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Abstract
On-road carbon emissions from heterogeneous traffic flows in multimodal urban transportation

systems pose a significant risk to public health. Developing effective instruments to mitigate these

emissions requires accurate modelling and assessment of their impact on the onment. To this end,

this study establishes a holistic framework that integrates two i 1) a
multimodal dynamic traffic assignment model for 0bta‘1g equili istributions, and 2) a

Gaussian plume model, underpinned by a multi-category ve rbon ¢ model, to assess the

spatiotemporal distribution of exposure. Numerical ¢ iments de ate the model convergence

and evaluate its performance under multiple w that incorporating the proposed
carbon emission cost and exposure cost ifita fic assignment can simultaneously reduce
carbon emissions and exposure ris rscoging théynecessity of jointly considering both factors in

path choice modeling ity and the broader development of low-

carbon, hg

Multimodal transportat
1. Introduction

Urban transportation contributes up to 16% of worldwide greenhouse gases, ranking third in
carbon dioxide (CO2) emission sources (Lu et al., 2024). Exposure to emissions can cause a range of
health problems, including heat-induced ailments, respiratory illnesses, and cardiovascular diseases

(Mohsenizadeh et al., 2020; Burns et al., 2020; Dadashev et al., 2023). These impacts highlight the



need for measures that effectively reduce carbon emissions, addressing not only the total amount
emitted but also the level of exposure.

Currently, there are two main approaches for reducing vehicle carbon emissions in urban road
networks. From a technical perspective, one approach is to reduce vehicle emissions through measures

such as improving fuel quality, promoting new energy vehicles, and enhancing tailpipe cleaning

technologies (Shen et al., 2024). This approach primarily focuses on ng emissions from

individual vehicles; however, its effectiveness depends on the ado idespread market
penetration of new technologies, which may require a pr.nged ti policy perspective,

the other approach employs traffic demand management i ents t@anduce changes in travel

behavior, such as shifting to green travel modes or adj g travel ti d routes (Kamishetty et al.,

2020; Zeng et al., 2020; Djavadian et al., 2§ liver substantial results within a

comparatively short timeframe. In practiee anagement schemes implemented include

conjunctig
exposure.

The design of em pHricing is commonly built upon traffic assignment models (e.g., Ma et al.,
2017; Sharma and Mishra, 2011), which incorporate carbon emission costs as a disutlity that reduces
the probability of a route being chosen. However, most existing studies focus primarily on aggregated
emission quantities, while overlooking the spatiotemporal distribution of emissions and the associated

health exposure of travellers. Moreover, only a limited number of studies (Fan et al., 2024; Xi et al.,

2025) account for travel behaviour in a multimodal transport network, despite its growing prominence



in modern urban mobility contexts. Consequently, the complex relationships among travel time,
emissions, and exposure remain insufficiently understood, leaving an inadequate foundation for
developing pricing-based demand management measures in multimodal networks.

To bridge two major gaps, this study develops an integrated dynamic modeling framework that

captures travel behavior, carbon emission, and exposure risk in multimodal networks. Specifically, we

construct a multimodal dynamic traffic assignment (DTA) model that inco ¢s generalized travel

emissions are
des, while traveler
exposure is quantified based on a Gaussian dispersion the spatiotemporal

dispersion across the network. To solve the dynami i Ierassignment, the Method of

Successive Averages (MSA) is employed. ork is applied to both a testing

multimodal transportation network.

2) It integrates both emission and exposure costs within the travel behaviour model, i.e., an
extended multimodal DTA model incorporating multi-destination trips.
3) The results reveal the irreplaceable roles of both emission and exposure costs in traffic flow

management, underscoring the necessity of addressing them jointly within the decision-making



framework.

The organization of this paper unfolds in the following manner. Section 2 delves into an
examination of pertinent academic literature. Section 3 unveils the proposed modeling framework.
Section 4 conducts a numerical analysis, interprets the findings, and extrapolates policy

recommendations. Section 5 concludes this study and outlines avenues for future research.

2. Literature review
This section reviews the most relevant studies in ‘ directi

the spatiotemporal assessment of carbon emissions and thei sure n travelers, and (2)

the incorporation of environmental and health costs i amic pa ice models.

emissions, without accounting for pollutant dispersion or their health impacts on travelers.

Traveler exposure to traffic-generated air pollutants is an increasingly pressing concern. Studies
have used Gaussian dispersion models to simulate how pollutants spread from roadways (e.g., Liang
et al., 2023), and some have linked emissions and exposure through dynamic simulations (e.g., Tan et

al., 2021; Dadashev et al., 2023). However, most of these studies consider exposure passively



(Vosough et al., 2022). That is, exposure is typically estimated after path choices are made, rather than
being treated as a factor influencing travel behavior itself. Moreover, although multimodal networks
are increasingly recognised as integral to sustainable transportation, their role in this context remains
largely underexplored.

This study contributes to this line of research by developing a framework that simultaneously

models dynamic travel behavior, carbon emissions, and their exposure. U existing studies that
separate travel behavior modeling and emission estimation, the prop integrates them
within a unified framework, enabling exposure risk to a'vely in
2.2. Integration of environmental and health costs in dyn

In the context of static traffic assignment, the inc ental costs into travellers’
netal., 2018; Lietal., 2020; Luo

decision-making is a well-established concept

et al., 2020). However, these studies ofteh 2 i cost sensitivity and overlook temporal

impacts (\Wang 8 018). These todels suggest that pricing mechanisms can shift traffic away from

emission-intensive ro gward more sustainable alternatives.

However, few studies consider both exposure and emission cost simultaneously. While some
studies have explored traveler exposure as an externality (Pinto et al., 2020; VVosough et al., 2022), it
is rarely internalised as a decision variable in route choice models. Moreover, most of the dynamic

assignment models in this field remain confined to single-modal networks (Long et al., 2018; Tan et

al., 2021). Although Pi et al. (2019) proposed a generalized formulation for multimodal DTA and



sought solutions for optimal travel costs, integrated models that account for mode choice, emission-
and exposure-sensitive path selection, and cross-modal and multi-destination routing remain scarce.
This gap constrains the capacity to conduct comprehensive policy analyses on the trade-offs among
efficiency, emissions, and public health.

Overall, this study integrates both carbon emission and exposure costs into an extended

multimodal DTA model. Theoretically, it enables the examination of how onmental and health

factors jointly influence the dynamic distribution of traveler flow in a nspert network.
In practice, it captures the complete feedback loop be‘en trafl vironmental health
risks, enabling more refined evaluation of carbon pricing and tions in multimodal
networks.

3. Methodology

This section starts with introducing th€ ¢ , which calculates the total emissions using

models, we a Itimodal DTA model, in which a generalized travel impedance
function is introdtié€d to account f6r both travel and emission exposure costs. Ultimately, the issue is
expressed as a Variatio cquality (VI) and solved via an MSA algorithm.
3.1. Emission model

To effectively gauge the influence of vehicle emissions, we integrate a macroscopic emission

framework with a Gaussian dispersion model. This approach allows us to quantify both the overall

emission output and the subsequent health risks stemming from exposure to carbon pollutants.



