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Assessing and Mitigating Carbon Emission Exposure in Dynamic Multimodal Transport 

Networks 

Abstract 

On-road carbon emissions from heterogeneous traffic flows in multimodal urban transportation 

systems pose a significant risk to public health. Developing effective instruments to mitigate these 

emissions requires accurate modelling and assessment of their impact on the environment. To this end, 

this study establishes a holistic framework that integrates two interrelated components: 1) a 

multimodal dynamic traffic assignment model for obtaining equilibrated flow distributions, and 2) a 

Gaussian plume model, underpinned by a multi-category vehicle carbon emission model, to assess the 

spatiotemporal distribution of exposure. Numerical experiments demonstrate the model convergence 

and evaluate its performance under multiple scenarios. Results show that incorporating the proposed 

carbon emission cost and exposure cost into dynamic traffic assignment can simultaneously reduce 

carbon emissions and exposure risks, underscoring the necessity of jointly considering both factors in 

path choice modeling to achieve sustainable urban mobility and the broader development of low-

carbon, healthy cities. 

Keywords: Carbon emission exposure; Dynamic traffic assignment; Heterogeneous flows; 

Multimodal transportation 

1. Introduction 

Urban transportation contributes up to 16% of worldwide greenhouse gases, ranking third in 

carbon dioxide (CO2) emission sources (Lu et al., 2024). Exposure to emissions can cause a range of 

health problems, including heat-induced ailments, respiratory illnesses, and cardiovascular diseases 

(Mohsenizadeh et al., 2020; Burns et al., 2020; Dadashev et al., 2023). These impacts highlight the 
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need for measures that effectively reduce carbon emissions, addressing not only the total amount 

emitted but also the level of exposure. 

Currently, there are two main approaches for reducing vehicle carbon emissions in urban road 

networks. From a technical perspective, one approach is to reduce vehicle emissions through measures 

such as improving fuel quality, promoting new energy vehicles, and enhancing tailpipe cleaning 

technologies (Shen et al., 2024). This approach primarily focuses on reducing emissions from 

individual vehicles; however, its effectiveness depends on the adoption and widespread market 

penetration of new technologies, which may require a prolonged timeframe. From a policy perspective, 

the other approach employs traffic demand management instruments to induce changes in travel 

behavior, such as shifting to green travel modes or adjusting travel times and routes (Kamishetty et al., 

2020; Zeng et al., 2020; Djavadian et al., 2020), which could deliver substantial results within a 

comparatively short timeframe. In practice, key traffic management schemes implemented include 

traffic control (e.g., restrictions and bans) (Long et al., 2018; Song et al., 2020) and pricing (e.g. taxes, 

charges and tolls) (Zong et al., 2024). Comparatively, strategies that adjust travelers’ path choices in 

conjunction with emission pricing are considered more effective in reducing overall emissions and 

exposure.  

The design of emission pricing is commonly built upon traffic assignment models (e.g., Ma et al., 

2017; Sharma and Mishra, 2011), which incorporate carbon emission costs as a disutlity that reduces 

the probability of a route being chosen. However, most existing studies focus primarily on aggregated 

emission quantities, while overlooking the spatiotemporal distribution of emissions and the associated 

health exposure of travellers. Moreover, only a limited number of studies (Fan et al., 2024; Xi et al., 

2025) account for travel behaviour in a multimodal transport network, despite its growing prominence 
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in modern urban mobility contexts. Consequently, the complex relationships among travel time, 

emissions, and exposure remain insufficiently understood, leaving an inadequate foundation for 

developing pricing‑based demand management measures in multimodal networks. 

To bridge two major gaps, this study develops an integrated dynamic modeling framework that 

captures travel behavior, carbon emission, and exposure risk in multimodal networks. Specifically, we 

construct a multimodal dynamic traffic assignment (DTA) model that incorporates generalized travel 

cost, carbon emission cost, and exposure cost into travelers’ route choices. Carbon emissions are 

estimated using a macroscopic emission model calibrated for different travel modes, while traveler 

exposure is quantified based on a Gaussian dispersion process that captures the spatiotemporal 

dispersion across the network. To solve the dynamic multimodal traffic assignment, the Method of 

Successive Averages (MSA) is employed. The proposed framework is applied to both a testing 

network and a real-world network to evaluate its performance and derive policy insights. Through 

scenario analysis, we examine how different cost configurations affect carbon emissions, exposure 

risks, and travel patterns, thereby revealing the trade-offs and synergies between environmental and 

health objectives in sustainable transportation planning. 

This research contributes to the literature in the following ways: 

1) It quantifies both carbon emissions and exposure, measured by their health impacts, in a 

multimodal transportation network. 

2) It integrates both emission and exposure costs within the travel behaviour model, i.e., an 

extended multimodal DTA model incorporating multi-destination trips. 

3) The results reveal the irreplaceable roles of both emission and exposure costs in traffic flow 

management, underscoring the necessity of addressing them jointly within the decision-making 
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framework. 

The organization of this paper unfolds in the following manner. Section 2 delves into an 

examination of pertinent academic literature. Section 3 unveils the proposed modeling framework. 

Section 4 conducts a numerical analysis, interprets the findings, and extrapolates policy 

recommendations. Section 5 concludes this study and outlines avenues for future research. 

 

2. Literature review 

This section reviews the most relevant studies in two directions that underpin this research: (1) 

the spatiotemporal assessment of carbon emissions and their exposure impacts on travelers, and (2) 

the incorporation of environmental and health costs into dynamic path choice models. 

2.1. Spatiotemporal analysis of travel behavior, carbon emissions and exposure 

Many studies have quantified traffic-related carbon emissions using either macroscopic or 

microscopic approaches (He et al., 2020; Jia et al., 2022). Macroscopic models estimate emissions 

based on aggregated speed–flow relationships (He et al., 2020), and are widely adopted due to their 

computational efficiency in large-scale networks. Recent studies have started integrating these models 

with DTA to capture temporal variations in traffic flow and emissions (Long et al., 2018; Pinto et al., 

2020; Vosough et al., 2022; Mei and Liu, 2023). However, most of these efforts focus solely on 

emissions, without accounting for pollutant dispersion or their health impacts on travelers. 

Traveler exposure to traffic-generated air pollutants is an increasingly pressing concern. Studies 

have used Gaussian dispersion models to simulate how pollutants spread from roadways (e.g., Liang 

et al., 2023), and some have linked emissions and exposure through dynamic simulations (e.g., Tan et 

al., 2021; Dadashev et al., 2023). However, most of these studies consider exposure passively 
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(Vosough et al., 2022). That is, exposure is typically estimated after path choices are made, rather than 

being treated as a factor influencing travel behavior itself. Moreover, although multimodal networks 

are increasingly recognised as integral to sustainable transportation, their role in this context remains 

largely underexplored. 

This study contributes to this line of research by developing a framework that simultaneously 

models dynamic travel behavior, carbon emissions, and their exposure. Unlike existing studies that 

separate travel behavior modeling and emission estimation, the proposed approach integrates them 

within a unified framework, enabling exposure risk to actively influence path choice decisions. 

2.2. Integration of environmental and health costs in dynamic path choice 

In the context of static traffic assignment, the incorporation of environmental costs into travellers’ 

decision-making is a well-established concept (Szeto et al., 2012; Sun et al., 2018; Li et al., 2020; Luo 

et al., 2020). However, these studies often assume uniform cost sensitivity and overlook temporal 

dynamics and traveler heterogeneity. Recent research has extended this concept to dynamic contexts 

by incorporating emission costs into DTA models (Long et al., 2018; Pinto et al., 2020). This approach 

allows for a more accurate representation of temporal traffic fluctuations and their environmental 

impacts (Wang et al., 2018). These models suggest that pricing mechanisms can shift traffic away from 

emission-intensive routes toward more sustainable alternatives. 

However, few studies consider both exposure and emission cost simultaneously. While some 

studies have explored traveler exposure as an externality (Pinto et al., 2020; Vosough et al., 2022), it 

is rarely internalised as a decision variable in route choice models. Moreover, most of the dynamic 

assignment models in this field remain confined to single-modal networks (Long et al., 2018; Tan et 

al., 2021). Although Pi et al. (2019) proposed a generalized formulation for multimodal DTA and 



 

7 

sought solutions for optimal travel costs, integrated models that account for mode choice, emission- 

and exposure-sensitive path selection, and cross-modal and multi-destination routing remain scarce. 

This gap constrains the capacity to conduct comprehensive policy analyses on the trade-offs among 

efficiency, emissions, and public health. 

Overall, this study integrates both carbon emission and exposure costs into an extended 

multimodal DTA model. Theoretically, it enables the examination of how environmental and health 

factors jointly influence the dynamic distribution of traveler flow in a multimodal transport network. 

In practice, it captures the complete feedback loop between traffic flows and environmental health 

risks, enabling more refined evaluation of carbon pricing and public health interventions in multimodal 

networks. 

