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Abstract. Axions are hypothetical, very weakly interacting, low-mass particles that
remain popular candidates for dark matter. Most of the effort in the search for
axions has focussed on astrophysical sources, although the evolution of high-power laser
facilities has generated significant interest in “light shining through wall” experiments
where axions are produced in the laboratory. With this in mind, a lower bound on the
average number flux of axions produced by a laser wakefield accelerator is calculated
from the perspective of quantum theory. The new result is better behaved for very low
mass axions than the estimate of the average number flux obtained previously using
entirely classical considerations. In particular, it converges in the limit as the axion
mass tends to zero. Further calculation suggests the number flux of axions should be
tolerable at practical laboratory-scale distances from the source when accounting for
dispersion.

1. Introduction

Axions are hypothetical particles that were first proposed nearly 50 years ago in
the context of the Strong CP problem. Peccei and Quinn’s explanation [1] for CP
conservation in the strong interaction relies on a scalar field whose coupling to the
quarks has a global chiral U(1) symmetry. However, the scalar field has a non-zero
vacuum expectation value, breaking the U(1) symmetry, and the axion is the pseudo-
scalar Goldstone boson associated with this broken symmetry [2, 3]. Although the
first version of the QCD axion was ruled out by experiment, subsequent theoretical
developments [4, 5, 6] led to “invisible” QCD axions whose signatures are outside the
realm of high-energy particle colliders. However, their cosmological implications are
significant and they remain promising candidates for dark matter [7]. It is also notable
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that low-energy string field theory leads to a plethora of axions [8], including the QCD
axion.

Considerable effort has been invested in terrestrial searches for signatures of axions
over the last four decades. Most of the search effort has focussed on astrophysical
sources of axions; in particular, they should be present in the galactic dark matter halo
enveloping the Earth and they should be streaming from the Sun [9]. However, the
worldwide development of multi-petawatt laser facilities, such as ELI Beamlines [10]
in central Europe and the forthcoming upgrade to the UK’s Vulcan laser system [11],
offers an alternative paradigm in which axions produced from high-intensity photon
collisions can be sought. Proposed experiments in which axions are produced in the
overlap of a pair of high-intensity laser beams have been analysed [12, 13]. From
a general perspective, such schemes are examples of “light shining through wall”
experiments [14, 15], because axions are produced from high-intensity laser beams on
one side of a barrier and converted to photons on the other side of the barrier. The
ongoing ALPS II experiment [16] is state-of-the-art in traditional realisations of the
“light shining through wall” paradigm (see Ref. [17] for a recent summary of the status
of ALPS II). A recent discussion of the importance of “light shining through wall”
experiments and their potential for future development can be found in Ref. [18]. Other
aspects of axion physics that have been explored in the context of high-intensity lasers
include the effects of axions on QED vacuum polarization [19] and the implications of
a direct coupling between axions and electrons [20].

This article focusses on a variant of the “light shining through wall” approach in
which axions are produced inside the wake of a high-intensity laser pulse∥ propagating
through a magnetised underdense plasma [22]. In other words, the axions are produced
by a laser wakefield accelerator; see Ref. [23] for an overview of the physics of laser
wakefield acceleration. The laser pulse, accompanied by axions, exits the plasma and
is absorbed by a beam dump. However, the axions couple very weakly to matter; thus,
they propagate through the beam dump and enter a region where they are converted
to photons. The calculation in Ref. [22] is based on a classical analysis in which the
number flux of axions emerging from the plasma was estimated from their momentum
flux. The present article improves this estimate by re-examining axion production from
the perspective of quantum theory. More precisely, the axion field is regarded as a
quantum operator whilst, for simplicity, the quantum aspects of the electromagnetic
field are neglected. The electric field of the laser pulse’s wake and the field magnetising
the plasma are regarded as classical sources¶.

Unless otherwise specified, units are used in which the speed of light satisfies c = 1,
the reduced Planck constant satisfies ℏ = 1 and the permeability of the vacuum satisfies

∥ An alternative to using a high-intensity laser pulse was considered in Ref. [21], where the axions are
generated from the interaction of an electron beam with a plasma.
¶ A classical description is sufficient because, for practical purposes, the wake is essentially static in its
rest frame over a period given by the reciprocal of the laser photon frequency. Likewise, for practical
purposes, the applied magnetic field can be regarded as constant over the same period.
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µ0 = 1.

2. Energy density, momentum flux and number flux

From a general perspective, axions are produced in regions where strong electric and
magnetic fields overlap. However, the axion-photon coupling strength is weak and it is
reasonable to neglect the impact of the axions on their production when investigating
their production. In particular, the density of axions produced by the superposition of
an electric field E and a magnetic field B is first-order in the axion-photon coupling
strength g, whilst the corrections to the axion density due to the impact of the axions
on E and B is second-order in g. Thus, one can neglect second-order terms and treat
the source ρ = −gE ·B in the axion field equation as prescribed.