3.1.1. Macroscopic emission model

This study adopts the macroscopic emission model proposed by Sharma and Mathew (2011),
which defines the link-based carbon emission rate as a nonlinear relationship with link travel time. The
same model has been applied in Heinold and Meisel (2020). In contrast to these studies, this study

extends the model to a dynamic context, enabling it to calculate the evolution of emissions with

temporal and spatial resolution. Mathematically, it is formulated as,

2
I I
err:\,a,t = Kr:,l {V—aJ + K:,,z {V—aj-i- Kr:,3’ YneV,me

m,a,t m,a,t ‘

represents the emission rate for link a in mode

where ¢"

m,a,t

v
m,a,t

vehicle (g/km/veh); ¢ denotes the travel time of lin

a in kilometer (km). K

m1?

Kno-and KD o represént
categories, determined through experiment

are determined by,

eM,peR'teT, 2

where E| issi rams associated with path p of mode m connecting OD

pair w af ti i idence matrix, the element A%™" is assigned a value of 1 if

n
m,a,t

path p passes thro ink a and is represented by 0 in other cases. Meanwhile, f represents the

volume of traffic, meagtired in vehicles, moving along link a for mode m at a specific time t.

Additionally, 1. denotes the length of link a, expressed in kilometers. This study then further converts

a

w

the total amount of emissions to a monetary value ¢, . . using the unit carbon pricing approved by
the European Union, which is $48 (ECEEE, 2022).
3.1.2. Gaussian dispersion model and exposure estimation

Dispersion models describe pollutant dispersion from emission sources. Consistent with the

8



literature (Fallah-Shorshani et al., 2017; Mei and Liu, 2023), this study employs the widely used

Gaussian dispersion model (Turner, 1994) expressed by,

c(x,y,2)= ﬁexp{—%}[exp(—%}+exp(_%ﬂ. 3)

The concentration of emissions, denoted as c(x,y,z) in mg/m3is measured at a receptor

positioned at coordinates (x,y,z) within a localized coordinate framework. Here, Q stands for the

emission rate of a point source, expressed in mg/s, while u represents the ind speed in meters

per second. The height of the source is given by H in meters, and ond to the

enting an equivalent finite line source (FLS)
ese FLS units are oriented perpendicular
oint of their respective segments. Since the x-axis aligns
iven FLS share identical o, and o, values. Consequently,

the concentration Of @missions at a specific location (x,y,z), denoted as cFLS(x, y,z2=0), can be

determined for each equivalent FLS.

A ygLS Q yéLS y2
C..(x,vy,z=0)= c(x,y,z=0)dy = - exp| — dy , 4
FLS ( y ) J.yIl:LS ( y ) y 7Z'O'yO'ZU sin Q)FLS '[Y|1=|_s p( 20_5 j y ( )

where yr. and Y7 represent the distances from the FLS endpoints to the x-coordinate; ¢,

denotes the angle between the segment and the wind vector (), 0°< ¢, <90°.



Fig. 1 illustrates the conceptual process from vehicle emissions to the final estimation of exposure.
Emissions from traffic activities are first dispersed using the Gaussian model to form a spatial
concentration field. The detailed derivations of the emission dispersion and exposure concentration
estimation process are provided in Appendix B. Based on this field, the travelers’ exposure is

calculated by integrating emission concentration over travel time and spatial extent.

Vehicle
emissions

Travelers” mode/

ath choices
P Exposure
calculation

Gaussiamnodel

JOn process.
The exposure concentration of travelers g 3 | ependent on emissions from that

link. The travelers’ exposure concentration Of me t (mgs/m®), § .., can be expressed

at?

{¢(yFLS]_¢(yFLS]J’ (5)
Gy Jy

p at the center of the FLS; vy;. and y?. are the distances from the

as,

emission concentre
measurement point (x J¥,) to the ends of FLS (m), respectively; Qp s, represents the line source
emission rate at time t (mg/m/s), and the meanings of the other parameters are the same as those
above.

The dispersion of each path can be obtained by summing the dispersion of the links included (Eq.

(6)). The dispersion for each link is calculated as the product of dispersion concentration and traffic

10



volume, divided by travel time. Consequently, the exposure associated with path p at time t, B .,

equals the total exposure of type n across all links a along the path (mg), which is expressed by,

Proc=D D> AT naVmat =3 Anme ”‘“Iaa"h YweW,meM,peR%teT,  (6)

aeAneV 3600 acAneV Ta
where V... represents the dispersion volume of link a in mode m at time t, computed using
l.oh,; 1, denotes the length of link a (in km), and W, stands for the lane width (in m), with the

assumption of @, =3; h, is the dispersion height (m), assumed to be 1; otes the link travel

time in hours (h).

Then, the total exposures are converted into monetary value "¢, 'S
of emissions, the dispersion cost per ton is set at $20, sli
3.2. Transportation model

We consider that passenger’s mode ag

depicted in Fig. 2. In what follows,

the multimodal DTA model‘

v
I My I | Transit | | Drive | ‘ Park-and-ride I
¥
, |, | Solo-drive + Bus ‘
‘ Bus | ‘ Solo-drive | | Carpool + Bus ‘
Solo-drive + Metro ‘
’ Metro | ‘ Carpool | | Carpool + Metro ‘

Fig. 2. The two-layer mode choices.

3.2.1. Generalized travel cost
Building on the research conducted by Pi et al. (2019), we establish a framework for calculating
the generalized travel cost across various transportation options. The generalized travel cost,

represented by c m e {transit, drive, P&R}, is defined as the total expense incurred by a traveler

m,p,t?

11



moving between OD pair w via travel mode m at departure time t alongroute p, VpeR;.Here,

RY stands for the collection of available paths for mode m between the specified OD pair.

m

Ct\:lansit,p,t = ag::/ansit,p,t + maX[,B(t + gtvrvansit,p,t _t*)’ }/(t* —t- gt\:lansit, p.t )] + r;;N’

" )
Vp € RmeMz(Transit)’W eW ’t el
C(‘il\;ive,p,t = ag(\ﬁive,p,t + maX[ﬁ(t + g(\il‘:ive,p,t _t*)i }/(t* _t - g(‘iA:ive,p,t)]-i- pi /k + (D\g,t (k) + 9; (8)
Vp e Rnf'eMz(Car),WeW,t eT
Cg’&R,p,t =0‘(~‘“]:>V<§LR,p,t +max[ﬁ(t+gg&R,p,t_t*)’?’(t*_t_gg&R,p,t)]"' p; /k 4 k)"‘rr\)N"‘H, ©)
Vpe Rr:'eMz(P&R),WeW,t eT

where

1) 9n,: me{transit,drive,P&R} represents the real travel ti
The calculation for the paths corresponding to each mod
2) t* isthe target time. « denotes the travel time un

early and late arrivals, respectively. The segoig

3) r, denotes the fare for transit r QD pair w.