3. Methodology 

This section starts with introducing the emission model, which calculates the total emissions using 

a macroscopic emission model and captures the secondary health effects of carbon emissions through 

exposure using a Gaussian dispersion model. Next, to obtain the traffic flow inputs for the emission 

models, we adopt an extended multimodal DTA model, in which a generalized travel impedance 

function is introduced to account for both travel and emission exposure costs. Ultimately, the issue is 

expressed as a Variational Inequality (VI) and solved via an MSA algorithm. 

3.1. Emission model 

To effectively gauge the influence of vehicle emissions, we integrate a macroscopic emission 

framework with a Gaussian dispersion model. This approach allows us to quantify both the overall 

emission output and the subsequent health risks stemming from exposure to carbon pollutants. 
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3.1.1. Macroscopic emission model 

This study adopts the macroscopic emission model proposed by Sharma and Mathew (2011), 

which defines the link-based carbon emission rate as a nonlinear relationship with link travel time. The 

same model has been applied in Heinold and Meisel (2020). In contrast to these studies, this study 

extends the model to a dynamic context, enabling it to calculate the evolution of emissions with 

temporal and spatial resolution. Mathematically, it is formulated as,  
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, , ,1 ,2 ,3

, , , ,

, , , ,n n n na a
m a t m m mv v

m a t m a t

l l
e K K K n V m M a A t T

 

   
= + +           

   
,  (1) 

where , ,

n

m a te  represents the emission rate for link a in mode m, measured in grams per kilometer per 

vehicle (g/km/veh); , ,

v

m a t  denotes the travel time of link a in hours (h); and al  is the length of link 

a in kilometer (km). ,1 ,2 ,3, , and n n n

m m mK K K  represent emission coefficients for various vehicle 

categories, determined through experimental analysis. 

Using the link emission rate, the path’s total emissions are determined by,  

 , ,

, , , , , , , , , ,w a m n n n w

m p t p m a t m a t a m

a A n V

E f e l w W m M p R t T
 

=       , (2) 

where , ,

w

m p tE  denotes the carbon emission in grams associated with path p of mode m connecting OD 

pair w at time t (g). In the path-link incidence matrix, the element 
, ,a m n

p  is assigned a value of 1 if 

path p passes through link a and is represented by 0 in other cases. Meanwhile, , ,

n

m a tf  represents the 

volume of traffic, measured in vehicles, moving along link a for mode m at a specific time t. 

Additionally, al  denotes the length of link a, expressed in kilometers. This study then further converts 

the total amount of emissions to a monetary value , , ,

w

m e p tc  using the unit carbon pricing approved by 

the European Union, which is $48 (ECEEE, 2022). 

3.1.2. Gaussian dispersion model and exposure estimation 

Dispersion models describe pollutant dispersion from emission sources. Consistent with the 
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literature (Fallah-Shorshani et al., 2017; Mei and Liu, 2023), this study employs the widely used 

Gaussian dispersion model (Turner, 1994) expressed by, 

 
( ) ( )

2 22

2 2 2
( , , ) exp exp exp

2 2 2 2y z y z z

z H z HQ y
c x y z

u    

      − +
 = − − + −                

. (3) 

The concentration of emissions, denoted as ( , , )c x y z  in mg/m³, is measured at a receptor 

positioned at coordinates ( , , )x y z  within a localized coordinate framework. Here, Q  stands for the 

emission rate of a point source, expressed in mg/s, while u  represents the mean wind speed in meters 

per second. The height of the source is given by H  in meters, and y  and z  correspond to the 

horizontal and vertical plume dispersion metrics, respectively, also in meters. 

Drawing on the Gaussian dispersion framework, we expanded our analysis to assess how vehicle 

emissions spread along roadways, employing the approach developed by Benson (1984), which adapts 

the point-source dispersion model to accommodate line sources. Essentially, the method breaks down 

a road segment into several smaller sections, each representing an equivalent finite line source (FLS) 

with a specific emission rate, FLSQ , measured in mg/m/s. These FLS units are oriented perpendicular 

to the wind direction and centered at the midpoint of their respective segments. Since the x-axis aligns 

with the wind direction, all points on a given FLS share identical y  and z  values. Consequently, 

the concentration of emissions at a specific location ( , , )x y z , denoted as ( )FLS , , 0c x y z = , can be 

determined for each equivalent FLS. 

   ( )
L

2
FLS

1
FL

2
FLS

1
F SS

2

FLS 2

FLS

, , 0 exp
sin 2

( , , 0)
y y

y
y z y

y

Q y
c x y z dy dyc x y

u
z

   

  
= = = − 

=


 
  , (4) 

where 1

FLSy  and 2

FLSy  represent the distances from the FLS endpoints to the x-coordinate; FLS  

denotes the angle between the segment and the wind vector (°), FLS0 90    . 
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Fig. 1 illustrates the conceptual process from vehicle emissions to the final estimation of exposure. 

Emissions from traffic activities are first dispersed using the Gaussian model to form a spatial 

concentration field. The detailed derivations of the emission dispersion and exposure concentration 

estimation process are provided in Appendix B. Based on this field, the travelers’ exposure is 

calculated by integrating emission concentration over travel time and spatial extent. 

Vehicle 

emissions 

Concentration 

dispersion

Exposure 

calculation

Travelers mode/

path choices

 Gaussian model

 

Fig. 1. Carbon emission dispersion and exposure estimation process. 

The exposure concentration of travelers on link a  is solely dependent on emissions from that 

link. The travelers’ exposure concentration on link a  at time t  (mg·s/m3), , ,m a t , can be expressed 

as, 

 
,FLS, F

, , FL

2 1

LS FLS

FLS

S

2

si
,

n
( )

a a y y

n

m ta a
m a t s s

n s Fa zF n sa

yQ
C x y

l l

y

u

 



 

  

    
−        



=

   

=   , (5) 

where a  denotes the link travel time in hours (h); aF  is the FLS set on link a ; FLS( , )s sC x y  is the 

emission concentration at the center of the FLS; 1

FLSy  and 2

FLSy  are the distances from the 

measurement point ( , ) s sx y to the ends of FLS (m), respectively; ,FLS,

n

m tQ  represents the line source 

emission rate at time t  (mg/m/s), and the meanings of the other parameters are the same as those 

above. 

The dispersion of each path can be obtained by summing the dispersion of the links included (Eq. 

(6)). The dispersion for each link is calculated as the product of dispersion concentration and traffic 
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volume, divided by travel time. Consequently, the exposure associated with path p at time t , , ,

w

m p tP , 

equals the total exposure of type n  across all links a  along the path (mg), which is expressed by,  

   
, , , , , ,, , , ,

, , , , , ,
3600 3.6

n n n

m a t m a t m a t a l ew a m n a m n w

m p t p p m

a A n V a A n Va a

V l h
P w W m M p R t T

  

    

=  =        , (6) 

where , ,

n

m a tV  represents the dispersion volume of link a  in mode m at time t , computed using 

a l el h ; al  denotes the length of link a  (in km), and lW  stands for the lane width (in m), with the 

assumption of 3l = ; eh  is the dispersion height (m), assumed to be 1; a  denotes the link travel 

time in hours (h). 

Then, the total exposures are converted into monetary value , , ,

w

m s p tc . Since it is an indirect effect 

of emissions, the dispersion cost per ton is set at $20, slightly lower than the cost of carbon emission. 

3.2. Transportation model 

We consider that passenger’s mode and route choices are characterized by a nested logit model 

depicted in Fig. 2. In what follows, we define the cost associated with each travel mode, followed by 

the multimodal DTA model. 

 

Fig. 2. The two-layer mode choices. 

3.2.1. Generalized travel cost 

Building on the research conducted by Pi et al. (2019), we establish a framework for calculating 

the generalized travel cost across various transportation options. The generalized travel cost, 

represented by , ,

w

m p tc ,  transit,drive,P&Rm , is defined as the total expense incurred by a traveler 
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moving between OD pair w via travel mode m  at departure time t  along route p , w

mp R  . Here, 

w

mR  stands for the collection of available paths for mode m between the specified OD pair. 

 

( )2

transit , , transit , , transit , , transit , ,

Transit

max[ ( ), ( )] ,

                                            , ,

w w w w w

p t p t p t p t p

w

m M

c g t g t t t g r

p R w W t T

   



= + + − − − +

   
 (7) 

 

( )2

drive, , drive, , drive, , drive, , ,

Car

max[ ( ), ( )] ( ) ,

                                                     , ,

w w w w w

p t p t p t p t i p t

w

m M

c g t g t t t g p k k

p R w W t T

    



= + + − − − + + +

   
 (8) 

 

( )2

P&R, , P&R, , P&R, , P&R, , ,

P&R

max[ ( ), ( )] ( ) ,

                                                        , ,

w w w w w w

p t p t p t p t i p t p

w

m M

c g t g t t t g p k k r

p R w W t T

    



= + + − − − + + + +

   
 (9) 

where 

1) , ,

w

m p tg ,  transit,drive,P&Rm  represents the real travel time on path p  at time t  for OD pair w. 

The calculation for the paths corresponding to each mode is provided in Appendix C. 

2) t   is the target time.   denotes the travel time unit cost.   and   indicate the unit costs for 

early and late arrivals, respectively. The second term is called the schedule delay cost. 

3) 
w

pr  denotes the fare for transit route p  connecting OD pair w. 