As discussed in Appendix A.2, a quantum treatment of the axion field leads to the
conclusion that the total four-momentum E0µ of axions produced by a classical source
ρ whose duration is finite is+

E0µ = lim
ti→−∞
tf→∞

⟨0, ti|Ê0µ(tf)|0, ti⟩

=

∫
d3k

16π3

kµ

ω

∣∣∣ ∫ dt

∫
d3x ρ(x, t) ei(k·x−ωt)

∣∣∣2. (1)

Furthermore, the total number four-current Eµ of axions produced by ρ is

Eµ = lim
ti→−∞
tf→∞

⟨0, ti|Êµ(tf)|0, ti⟩

=

∫
d3k

16π3

kµ

ω2

∣∣∣ ∫ dt

∫
d3x ρ(x, t) ei(k·x−ωt)

∣∣∣2. (2)

The above integrals are over all space, all time and all k-space, and the wave four-vector
kµ is given by (ω,k) with ω =

√
k2 +m2

Ψ. The mass of the axion is denoted mΨ.
The details of the quantum operators Ê0µ, Êµ and the quantum state |0, ti⟩ are given
in Appendix A.2.

As shown below, the one-dimensional nonlinear model of a laser wakefield
accelerator leads to analytically amenable integrals for E0µ and Eµ. Consider a laser
wakefield accelerator bathed in an ambient uniform magnetic field B aligned along the
direction of propagation of the laser pulse. The field B is switched on sometime in the
distant past and remains constant until it is switched off. For simplicity, all transient
effects, such as the electric field induced by the time dependence of the applied magnetic
field, are assumed negligible. Only the electric field of the wake trailing the laser pulse
will be included in E, and physical effects due to the finite length and width of the wake
will not be considered. Furthermore, the quasi-static approximation will be adopted
and, thus, the evolution of the wake will be neglected.
+ All of the integrals in this article are definite. Unless stated otherwise, all integrals are over the full
range of the integration variables.
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The laser and its wake propagate at speed v along the z-axis. Hence, the source
ρ in the axion field equation has the simple form ρ(x, t) = θ(−t)ϱ(z − vt), where
ϱ(ζ) = −gBE(ζ) with B constant and E(ζ) periodic in ζ = z−vt. The phase speed v of
the wake is, to first approximation, the group speed of the laser pulse; hence, 0 < v < 1.
The symbol θ denotes the Heaviside function, so the magnetic field is non-zero only for
t < 0.

The expression ρ(x, t) = θ(−t)ϱ(z − vt) yields∫
dt

∫
d3x ρ(x, t)ei(k·x−ωt) = 4π2δ(2)(k⊥)

iϱ̃ ∗(kz)

ω − kzv
(3)

where the wave vector k has been decomposed into its projection k⊥ = (kx, ky) in the
xy-plane and its component kz along the z-axis. The complex conjugate of the Fourier
transform

ϱ̃(kz) =

∫
dζ ϱ(ζ) e−ikzζ (4)

of ϱ(ζ) has been introduced, and the 2-dimensional Dirac delta function δ(2)(k⊥) =

δ(kx)δ(ky) emerges from the complex conjugate of the integrals∫
dx e−ikxx = 2πδ(kx),

∫
dy e−ikyy = 2πδ(ky). (5)

The integral ∫
dt θ(−t)e−i(ω−kzv)t = πδ(ω − kzv) +

i

ω − kzv
(6)

involving the Heaviside function is responsible for the denominator in (3). However, the
Dirac delta function in (6) does not contribute to (3) because, like the denominator in
(3), it is evaluated at ω − kzv. The angular frequency ω is strictly greater than kzv,
because v < 1, so the quantity ω − kzv is never zero.

Introducing (3) in (1) leads to the divergent result
∫
d2k δ(2)(k⊥)

2 = δ(2)(0) which,
at first glance, seems alarming. In fact, this divergence is inevitable because the wake
is arbitrarily wide in the above model. However, the divergence can be regularised by
relaxing the continuum limit (see Appendix A.4) and identifying 4π2δ(2)(0) with the
area A of the xy-plane using 4π2δ(2)(k⊥) =

∫
dx dy ei(kxx+kyy).

Likewise, the same approach regularises the divergence emerging from the integral
over kz. The electric field E(ζ) of the wake is periodic, so we express ϱ(ζ) as the Fourier
series

ϱ(ζ) =
∑
n

ϱn exp
(
2πin

ζ

l

)
(7)

where the sum is over all integers n. Hence, substituting (7) in (4) gives

ϱ̃(kz) = 2π
∑
n

ϱn δ
(
kz −

2πn

l

)
(8)
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since
∫
dζ e−i(kz−2πn/l)ζ = 2πδ(kz − 2πn/l). Thus, for example, the z component E03 of

the total four-momentum E0µ is

E03 = A

∫
dkz
2π

kz
2ω

1

(ω − kzv)2
|ϱ̃(kz)|2

= 2πA
∑
n,n′

ϱnϱ
∗
n′
k∥
2ω

1

(ω − k∥v)2
δ(k∥ − k′

∥) (9)

where k∥ = 2πn/l and k′
∥ = 2πn′/l have been introduced for convenience, ω =

√
k2
∥ +m2

Ψ

is understood and (1) has been used. However, 2πδ(0) is identified with the length L of
the z interval; hence, 2πAδ(k∥− k′