4) p. represents the parking

5) k denotg of travelers sharing a ride, where k=1 indicates a single driver

traveling represents the carpool impedance cost on path p at time t
for a trip between @Bjpair w with k passengers, ®2,(1)=0.

6) 6 as a measure of pFivate car accessibility. If a traveler possesses a car or has the means to use
one, @is setto 0; otherwise, it is assigned to a large value to reflect the lack of access.

3.2.2. Generalized path impedance considering environmental cost

As calculated in Section 3.1 and Section 3.2.1, the factors to be considered in this study include

the generalized travel cost, the carbon emission cost, and the traveler exposure cost. The total of the

w
m,p,t

three is computed as the generalized impedance 7, for path p between OD pair w at time t, as

12



in Eq. (10):

w _WCW

”m,p,t - "1 ¥m,pt

+FWCr o o FWCH o YMeEe M, (10)
We evaluate road network performance (total time, carbon emissions, and exposure) under three

scenarios differentiated by path cost. The first scenario considers only generalised travel cost; the

second incorporates emission costs; and the third further includes exposure costs.

3.2.3. Multimodal dynamic traffic assignment

All scenarios involve a nested logit model with two levels of mode

u(

represent
the second-layer mode options associated with the ‘t-layer m . The two-layer

condition of the extended multimodal DTA model can then t,m,u(m),

n > ,u:{u(m)yt,Vp eR" f

m,u(m),p,t = m,u(m)? 'm,u(m)

w =ﬂnqu,u(m),wVp e RY Do, me M, u(m)eM,

ﬂm,u(m),p,t

w —(ay|
dm,u(m),t _ e (

>y

Lu(m)eM, (11)

equilibrium co etween OD pair w departing at time t. f" denotes the

m,u(m),p,t

traffic flow along pat ¢ithin mode m between OD pair w starting at time t. The flow of mode

u(m) between OD pair w starting at time t is d, :Z f . The total flow between

PERY u(mt m,u(m),p,t

OD pair w starting at time t is g, = Z }d;{t . ay., and b)' serve as key parameters

me{transit,drive, P&R

within the nested logit model.

13



It’s worth noting that the last equation in Eq. (11) establishes the correlation between the first-
layer and the second-layer modal equilibrium generalized impedance (z,, and . )- Finally, the
modal flow between the OD pair w at each time t are:

dr‘lIWVU(m)t ZpeRyﬂ{U(m)It 1:mVYU(m),p,t (12)
Zu(m)GMZZpER Fum.p Zu(m)eMzdr\T’TVrU(m)xt (13)

It can be formulated as a VI problem VI(A,Q"

m,u(m)t

) , as demonstrate et al. (2019).

m,u(m),p,t

Find f° such that A) - (F-17)20, VFeQp i o: (14)
AE)={ Ay o (D)}
9 a"+Ind?, |

where A u(m)pt(f) ﬂ-mu(m)pt(f)"'—’ (15)

by
Qysmps = { ‘Z DINE

solution method gene converges.

3.3. Solution method

3.3.1 Dynamic network loading

The DNL is a vital component in the DTA to assess the travel time in networks. It runs
continuously during the designated study period, i.e., morning peak hours, in 5-second time intervals.
The Cell Transmission Model (CTM) is employed to implement the DNL procedure. The algorithmic

details within each time interval are detailed in Appendix D. Upon completion of the loading phase,

14



the model outputs travel times and traffic flows associated with each segment in the multimodal
network. These results are then used to compute the generalized impedance for each origin-destination
route, accounting for emissions from different vehicle categories and their associated exposure. Mode

split, link/path flow, and travelers route choices are subsequently updated.

3.3.2 Method of Successive Averages
To solve the VI formulation of the extended multimodal DTA problem, this study employs the

MSA algorithm for its simplicity and convergence performance. In our pre y experiments, we

Step 3: Check convergence. If the following Gap satisfies the convergence accuracy, then

terminate the algorithm; otherwise, return to step 2.

w w H w
p _ ZWZ PERr‘g,u(m),t ( fm,u(m),p,t '(ﬂm,u(m),p,t —min (ﬂm,u(m),p,t )))
- w
D) S A

m,u(m)t

Ga (16)

3.3.3 Path set generation

The VI formulation requires knowing the set of paths. In the algorithm, we adopt the column

15



generation method to augment the path set at each iteration, and the algorithm is run to search for the
shortest path across different modes. The overall algorithm for solving the extended multimodal DTA

problem (11) is summarized in the algorithm in Appendix E.

4. Numerical results and discussion

We first solved the extended multimodal DTA problem on a simple testing network to assess the
framework’s efficiency and performance, and then conducted parameter sensitivity analyses to derive

policy insights. The testing network in Section 4.1 is a simplified version o multimodal network

Additional experinfental parameters are provided in Table 3 (Pi et al., 2019). It is important to note

that the parameter values in the nested logit model are drawn from existing empirical results (Ma and
Qian, 2015; Ma and Qian, 2018; Ma et al., 2019), which provided calibrated values based on stated
preferences or simulations. The values were selected to reflect typical cost sensitivities and behavioral

realism in numerical simulations. For example, higher a® reflects greater sensitivity to generalized

16



impedance in the park-and-ride mode, while uniform b, and b, values ensure balanced nesting

effects.

The coefficients K"

m,1?

Kn2» and K7 . used in this study were initially proposed by Sharma and
Mathew (2011), as listed in Table 4, based on regression analysis of field emission measurements and

speed-flow data for cars and buses. These coefficients have been widely adopted in macroscopic

emission modeling due to their practicality and robustness. In our impleme , they are treated as

vehicle-type-specific and are assumed constant across the networ ledge that this

simplification may limit the model’s adaptability to d‘rent url Jjowever, the model

Intel(R) Core (TM)

17



Table 1

Link parameters.

Fig. 3. A testing multimodal

ork.

Link Length (mile) Lanes

,(mile/h)

C, (veh/h)

J, (veh/mile)

and subsefip

Table 2
All paths in the testi

Note: v den

5.0
7.5
3.5
4.0
15
15

es free-

N W NN WD

Vv, (mile/n) ¢, (
40 35
65 55
40 35
55
35
200 55

1200
1200
1200
1200
1200
1200

100
100
100
100
100
100

Path Mode Path

P1  drive l101, 11, 13, s, l10s

P,  drive carpool l101, I2, 14, ls, l10s

P3 transit metro l101, metro line, l1os

Ps  park&ride drive+bus l101, I1, 13, l103, P1, l103, s, l10s
Ps transit bus lio1, I, I3, Is, l10s

18

indicates lane capacity; ] stands for jam density. Subscript 1 refers to cars,



Table 3
All other parameters.