4) ip  represents the parking fee at slot i . 

5) k  denotes the total number of travelers sharing a ride, where 1k =  indicates a single driver 

traveling alone. Meanwhile, , ( )od

p t k  represents the carpool impedance cost on path p  at time t  

for a trip between OD pair w with k  passengers, , (1) 0od

x t = . 

6)   as a measure of private car accessibility. If a traveler possesses a car or has the means to use 

one,  is set to 0; otherwise, it is assigned to a large value to reflect the lack of access. 

3.2.2. Generalized path impedance considering environmental cost 

As calculated in Section 3.1 and Section 3.2.1, the factors to be considered in this study include 

the generalized travel cost, the carbon emission cost, and the traveler exposure cost. The total of the 

three is computed as the generalized impedance , ,

w

m p t  for path p  between OD pair w at time t , as 
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in Eq. (10): 

  , , 1 , , 2 , , , 3 , , , 2,w w w w

m p t m p t m e p t m s p tw c w c w c m M = + +   . (10) 

We evaluate road network performance (total time, carbon emissions, and exposure) under three 

scenarios differentiated by path cost. The first scenario considers only generalised travel cost; the 

second incorporates emission costs; and the third further includes exposure costs. 

3.2.3. Multimodal dynamic traffic assignment 

All scenarios involve a nested logit model with two levels of mode choices. Let ( )u m  represent 

the second-layer mode options associated with the first-layer mode choice m . The two-layer 

condition of the extended multimodal DTA model can then be expressed as, , , , ( ),w t m u m  
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2 , ,
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 (11) 

In the above equation, ( )u m  represents the set of all second-layer mode choices. , ( ),

w

m u m t  is the 

equilibrium cost of travel mode m between OD pair w departing at time t . , ( ), ,

w

m u m p tf  denotes the 

traffic flow along path p  within mode m between OD pair w starting at time t . The flow of mode 

( )u m  between OD pair w starting at time t  is 
, ( ),

, , ( ), ,w
m u m t

w w

m t m u m p tp R
d f


= . The total flow between 

OD pair w starting at time t  is 
  ,transit ,drive,P&R

w w

t m tm
q d


= . ( )u m

ma  and 2

mb  serve as key parameters 

within the nested logit model. 
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It’s worth noting that the last equation in Eq. (11) establishes the correlation between the first-

layer and the second-layer modal equilibrium generalized impedance ( ,

w

m t  and , ( ),

w

m u m t ). Finally, the 

modal flow between the OD pair w  at each time t  are: 

   
, ( ),

, ( ), , ( ), ,w
m u m t

w w

m u m t m u m p tp R
d f


=  (12) 

   
2 , ( ), 2

, , ( ), , , ( ),( ) ( )w
m u m t

w w w

m t m u m p t m u m tu m M p R u m M
d f d

  
= =    (13) 

It can be formulated as a VI problem , ( ), ,VI( , )w

m u m p t  , as demonstrated in Pi et al. (2019). 

Find *
f  such that 

* *

, ( ), ,( ) ( ) 0,  T w

m u m p t  −   f f f f  (14) 

where 
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( ) , ( ),, ,

, ( ), , , ( ), ,

1 2 2

, ( ), , , ( ), ,( )

( )= ( )
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( ) ( )

w

m u m p t

m wm w w

u m m u m tm t m tod w

m u m p t m u m p t m m

w w w

m u m p t m u m p t tm u m p

a da d d

b b b

f q




 


 ++
 = + − +



 = =
  

f f

f f

f

 (15) 

Pi et al. (2019) remarked that the solution existence/uniqueness conditions of the classical 

multimodal DTA follow from VI theory. Proving its existence in the extended multimodal DTA 

framework is difficult due to model complexity. As this study does not address this proof, we assume 

that a VI solution exists. Since strict monotonicity on , ( ), ,

w

m u m p t  is not universal, solutions may not 

be unique (Nagurney, 2009). Although the existence of an extended multimodal DTA solution is not 

rigorously proven, the framework remains practical, as demonstrated by experiments showing that our 

solution method generally converges. 

3.3. Solution method 

3.3.1 Dynamic network loading 

The DNL is a vital component in the DTA to assess the travel time in networks. It runs 

continuously during the designated study period, i.e., morning peak hours, in 5-second time intervals. 

The Cell Transmission Model (CTM) is employed to implement the DNL procedure. The algorithmic 

details within each time interval are detailed in Appendix D. Upon completion of the loading phase, 
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the model outputs travel times and traffic flows associated with each segment in the multimodal 

network. These results are then used to compute the generalized impedance for each origin-destination 

route, accounting for emissions from different vehicle categories and their associated exposure. Mode 

split, link/path flow, and travelers route choices are subsequently updated. 

3.3.2 Method of Successive Averages 

To solve the VI formulation of the extended multimodal DTA problem, this study employs the 

MSA algorithm for its simplicity and convergence performance. In our preliminary experiments, we 

compared MSA with another gradient projection method and found the latter performed worse. This 

is likely because the generalized path impedance is not monotonic, a property that is desirable for 

ensuring the convergence of gradient-based methods for solving VI problems. The main MSA iteration 

process is as follows. In essence, the algorithm iteratively averages the current solution with an 

auxiliary solution obtained by solving an auxiliary assignment problem (Kumar and Khani, 2023).  

Step 1: Initialization. In a multimodal network, compute the shortest path between each OD based 

on the generalized path impedance ( , ,

w

m p t ). Perform an all-or-nothing assignment for each OD pair to 

obtain the initial traffic flow of each link. 

Step 2: Update the link flow matrix and generalized path impedance matrix. The weight to 

average the link flow between two consecutive iterations is set to be 1 ( 1)n +  . Then update path 

impedance matrix based on the averaged flow.  

Step 3: Check convergence. If the following Gap satisfies the convergence accuracy, then 

terminate the algorithm; otherwise, return to step 2. 

 
( )( )( )

, ( ),

, ( ),

, ( ), , , ( ), , , ( ), ,
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f
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



 −
=
 

 
 (16) 

3.3.3 Path set generation 

The VI formulation requires knowing the set of paths. In the algorithm, we adopt the column 
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generation method to augment the path set at each iteration, and the algorithm is run to search for the 

shortest path across different modes. The overall algorithm for solving the extended multimodal DTA 

problem (11) is summarized in the algorithm in Appendix E. 

4. Numerical results and discussion 

We first solved the extended multimodal DTA problem on a simple testing network to assess the 

framework’s efficiency and performance, and then conducted parameter sensitivity analyses to derive 

policy insights. The testing network in Section 4.1 is a simplified version of the multimodal network 

examined in Pi et al. (2019). Afterwards, we tested the model on a real-world multimodal network 

with multiple OD pairs, corresponding to the Pittsburgh metropolitan area network used in Pi et al. 

(2019). To ensure consistency and realism, the parameter settings in the test network were adopted 

directly from related real-world network studies. As a result, both the structural settings and behavioral 

parameters align with the original empirical context, enhancing the relevance and validity of our results. 

4.1 A testing network 

The network, depicted in Fig. 3, is a testing network featuring a single OD pair (O1, D1) with a 

demand of 10,000 vehicles. The network comprises 6 nodes, 6 links, a parking lot, a bus route, and a 

metro route. Section 3.2.1 notes that all travelers possess or can access private vehicles. In this 

experiment, travelers can choose any available travel mode. Link parameters are detailed in Table 1, 

while all paths are shown in Table 2. 

Additional experimental parameters are provided in Table 3 (Pi et al., 2019). It is important to note 

that the parameter values in the nested logit model are drawn from existing empirical results (Ma and 

Qian, 2015; Ma and Qian, 2018; Ma et al., 2019), which provided calibrated values based on stated 

preferences or simulations. The values were selected to reflect typical cost sensitivities and behavioral 

realism in numerical simulations. For example, higher 3a  reflects greater sensitivity to generalized 
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impedance in the park-and-ride mode, while uniform 1b   and 2b   values ensure balanced nesting 

effects. 

The coefficients ,1 ,2 ,3, ,  and n n n

m m mK K K  used in this study were initially proposed by Sharma and 

Mathew (2011), as listed in Table 4, based on regression analysis of field emission measurements and 

speed-flow data for cars and buses. These coefficients have been widely adopted in macroscopic 

emission modeling due to their practicality and robustness. In our implementation, they are treated as 

vehicle-type-specific and are assumed constant across the network. We acknowledge that this 

simplification may limit the model’s adaptability to different urban contexts. However, the model 

structure allows for straightforward replacement of these parameters with locally calibrated values. In 

future applications, localized calibration could be conducted using empirical data from roadside 

monitoring, portable emissions measurement systems, or region-specific driving-cycle studies. 

The wind speed and solar radiation level are both set at 1 (Tan et al., 2021), and is intended to 

provide a baseline for comparative analysis across scenarios. Although actual wind speeds may vary, 

our focus is on relative exposure patterns rather than precise concentration calibration. Similarly, the 

wind direction is 60° (ENE). The program is coded in C++ for dynamic model loading, with the MSA 

implemented in Python to compute the equilibrium solution, and executed on a desktop featuring an 

Intel(R) Core (TM) CPU i7-12700 @ 2.10GHz. 
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Fig. 3. A testing multimodal network. 

