the MSCD-Net 
achieves the highest accuracy. MSCD-Net is more precise in 
dividing the boundaries of different classes and excels in 
identifying details, especially in scenes with complex spatial 
coverage. Owing to the insufficient exploration of long-range 
associations and global context, CLAFA and EGMS-Net still 
lag behind MSCD-Net. 

3) OSCD-S1S2 dataset: The results on OSCD-S1S2 dataset 
are shown in Fig. 12, and metric statistics are listed in Table 
VII. It can be seen that the cIoU, KC and F1 of MSCD-Net 
exceed the optimal comparison method by 2.88, 3.13 and 3.37, 
respectively, indicating that our method is the most accurate 

    

 

  

 
  

 

 
 

  

 
  

   
 

 

  

 
 

  
 

 
 

 

 

on the OSCD-S1S2  dataset. This result  also  shows  that 
MSCD-Net  has  outstanding  performance across  different
modalities and maintains proficiency in BCD tasks.

E. Ablation Study

  To  explore  the  role  and  working  mechanism  of  important 
modules  within  MSCD-Net,  we  conducted  a  variety  of 
ablation  studies.  We  present  typical  results  for  the  scenes  of 
SVenice  30  cm  and  SParis 50  cm  from  the  SMARS-SCD 
dataset.

  1) Input data: First, we studied the impact of different input 
modalities  and  multimodal  combinations  on  model 
performance.  The  results  are  shown  in  Table VIII.  Note  that, 
for  inputs  of  either  Opt  or  DSM,  the  cross-attention  block  in 
MFB is replaced by a self-attention block, and MFB operates 
without  concatenation  at  the  end,  outputting  bitemporal 
features.  We  observed  that  the SeKs of  using  only  DSM are 
51.27  and  49.64 on SVenice  30  cm  and  SParis  50  cm, 
respectively; while  the SeKs of  using  only  optical  data are 
70.86 and 69.13 on corresponding scenes, showing suboptimal 
accuracy.  By  contrast,  the  combination  of  optical  data  with 
DSM  yields  superior  accuracy,  with  all  indicators  reaching 
their  highest  values  and  the  SeKs showing  a  significant 
improvement. This finding underscores  the effectiveness of 
multimodal data fusion for common Earth observation tasks.

2) Fusion  strategy  in  MFB: Next,  we  evaluated  the
performance of different fusion strategies in the MFB module;
the  results  are  shown  in  Table IX Note  that  the  Siam-EF.
means that after the multimodal data from the same temporal 
phase  are  concatenated,  they  are  inputted  into  a  Siamese 
encoder; the  subsequent  structure remains consistent  with the 
unimodal input. “Conv block rep. CAB” means that the CAB 
is replaced by the conv block. From Table IX, we can derive 
the following insights:

1) Among  all  fusion  strategies,  those employing  vanilla
cross-attention  or  Siam-EF  demonstrate  intermediate 
accuracy,  performing  neither  at  the lowest nor highest 
levels  observed. This  indicates  that  these intuitive 
strategies can also achieve competitive performance. 
Compared  with the conv  block, CAB outputs  higher 
accuracy.

2) The  number  of  fusion  layers  positively  correlates  with
performance up to the fourth layer. The reason is that a 
large  gap  exists  among the multimodal  original data  or 
shallow  features,  making  it  challenging  to  integrate 
them  into high-quality  features.  However,  when  the 
number of fusion layers reaches 4, the subsequent MSD 
and SDM modules need to start from the feature in scale 
1.  This  results  in  only  1  and  2  sub-blocks  in  the  MSD
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and SDM, respectively, leading to insufficient capacity 
to refine semantic and difference features and thereby 
reducing overall accuracy.  

3) Structure of SDM: The impact of different structures of 
the SDM module on performance is shown in Table X. From 
this table, one can observe that aggregating more scales of 
semantic and difference features is more beneficial for 
enhancing performance. In multimodal feature merging, the 
difference operation contributes more to the final SCD 
accuracy than concatenation. The convolutional block does 
not increase accuracy as much as the proposed SAA, which 
outperforms vanilla attention. Additionally, window context 
interaction and shortcuts with LP in the SDD slightly improve 
performance. 