Parameter Value

Non-environmental cost model  a=5.4$/h B=28%/h y=16.6%/h

Nested-logit model a,a,.,0=l5 A, alyup=10 a’,aly.e=2.0 b,b=10
Parking slot w,=3%h p,=Imin C,,=20000

Bus r,y=$2.75 waiting=8min frequency=20min
Metro ry =$3.75 waiting=6min frequency=10min full trip=35min
Carpool o (D=0 @ (2)=%1
Dynamic network loading Starting/ending time=5AM/ 9AM intervals=288 it time=5s
Macroscopic emission model C,, =488/t C, . =208/t
Gaussian dispersion model @, =60° Uu=1m/s
Table 4
Coefficients of emissions.
Vehicle type K, K, Ky
Car 0.0020380 -0.22270 8.810
Bus 0.0002483 -0.04090 1.69

4.1.1 Convergence result

algorithm was validated for perfo

plotted in Fig.

— « -With generalized cost
—=— Without exposure cost
— = - With exposure cost

<
>
—_— = ] - -

Equilibrium gap
=)
=)

0.05 H

l_L"nm
0.00 Saaaen e L .

20 40 60 80 100
Iteration

Fig. 4. Convergence curves for all scenarios in the testing network.
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the network depicted in Fig. 3. Its solution

&, The convergence of the equilibrium gap is



Table 5
Equilibrium results for all scenarios.

Scenario Gap Total Total emission Total Total Running
value time (h) (kg) exposure (kg)  cost ($) time (s)

Scenario 1  0.00046  343.0 28586.793 65909.641 7608.633  3619.91
Scenario 2 0.00014  341.6 19789.522 45626.676  8558.530  2551.77
Scenario 3  0.00019  336.4 15603.073 35974.409  9076.511  1858.10

LRI

Note: Scenarios 1, 2, and 3 represent “with generalized cost”, “without exposure cost”, and “with exposure cost”,
respectively. Total time denotes the aggregated travel time across all travelers. Total cost includes generalized travel
costs, carbon emission costs, and exposure costs, depending on the scenario.

As shown in Fig. 4 and Table 5, all scenarios converge within 100 iterati ncorporating carbon

emission and exposure costs into the generalized cost framework redu ime, emissions,
and exposure compared to considering travel cost alone..enario ns and exposure by
30.7% but increases total costs by 12.5%. Scenario 3 further r emis exposure by 45.4%,
ase in tota

with a 2.0% decrease in travel time, albeit a 19.3% i . These results suggest that

while travel costs rise, scenario 3 offers the be fb nvironmental and health benefits,

efficiency, challenging otion that such measures inherently increase time costs.

Table 5 also shows that when environmental factors are introduced for the first time (scenario 2),
carbon emissions and exposure have significantly decreased (emissions by 8,797.3 kg, exposure by
20,282.96 kg), while costs have increased by $949.90. However, when exposure is further reduced

(scenario 3), the decrease in emissions and exposure becomes smaller, while the cost increases

significantly (emissions decrease by 4,186.4 kg, exposure decreases by 9,649.27 kg, and costs rise by

20



$517.98). According to Egs. (7)-(9), generalized cost includes not only travel time but also schedule
delay and transit fare, etc. Although total time decreases in scenario 3, the shift toward cleaner yet less
direct travel modes, such as metro or bus, likely increases waiting, transfer, or walking time, thereby
raising generalized cost. Additionally, minimizing exposure in congested areas often requires more

dispersed traffic distributions, which can lead to system-level cost increases.

To better illustrate the trade-off, we introduce an indicative cost-ben etric by comparing
scenario 3 with scenario 1. The additional cost incurred per unit reductio
$0.049 per kg. This value reflects the economic input re.red tor xposure risk, and it
can offer policymakers a quantitative reference when eval -egonomic efficiency of
low-exposure strategies.

Nonetheless, as will be further demong 4 the itivity analysis (Section 4.1.4), by

appropriately adjusting the weights of & oXposure costs, it is possible to achieve a

In addition, we e d the computational performance of the proposed model. As shown in the
final column of Table 5, the running times for scenarios 1 to 3 were 3619.91 seconds, 2551.77 seconds,
and 1858.10 seconds, respectively. Interestingly, the inclusion of environmental cost factors (carbon
emissions and exposure) not only improves environmental outcomes but also accelerates convergence

by guiding the traffic redistribution more effectively.

4.1.2 Passenger flow distribution under three scenarios

21



Table 6 illustrates passenger flow distribution across five paths under three scenarios. Column 3
reflects the baseline scenario’s initial traffic flow, while columns 4 to 6 show optimal assignments for
scenarios in Table 5. Flow distribution shifts across scenarios: when generalized cost alone is
considered, most travelers choose path 2 (carpool). However, with environmental factors included, at

least 32.99% prefer path 4 (metro), followed by buses, likely influenced by road carbon emissions.

Transit modes (metro and buses) offer the greatest environmental benefits, esting policymakers

adjust metro routes to enhance commuting efficiency.

Table 6
Equilibrium passenger flow for 5 paths.

Passenger

Path Sub-mode .. . . .
Initial With generalized cost ~ With po cost exposure cost

P solo-drive 2000 1654 135
P2 carpool 2000 3722 1587
P3 metro 2000 2248 3777
P4 drive+bus 2000 515 379
Ps bus 2000 1861 3122
4.1.3 Spatiotemporal carbon emissi ure
The spatiotemporal evoluti isk under different scenarios is illustrated in

In scenario 1, exposure is primarily concentrated near congested roads and intersections,
indicating cumulative effects caused by bottlenecks. Introducing carbon emission costs (scenario 2)
and especially exposure costs (scenario 3) leads to a more dispersed spatial pattern and lower peak
values. This demonstrates that incorporating environmental costs into route choice effectively
redistributes traffic and mitigates exposure concentration.

Notably, scenario 3 shows a substantial drop in peak exposure, highlighting the potential of

22



exposure costs to reduce localized health risks during peak periods. These findings underscore the
importance of selecting paths that consider travel time, emissions, and exposure. Policymakers may

consider integrating real-time monitoring, dynamic routing, and air quality alerts to reduce exposure

risks while improving system-wide efficiency.

With generalized cost

Without exposure cost

With exposure cost

o ' 1200 ' ' 1200 720
- 1050 1050 640
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z 8 900 5 F 900 5 560
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Fig. 5. Spatiotemporal evolution of the exposure.
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When only generalized cost is considered, the distribution of high-exposure links is relatively
concentrated, with distinct red peak areas, particularly in regions with dense core traffic flows.
However, when both generalized cost and carbon emission cost are considered, the exposure peaks of
high-exposure links decrease, and the spatial distribution of exposure shows a certain degree of

diffusion. This occurs because the incorporation of carbon emission cost into route choice factors

effectively redistributes traffic flow from certain high-exposure links. Whe cralized cost, carbon

significantly shrinking. The improvement in exposure risk i i i during peak hours,

effectively mitigating the problem of excessively hig 1 exposur entrations.