∥) is understood as V δnn′ , where δnn′ is the Kronecker
delta and V = AL is the volume of the spatial domain. The result

T 03 =
∑
n

k∥|ϱn|2

2ω(ω − k∥v)2
(10)

for T 03 = E03/V , i.e. the z-component of the average momentum flux, is well-behaved
in the limit as V tends to infinity. A similar calculation, again using (1), leads to the
expression

T 00 =
∑
n

|ϱn|2

2(ω − k∥v)2
(11)

for the average energy density T 00 = E00/V . Likewise, using (2), the expressions

T 0 =
∑
n

|ϱn|2

2ω(ω − k∥v)2
, (12)

T 3 =
∑
n

k∥|ϱn|2

2ω2(ω − k∥v)2
(13)

emerge for the average number density T 0 of axions and the z-component T 3 of their
average number flux. The x-component and y-component of both fluxes are zero because∫
d2k k⊥δ

(2)(k⊥)
2 = 0 using the regularisation described above. Indeed, the pointwise

dependence of the source has no preferred direction in the xy-plane (it is invariant
under rotation around the z-axis), so it cannot produce a vector whose projection in the
xy-plane is non-zero.

3. Source generated by a maximum amplitude plasma wave

The Fourier coefficient ϱn is determined by the relationship

ϱn = gB
me

γe

2πin

l
ξn (14)

following from ϱ = −gBE alongside the expression

E = −me

γe

dξ

dζ
(15)
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for the electric field E of the wake of the laser pulse, where meξ is the relativistic energy
of the plasma electrons in the wake, me is the rest mass of an electron and e is the
elementary charge. The coefficient ξn in the Fourier series

ξ(ζ) =
∑
n

ξn exp
(
2πin

ζ

l

)
(16)

and the period l of the wake when the electric field has its maximum amplitude satisfy

ξn ≈


4γ2

3
for n = 0,

−4γ2

π2n2
for n ̸= 0,

(17)

l ≈ 4
√
2γ

ωp

(18)

when γ ≫ 1, which is the situation in laser-driven (or particle beam-driven) wakefield
accelerators. The derivation of (15), (17) and (18) can be found in Ref. [22].

4. Analysis of the axion production

As shown in Appendix A.5, (10) coincides precisely with the expression for the cycle-
averaged energy flux obtained in Ref. [22]. This agreement follows because the source is
periodic, so the average can be calculated by integrating over any whole number of cycles.
Furthermore, in Ref. [22], the cycle-averaged number flux was estimated by dividing the
cycle-averaged energy flux by the relativistic energy mΨγ of an axion co-moving with the
plasma wave. However, the quantum theoretic approach adopted here naturally leads
to the expression (13) for the average number flux. Like the average momentum flux,
the average number flux can be understood as a cycle-averaged quantity; in particular,
it is the cycle-averaged number flux.

Substituting (17) and (18) in (12) and (13) yields the approximations

T 0 ≈ 16
√
2g2B2m2

e

e2ωpπ5
γ5/2

∑
n ̸=0

1

n2
√
n2 + σ2(

√
n2 + σ2 − nv)2

, (19)

T 3 ≈ 16
√
2g2B2m2

e

e2ωpπ5
γ5/2

∑
n ̸=0

1

n(n2 + σ2)(
√
n2 + σ2 − nv)2

(20)

for the average number density T 0 and average number flux T 3, where the variable σ,

σ =
mΨl

2π

≈ 2
√
2γ mΨ

πωp

, (21)

is the ratio of the wavelength l of the wake and the Compton wavelength 2π/mΨ (since
ℏ = 1 and c = 1) of the axion. The summations in (19) and (20) are over all of the
non-zero integers.



Quantum axion production by a laser wakefield accelerator 7

The estimate for the cycle-averaged number flux introduced in Ref. [22] diverges in
the limit as the axion mass tends to zero. However, (19) and (20) are both well-behaved
in this limit. Since

lim
σ→0

∑
n ̸=0

1

n2
√
n2 + σ2(

√
n2 + σ2 − nv)2

= 2(1 + v2)γ4

∞∑
n=1

1

n5

≈ 4γ4ζR(5) (22)

and

lim
σ→0

∑
n ̸=0

1

n(n2 + σ2)(
√
n2 + σ2 − nv)2

= 4vγ4

∞∑
n=1

1

n5

≈ 4γ4ζR(5) (23)

hold for γ ≫ 1, with ζR the Riemann zeta function, it follows

lim
σ→0

T 0 ≈ lim
σ→0

T 3

≈ (2γ)13/2g2B2m2
e

e2ωpπ5
ζR(5) (24)

using (19) and (20). We see that the beam of axions in the low mass limit, with γ ≫ 1,
is characterised by a lightlike number four-current.