 

Table 1 

Link parameters. 

Link Length (mile) Lanes 1v (mile/h) 1c (veh/h) 1j (veh/mile) 2v (mile/h) 2c (veh/h) 2j (veh/mile) 

l1 5.0 2 40 2000 200 35 1200 100 

l2 7.5 3 65 2300 200 55 1200 100 

l3 3.5 2 40 2000 200 35 1200 100 

l4 4.0 3 65 2300 200 55 1200 100 

l5 1.5 2 40 2000 200 35 1200 100 

l6 1.5 3 65 2300 200 55 1200 100 

Note: v  denotes free-flow speed; c  indicates lane capacity; j  stands for jam density. Subscript 1 refers to cars, 

and subscript 2 refers to buses. 

 

Table 2 

All paths in the testing network. 

Path Mode Sub-mode Path 

P1 drive solo-drive l101, l1, l3, l5, l105 

P2 drive carpool l101, l2, l4, l6, l105 

P3 transit metro l101, metro line, l105 

P4 park&ride drive+bus l101, l1, l3, l103, P1, l103, l5, l105 

P5 transit bus l101, l1, l3, l5, l105 
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Table 3 

All other parameters. 

Parameter Value 

Non-environmental cost model 5.4$/h =   2.8$/h =   16.6$/h =  

Nested-logit model 
1a , 1

(1) (1)u Ua  =1.5  
2a , 2

(2) (2)u Ua  =1.0  
3a , 3

(3) (3)u Ua  =2.0  1b , 2b =1.0 

Parking slot 1,2 3$/hw =   1,2p =1min  1,2C =20000 

Bus 
w

pr =$2.75  waiting=8min  frequency=20min 

Metro 
w

pr =$3.75  waiting=6min  frequency=10min  full trip=35min 

Carpool , (1) 0w

p t =   , (2) $1w

p t =  

Dynamic network loading Starting/ending time=5AM/ 9AM  intervals=2880  unit time=5s 

Macroscopic emission model 48$/tcoC =  20$/texposureC =  

Gaussian dispersion model e =60°  1m/su =  

 

Table 4 

Coefficients of emissions. 

Vehicle type 1K  
2K  

3K  

Car 0.0020380 -0.22270 8.8100 

Bus 0.0002483 -0.04090 1.698 

4.1.1 Convergence result 

We tested the extended multimodal DTA model within the network depicted in Fig. 3. Its solution 

algorithm was validated for performance and accuracy. The convergence of the equilibrium gap is 

plotted in Fig. 4. 

 

Fig. 4. Convergence curves for all scenarios in the testing network. 
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Table 5 

Equilibrium results for all scenarios. 

Scenario 
Gap 

value 

Total 

time (h) 

Total emission 

(kg) 

Total 

exposure (kg) 

Total 

cost ($) 

Running 

time (s) 

Scenario 1 0.00046 343.0 28586.793 65909.641 7608.633 3619.91 

Scenario 2 0.00014 341.6 19789.522 45626.676 8558.530 2551.77 

Scenario 3 0.00019 336.4 15603.073 35974.409 9076.511 1858.10 

Note: Scenarios 1, 2, and 3 represent “with generalized cost”, “without exposure cost”, and “with exposure cost”, 

respectively. Total time denotes the aggregated travel time across all travelers. Total cost includes generalized travel 

costs, carbon emission costs, and exposure costs, depending on the scenario. 

As shown in Fig. 4 and Table 5, all scenarios converge within 100 iterations. Incorporating carbon 

emission and exposure costs into the generalized cost framework reduces total travel time, emissions, 

and exposure compared to considering travel cost alone. Scenario 2 lowers emissions and exposure by 

30.7% but increases total costs by 12.5%. Scenario 3 further reduces emissions and exposure by 45.4%, 

with a 2.0% decrease in travel time, albeit a 19.3% increase in total cost. These results suggest that 

while travel costs rise, scenario 3 offers the best trade-off between environmental and health benefits, 

representing the most sustainable solution among the three. 

Contrary to the assumption that emission reduction increases travel time costs, scenario 3 shows 

a 2.0% decrease in total travel time (336.4 hours) compared to scenario 1 (343.0 hours). This reveals 

that travelers can choose shorter, less polluted routes without substantial time penalties. This suggests 

that environmental strategies may reduce both carbon emissions and exposure while improving travel 

efficiency, challenging the notion that such measures inherently increase time costs. 

Table 5 also shows that when environmental factors are introduced for the first time (scenario 2), 

carbon emissions and exposure have significantly decreased (emissions by 8,797.3 kg, exposure by 

20,282.96 kg), while costs have increased by $949.90. However, when exposure is further reduced 

(scenario 3), the decrease in emissions and exposure becomes smaller, while the cost increases 

significantly (emissions decrease by 4,186.4 kg, exposure decreases by 9,649.27 kg, and costs rise by 
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$517.98). According to Eqs. (7)-(9), generalized cost includes not only travel time but also schedule 

delay and transit fare, etc. Although total time decreases in scenario 3, the shift toward cleaner yet less 

direct travel modes, such as metro or bus, likely increases waiting, transfer, or walking time, thereby 

raising generalized cost. Additionally, minimizing exposure in congested areas often requires more 

dispersed traffic distributions, which can lead to system-level cost increases. 

To better illustrate the trade-off, we introduce an indicative cost-benefit metric by comparing 

scenario 3 with scenario 1. The additional cost incurred per unit reduction in exposure is approximately 

$0.049 per kg. This value reflects the economic input required to reduce a unit of exposure risk, and it 

can offer policymakers a quantitative reference when evaluating the health-economic efficiency of 

low-exposure strategies. 

Nonetheless, as will be further demonstrated in the sensitivity analysis (Section 4.1.4), by 

appropriately adjusting the weights of emission and exposure costs, it is possible to achieve a 

simultaneous reduction in emissions, exposure, and total cost. This suggests that although scenario 3 

shows the highest cost under current settings, adjusting these parameters could support more balanced 

outcomes, achieving health and environmental benefits without significantly increasing total cost 

compared to scenario 1. 

In addition, we evaluated the computational performance of the proposed model. As shown in the 

final column of Table 5, the running times for scenarios 1 to 3 were 3619.91 seconds, 2551.77 seconds, 

and 1858.10 seconds, respectively. Interestingly, the inclusion of environmental cost factors (carbon 

emissions and exposure) not only improves environmental outcomes but also accelerates convergence 

by guiding the traffic redistribution more effectively. 

4.1.2 Passenger flow distribution under three scenarios 
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Table 6 illustrates passenger flow distribution across five paths under three scenarios. Column 3 

reflects the baseline scenario’s initial traffic flow, while columns 4 to 6 show optimal assignments for 

scenarios in Table 5. Flow distribution shifts across scenarios: when generalized cost alone is 

considered, most travelers choose path 2 (carpool). However, with environmental factors included, at 

least 32.99% prefer path 4 (metro), followed by buses, likely influenced by road carbon emissions. 

Transit modes (metro and buses) offer the greatest environmental benefits, suggesting policymakers 

adjust metro routes to enhance commuting efficiency. 

Table 6 

Equilibrium passenger flow for 5 paths. 

Path Sub-mode 
Passenger flow 

Initial With generalized cost Without exposure cost With exposure cost 

P1 solo-drive 2000 1654 1388 1135 

P2 carpool 2000 3722 2131 1587 

P3 metro 2000 2248 3299 3777 

P4 drive+bus 2000 515 454 379 

P5 bus 2000 1861 2728 3122 

4.1.3 Spatiotemporal carbon emission exposure 

The spatiotemporal evolution of traveler exposure risk under different scenarios is illustrated in 

Fig. 5. Before 7 AM, exposure remains low and spatially scattered, despite isolated high-exposure 

spots. Between 7 AM and 8 AM, high-exposure areas become concentrated along major roads and 

bottlenecks, with values reaching their maximum. After 8 AM, exposure begins to decline, though 

some hotspots persist, suggesting a lag in concentration decay despite the dispersal of traffic flow. 

In scenario 1, exposure is primarily concentrated near congested roads and intersections, 

indicating cumulative effects caused by bottlenecks. Introducing carbon emission costs (scenario 2) 

and especially exposure costs (scenario 3) leads to a more dispersed spatial pattern and lower peak 

values. This demonstrates that incorporating environmental costs into route choice effectively 

redistributes traffic and mitigates exposure concentration. 

Notably, scenario 3 shows a substantial drop in peak exposure, highlighting the potential of 
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exposure costs to reduce localized health risks during peak periods. These findings underscore the 

importance of selecting paths that consider travel time, emissions, and exposure. Policymakers may 

consider integrating real-time monitoring, dynamic routing, and air quality alerts to reduce exposure 

risks while improving system-wide efficiency. 

With generalized cost Without exposure cost With exposure cost

5:00 AM

6:00 AM

7:00 AM

8:00 AM

9:00 AM

 

Fig. 5. Spatiotemporal evolution of the exposure. 
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When only generalized cost is considered, the distribution of high-exposure links is relatively 

concentrated, with distinct red peak areas, particularly in regions with dense core traffic flows. 