These findings provide further evidence PO f capturing temporal variation in
exposure, which can be achieved throug orated dynamic modeling frameworks. In

oregated results and ignore such fine-grained

To further eXplOre the trade-offs discussed in Section 4.1.1, we investigate a sensitivity analysis

on the weights of emiS§i@myénd exposure costs separately. The sensitivity of carbon emission cost is
analyzed by controlling the weights of the other two costs, keeping them unchanged, i.e., W, =w, =1.
Specifically, the carbon emission cost weights are set at W, =3, W, =5, and w, =7. Similarly, the
sensitivity analysis of exposure cost is conducted in the same manner. The sensitivity changes are

plotted as shown in Fig. 6. As the weight of carbon emission cost (W, ) increases, the path choice

prioritizes the reduction of carbon emissions, while effectively inhibiting the increase in exposure.
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Consequently, the total cost is decreased. On the other hand, as the weight of exposure cost (Ww;)
gradually increases, the travel path becomes more inclined to reduce the exposure risk to travelers.
The data reveals a notable decline in both exposure levels and carbon emissions, which directly
contributes to a drop in overall expenses. These findings suggest that the dynamic adjustment of the

weighting coefficients of carbon emission and exposure cost in transportation management can achieve

the dual minimization of carbon emissions and exposure risk in different zo d time periods. This

provides a scientific basis for environmental management and lic h protection in

transportation systems. .
A
50000 50000
40000 | 40000
30000 | 30000
20000 | I I 20000 | I I
10000 | I I I I 10000 | I I I I
0 0
Emission (kg) Exposure (kg) Cost($) Emission (kg) Exposure (kg) Cost($)
mw=1 15603.073 35974.409 9076.511 mw=1 15603.073 35974.409 9076.511
Bw=3 10871.999 25066.454 8622952 uw=3 10988.180 25334.323 8633.886
w=5 8633.934 19906.377 8412323 w=5 8769.574 20219.110 8425.088
w=7 7241442 16695.852 8281273 w=7 7379.419 17013.970 8294258
(b) w,
Fig. 6. T ighting St carbon emissions and exposure costs.

ions, exposure, and total cost exhibit strong consistency as the
weights of emisSi@nfand exposure costs increase. This is likely due to the inherent causality: exposure
risk arises primarily icle emissions, leading to higher exposure costs, which in turn trigger
changes in path choice. Incorporating both emission and exposure costs effectively penalizes high-
emission links, guiding traftic flow toward lower-impact routes. Additionally, the reduction in carbon
emissions and exposure is nonlinear for both w, and w, changes. While there is a decreasing trend

with increasing coefficients, the marginal improvements diminish progressively.

An interesting observation is that although the increase in carbon emission and exposure cost
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weights shows relatively similar effects in path choice, this does not mean that the two can be
substituted for each other. Rather, it underscores the necessity of considering both in path choices.
Specifically, considering only carbon emission costs may reduce environmental pollution but cannot
fully address traveler exposure risks. Therefore, minimizing both emissions and exposure

simultaneously remains challenging. These findings highlight the importance of jointly incorporating

both cost components into path choice decisions to achieve a more ba d outcome between
environmental and health benefits, as evidenced in Table 5.

Another key finding is that adjusting the weight.emissi i more pronounced

emissions and exposure. Moreover, increa
balanced traffic distribution, allevi ion @mhigh-flow links and further reducing emissions
and exposure per unit tim i cight of exposure costs effectively reduces

localized g

system-wide e
only as a climate poli dlso as a critical public health strategy.
4.1.5 Sensitive analysis on wind speed and direction

We set the wind speed in the original model to five representative levels: Light air, Light breeze,

Gentle breeze, Moderate breeze, and Fresh breeze (U.S. Naval Institute, 2024). All other parameters

are held constant to analyze the effect of wind speed on travel equilibrium results. By solving the
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multimodal dynamic traffic assignment problem under varying wind speed, Fig. 7 illustrates changes

in total travel cost, CO2 emissions, exposure levels, and route choice behaviors.
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Fig. 7. (a) The influence of wind speed on emission, ex
under varying wind speed conditions.

suggests that in scenatios with high wind and better dispersion, health concerns are no longer a major

reason for avoiding private car use, weakening the marginal health benefits of public transit. Therefore,
neglecting dynamic meteorological factors in policymaking may lead to an underestimation of
people’s sensitivity to travel mode choices, undermining the effectiveness of green mobility promotion
strategies.

We further set the wind direction angle to five representative values (60°, 90°, 150°, 240°, and

330°), while keeping all other parameters constant, to investigate how changes in wind direction affect
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carbon exposure and route choice in the network. Fig. 8 presents the total travel cost, total emissions,

exposure levels, and the resulting equilibrium traveler distributions under different wind directions.
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dispersion pathwa e new wind direction places bus corridors downwind, increasing their exposure

intensity and thus their tFavel cost. In contrast, private cars, due to their greater routing flexibility, can
more easily avoid high-exposure areas, making them relatively more appealing.

In addition, wind direction has a clearly symmetric effect on different travel modes. For example,
the travel patterns under ¢ =60" and ¢ =240", as well as ¢ =150" and ¢ =330", are largely
similar. This can be attributed to the functional symmetry of the Gaussian dispersion model with

respect to wind direction, especially its dependence on Sin ¢ <. This feature not only enhances our
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understanding of the mechanism but also offers a pathway for optimizing future policy simulations. In
the modeling process, selecting a representative subset of wind directions is sufficient to capture key
trends, thereby maintaining accuracy while reducing computational load.

4.1.6 Sensitive analysis on new energy vehicle market penetration

We further examined how the penetration rate of new energy vehicles (NEVs) affects network

performance. According to projections by the International Energy Agen ectric vehicles will
otemtial impact,
ile keeping all other
NEVs refer only to

parameters constant to solve the multimodal dynamic equili

zero-emission vehicles, such as battery electric vehi nd fuel ce cles. Fig. 9 illustrates total

travel costs, emissions, exposure, and travel m: ibuti r varying NEVs penetration levels.
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Fig. 9. (a) The influedce of NEVs proportion on emission, exposure, and travel cost. (b) Flow
distributions under varying NEVs proportion.

The results indicate that as the share of NEVs increases, both carbon emissions and health
exposure risks significantly decrease, along with a consistent drop in total travel cost. Meanwhile, solo
driving and carpooling have become more popular, while the share of public transit has slightly

declined. This trend can be attributed to the zero tailpipe emissions of NEVs. Even with more travelers
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choosing to drive, the overall exposure risk does not increase and may even drop. Additionally, the

travel cost of NEVs is generally lower, especially when emission and exposure costs are integrated

w

into the generalized path impedance 7, .,

making driving a more appealing option. This structural
shift suggests that promoting NEVs not only supports emission reduction goals but also delivers both

environmental and health benefits, without compromising accessibility or affordability. From a policy

perspective, this reinforces the need to accelerate the replacement of conv al vehicles through

subsidies, infrastructure improvements (e.g., charging networks), and gmissi easures to

foster a cleaner and more efficient urban transport syste.
4.2 A simplified real-world network
To further evaluate the model’s computational ility and bility to real-world cases,

we apply the framework to a multimodal url n actual data from the Pittsburgh

metropolitan area. The network consists of t , and US 19 highways, as well as a metro

road segmént i king zones, a single bus route, and one metro line. The parking
zones cover al flable parking ‘spaces in the area. The bus route stands in for all major high-
frequency bus serviceSyWhite the metro line represents the sole subway connection. This provides a
substantially larger and more realistic setting than the testing network in Section 4.1.