Although the summation in (20) cannot be immediately expressed in closed form
for general σ, upper and lower bounds containing only elementary functions can be
readily obtained. Since∑

n ̸=0

1

n(n2 + σ2)(
√
n2 + σ2 − nv)2

= 4vγ4

∞∑
n=1

1√
n2 + σ2

1

(n2 + γ2σ2)2
(25)

and 1/
√
n2 + σ2 < 1, it follows f↓ < f < f↑ where

f =
∑
n ̸=0

1

n(n2 + σ2)(
√
n2 + σ2 − nv)2

, (26)

f↓ = 4vγ4

∞∑
n=1

1

(n2 + σ2)(n2 + γ2σ2)2
, (27)

f↑ = 4vγ4

∞∑
n=1

1

(n2 + γ2σ2)2
. (28)

The summations in f↓ and f↑ yield the expressions

f↓ =
πγ(1− 3γ2)σ coth(πγσ)− π2γ4v2σ2 csch2(πγσ) + 2πγ4σ coth(πσ)− 2γ4v4

γ4v3σ6
(29)

and

f↑ = v
π2γ2σ2 csch2(πγσ) + πγσ coth(πγσ)− 2

σ4
. (30)

Numerical investigation suggests f↓ is a better approximation to f than f↑ in the
parameter range of interest (γ ≫ 1 and γσ ≲ 10). Since (17) and (18) are only valid
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for γ ≫ 1, it is reasonable to substitute σ = s/γ in (29) and focus on the dominant
behaviour in γ. The resulting approximation to the average number flux is

T 3 ≈ (2γ)13/2g2B2m2
ec

4

µ2
0e

2ωpπ5

12 + 2π2s2 − 3π2s2 csch2(πs)− 9πs coth(πs)

12 s6
(31)

where

s =
(2γ)3/2mΨc

2

πℏωp

(32)

and the speed of light c, reduced Planck constant ℏ and permeability of the vacuum µ0

have been restored.

5. Estimate of the axion flux downstream of the plasma

In the experimental set-up proposed in Ref. [22], the axions produced by the laser
wakefield accelerator exit the plasma and, for the purpose of detection, convert into
photons in a transverse static magnetic field downstream of the plasma. The axions are
accompanied by the laser pulse and ordinary matter so, for the experiment to be viable,
the laser pulse and ordinary matter must be filtered out. Hence, a beam dump should
be located between the laser wakefield accelerator and the transverse static magnetic
field. The interaction between the axions and the beam dump is negligible, ensuring the
axions readily propagate into the region containing the transverse static magnetic field.

Although (31) is reasonable inside the plasma, it only remains applicable close
to where the axions emerge from the plasma. The waist radius w (the radius of the
transverse cross-section) of the axion beam will be similar to the waist radius wwake of
the wake when the axions are inside the plasma, but will increase as the axions propagate
through free space and the beam dump. The axion beam inherits the wavelength of the
wake, so a simple estimate of the waist radius is given by w(z) = wwake

√
1 + z2/z2R,

where z is the distance from the end of the plasma and zR = πw2
wake/l is the Rayleigh

length of a Gaussian beam with wavelength l. The axion number is a conserved quantity
in free space, so an estimate of the axion number flux at z is given by Φ = T 3w2

wake/w
2.

The parameters ωp = 2π × 1013 rad s−1, γ = 100 and wwake = 31µm are
representative of a typical laser wakefield accelerator [23]. Laser-driven systems
exist for generating a magnetic field of strength up to B = 800T whose spatial
and temporal behaviour compared to the properties of the wake are approximately
constant [25]. Representative values of the axion-photon coupling strength and
axion mass are g = 0.66 × 10−10 GeV−1 and mΨ = 1 × 10−5 eV/c2, respectively;
those values are on the boundary of the parameter region excluded by the CAST
helioscope. Noting l ≈ 4

√
2γ c/ωp, the above parameter choices lead to the expression

Φ≈ 1013 (1m/z)2 cm−2 s−1 for the axion flux at distance z from the end of the plasma.
The above considerations suggest Φ should be tolerable at practical laboratory-

scale distances from the source. The solar axion flux at the Earth is expected to be
g210 3.75× 1011 cm−2 s−1, where g10 = g 1010 GeV, so we conclude Φ may be greater than
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the solar axion flux at z ≲ 8m. This distance compares well with the length (∼ 9m) of
the dipole magnet used to convert solar axions into photons in the CAST experiment.
Although, unlike the continuous flux of axions from the Sun, the flux of axions produced
by a laser wakefield accelerator is pulsed, it is notable that the L3-HAPLS laser system
at ELI Beamlines [10] can, in principle, produce a train of pulses suitable for driving
wakefields with a repetition rate of 10Hz. Even so, it is inevitable that the time-
integrated signal at a detector will be lower than for the photons produced from solar
axions. However, unlike the flux of solar axions, the flux of axions from a laser wakefield
accelerator can be readily controlled by altering the strength of the magnetic field within
the plasma.