4) Loss function: We studied the impact of different loss 
functions on performance; the obtained statistical metrics are 

listed in Table XI. The results show that both SC  and SCD  

can increase overall performance when added to the two basic 

losses of the SCD task, SS  and BCD . The collaboration of all 

four losses results in the highest accuracy. 
5) Feature learning ability and compatibility of SDD: 

Finally, we transferred the SDD module to other methods to 
evaluate its intrinsic feature learning ability and compatibility. 
We replaced the original CD decoder of these target methods 
with the SDD. The accuracy metrics on the SVenice 30 cm, 
SParis 50 cm, and SECOND datasets are shown in Table XII. 
We observe that after incorporating the SDD, the SeKs of 
CLAFA, HRSCD-str4 and ChangeMask increased by at least 
1.93, 3.17 and 1.28, respectively, on the SVenice 30 cm and 
SParis 50 cm datasets. On the SECOND dataset, the SeKs of 
these methods increased by 0.59, 1.83 and 0.4, respectively. 
The HRSCD-str4 method, which is entirely based on the UNet 
network with a simple structure and feature extraction process, 
showed the most significant accuracy increase after using 
SDD. The results demonstrate that SDD possesses strong 
intrinsic feature learning ability and compatibility. It can 
leverage long-range associations and global information, 
thoroughly explore the dependence between semantic features 
and difference features, and effectively improve the quality of 
semantic difference features and SCD results across multiple 
methods. 

6) Sensitivity of Hyperparameters: We conducted sensitivity 
analysis of batch size and balance coefficient γ, as illustrated 
in Fig. 13. The experimental results reveal a positive 
correlation between SeK and batch size, with this relationship 
being pronounced on the lower-resolution SParis 50 cm 
dataset. Interestingly, even-numbered batch sizes consistently 
demonstrate higher accuracy compared to their adjacent odd-

numbered counterparts. Due to hardware memory constraints, 
our evaluation was limited to batch sizes ≤ 5. Regarding the 

balance coefficient, our analysis indicates minimal accuracy 
variation within the range of (0,10), but a significant 
performance degradation occurs when balance coefficient 
exceeds 10. Based on these findings, we recommend 
implementing the balance coefficient within the range of [0.25, 
8] and selecting the maximum feasible batch size according to 
available hardware memory capacity. 
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Fig. 13. Sensitivity of (a) batch size and (b) balance coefficient (the horizontal 

axis uses log2 scale). 

V. CONCLUSION 

SCD is an important, but challenging task in Earth 
observation. With the proliferation of sensor types, platforms 
and data volumes, as well as the continuous expansion of 
application scenarios, the demand for multimodal SCD 
methods is increasingly urgent. Thus, we proposed the first 
DL-based multimodal SCD method, named MSCD-Net. The 
MSCD-Net contains two Siamese encoders to extract multi-
scale features from multimodal data. Two MFBs are built to 
fuse the multimodal features. The MSD module and LSS 
predictor are responsible for distilling high-quality multi-scale 
land semantic features and predicting the semantic map, 
respectively. A SDM module is designed to aggregate and 
refine multi-scale semantic difference features, while a SDD 
module jointly models semantic and difference features. 
Moreover, a loss function incorporating four distinct 
contributions is developed to provide extensive guidance. All 
modules collaborate to distill, fuse and enhance various 
features embedded in the multimodal data, guiding the model 
to learn delicate SCD patterns.  

Experimental results confirm that the MSCD-Net achieves 
highest accuracy on both multimodal and unimodal SCD 
datasets. The SDD has strong feature learning ability and 
compatibility, can be used in multiple existing methods and 
significantly increases accuracy. These findings reveal the 
potential of MSCD-Net to advance the development and 
unification of SCD methods.  
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This research serves as a pioneering effort in multimodal 

SCD. However, constrained by the scarcity of available 
datasets, the multimodal data types employed in this work lack 
diversity. In the future, we will create a multimodal dataset 
incorporating authentic point clouds, optical, SAR and other 
modalities, aiming to provide the community with a high-
quality benchmark for evaluating remote sensing multimodal 
tasks. 
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