The parameter values used in the real-world network are based on empirically calibrated data from
prior studies (Ma and Qian, 2015; Ma and Qian, 2018; Ma et al., 2019), which incorporate local OD

demand, road capacities, and fare structures from the Pittsburgh metropolitan area. During the morning

peak (5 AM - 9 AM), the total passenger demand from origins O; - O4 to destinations D; - D> is fixed
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at 30,000. Notably, origins O - O4 represent large residential neighborhoods, while destinations D -
D: correspond to downtown Pittsburgh and the Mount Oliver residential area, respectively. These
empirically grounded parameters serve as the basis for both the real-world network and the testing
network introduced in Section 4.1. Table 7 provides the detailed link parameters, and Table 8 lists all

feasible paths.
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destinations are

Table 7
Link parameters.

Link Length (mile)  Lanes v,(mile/h) ¢ (veh/h)  k, (veh/mile) v, (mile/h) c,(veh/h) Kk, (veh/mile)

1 5 2 40 2000 200 35 1200 100
I2 7.5 3 65 2300 200 55 1200 100
I3 15 1 30 1800 200 25 1000 100
l4 15 1 30 1800 200 25 1000 100
Is 0.55 1 30 1800 200 25 1000 100
ls 0.55 1 30 1800 200 25 1000 100
l7 2.5 1 30 1800 200 25 1000 100
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ls 2.5 1 30 1800 200 25 1000 100
lo 3.5 2 40 2000 200 35 1200 100
l1o 4 3 65 2300 200 55 1200 100
l11 0.5 1 30 1800 200 25 1000 100
l12 0.5 1 30 1800 200 25 1000 100
l13 0.5 1 30 1800 200 25 1000 100
14 0.5 1 30 1800 200 25 1000 100
l1s 15 2 40 2000 200 35 1200 100
l16 15 3 65 2300 200 55 1200 100
Note: Same as Table 1.
Table 8
List of paths.
Path Origin Destination Mode Sub-mode Path
P1 0, D1 drive solo-drive 1@l2, 110, 116,
P2 drive solo-drive
P3 drive carpool
P4 transit metro
Ps park&ride drive+bus
Ps park&ride drive+bus
P7 park&ride
Ps park&ride
P O3 D1 drive
P10 drive

P1

Py

1

4

solo-drive 1104, 113, l16, l105

Pis solo-drive l10, l12, l15, l1os

P16 carpool l104, l13, l16, l105

P17 park&ride drive+bus l104, l12, l107, P31, l107, l15, l10s

Pis 0 drive solo-drive lioa, 2, lo, l14, l12, l106

P1g carpool l1o1, 1, lo, l106

P2o park&ride drive+bus l01, 12, ls, Is, ls, l10s, P2, l10s, lo, l106
Pn O3 D; drive solo-drive l10s, Is, la, lg, l106

P2 drive carpool l103, 17, l10, l14, l12, l106

Pas3 transit bus l103, Is, 14, lo, l106

4.2.1 Convergence result
Fig. 11 demonstrates a good convergence and computational performance of the real-world

network. Hence, this method holds promise for being applied to even more intricate, real transportation

32



networks down the line. Table 9 demonstrates that unit carbon pricing exerts a stronger moderating
effect on carbon emissions and exposure in the real-world network. When considering generalized
costs, emission costs, and exposure costs together, carbon emissions and exposure in the testing
network (Section 4.1.1) decrease by 45%, whereas in the real-world network, they decrease by 78%.

This is due to the increased presence of alternate routes in more complex networks, which provide

travelers with increased flexibility to adapt, thereby reducing emissions and re more effectively.

It can further be inferred that incorporating emission and exposure cost org substantial

environmental and health benefits in large cities or con’ex trans orks. This has direct

practical implications for policies such as green travel initi zone planning, and

public transport optimization in large cities.
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Fig. 11. Convergence curves for all scenarios in the Pittsburgh network.
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Table 9
Equilibrium results for all scenarios.
Gap Total Total Total Running

Scenario . . .
value time (h) emission (kg) exposure (kg) time (s)

Scenario 1  0.00334 1300.902  413581.373 953552.230 4096.06
Scenario 2 0.00159  1295.397  214174.968 493801.297 3727.47
Scenario 3  0.00399 1280.884  88495.404 204034.793 3676.74

LRI

Note: Scenarios 1, 2, and 3 represent “with generalized cost”, “without exposure cost”, and “with

exposure cost”, respectively.

4.2.2 Passenger flow under three scenarios

Table 10 and Fig. 12 reveal that solo-drive in the slightly larger ogk decreases
significantly under scenario 3, whereas in the testing.twork, i certain level. This
suggests that in such a real-world network, emission and ex ibuted to a reduction in
solo driving. While this may reflect the influence of iversi options, further studies are
required to assess whether similar patterns ho

ttings. Additionally, in the testing

network, the PnR model is nearly eliminated atio 3. In contrast, in the slightly larger real-

transportation develop hese findings can be reasonably extended to complex transportation
networks. Furthermore, policy development should account for variations among different OD pairs.
For instance, (O1, D1) exhibits the strongest public transportation substitution effect, suggesting that
future efforts should prioritize enhancing public transit in this corridor. Similarly, (O3, Di)

demonstrates a higher public transportation attraction, yet PnR remains a viable alternative for some

travelers. This suggests that the planning of public transport routes should be an ongoing process.
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Meanwhile, improving PnR facilities and enhancing transfer efficiency should be prioritized over

simply increasing the unit carbon pricing.

Table 10
Equilibrium passenger flow for all paths.

Passenger flow
Path Sub-mode . . . ) )
Initial ~ With generalized cost ~ Without exposure cost ~ With exposure cost

P;  solo-drive 1250 1528 431 10
P,  solo-drive 1250 1484 1112 16
P3 carpool 1250 3226 904 k 12
01, P4 metro 1250 2131 6217 9884
Dy Ps  drivetbus 1250 512 695
Pe  drivetbus 1250 109 . 73
P;  drivetbus 1250 514 407
Ps  drivetbus 1250 496
Py  solo-drive 1200 923
s Pio  solo-drive 1200 790 654
Dl, P11 carpool 1200 1948 1149 166
P12 bus 1200 2103 3307 5240

Y 428
157

P13 drivetbus 1200 23
P14+ solo-drive 1250 11
Q4, Pis solo-drive 1250 Aie11 1072 1397

979

D: P carpool 1250 2507 2443 2065
P17 drive+bus 328 559
o Pig  solo-drive 1115 613
b 3788 4165
D,
97 222
1856 675
O3,
1577 866
D,
567 2459
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derddifferent scenarios.

cgrated framework effectively facilitates a dynamically

traffic flo his framework not only improves traffic efficiency but also

serves as a scientifi¢ feundation for mitigating carbon emissions and exposure. While the numerical

findings pertain to speciftc roadway systems and weather conditions, useful management perspectives

can nevertheless be gained.