In general, the response of the axion flux Φ to changes in the laser-plasma
parameters and the axion mass is complicated by the non-polynomial dependence of
Φ on the dimensionless parameter s. However, since s = 0.22 for the above choice of
parameters, insight into the response of Φ to small deviations in those parameters can
be readily gained by truncating the Maclaurin expansion

12 + 2π2s2 − 3π2s2 csch2(πs)− 9πs coth(πs)

12 s6
=

π6

945
− π8

4725
s2 +O(s4). (33)

The estimate

Φ ≈ (2γ)13/2g2B2m2
ec

4

µ2
0e

2ωpπ5
(1.0− 2.0s2)

z2R
z2

(34)

for the axion flux at z ≫ zR follows by discarding O(s4) terms in (33). The numerical
coefficients in the series in (34) are accurate to one decimal place, and it is clear that,
when s = 0.22, the axion flux is close to its maximum at s = 0. As such, the axion
flux can be considered constant for mΨ ≲ 1 × 10−5 eV/c2 with the above choice of
laser-plasma parameters. However, for larger values of s, it is best to retain the exact
expression

Φ ≈ (2γ)13/2g2B2m2
ec

4

µ2
0e

2ωpπ5

12 + 2π2s2 − 3π2s2 csch2(πs)− 9πs coth(πs)

12 s6
z2R
z2

(35)

for the estimate of the axion flux. For example, Φ is lowered by 75% when mΨ =

4.7 × 10−5 eV/c2 (which corresponds to s = 1.03). More broadly, increasing s alone
always reduces Φ. Excluding s, the remaining parameter dependences in (35) are power
laws; for example, a 75% reduction in Φ follows from a 50% reduction in the applied
magnetic field B.

6. Conclusion

Key differences between the results of a quantum-theoretical analysis of axion production
by a laser wakefield accelerator and those of an entirely classical approach [22] have
been uncovered. Unlike the results in Ref. [22], the analytical approximation to the
average number flux developed here converges in the limit as the axion mass tends to
zero. The estimate of the average number flux in Ref. [22] arises from the ratio of the
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average energy flux and the relativistic energy of a massive classical axion propagating
at the same velocity as the wake; as such, the estimate diverges as the rest mass of the
axion tends to zero. However, the estimate calculated here emerges from a sum over
contributions corresponding to momentum states. Each term in the sum is finite, even
if the axion is massless, and the sum converges.

It follows that the estimates presented here are more reliable than those obtained in
Ref. [22] when applied to very low mass axions. A lower bound on the average number
flux of axions, valid for general values of the axion mass, was determined, and the
response of the average number flux to changes in those parameters was described. In
principle, the one-dimensional quasi-static model of the wake used here could be replaced
by a more realistic model describing a three-dimensional dynamical structure [26, 27, 28]
of finite extent containing trapped electrons. However, accurately determining the
integral (2) corresponding to such a model would probably be a challenging task.

The development of multi-petawatt laser facilities offers new opportunities in the
search for experimental signatures of extensions to the Standard Model of particle
physics. Axions are of particular interest in this context because their very weak
coupling to ordinary matter ensures they are inaccessible to conventional particle collider
experiments, and their low mass is well-suited to interaction with electromagnetic fields.
Although the significance of laser wakefield acceleration in the development of new high-
energy particle accelerators has been firmly established [29], the variant of the “light
shining through wall” class of experiments discussed here highlights the broader role
they could play at the forefront of particle physics.

Appendix A. Preliminary considerations

Before turning to quantum theory, it is useful to initially adopt a fully classical
perspective in order to establish key concepts that are common to classical and quantum
approaches.

Appendix A.1. Classical theory

A classical axion field Ψ satisfies
∂2
tΨ−∇2Ψ+m2

ΨΨ = ρ (A.1)
where the source is given by ρ = −gE · B, with mΨ the mass of the axion and g the
axion-photon coupling. Rather than introducing Fourier integral representations from
the outset, it is convenient to restrict the fields to a box and impose periodic boundary
conditions at the walls of the box. Fourier transforms emerge as the size of the box
tends to infinity. We begin with the Fourier series

Ψ(x, t) =
∑
k

1√
V
Ψ̃k(t) e

ik·x, (A.2)

ρ(x, t) =
∑
k

1√
V
ρ̃k(t) e

ik·x (A.3)
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for Ψ and ρ, where V is the volume of the box containing the fields.
Inspection of (A.1) shows that the coefficients Ψ̃k and ρ̃k in (A.2) and (A.3) satisfy

the ordinary differential equation
¨̃
Ψk + ω2

kΨ̃k = ρ̃k, (A.4)

where ωk =
√

k2 +m2
Ψ. The solution to (A.4) satisfying the conditions Ψ̃k(ti) = 0 and

˙̃
Ψk(ti) = 0 at the initial time ti is

Ψ̃k(t) =

∫ t

ti

dt′
sin (ωk(t− t′))

ωk

ρ̃k(t
′). (A.5)

The total four-momentum Pµ of the axion field according to observers at rest in
the laboratory frame is

Pµ =

∫
d3xT0

µ (A.6)

where the integral is over the interior of the box only and Tµν is the stress tensor

Tµν = ∂µΨ∂νΨ− 1

2
(ηλω∂λΨ∂ωΨ−m2

ΨΨ
2)ηµν . (A.7)

Greek indices are lowered and raised using the metric ηµν and the inverse metric ηµν ,
respectively, with signature −2, i.e.