However, when both generalized cost and carbon emission cost are considered, the exposure peaks of 

high-exposure links decrease, and the spatial distribution of exposure shows a certain degree of 

diffusion. This occurs because the incorporation of carbon emission cost into route choice factors 

effectively redistributes traffic flow from certain high-exposure links. When generalized cost, carbon 

emission cost, and exposure cost are considered simultaneously, the peaks of high-exposure links are 

further reduced, and the exposure distribution becomes more uniform, with high-exposure areas (red) 

significantly shrinking. The improvement in exposure risk is particularly evident during peak hours, 

effectively mitigating the problem of excessively high local exposure concentrations. 

These findings provide further evidence of the importance of capturing temporal variation in 

exposure, which can be achieved through the use of integrated dynamic modeling frameworks. In 

contrast, traditional static models can only provide aggregated results and ignore such fine-grained 

temporal evolution patterns. 

4.1.4 Sensitive analysis on emission and exposure cost 

To further explore the trade-offs discussed in Section 4.1.1, we investigate a sensitivity analysis 

on the weights of emission and exposure costs separately. The sensitivity of carbon emission cost is 

analyzed by controlling the weights of the other two costs, keeping them unchanged, i.e., 1 3 1w w= = . 

Specifically, the carbon emission cost weights are set at 2 3w = , 2 5w = , and 2 7w = . Similarly, the 

sensitivity analysis of exposure cost is conducted in the same manner. The sensitivity changes are 

plotted as shown in Fig. 6. As the weight of carbon emission cost ( 2w ) increases, the path choice 

prioritizes the reduction of carbon emissions, while effectively inhibiting the increase in exposure. 
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Consequently, the total cost is decreased. On the other hand, as the weight of exposure cost ( 3w ) 

gradually increases, the travel path becomes more inclined to reduce the exposure risk to travelers. 

The data reveals a notable decline in both exposure levels and carbon emissions, which directly 

contributes to a drop in overall expenses. These findings suggest that the dynamic adjustment of the 

weighting coefficients of carbon emission and exposure cost in transportation management can achieve 

the dual minimization of carbon emissions and exposure risk in different zones and time periods. This 

provides a scientific basis for environmental management and public health protection in 

transportation systems. 

 

(a) 2w                                     (b) 3w  

Fig. 6. The influence of changes in the weighting of carbon emissions and exposure costs. 

The variations in carbon emissions, exposure, and total cost exhibit strong consistency as the 

weights of emission and exposure costs increase. This is likely due to the inherent causality: exposure 

risk arises primarily from vehicle emissions, leading to higher exposure costs, which in turn trigger 

changes in path choice. Incorporating both emission and exposure costs effectively penalizes high-

emission links, guiding traffic flow toward lower-impact routes. Additionally, the reduction in carbon 

emissions and exposure is nonlinear for both 2w  and 3w  changes. While there is a decreasing trend 

with increasing coefficients, the marginal improvements diminish progressively. 

An interesting observation is that although the increase in carbon emission and exposure cost 
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weights shows relatively similar effects in path choice, this does not mean that the two can be 

substituted for each other. Rather, it underscores the necessity of considering both in path choices. 

Specifically, considering only carbon emission costs may reduce environmental pollution but cannot 

fully address traveler exposure risks. Therefore, minimizing both emissions and exposure 

simultaneously remains challenging. These findings highlight the importance of jointly incorporating 

both cost components into path choice decisions to achieve a more balanced outcome between 

environmental and health benefits, as evidenced in Table 5. 

Another key finding is that adjusting the weight of emission costs yields a more pronounced 

global effect in scenario 3, offering a stronger basis for system-level traffic management. This likely 

stems from the tendency of higher carbon cost weights to shift traffic away from high-emission links, 

which also tend to exhibit higher exposure levels, thus enabling a synergistic reduction in both 

emissions and exposure. Moreover, increasing emission cost weights may contribute to a more 

balanced traffic distribution, alleviating congestion on high-flow links and further reducing emissions 

and exposure per unit time. In contrast, increasing the weight of exposure costs effectively reduces 

localized exposure risks but does not target the root cause of emissions. As a result, its impact on 

system-wide emission control is limited. These findings suggest that unit carbon pricing functions not 

only as a climate policy but also as a critical public health strategy. 

4.1.5 Sensitive analysis on wind speed and direction 

We set the wind speed in the original model to five representative levels: Light air, Light breeze, 

Gentle breeze, Moderate breeze, and Fresh breeze (U.S. Naval Institute, 2024). All other parameters 

are held constant to analyze the effect of wind speed on travel equilibrium results. By solving the 
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multimodal dynamic traffic assignment problem under varying wind speed, Fig. 7 illustrates changes 

in total travel cost, CO₂ emissions, exposure levels, and route choice behaviors.  

Solo-drive

Wind speed (m/s)

u = 1
u = 2
u = 4
u = 6
u = 8

 

(a)                                  (b) 

Fig. 7. (a) The influence of wind speed on emission, exposure, and travel cost. (b) Flow distributions 

under varying wind speed conditions. 

The analysis results show that as wind speed increases, improved traffic flow slightly raises total 

emissions. However, enhanced atmospheric dispersion spreads emissions more quickly and reduces 

their concentration, leading to significantly lower exposure risks. Notably, total travel cost also 

declines as wind speed rises, suggesting a dual benefit of higher wind speeds on both mobility 

efficiency and health externalities. In addition, solo-driving and carpooling become more attractive 

under higher wind speeds, while the share of transit travelers, such as the metro and bus, declines. This 

suggests that in scenarios with high wind and better dispersion, health concerns are no longer a major 

reason for avoiding private car use, weakening the marginal health benefits of public transit. Therefore, 

neglecting dynamic meteorological factors in policymaking may lead to an underestimation of 

people’s sensitivity to travel mode choices, undermining the effectiveness of green mobility promotion 

strategies. 

We further set the wind direction angle to five representative values (60°, 90°, 150°, 240°, and 

330°), while keeping all other parameters constant, to investigate how changes in wind direction affect 
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carbon exposure and route choice in the network. Fig. 8 presents the total travel cost, total emissions, 

exposure levels, and the resulting equilibrium traveler distributions under different wind directions. 

 

Solo-drive

Wind direction (°)

φ = 60 and 240
φ = 90
φ = 150 and 330

 

(a)                                  (b) 

Fig. 8. (a) The influence of wind direction on emission, exposure, and travel cost. (b) Flow 

distributions under varying wind direction conditions. 

The results reveal that spatial dispersion differences caused by wind direction lead to distinct 

exposure patterns. Both exposure and total cost exhibit periodic fluctuations, showing a consistent 

trend, indicating that wind direction indirectly affects cost. Overall, 90° and 150° correspond to the 

lowest and highest exposure levels, respectively, accompanied by shifts in the attractiveness of public 

transit. Interestingly, under 90°, although the exposure is the lowest, public transit becomes less 

attractive, while private driving increases. This counterintuitive outcome may be due to a shift in 

dispersion pathways: the new wind direction places bus corridors downwind, increasing their exposure 

intensity and thus their travel cost. In contrast, private cars, due to their greater routing flexibility, can 

more easily avoid high-exposure areas, making them relatively more appealing. 

In addition, wind direction has a clearly symmetric effect on different travel modes. For example, 

the travel patterns under 60 =   and 240 =  , as well as 150 =   and 330 =  , are largely 

similar. This can be attributed to the functional symmetry of the Gaussian dispersion model with 

respect to wind direction, especially its dependence on FLSsin . This feature not only enhances our 
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understanding of the mechanism but also offers a pathway for optimizing future policy simulations. In 

the modeling process, selecting a representative subset of wind directions is sufficient to capture key 

trends, thereby maintaining accuracy while reducing computational load. 

4.1.6 Sensitive analysis on new energy vehicle market penetration 

We further examined how the penetration rate of new energy vehicles (NEVs) affects network 

performance. According to projections by the International Energy Agency, electric vehicles will 

account for over 25% of the global vehicle fleet by 2025 (IEA, 2025). To simulate this potential impact, 

we designed four market penetration scenarios - 10%, 15%, 20%, and 25% - while keeping all other 

parameters constant to solve the multimodal dynamic equilibrium problem. Here, NEVs refer only to 

zero-emission vehicles, such as battery electric vehicles and fuel cell vehicles. Fig. 9 illustrates total 

travel costs, emissions, exposure, and travel mode distributions under varying NEVs penetration levels. 

Solo-drive

ZEVs proportion (%)

τ = 0
τ = 10
τ = 15
τ = 20
τ = 25  

(a)                                  (b) 

Fig. 9. (a) The influence of NEVs proportion on emission, exposure, and travel cost. (b) Flow 

distributions under varying NEVs proportion. 

