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Abstract

Terrestrial plants exhibit immense variation in their form and function among species.
Coordination between resource acquisition by roots and reproduction through seeds
could promote the fitness of plant populations. How root and seed traits covary has
remained unclear until our analysis of the largest ever compiled joint global dataset of
root traits and seed mass. We demonstrate that seed mass and seed phosphorus mass
scale positively with root diameter in arbuscular mycorrhizal (AM) plants, which
depends on variation in root cortical thickness instead of root vessel size. These
findings suggest a dual role of AM association in phosphorus uptake and pathogen
resistance which drives the global root-seed coordination, instead of initially expected
resource transport via root vessels as the main driver. In contrast, we found no
relationship between root traits and seed mass in ectomycorrhizal plants. Overall, our
study reveals coordination between roots and seeds in AM plants that is likely
regulated by root-mycorrhizal symbiosis, and may be crucial in shaping global plant

diversity and species distributions.
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Main

Terrestrial plants vary greatly in their form and function to cope with heterogeneous
natural environments, which contributes fundamentally to Earth’s biodiversity!™.
Substantial global variation in plant form and function has been shown to be captured
by a two-dimensional space defined by above-ground plant traits critical to growth,
survival, and reproduction, including leaf, stem, and seed traits'. One dimension is
related to plant size, consistent with the Corner’s rules’, which state that larger plants
are more likely to have larger leaves, stems, and seeds because they usually bear
larger meristems®!°. The other dimension coincides with the leaf economics
spectrum’, representing a trade-off between the capacity of rapid carbon acquisition in
leaves and their investment cost>®.

Recently, studies have demonstrated that root traits also vary in a two-dimensional
trait space”®!!. The first dimension represents a collaboration gradient for mycorrhizal
symbiosis, ranging from “do-it-yourself” resource acquisition characterized by finer
absorptive roots —to “outsourcing” of resource acquisition through mycorrhizal fungi
associated with thicker absorptive roots and higher levels of mycorrhizal
colonization®. The second dimension reflects a resource conservation gradient,
highlighting a trade-off between acquisitive (high root nitrogen concentration) and
conservative strategies (high root tissue density). This gradient has been suggested to
align with the plant fast-slow economics spectrum®’, although the generality of
coordination among plant size, economic spectrum, and mycorrhizal collaboration is

still debated>!?. Over evolutionary time, roots in coordination with above-ground
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plant organs have enabled vascular plants to adapt to heterogeneous environments in
diverse ways®!>!3, For example, traits that represent the resource conservation
dimension in the root economics space—such as root tissue density and root nitrogen
concentration—often correlate with traits from the leaf economics spectrum, such as
leaf nitrogen concentration and leaf mass per area'?. Notably, these economics traits
vary independently from the size dimensions of the leaves, stems, and seeds'!*!4,
While our understanding of the coordination between roots and above-ground

26.12.13 it remains uncertain whether, and if so,

organs has advanced in recent years
how and why roots are coordinated with seeds. More than two thirds of the world's
plant species rely on seeds for reproduction, population maintenance, and
establishment in new habitats'>!6. Seed mass is of particular importance for species’
dispersal, seedling survival, and plant-animal interactions '>!7-!8, Generally, larger

seeds are dispersed by larger animals'>!”

and produce seedlings with larger pathogen
resistance and higher survival rates!®?°, Remarkably, terrestrial plants display a range
of 13 orders of magnitude in seed mass'!>!¢. Examining how roots and seeds are
coordinated is therefore a critical step toward fully understanding the global variation
in plant form and function that support biodiversity on Earth.

Theoretically, roots and seeds are interconnected during at least two stages of the
plant’s life cycle. First, during the reproductive stage, seed formation depends on
water, carbon, and mineral nutrients transported from vegetative organs, i.e., roots,

stems, and leaves?!. Therefore, seed size could be coupled with vessel size that is

responsible for the matter transport efficiency during this stage. Such a relationship is
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also suggested by Corner’s rules. Alternatively, larger seeds have a greater demand of
phosphorus (P) to support more cell division as larger seed develops. This will
generate selective pressure for building thicker absorptive roots in larger-seeded
plants to deploy more cortex-residing mycorrhizal fungi for more P acquisition®.
Second, in the recruitment stage, the carbon and nutrients needed to establish initial
vegetative organs (including the first roots, stems, and leaves) are derived primarily
from the seed itself?!. Larger seeds, which store more carbon and nutrients, face a
higher risk of pathogen infection?®. In this context, producing thicker absorptive roots
which are often enriched with mycorrhizal fungi that colonize the cortex®** could help
enhance pathogen resistance®®. While some studies have reported a positive
correlation between root diameter and seed size, they have focused on a limited
number of species (primarily temperate non-woody species, possibly due to the
difficulty of getting detailed root information for woody plants) and were based on
restricted geographical sampling!'!-?*26-28 Consequently, the global coordination
between roots and seeds remains unclear. Here, we aimed to uncover this global
coordination between roots and seeds, especially in terrestrial woody plants, and to

elucidate the underlying mechanism.