ηµν =


1 for µ = ν = 0,
−1 for µ = ν ̸= 0,
0 otherwise.

(A.8)

Thus, the total energy E and total three-momentum P at time t are

E(t) =
∫

d3x
1

2

(
(∂tΨ)2 + (∇Ψ)2 +m2

ΨΨ
2
)

(A.9)

P(t) = −
∫

d3x ∂tΨ∇Ψ. (A.10)

Substituting the expressions

∂tΨ =
∑
k

1√
V

˙̃
Ψk e

ik·x, ∇Ψ =
∑
k

1√
V
ikΨ̃k e

ik·x (A.11)

into (A.9) and (A.10), and using∫
d3x exp (i(k− k′) · x) = V δkk′ (A.12)

where δkk′ is the Kronecker delta, gives

E =
∑
k

1

2

(
˙̃
Ψk

˙̃
Ψ−k + ω2

ΨΨ̃kΨ̃−k

)
, (A.13)

P =
∑
k

ik

2

(
˙̃
ΨkΨ̃−k −

˙̃
Ψ−kΨ̃k

)
, (A.14)

respectively. Note that the domain of each component of k is symmetric, and the sum
over k includes all values of every component. Thus, only the symmetric part of any
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summand contributes to the overall result. This observation is responsible for the form
of the summand shown in (A.14).

Introducing the notation

[fk](t) =

∫ t

ti

dt′ fk(t
′) e−iωkt

′ (A.15)

allows (A.5) to be written as

Ψ̃k =
1

2iωk

(eiωkt[ρ̃k]− e−iωkt[ρ̃ ∗
k ]

∗). (A.16)

Furthermore,
˙̃
Ψk =

∫ t

ti

dt′ cos (ωk(t− t′)) ρ̃k(t
′) (A.17)

follows from (A.5), which can be written as
˙̃
Ψk =

1

2
(eiωkt[ρ̃k] + e−iωkt[ρ̃ ∗

k ]
∗). (A.18)

Substituting (A.16) and (A.18) into (A.13) yields

E =
∑
k

1

4
([ρ̃ ∗

k ]
∗[ρ̃−k] + [ρ̃k][ρ̃

∗
−k]

∗) (A.19)

where ω−k = ωk has been used. However, the identity∑
k

[ρ̃k][ρ̃
∗
−k]

∗ =
∑
k

[ρ̃−k][ρ̃
∗
k ]

∗ (A.20)

follows because, as noted previously, only the symmetric part of any summand
contributes to the final result. Furthermore, the source ρ is real so ρ̃−k = ρ̃ ∗

k , and
so (A.19) can be expressed as

E =
∑
k

1

2
|[ρ̃ ∗

k ]|2. (A.21)

Likewise, substituting (A.16) and (A.18) in (A.14) gives

P =
∑
k

k

4ωk

([ρ̃ ∗
k ]

∗[ρ̃−k]− [ρ̃k][ρ̃
∗
−k]

∗). (A.22)

which can be reduced to

P =
∑
k

k

2ωk

|[ρ̃ ∗
k ]|

2 (A.23)

because the domain of the sum is symmetric and ρ̃−k = ρ̃ ∗
k .

Inspection of (A.21) and (A.23) reveals the result

Pµ =
∑
k

kµ

2ωk

|[ρ̃ ∗
k ]|

2 (A.24)

for the total four-momentum Pµ of the axion field according to observers at rest in the
laboratory frame, where the wave four-vector kµ is (ωk,k).
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Note that Pµ precisely agrees with E0µ, where Eµν is given by

Eµν =
∑
k

kµkν

ωk

|[ρ̃ ∗
k ]|

2

2ωk

. (A.25)

However, the purely spatial components of Eµν do not coincide with the purely spatial
components of the integral of T µν . The integral of T µν over all space evaluated at time
t includes extra terms that are, in general, non-zero. But if ρ is zero at, and for all time
after, some instant tf , then those extra terms are sinusoidal. As such, their average over
t, where t ≥ tf , is zero.