The results indicate that as the share of NEVs increases, both carbon emissions and health 

exposure risks significantly decrease, along with a consistent drop in total travel cost. Meanwhile, solo 

driving and carpooling have become more popular, while the share of public transit has slightly 

declined. This trend can be attributed to the zero tailpipe emissions of NEVs. Even with more travelers 
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choosing to drive, the overall exposure risk does not increase and may even drop. Additionally, the 

travel cost of NEVs is generally lower, especially when emission and exposure costs are integrated 

into the generalized path impedance , ,

w

m p t , making driving a more appealing option. This structural 

shift suggests that promoting NEVs not only supports emission reduction goals but also delivers both 

environmental and health benefits, without compromising accessibility or affordability. From a policy 

perspective, this reinforces the need to accelerate the replacement of conventional vehicles through 

subsidies, infrastructure improvements (e.g., charging networks), and emission control measures to 

foster a cleaner and more efficient urban transport system. 

4.2 A simplified real-world network 

To further evaluate the model’s computational feasibility and applicability to real-world cases, 

we apply the framework to a multimodal urban network based on actual data from the Pittsburgh 

metropolitan area. The network consists of the I-79, PA 51, and US 19 highways, as well as a metro 

red line that connects the suburbs to downtown, as shown in Fig. 10(a). The simplified network is 

illustrated in Fig. 10(b). It comprises 4 origins (O1 - O4), 2 destinations (D1 - D2), 9 intersections, 16 

road segments, three designated parking zones, a single bus route, and one metro line. The parking 

zones cover all available parking spaces in the area. The bus route stands in for all major high-

frequency bus services, while the metro line represents the sole subway connection. This provides a 

substantially larger and more realistic setting than the testing network in Section 4.1. 

The parameter values used in the real-world network are based on empirically calibrated data from 

prior studies (Ma and Qian, 2015; Ma and Qian, 2018; Ma et al., 2019), which incorporate local OD 

demand, road capacities, and fare structures from the Pittsburgh metropolitan area. During the morning 

peak (5 AM - 9 AM), the total passenger demand from origins O1 - O4 to destinations D1 - D2 is fixed 
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at 30,000. Notably, origins O1 - O4 represent large residential neighborhoods, while destinations D1 - 

D2 correspond to downtown Pittsburgh and the Mount Oliver residential area, respectively. These 

empirically grounded parameters serve as the basis for both the real-world network and the testing 

network introduced in Section 4.1. Table 7 provides the detailed link parameters, and Table 8 lists all 

feasible paths. 
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(a)                                  (b) 

Fig. 10. (a) The actual network map shows that origins O1 - O4 are large residential areas. The two 

destinations are Downtown (D1) and Mount Oliver (D2). (b) A simplified multimodal network. 

 

Table 7 

Link parameters. 

Link Length (mile) Lanes 1v (mile/h) 
1c (veh/h) 

1k (veh/mile) 
2v (mile/h) 2c (veh/h) 

2k (veh/mile) 

l1 5 2 40 2000 200 35 1200 100 

l2 7.5 3 65 2300 200 55 1200 100 

l3 1.5 1 30 1800 200 25 1000 100 

l4 1.5 1 30 1800 200 25 1000 100 

l5 0.55 1 30 1800 200 25 1000 100 

l6 0.55 1 30 1800 200 25 1000 100 

l7 2.5 1 30 1800 200 25 1000 100 
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l8 2.5 1 30 1800 200 25 1000 100 

l9 3.5 2 40 2000 200 35 1200 100 

l10 4 3 65 2300 200 55 1200 100 

l11 0.5 1 30 1800 200 25 1000 100 

l12 0.5 1 30 1800 200 25 1000 100 

l13 0.5 1 30 1800 200 25 1000 100 

l14 0.5 1 30 1800 200 25 1000 100 

l15 1.5 2 40 2000 200 35 1200 100 

l16 1.5 3 65 2300 200 55 1200 100 

Note: Same as Table 1. 

 

Table 8 

List of paths. 

Path Origin Destination Mode Sub-mode Path 

P1 O1 D1 drive solo-drive l101, l2, l10, l16, l105 

P2 drive solo-drive l101, l1, l9, l15, l105 

P3 drive carpool l101, l2, l10, l16, l105 

P4 transit metro l101, metro line, l105 

P5 park&ride drive+bus l101, l1, l108, P2, l108, l9, l15, l105 

P6 park&ride drive+bus l101, l2, l8, l5, l4, l108, P2, l108, l9, l15, l105 

P7 park&ride drive+bus l101, l1, l9, l107, P1, l107, l15, l105 

P8 park&ride drive+bus l101, l2, l10, l14, l12, l107, P1, l107, l15, l105 

P9 O3 D1 drive solo-drive l103, l7, l10, l16, l105 

P10 drive solo-drive l103, l5, l4, l9, l15, l105 

P11 drive carpool l103, l7, l10, l16, l105 

P12 transit bus l103, l5, l4, l9, l15, l105 

P13 park&ride drive+bus l103, l5, l4, l108, P2, l108, l9, l15, l105 

P14 O4 D1 drive solo-drive l104, l13, l16, l105 

P15 drive solo-drive l104, l12, l15, l105 

P16 drive carpool l104, l13, l16, l105 

P17 park&ride drive+bus l104, l12, l107, P1, l107, l15, l105 

P18 O1 D2 drive solo-drive l101, l2, l10, l14, l12, l106 

P19 drive carpool l101, l1, l9, l106 

P20 park&ride drive+bus l101, l2, l8, l5, l4, l108, P2, l108, l9, l106 

P21 O3 D2 drive solo-drive l103, l5, l4, l9, l106 

P22 drive carpool l103, l7, l10, l14, l12, l106 

P23 transit bus l103, l5, l4, l9, l106 

 

4.2.1 Convergence result 

Fig. 11 demonstrates a good convergence and computational performance of the real-world 

network. Hence, this method holds promise for being applied to even more intricate, real transportation 
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networks down the line. Table 9 demonstrates that unit carbon pricing exerts a stronger moderating 

effect on carbon emissions and exposure in the real-world network. When considering generalized 

costs, emission costs, and exposure costs together, carbon emissions and exposure in the testing 

network (Section 4.1.1) decrease by 45%, whereas in the real-world network, they decrease by 78%. 

This is due to the increased presence of alternate routes in more complex networks, which provide 

travelers with increased flexibility to adapt, thereby reducing emissions and exposure more effectively. 

It can further be inferred that incorporating emission and exposure costs can generate more substantial 

environmental and health benefits in large cities or complex transportation networks. This has direct 

practical implications for policies such as green travel initiatives, low-emission zone planning, and 

public transport optimization in large cities. 

 

Fig. 11. Convergence curves for all scenarios in the Pittsburgh network. 

 

 

 

 

 

 

 



 

34 

Table 9 

Equilibrium results for all scenarios. 

Scenario 
Gap 

value 

Total 

time (h) 

Total 

emission (kg) 

Total 

exposure (kg) 

Running 

time (s) 

Scenario 1 0.00334 1300.902 413581.373 953552.230 4096.06 

Scenario 2 0.00159 1295.397 214174.968 493801.297 3727.47 

Scenario 3 0.00399 1280.884 88495.404 204034.793 3676.74 

Note: Scenarios 1, 2, and 3 represent “with generalized cost”, “without exposure cost”, and “with  

exposure cost”, respectively. 

 

4.2.2 Passenger flow under three scenarios 

Table 10 and Fig. 12 reveal that solo-drive in the slightly larger real-world network decreases 

significantly under scenario 3, whereas in the testing network, it remains at a certain level. This 

suggests that in such a real-world network, emission and exposure costs contributed to a reduction in 

solo driving. While this may reflect the influence of more diversified path options, further studies are 

required to assess whether similar patterns hold in other network settings. Additionally, in the testing 

network, the PnR model is nearly eliminated under Scenario 3. In contrast, in the slightly larger real-

world network, the PnR model retains a certain number of travelers, although its growth trend is 

influenced by OD pair characteristics. This implies that PnR is not universally suitable for all travel 

demands, highlighting the need to incorporate OD pair characteristics into policymaking. 

In summary, emission and exposure costs play a more significant role in promoting public 

transportation development. These findings can be reasonably extended to complex transportation 

networks. Furthermore, policy development should account for variations among different OD pairs. 

For instance, (O1, D1) exhibits the strongest public transportation substitution effect, suggesting that 

future efforts should prioritize enhancing public transit in this corridor. Similarly, (O3, D1) 

demonstrates a higher public transportation attraction, yet PnR remains a viable alternative for some 

travelers. This suggests that the planning of public transport routes should be an ongoing process. 
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Meanwhile, improving PnR facilities and enhancing transfer efficiency should be prioritized over 

simply increasing the unit carbon pricing. 

 

Table 10 

Equilibrium passenger flow for all paths. 