(1) The findings challenge the common assumption that environmental interventions inevitably
increase travel time (Tan et al., 2021). In our scenarios, incorporating carbon and exposure costs into
the path choice mechanism not only reduced emissions and exposure but also shortened total travel

time. This indicates that appropriately calibrated environmental weights can improve overall network
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performance by encouraging more efficient and equitable use of multimodal transportation resources.

(2) The spatial evolution patterns reveal that high exposure zones tend to accumulate in bottleneck
areas, even when total emissions are relatively low. To effectively manage exposure, traffic control
strategies must incorporate both congestion and spatial dispersion effects, particularly near sensitive

areas such as schools, hospitals, and elderly care facilities.

(3) Emission and exposure costs promote modal shifts, but policy effec ess varies across OD

pairs. For example, the (O, D1) corridor shows a strong substitution sage under
e. These differences

considering environmental costs, while in (O3, D1), PnR‘qains a

highlight the need for tailored strategies. In some cases, ving requency, enhancing

transfer efficiency, and strengthening multimodal co ions may reater benefits than further
increasing environmental costs. Therefore, po op uld move beyond uniform pricing
and adopt region-specific mixes of ser¥ frastructure investment, and behavioral

incentives.

mitigates local i * This provides empirical support for incorporating exposure-based
metrics into traffic as t models and for extending the scope of carbon pricing mechanisms to
include public health externalities.

(5) Compared to increasing exposure cost weight, raising the emission cost weight leads to greater
reductions in both emissions and exposure, while also lowering total cost. This advantage arises

because emission costs influence path choice in a way that simultaneously avoids high emission and

exposure links and promotes a more balanced spatial distribution of traffic flows. In contrast, exposure
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costs primarily induce localized adjustments that do not directly reduce emissions at the source. From
a policy perspective, this underscores the potential of unit carbon pricing not only as a climate

instrument but also as an effective public health intervention.

4.4 Discussion of limitations

While the proposed framework demonstrates the feasibility of in ing dynamic traffic
assignment with emission and exposure modeling in multimodal ne
several simplifying assumptions to ensure model tra‘bility
following discussion identifies key assumptions and exami ir i iop$ for model accuracy

and applicability in real-world scenarios.

(1) The model assumes homogeneous tra avi y all users respond to generalized

logit or latent class mo 6 improve realism.

(2) The emission exposure component is modeled using a Gaussian dispersion framework,
assuming steady meteorological conditions (e.g., constant wind speed and direction) and open-space
road environments. This abstraction is common in the literature and enables efficient approximation

of near-road pollutant concentrations (Tan et al., 2021). However, it may underestimate or

misrepresent pollutant accumulation in urban street canyons, enclosed corridors, or under dynamic
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atmospheric conditions. Incorporating time-varying meteorological inputs or more advanced
dispersion models (e.g., RUNE or Computational Fluid Dynamics-based) would enhance accuracy in
complex urban topographies (Mei and Liu, 2023; Gurram et al., 2019).

(3) To ensure internal consistency and enable comparative analysis, both the transportation and

emission models across the testing and real-world networks adopt the same parameter settings, derived

from empirically calibrated studies (Ma et al., 2019; Sharma and Mathew, 2 . While this approach

This study propoSestamnsintegrated dynamic framework to improve travel time, carbon emissions,
and exposure in a multimodal, multi-destination transportation network. The framework integrates a
DTA model, an emissions model, and a dispersion model, providing a comprehensive lens to analyze
the intricate interplay between diverse traffic patterns, parking, public transit operations, and shifts in

transportation modes. Traveler decisions regarding mode and route selection are represented through

a multi-layered nested logit model, while a VI approach is utilized to characterize the extended
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multimodal DTA problem. Carbon emissions are estimated based on spatiotemporal passenger and
vehicle flows and subsequently utilized to assess traveler exposure. The solution methodology
employs an MSA to balance convergence and computational efficiency. To verify the model’s
effectiveness, numerical experiments are carried out on a testing network and a real-world multimodal

transportation network. The results demonstrate that carbon emissions in a dynamic multimodal

transportation network can be quantified, enabling an assessment of their t on traveler health.
Furthermore, considering only generalized costs (e.g., time, delay, and i h sglection may
result in higher traveler exposure. In contrast, incorpor’lg gene st, carbon emission
cost, and exposure cost together achieves a balanced out in rfeductions in carbon
emissions, exposure risks, and overall travel time. crucial to ize that, although carbon

emissions and exposure costs yield comparal es, mphasize different aspects of the

system and thus neither should be considefed

transport netwot oreover, thé proposed extended multimodal DTA framework exhibits high

flexibility and can b ed to transportation systems across different spatial scales to inform
planning and management decisions. Furthermore, this study highlights the substantial environmental
benefits of public transportation. The extended multimodal DTA framework can serve as an
indispensable resource for evaluating the effects of introducing new bus routes, optimizing stop

locations, and integrating innovative public transportation options like microtransit and demand-

responsive services (Xu et al., 2016, 2017), particularly concerning environmental and health
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outcomes. Additionally, the framework can dynamically adjust operational strategies, including trip
frequency, fleet size, and seating capacity, to enhance the overall effectiveness of public transportation
systems (Jiang and Szeto, 2015). Finally, transportation management policies should incorporate
differentiated measures based on the passenger flow characteristics of various OD pairs rather than

relying solely on unit carbon pricing.

Our research has already identified several potential domains for furt ploration. First, we

vehicles (Zhang et al., 2021), electric buseé
ridesharing, automated vehicles, e W /ong and Yue, 2023). Last but not least, this
research involves |
levels and ¢ 1 Ceder, 2021), which may lead to equilibrium phenomena in

stochastic traffic
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Appendix A. Table of notations

The key notations are listed in Table A.1, while others are explained where they are used.

Table A.1
Key notations employed in this study.
Symbols Description
w index for OD pair
W set of OD pairs
T set of time intervals
M first-layer mode choices in
' M, = {Transit, Driving, P&
second-layer mode chei
M, M, (Transit) = {
M, [Bhivi
M
Vv
Ry
A
A:;l),m,n
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Appendix B. Derivation of exposure concentration estimation based on Gaussian dispersion

This appendix presents the detailed derivation of the exposure estimation procedure used in
Section 3.1.2, including Gaussian dispersion model, FLS representation, and calculation of link
exposure concentration.