Appendix A.2. Quantum theory

The quantum field operator Ψ̂(x, t) and its canonical momentum Π̂(x, t) satisfy the
equal-time commutation relations

[Ψ̂(x, t), Π̂(x′, t)] = iδ(3)(x− x′), (A.26)
[Ψ̂(x, t), Ψ̂(x′, t)] = [Π̂(x, t), Π̂(x′, t)] = 0 (A.27)

with δ(3) the 3-dimensional Dirac delta function. Their dynamics is determined by the
Hamiltonian

Ĥ =

∫
d3x :

1

2

(
Π̂2 + (∇Ψ̂)2 +m2

ΨΨ̂
2 − ρΨ̂

)
: (A.28)

and the Heisenberg equation

i
˙̂O = [Ô, Ĥ] (A.29)

where the normal ordering in (A.28) is undertaken with respect to the ladder operators
âk and â†k introduced in the series

Ψ̂(x, t) =
∑
k

1√
2ωkV

(
âk(t)e

ik·x + â†k(t)e
−ik·x

)
, (A.30)

Π̂(k, t) = −i
∑
k

√
ωk

2V

(
âk(t)e

ik·x − â†k(t)e
−ik·x

)
. (A.31)

The operators âk and â†k satisfy the equal-time commutation relations

[âk(t), â
†
k′(t)] = δkk′ , (A.32)

[âk(t), âk′(t)] = [â†k(t), â
†
k′(t)] = 0 (A.33)

where δkk′ is the Kronecker delta.
Introducing (A.30), (A.31) and (A.3) in (A.28) gives

Ĥ =
∑
k

(
ωkâ

†
kâk −

1√
2ωk

(ρ̃ ∗
k âk + ρ̃kâ

†
k)
)

(A.34)

and so, using (A.29), the equation of motion for the annihilation operator âk is

i ˙̂ak = ωkâk −
1√
2ωk

ρ̃k. (A.35)
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Hence,

âk(t) = âk(ti)e
−iωk(t−ti) +

ie−iωkt

√
2ωk

∫ t

ti

dt′eiωkt
′
ρ̃k(t

′) (A.36)

and, likewise,

â†k(t) = â†k(ti)e
iωk(t−ti) − ieiωkt

√
2ωk

∫ t

ti

dt′e−iωkt
′
ρ̃ ∗
k(t

′) (A.37)

follows for the creation operator â†k.
Thus, introducing the vacuum state |0, ti⟩ annihilated by the operator âk(ti) leads

to the result

⟨0, ti|â†kâk|0, ti⟩ =
|[ρ̃ ∗

k ]|2

2ωk

(A.38)

for the expected number of axions with three-momentum k at time t. Equation (A.15)
has been used to write (A.38) in a compact manner.

The operator n̂k = â†kâk represents the number of axions at time t, and this leads
to the expressions

Ê =
∑
k

ωkn̂k, (A.39)

P̂ =
∑
k

k n̂k (A.40)

for the operators Ê and P̂ representing the total energy and total three-momentum of
the axions, respectively. Inspection of (A.38) reveals that the expectations of Ê and P̂
in the state |0, ti⟩ agree with the classical results (A.21) and (A.23). Ultimately, this
result is a consequence of the fact that |0, ti⟩ is an eigenstate of the annihilation operator
âk, as inspection of (A.36) shows. The classical source ρ produces a coherent state of
axions.

The above considerations also suggest the introduction of the total number operator
N̂ and total number three-current operator Ĵ given by

N̂ =
∑
k

n̂k, (A.41)

Ĵ =
∑
k

k

ωk

n̂k. (A.42)

Collectively, the above results motivate the introduction of the family

Êµ...ν =
∑
k

kµ . . . kν

ωk

n̂k. (A.43)

of symmetric tensor operators since

Ê00 = Ê , Ê01 = P̂1, Ê02 = P̂2, Ê03 = P̂3, (A.44)
Ê0 = N̂ , Ê1 = Ĵ 1, Ê2 = Ĵ 2, Ê3 = Ĵ 3. (A.45)
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In addition to the above reasoning, the series (A.39) and (A.40) emerge from the
expression

Ê0µ =

∫
d3x : T̂ 0µ : (A.46)

where

T̂ 00 =
1

2

(
Π̂2 + (∇Ψ̂)2 +m2

ΨΨ̂
2
)
, (A.47)

T̂ 01 = −Π̂ ∂xΨ̂, T̂ 02 = −Π̂ ∂yΨ̂, T̂ 03 = −Π̂ ∂zΨ̂ (A.48)

are components of the quantum stress-energy-momentum tensor T̂ µν . However, the
remaining (i.e. purely spatial) components of Êµν do not agree with the integral of the
normal ordering of

T̂ ab = ηaµηbν∂µΨ̂∂νΨ̂− 1

2
(Π̂2 − (∇Ψ̂)2 −m2

ΨΨ̂
2)ηab, (A.49)

where a, b = 1, 2, 3. In general, the spatial integral of the normal ordering of any term
quadratic in Π̂, Ψ̂, or their spatial derivatives, will yield terms containing âkâ−k and
â†kâ