Three working hypotheses

We proposed three alternative hypotheses in explaining the root-seed relationship

(Fig.1):
(1) The Resource Transport Hypothesis. Based on Corner’s rules’ and the

29,30

Metabolic Theory of Ecology~”"", we hypothesized that plants with larger seeds have
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higher metabolic demand, requiring a larger-vessel root vascular system to support
nutrient and water transport, overall higher carbon assimilation, and seed growth.
Generally, soil nutrients are acquired by roots and mycorrhizal fungi. Nutrients, then,
move into root vessels before being transported to seeds. If seed size is limited by
nutrient transport via vessels rather than by nutrient acquisition, we predicted a
positive correlation of seed size with root vessel diameter and root diameter given that
roots with larger diameters generally have wider vessels***! (Fig. 1a).

(2) Mycorrhizal P Uptake Hypothesis. If seed size is primarily limited by nutrient
acquisition especially P, we expected that plants with thicker absorptive roots, and
hence more arbuscular mycorrhizal (AM) colonization, would be better able to meet
the high P demand from producing larger seeds. Therefore, a positive correlation
would be expected between root cortical thickness and seed P mass (where seed P
mass = seed mass x seed P concentration); while ectomycorrhizal (ECM) roots,
where there is no (or very little) contact between the root cortex and the soil solution
(as the ECM fungal mantle completely or largely covers the roots), does not select for
cortical area, ultimately resulting in the lack of above correlation. (Fig. 1b).

(3) The Pathogen Resistance Hypothesis. Although large seeds (usually with more
internal nutrient reserves) can disperse over long distances, many still fall near the
parent plant**34, where soil pathogens to which a species is susceptible are likely to
be more abundant. This phenomenon is known as the Janzen-Connell effect®>*°. A
prerequisite for the Pathogen Resistance Hypothesis (but also for the Mycorrhizal P

uptake mechanism) is that there is a differential relationship between seed size and
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cortical thickness for AM and ECM (ectomycorrhizal) plants. Specifically, in AM

plants, larger seeds tend to be associated with thicker absorptive roots with thicker

36,37

cortices to allow for room for greater mycorrhizal colonization”®”" and enhanced

pathogen protection>-*’

, while no such relationship is expected in ECM plants
because their absorptive roots are already encased in protective mycelial sheaths
against pathogens®®? (Fig. 1c).

Vessel diameter Cortical thickness Cortical thickness Cortical thickness Cortical thickness

Seed P mass
Seed mass
Seed mass

Large Seed
| 5
W— "g ) B o o Pathogen
N i Mycorrhizal & i Hyphal mantle
fiasa fungi i Cortex
Mycorrhizal
Phosphorus Uptake
Small Seed
. o 0

Figure 1 | Three hypotheses regarding the relationships between roots and seeds. a, Resource
Transport Hypothesis: larger seeds are associated with thicker root vessels, enhancing nutrient
transport efficiency to support seed growth. b, Mycorrhizal Phosphorus (P) Uptake Hypothesis:
the development of larger seeds with greater P demand (i.e., from higher seed P mass) entails
thicker root cortices which usually has more arbuscular mycorrhizal (AM) colonization, and hence
more P uptake (solid pink filled circles) by AM fungi. In contrast, there is no such correlation in
ectomycorrhizal plant species (ECM). ¢, Pathogen Resistance Hypothesis: predicts a positive
relationship between root cortical thickness and seed mass. On the left half of panel (c), larger
seeds of arbuscular mycorrhizal (AM) plant species (both woody and non-woody) are predicted to
develop thicker root cortices, which attract mycorrhizal fungi to help defend roots against soil
pathogens. This leads to a positive correlation between root cortical thickness and seed mass in
AM plants. In contrast the right half of panel (¢) predicts that ECM plant species, whose roots are
protected by an ECM hyphal sheath, will show no correlation between root cortical thickness and

seed mass.

Results and Discussion

A global dataset on roots and seeds
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To test our hypotheses, we collected samples of roots, stems, leaves, and seeds from
660 woody plant species across 11 forest types in China, spanning climates from
tropical to temperate regions (Extended Data Table 1). We measured seed traits
including dry mass, length, and width and examined root anatomical traits such as
cortical thickness, stele radius, vessel diameter, and vessel density, capturing key
aspects of root morphology variation, specifically the mycorrhizal collaboration
dimension. Additionally, we analyzed two classic traits within the root conservation
dimension: root tissue density and root nitrogen concentration. Leaf traits, including
nitrogen concentration and specific leaf area, were assessed to examine the leaf
economics spectrum'~*, along with mature plant height, as these traits are associated
with seed construction and dispersal'*.