B.1 Gaussian dispersion model for point sources

This study employs the widely used Gaussian dispersion model (Turn 4) expressed by,
2
c(x,y,2)= MJ(DWGXF{_Z%J [exp[—(Z;—H)J (B.1)
The concentration of emissions, denoted as c(x’, 2)al [ ed at a receptor
positioned at coordinates (x,y,z) within a localized co ere, Q stands for the
emission rate of a point source, expressed in mg/s, while e mean wind speed in meters
per second. The height of the source is giveén b and o, and o, correspond to the
horizontal and vertical plume dispe ICSyre ely, also in meters. For urban settings, the
valuesof o, and o, canb i . Egs. (B.2) and (B.3) (Tan et al., 2021):
+0.0004x) ™ and (B.2)
=0.24x(1+0.001x) 2. (B.3)
In examining ular emissions and concentrations at the local scale, we can designate z =0
and H =0. Then, Eq. (;"1) can be reformulated as
2
c(xy,z=0)= %exp[—zij}xzo’ (B.4)

0,x<0

where x>0 and x<O0 differentiate the downwind and upwind direction, respectively.
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B.2 Finite line source (FLS) representation

Drawing on the Gaussian dispersion framework, we expanded our analysis to assess how vehicle
emissions spread along roadways, employing the approach introduced by Benson (1984). This
technique adapts the point-source dispersion model to accommodate line sources. Essentially, the

method breaks down a road segment into several smaller sections, each representing an equivalent

FLS with a specific emission rate, Qg s, measured in mg/m/s. These units are oriented

A
Cris (X’ Y, Z= O)ZJ.;

where y; . and y7 . representth

using Egs. (B.6) and (B.7):

Yeis = Y- 'FLSs'Z L (B.6)
Yas =Y+ lssin Sl2n Pris (B.7)

where ¢ s indic the angle relative to wind direction, 0°<¢.,<90°; |, represents the

FLS’s length. For more gnformation, see Sun et al. (2018).

Eq. (B.5) can be further transformed by assuming that r=y/o, and introducing ¢() to denote

the standard normal distribution formula, which leads to,

s (x,y,220) = — 3 [ 2 exp(—r—;jdh y2Q [¢{YJ_¢(LB (8.9)
FLS O

7o, USin @, g * 0 \/;O-zu Sin e o y

oy y
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In the above equations, Q represents the emission rate of a point source. If we consider a FLS
as a short link, then can be linked with the emission rate in the macroscopic emission model via the

following equation,

Vn
Qn — el’] f n m,FLS,t (Bg)

m,FLSt m,FLSt ~ 'm,FLSt )
3600l

where Qp s, represents the line source emission rate at time t (mg/m/s), and v, ., represents the

velocity of type n in FLS attime t (km/h).

B.3 Calculation of link exposure concentration

To calculate the emission exposure of a traveler while driwi i to a set of FLSs,
and assume that there is a CO concentration measuremefitpoint ter of each FLS. Then,

the exposure concentration of link a is computed by,

(B.10)
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Appendix C. Travel time calculation for each mode on the corresponding path

The travel time for every mode and route within the network is derived using the DNL model.
For example, when driving, the total travel time encompasses the car trip from home to the parking
lot, the time spent searching for a parking spot, and possibly the walk from the parking area to the final

destination. For public transit, the calculation includes the walk from home to the bus stop, the waiting

time for the bus or metro, the actual ride time, and the walk from the transit o the destination. In

the case of PnR, the travel time factors in the car trip, the search for pa it forsthe bus, the
bus ride, and the walk from the bus stop to the destin‘)n. For n the calculations,
readers are encouraged to consult Pi et al. (2019).

that travel times remain

The metro system operates on a dedicated in ucture, e

consistent with the schedule and are not disru ic conditions. On the other hand, cars

and buses share the same road networks, ed traffic patterns. This study utilizes the

spillback effects with esDNL framework. Additionally, the link model ensures a first-in-first-out

(FIFO) principle for each vehicle class, allowing for precise calculation of travel times for cars and

buses based on their respective cumulative flow curves.

The parking cruising time is generally anticipated to correlate with the expected parking
availability in the designated area. A standard calculation for cruising time is expressed using

&

W (Qian and Rajagopal, 2014). Where ¢, signifies the average duration of a parking space

47



remains available when unoccupied. We denote the occupancy of parking zone i attime t as €(t).

C, indicates the total capacity of the parking area. A widely recognized parking search time estimation
model remains steady at low to moderate occupancy but rises sharply at high occupancy levels. For
now, this DNL and the numerical example do not provide a simulation of street-side cruising for
parking and its impacts on through traffic. However, the framework and solution algorithms

concerning the extended multimodal DTA problem still apply to any generic dynamic simulation

models.
This research utilizes the historical mean waiting time at each tra
is appropriate for high-frequency transit services during’ak mo

Zhang and Qian, 2018). The time spent walking correlates dir,

an individual’s average walking speed is denoted as V total tim

alking can be determined

by simply dividing the distance by the average
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Appendix D. Dynamic network loading

e

Initialization. Initialize an empty network, as well as cumulative curves for each link.

A 4

Releasing. For all origin nodes, generate different classes of vehicles, e.g. cars, buses, etc., according
to vehicle demand and path flow. Release the vehicles to downstream links. For travelers choosing a
transit mode, load them to the downstream transit network links.

=

Node evolution. For all junction nodes in the auto network, move vehicles from upstream to
downstream links. Update the departure curves of upstream links and arrival curves of downstream
links. For transit stop nodes, load passengers on/off bus/metro only if the bus/metro arrives.

T

Link evolution. For all auto network links, move vehicles on the links cell-by-cell following the
multi-class traffic flow model. If a vehicle reaches the destination nodes, delete it from the network.
For all bus network links, move the in-vehicle bus passengers as the propagation of buses on the auto
network. For all metro network links, move the metro passengers according to the metro schedule.

e

Termination check. Stop when the end of the study time period is reached. Otherwise, go to Step 2.

v

Fig. D.1. The dynamic net ading algo

@Q
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Appendix E. Algorithmetic steps for solving the extended multimodal DTA problem

Step 1

Initialization. Initialize a path set, and initialize the path flow vector f such
that the passenger demand q is evenly distributed to each path.

Dynamic network loading. Generate vehicular demand from the passenger
flow. Run a full DNL process with vehicular flow, and obtain the
generalized impedance for each path.

Passenger path set augmentation. Run a shortest path algorithm with the
generalized path impedance obtained in Step 2, and, if the shortest path is
not already included in the current path set R", append it to the set.

Update passenger flow. Update the passenger path flow with the
generalized path impedance obtained in Step 2 using the MSA presented
n Section 3.3.2.

Step 5

Convergence check. Stop when the path set R" does not change and the
change of path flow fis less than tolerance. Otherwise, go to Step 2.

Fig. E.1. The algorithm of the exte multimo TA&lver.

@Q
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