†
−k as well as â†kâk. Even so, akin to the classical analysis, if ρ is zero for all t ≥ tf

then inspection of (A.36) shows âkâ−k ∝ e−2iωkt (and â†kâ
†
−k ∝ e2iωkt) when t ≥ tf . In

this case, the desired expression for Êab is recovered by averaging
∫
d3x : T̂ ab : over

t ≥ tf . This result can be formally expressed as

Êµν = lim
T→∞

1

T

t+T∫
t

dt′
∫

d3x : T̂ µν(x, t′) : (A.50)

subject to the condition ρ(x, t′) = 0 for all t′ > t.
Finally, using (A.38) and (A.43), we note that the expectation of Êµ...ν in the state

|0, ti⟩ is

⟨0, ti|Êµ...ν |0, ti⟩ =
∑
k

kµ . . . kν

ωk

|[ρ̃ ∗
k ]|2

2ωk

. (A.51)

Appendix A.3. The continuum limit

It is convenient in applications to express (A.51) in the continuum limit. Furthermore,
we only require (A.51) at times after the source ρ is no longer active. Since (A.51) is
constant for all t ≥ tf , it is sufficient to calculate (A.51) at t = tf . We begin by noting

ρ̃ ∗
k(tf) =

1√
V

∫
d3x ρ(x, tf) e

ik·x (A.52)

follows from (A.3) and the fact ρ is real (so ρ̃ ∗
k = ρ̃−k). Hence

[ρ̃ ∗
k ](tf) =

1√
V

∫ tf

ti

dt

∫
d3x ρ(x, t) ei(k·x−ωkt) (A.53)

using (A.15). The continuum limit is obtained using the replacement∑
k

1

V
→

∫
d3k

8π3
(A.54)
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and so (A.51) yields

⟨0, ti|Êµ...ν(tf)|0, ti⟩ →
∫

d3k

8π3

kµ . . . kν

ωk

1

2ωk

∣∣∣ ∫ tf

ti

dt

∫
d3x ρ(x, t) ei(k·x−ωkt)

∣∣∣2. (A.55)

Equation (A.55) is the starting point for the calculations in the main text.
It is straightforward to verify (A.54) is correct by noting the substitution

f̃k → f̃(k)√
V

(A.56)

emerges from a comparison of the expression

f̃(k) =

∫
d3xf(x) e−ik·x (A.57)

for the Fourier transform of f(x) and the coefficient

f̃k =
1√
V

∫
d3xf(x) e−ik·x (A.58)

in the Fourier series

f(x) =
∑
k

1√
V
f̃k e

ik·x. (A.59)

Hence, a comparison of the result∫
d3xf(x)h(x) =

∑
k

f̃k h̃−k (A.60)

with the consequence∫
d3xf(x)h(x) =

∫
d3k

8π3
f̃(k) h̃(−k) (A.61)

of Parseval’s theorem confirms (A.54).

Appendix A.4. Regularisation of divergent integrals

The spatial integrals in (1) and (2) are divergent because, for mathematical convenience,
we chose the wake in our model to occupy the entire box introduced in Appendix A.1.
Divergences are removed by suitably identifying the formal expressions δ(0), δ(2)(0) and
δ(3)(0) with finite quantities, and dividing out the volume of the box.

The details of the substitutions can be obtained by choosing the box to be a cube
of length L. Prior to taking L to infinity, we have the following result:∫ L/2

−L/2

dx e−2πinx/L = L δn0

where n is an integer, with similar results for the y and z directions. However, the
Fourier representation of the Dirac delta function ensures

lim
L→∞

∫ L/2

−L/2

dx e−ikxx = 2πδ(kx)
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and, thus, we can return to the finite-sized box by making the replacement

2πδ(kx) → L δn0

where kx → 2πn/L is understood. Likewise, the formal expressions 4π2δ(2)(0) =

(2πδ(0))2 and 8π3δ(3)(0) = (2πδ(0))3 correspond to the cross-sectional area A = L2

and volume V = L3 of the box, respectively.

Appendix A.5. Comparison with a previous result

It is straightforward to show that the quantity T 03 given in (10) is the cycle-averaged
energy flux previously calculated in Ref. [22]. The sum in (10) is over all integer n and,
as such, only the symmetric part of the summand contributes to the final result. It
follows

T 03 =
∑
n

k∥|ϱn|2

4ω

( 1

(ω − k∥v)2
− 1

(ω + k∥v)2

)
=

∑
n

k2
∥v|ϱn|2

(ω2 − k2
∥v

2)2
(A.62)

because |ϱn|2 and ω =
√
k2
∥ +m2

Ψ are even in n, whilst k∥ = 2πn/l is odd in n. The
symmetry of |ϱn|2 = ϱ ∗

nϱn follows immediately from ϱ ∗
n = ϱ−n, which is a consequence

of ϱ being real. Thus

T 03 =
∑
n

4π2n2l2γ4v

(4π2n2 +m2
Ψγ

2l2)2
|ϱn|2 (A.63)

where the Lorentz factor γ = 1/
√
1− v2 of the wake of the laser pulse has been

introduced. Substituting ϱn using (14) yields

T 03 =
∑
n

16π4n4g2B2γ2v

(4π2n2 +m2
Ψγ

2l2)2
m2

e

e2
|ξn|2 (A.64)

which is identical to the expression obtained in Ref. [22] for the cycle-averaged energy
flux.
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