Path Sub-mode 
Passenger flow 

Initial With generalized cost Without exposure cost With exposure cost 

O1, 

D1 

P1 solo-drive 1250 1528 431 10 

P2 solo-drive 1250 1484 1112 16 

P3 carpool 1250 3226 904 12 

P4 metro 1250 2131 6217 9884 

P5 drive+bus 1250 512 695 52 

P6 drive+bus 1250 109 73 8 

P7 drive+bus 1250 514 407 10 

P8 drive+bus 1250 496 161 8 

O3, 

D1 

P9 solo-drive 1200 923 547 82 

P10 solo-drive 1200 790 654 84 

P11 carpool 1200 1948 1149 166 

P12 bus 1200 2103 3307 5240 

P13 drive+bus 1200 236 343 428 

O4, 

D1 

P14 solo-drive 1250 1187 1157 979 

P15 solo-drive 1250 1011 1072 1397 

P16 carpool 1250 2507 2443 2065 

P17 drive+bus 1250 295 328 559 

O1, 

D2 

P18 solo-drive 1667 2114 1115 613 

P19 carpool 1667 2798 3788 4165 

P20 drive+bus 1666 88 97 222 

O3, 

D2 

P21 solo-drive 1334 1798 1856 675 

P22 carpool 1333 1904 1577 866 

P23 bus 1333 298 567 2459 



 

36 

O1 D1 O3 D1

O1 D2 O3 D2

O4 D1

Carpool Carpool
Carpool

Carpool Carpool

M
et

ro

Drive+bus Drive+bus
Drive+bus

Drive+bus

S
o
lo

-d
ri

v
e

S
o
lo

-d
ri

v
e

S
o
lo

-d
ri

v
e

S
o
lo

-d
ri

v
e

S
o
lo

-d
ri

v
e

B
u
s

Bus

Initial

With generalized cost

Without exposure cost

With exposure cost

 

Fig. 12. Flow distribution under different scenarios. 

4.3 Management policy implications 

The examples above show that the integrated framework effectively facilitates a dynamically 

balanced distribution of traffic flows. This framework not only improves traffic efficiency but also 

serves as a scientific foundation for mitigating carbon emissions and exposure. While the numerical 

findings pertain to specific roadway systems and weather conditions, useful management perspectives 

can nevertheless be gained. 

(1) The findings challenge the common assumption that environmental interventions inevitably 

increase travel time (Tan et al., 2021). In our scenarios, incorporating carbon and exposure costs into 

the path choice mechanism not only reduced emissions and exposure but also shortened total travel 

time. This indicates that appropriately calibrated environmental weights can improve overall network 
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performance by encouraging more efficient and equitable use of multimodal transportation resources. 

(2) The spatial evolution patterns reveal that high exposure zones tend to accumulate in bottleneck 

areas, even when total emissions are relatively low. To effectively manage exposure, traffic control 

strategies must incorporate both congestion and spatial dispersion effects, particularly near sensitive 

areas such as schools, hospitals, and elderly care facilities. 

(3) Emission and exposure costs promote modal shifts, but policy effectiveness varies across OD 

pairs. For example, the (O1, D1) corridor shows a strong substitution toward metro usage under 

considering environmental costs, while in (O3, D1), PnR remains a viable alternative. These differences 

highlight the need for tailored strategies. In some cases, improving transit frequency, enhancing 

transfer efficiency, and strengthening multimodal connections may yield greater benefits than further 

increasing environmental costs. Therefore, policy development should move beyond uniform pricing 

and adopt region-specific mixes of service upgrades, infrastructure investment, and behavioral 

incentives. 

(4) Compared with traditional models that consider only travel time or emissions, our framework 

demonstrates that incorporating exposure costs leads to a more balanced redistribution of traffic and 

mitigates local concentration peaks. This provides empirical support for incorporating exposure-based 

metrics into traffic assignment models and for extending the scope of carbon pricing mechanisms to 

include public health externalities. 

(5) Compared to increasing exposure cost weight, raising the emission cost weight leads to greater 

reductions in both emissions and exposure, while also lowering total cost. This advantage arises 

because emission costs influence path choice in a way that simultaneously avoids high emission and 

exposure links and promotes a more balanced spatial distribution of traffic flows. In contrast, exposure 
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costs primarily induce localized adjustments that do not directly reduce emissions at the source. From 

a policy perspective, this underscores the potential of unit carbon pricing not only as a climate 

instrument but also as an effective public health intervention. 

 

4.4 Discussion of limitations 

While the proposed framework demonstrates the feasibility of integrating dynamic traffic 

assignment with emission and exposure modeling in multimodal networks, it inevitably relies on 

several simplifying assumptions to ensure model tractability and computational efficiency. The 

following discussion identifies key assumptions and examines their implications for model accuracy 

and applicability in real-world scenarios. 

(1) The model assumes homogeneous traveler behavior, whereby all users respond to generalized 

travel costs, emission costs, and exposure costs in the same manner. Individual differences such as 

environmental preferences or habitual mode choices are not explicitly modeled. Although this 

assumption simplifies the behavioral structure and facilitates equilibrium computation, it may limit the 

model’s ability to capture diverse traveler responses, particularly in policies involving eco-incentives 

or congestion pricing. Future extensions could incorporate behavioral heterogeneity through mixed 

logit or latent class models to improve realism. 

(2) The emission exposure component is modeled using a Gaussian dispersion framework, 

assuming steady meteorological conditions (e.g., constant wind speed and direction) and open-space 

road environments. This abstraction is common in the literature and enables efficient approximation 

of near-road pollutant concentrations (Tan et al., 2021). However, it may underestimate or 

misrepresent pollutant accumulation in urban street canyons, enclosed corridors, or under dynamic 
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atmospheric conditions. Incorporating time-varying meteorological inputs or more advanced 

dispersion models (e.g., RUNE or Computational Fluid Dynamics-based) would enhance accuracy in 

complex urban topographies (Mei and Liu, 2023; Gurram et al., 2019). 

(3) To ensure internal consistency and enable comparative analysis, both the transportation and 

emission models across the testing and real-world networks adopt the same parameter settings, derived 

from empirically calibrated studies (Ma et al., 2019; Sharma and Mathew, 2011). While this approach 

supports a unified modeling structure and focuses on evaluating the integrated framework, it may limit 

the predictive accuracy of specific case studies. Nonetheless, the framework allows for flexible 

adjustment of parameters using locally collected traffic counts, OD matrices, fare structures, and 

environmental data to support context-specific applications. 

(4) The road network representation and travel demand inputs are simplified to enable model 

testing and convergence analysis. Moreover, the model is solved using the MSA method, which, 

despite its simplicity and robustness, may exhibit slow convergence in large-scale or highly congested 

networks. Further improvements could include adaptive step-size adjustments or gradient-based 

solution methods to enhance scalability and efficiency. 

5. Conclusions 

This study proposes an integrated dynamic framework to improve travel time, carbon emissions, 

and exposure in a multimodal, multi-destination transportation network. The framework integrates a 

DTA model, an emissions model, and a dispersion model, providing a comprehensive lens to analyze 

the intricate interplay between diverse traffic patterns, parking, public transit operations, and shifts in 

transportation modes. Traveler decisions regarding mode and route selection are represented through 

a multi-layered nested logit model, while a VI approach is utilized to characterize the extended 
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multimodal DTA problem. Carbon emissions are estimated based on spatiotemporal passenger and 

vehicle flows and subsequently utilized to assess traveler exposure. The solution methodology 

employs an MSA to balance convergence and computational efficiency. To verify the model’s 

effectiveness, numerical experiments are carried out on a testing network and a real-world multimodal 

transportation network. The results demonstrate that carbon emissions in a dynamic multimodal 

transportation network can be quantified, enabling an assessment of their impact on traveler health. 

Furthermore, considering only generalized costs (e.g., time, delay, and parking) in path selection may 

result in higher traveler exposure. In contrast, incorporating generalized travel cost, carbon emission 

cost, and exposure cost together achieves a balanced outcome, resulting in reductions in carbon 

emissions, exposure risks, and overall travel time. It is crucial to recognize that, although carbon 

emissions and exposure costs yield comparable outcomes, they emphasize different aspects of the 

system and thus neither should be considered in isolation. 

The results emphasize the importance of adjusting route choices under dynamic traffic assignment 

in achieving the synergistic improvement of environmental sustainability, transportation efficiency, 

and public health. They offer foundational theories for designing and advancing eco-friendly smart 

transport networks. Moreover, the proposed extended multimodal DTA framework exhibits high 

flexibility and can be adapted to transportation systems across different spatial scales to inform 

planning and management decisions. Furthermore, this study highlights the substantial environmental 

benefits of public transportation. The extended multimodal DTA framework can serve as an 

indispensable resource for evaluating the effects of introducing new bus routes, optimizing stop 

locations, and integrating innovative public transportation options like microtransit and demand-

responsive services (Xu et al., 2016, 2017), particularly concerning environmental and health 
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outcomes. Additionally, the framework can dynamically adjust operational strategies, including trip 

frequency, fleet size, and seating capacity, to enhance the overall effectiveness of public transportation 

systems (Jiang and Szeto, 2015). Finally, transportation management policies should incorporate 

differentiated measures based on the passenger flow characteristics of various OD pairs rather than 

relying solely on unit carbon pricing. 

Our research has already identified several potential domains for further exploration. First, we 

plan to calibrate the model using daily multimodal traffic data and incorporate time-varying 

meteorological inputs (Shang and Zhang, 2013), thereby enhancing the model’s accuracy and 

supporting more realistic and practical transportation management decisions. Furthermore, this study’s 

findings provide a general framework for modeling and equilibrium assessment in extensive multi-

destination multimodal networks, which can encompass a wide range of travel modes, such as electric 

vehicles (Zhang et al., 2021), electric buses (Hu et al., 2025), ride-hailing (Wang et al., 2025), 

ridesharing, automated vehicles, etc (Shi et al., 2022; Zong and Yue, 2023). Last but not least, this 

research involves integrating personalized route selections for passengers, along with their cognitive 

levels and preferences (Jiang and Ceder, 2021), which may lead to equilibrium phenomena in 

stochastic traffic assignment.  
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Appendix A. Table of notations 

The key notations are listed in Table A.1, while others are explained where they are used. 

Table A.1 

Key notations employed in this study. 

Symbols Description 

w  index for OD pair 

W  set of OD pairs 

T  set of time intervals 

1M  
first-layer mode choices index

 1 Transit, Driving, P&RM =  

2M  

second-layer mode choices index 

( )  2 Transit Bus, MetroM =

( )  2 Driving Solo-driving, CarpoolingM =  

( ) ( ) ( )2 2 2P&R Driving TransitM M M=   

M  all mode choices index, ( )
1

2
i M

M M i


=
 

V  vehicle types,  car, bus, metroV =  

w

mR  
set of paths of mode m connecting OD pair w. 

,m M w W   

A  set of links 

, ,a m n

p  

element is assigned a value of 1 if path p passes 

through link a  and is represented by 0 in other 

cases 
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Appendix B. Derivation of exposure concentration estimation based on Gaussian dispersion 

This appendix presents the detailed derivation of the exposure estimation procedure used in 

Section 3.1.2, including Gaussian dispersion model, FLS representation, and calculation of link 

exposure concentration. 

B.1 Gaussian dispersion model for point sources 

This study employs the widely used Gaussian dispersion model (Turner, 1994) expressed by, 

 
( ) ( )

2 22

2 2 2
( , , ) exp exp exp

2 2 2 2y z y z z

z H z HQ y
c x y z

u    

      − +
 = − − + −                

, (B.1) 

The concentration of emissions, denoted as ( , , )c x y z  in mg/m³, is measured at a receptor 

positioned at coordinates ( , , )x y z  within a localized coordinate framework. Here, Q  stands for the 

emission rate of a point source, expressed in mg/s, while u  represents the mean wind speed in meters 

per second. The height of the source is given by H  in meters, and y  and z  correspond to the 

horizontal and vertical plume dispersion metrics, respectively, also in meters. For urban settings, the 

values of y  and z  can be reasonably estimated using Eqs. (B.2) and (B.3) (Tan et al., 2021): 

   
1/20.32 (1 0.0004 )y x x −= + , and  (B.2) 

   1/20.24 (1 0.001 )z x x −= + .  (B.3) 

In examining vehicular emissions and concentrations at the local scale, we can designate 0z =  

and 0H = . Then, Eq. (B.1) can be reformulated as 

   ( )

2

2
exp , 0

, , 0 2

0, 0

y z y

Q y
x

c x y z u

x

  

  
−    = =   




,  (B.4) 

where 0x   and 0x   differentiate the downwind and upwind direction, respectively. 
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B.2 Finite line source (FLS) representation 

Drawing on the Gaussian dispersion framework, we expanded our analysis to assess how vehicle 

emissions spread along roadways, employing the approach introduced by Benson (1984). This 

technique adapts the point-source dispersion model to accommodate line sources. Essentially, the 

method breaks down a road segment into several smaller sections, each representing an equivalent 

FLS with a specific emission rate, FLSQ , measured in mg/m/s. These FLS units are oriented 

perpendicular to the wind direction, centered at the midpoint of their respective segments. Since the x-

axis aligns with the wind direction, all points on a given FLS share identical y  and z  values. 

Consequently, the concentration of emissions at a specific location ( , , )x y z , denoted as 

( )FLS , , 0c x y z = , can be determined for each equivalent FLS. 

   ( )
L

2
FLS

1
FL

2
FLS

1
F SS

2

FLS 2

FLS

, , 0 exp
sin 2

( , , 0)
y y

y
y z y

y

Q y
c x y z dy dyc x y

u
z

   

  
= = = − 

=


 
  , (B.5) 

where 1

FLSy  and 2

FLSy  represent the distances from the FLS endpoints to the x-coordinate, computed 

using Eqs. (B.6) and (B.7): 

   1 FLS FLS
FLS

sin

2

l
y y


= −  (B.6) 

   2 FLS FLS
FLS

sin

2

l
y y


= +  (B.7) 

where FLS  indicates the angle relative to wind direction, FLS0 90    ; FLSl  represents the 

FLS’s length. For more information, see Sun et al. (2018). 

Eq. (B.5) can be further transformed by assuming that yr y =  and introducing ( )   to denote 

the standard normal distribution formula, which leads to,  

 ( )

2
FLS

1
FLS

2 12

FLS FLS
FLS

FLS FLS

2
, , 0 exp

sin 2 sin

y

y

y

y

y yz z

y yQ Q
c x y z dr

u

r

u





 
    

     
= = − = −                

 . (B.8) 
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In the above equations, Q  represents the emission rate of a point source. If we consider a FLS 

as a short link, then can be linked with the emission rate in the macroscopic emission model via the 

following equation,  

   
,FLS,

,FLS, ,FLS, ,FLS,

FLS3600

n

m tn n n

m t m t m t

v
Q e f

l
=   ,  (B.9) 

where ,FLS,

n

m tQ  represents the line source emission rate at time t (mg/m/s), and ,FLS,

n

m tv  represents the 

velocity of type n  in FLS at time t  (km/h). 

B.3 Calculation of link exposure concentration 

To calculate the emission exposure of a traveler while driving, we divide a link into a set of FLSs, 

and assume that there is a CO concentration measurement point s  at the center of each FLS. Then, 

the exposure concentration of link a  is computed by,  

   FLS( , ) 
a

a s s s

s F

C x y t


= , (B.10) 

where aF  is the FLS set on link a ; FLS( , )s sC x y  is the emission concentration at the center of the 

FLS (Eq. (B.8)); ( , )s sx y  is the coordinate of the midpoint of a FLS on link a ; st  is the exposure 

duration within a FLS on link a ,  
a

s as F
t 


= ; Assuming uniform travel time distribution on link 

a , s a at l= ; al  represents the pre-determined count of finite line sources on link a . 
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Appendix C. Travel time calculation for each mode on the corresponding path 

The travel time for every mode and route within the network is derived using the DNL model. 

For example, when driving, the total travel time encompasses the car trip from home to the parking 

lot, the time spent searching for a parking spot, and possibly the walk from the parking area to the final 

destination. For public transit, the calculation includes the walk from home to the bus stop, the waiting 

time for the bus or metro, the actual ride time, and the walk from the transit stop to the destination. In 

the case of PnR, the travel time factors in the car trip, the search for parking, the wait for the bus, the 

bus ride, and the walk from the bus stop to the destination. For further details on the calculations, 

readers are encouraged to consult Pi et al. (2019). 

The metro system operates on a dedicated infrastructure, ensuring that travel times remain 

consistent with the schedule and are not disrupted by road traffic conditions. On the other hand, cars 

and buses share the same road networks, resulting in mixed traffic patterns. This study utilizes the 

DNL model to take into account the heterogeneous traffic propagation through links/nodes on the 

automobile network, which comprises light and heavy vehicles. To capture the complexities of 

heterogeneous traffic flow, we implement the multi-class traffic flow model developed by Qian et al. 

(2017). A key strength of this model lies in its ability to accurately represent queuing dynamics and 

spillback effects within the DNL framework. Additionally, the link model ensures a first-in-first-out 

(FIFO) principle for each vehicle class, allowing for precise calculation of travel times for cars and 

buses based on their respective cumulative flow curves. 

The parking cruising time is generally anticipated to correlate with the expected parking 

availability in the designated area. A standard calculation for cruising time is expressed using 

1 ( ) /

i

i ie t C



−
 (Qian and Rajagopal, 2014). Where i  signifies the average duration of a parking space 
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remains available when unoccupied. We denote the occupancy of parking zone i  at time t  as ( )ie t .

iC  indicates the total capacity of the parking area. A widely recognized parking search time estimation 

model remains steady at low to moderate occupancy but rises sharply at high occupancy levels. For 

now, this DNL and the numerical example do not provide a simulation of street-side cruising for 

parking and its impacts on through traffic. However, the framework and solution algorithms 

concerning the extended multimodal DTA problem still apply to any generic dynamic simulation 

models. 

This research utilizes the historical mean waiting time at each transit stop along the route, which 

is appropriate for high-frequency transit services during peak morning commute hours (Pi et al., 2018; 

Zhang and Qian, 2018). The time spent walking correlates directly with the distance walked. Assuming 

an individual’s average walking speed is denoted as v , the total time spent walking can be determined 

by simply dividing the distance by the average speed. 
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Appendix D. Dynamic network loading 

 

Fig. D.1. The dynamic network loading algorithm. 
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Appendix E. Algorithmetic steps for solving the extended multimodal DTA problem 

 

Fig. E.1. The algorithm of the extended multimodal DTA-Solver. 
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