To explore the global relationship between roots and seeds, we also compiled data
from the Global Root Traits (GRooT) database*” and other literature, incorporating
620 additional species with both root and seed traits data. Totally, this global dataset
(our field-measured data plus those from GRooT database and literature) includes 239
plant families and spans two major mycorrhizal types (1023 arbuscular mycorrhizal
plants and 142 ectomycorrhizal plants), three growth forms (331 herbs, 329 shrubs,
and 636 trees), and diverse climatic zones (380 tropical plants, 450 subtropical plants,
and 467 temperate plants) (Extended Data Fig. 1). This comprehensive dataset

allowed us to investigate the universality of root-seed relationships.

The global root-seed coordination

Before analyzing the root-seed relationship using field-measured data, we first
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explored the dimensions of the trait variation in roots, leaves, and seeds. This step was
necessary because if trait variations in those organs are different from those well-
documented in previous studies'%!4, the root-seed relationship derived from the field-
measured data might represent a specific case rather than a general pattern. The
results of principal component analysis (PCA) show that absorptive root traits align
with the two orthogonal dimensions: mycorrhizal collaboration gradient and the
conservation gradient (Fig. 2a)*®. In contrast, variations in above-ground plant traits
(Fig. 2b), consistent with Corner’s rules, align with the established axes of the leaf
economics spectrum® and plant size dimensions including mature plant height and
seed mass (Fig. 2c)'. We also observed coordinated variation of the conservation
spectrum between above- and belowground traits, e.g., the closely aligned ordination
vectors for leaf and root N concentration (Fig. 2c¢).

We also found that, in both our field-measured trait study (Extended Data Figs. 2a,
b) and in the global dataset (Figs. 3a), seed mass is significantly and positively
correlated with the mycorrhizal collaboration gradient, particularly root diameter,
which represents the volume of the intraradical habitat for fungal partners®. However,
seed mass shows no relationship with the conservation dimension of roots (Fig. 2a).
This positive relationship between root diameter and seed mass holds consistently
across different climatic zones (tropical, subtropical, and temperate) and woody
species (trees and shrubs), with the effect being pronounced in AM plant species
(Extended Data Figs. 3a, d and 4a, d, g) and absent in ECM plant species. By

integrating our new data with existing literature, we demonstrate that the root
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diameter-seed mass relationship is robust across plant growth forms, including woody
and non-woody species (Extended Data Fig. 5). Moreover, this relationship remains

consistent even after accounting for plant phylogeny (Extended Data Fig. 6).
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Figure 2 | Integration of seed mass within the above-and below-ground plant trait space.
Analyses were performed using our field-measured trait data: a, Seed mass and the four traits
associated with the previously described two-dimensional root economics space (SRL, RTD, RN,
and RD). b, seed mass, two traits associated with the plant size dimension (LA and H), and two
traits associated with the leaf economics spectrum (SLA and LN). c, all traits from panels a and b,
combined with root anatomical traits (CT, VD, and VDen). Color gradients indicate species
occurrence probability within the trait space, with red indicating high occurrence and yellow
indicating low occurrence. Contour lines correspond to the 0.25, 0.50, and 0.99 quantiles. Traits
included in each dimension are: leaf economics spectrum (specific leaf area, SLA; leaf nitrogen
concentration, LN); plant size (seed mass, SM; leaf area, LA; mature plant height, H); root
economics space (root diameter, RD; specific root length, SRL; root tissue density, RTD; root
nitrogen concentration, RN); and root anatomical (cortical thickness, CT; vessel diameter, VD;

vessel density, VDen).
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Figure 3 | Global relationship between root diameter and seed mass. Analyses were performed
for arbuscular mycorrhizal (AM) (a) and ectomycorrhizal (ECM) plant species (b) using combined
field-measured data and literature data. Global AM data show a significant positive correlation (a):
Green filled circles; regression equation: log10(y) = 6.23 log10(x) +4.43,r=0.45, P =2.2 x 10-16,
n = 983. Both regressions are performed using the standardized major axis (SMA) regression. The
scaling exponent for the AM plant species is 6.23 (95% confidence interval (CI) = 5.89-6.59) (P =
1.32 x 10-6; see the Method section). In contrast, no significant correlation was found for ECM
plant species (b): Tan filled circles; r=0.11, P =0.20, n = 131. Significance was tested using a two-
sided #-test. All data are plotted on logarithmic scales (log10) for both axes, with each point

representing a single plant species.

Mechanisms of root-seed coordination

We explored potential mechanisms underlying the observed relationships between
roots and seeds (Fig. 1). We found a relatively weak or no correlation between root
vessel diameter and seed mass using field-measured data (Fig. 4a and Extended Data
Fig. 3c). Conditional correlations analyses considering the significant relationship
between cortical thickness and vessel diameter (» = 0.52, P < (0.01) showed no
correlation between vessel diameter and seed mass (= 0.03, P <0.54) in AM plants.
Remarkably, this correlation was also absent within each mycorrhizal type (Extended
Data Figs. 3f and 4c, f, 1), climatic zone (Extended Data Figs. 4c, f and i), and among
tree and shrub species (Extended Data Fig. 3 c, f). This suggests that the positive
relationship between root vessel diameter and seed mass, as expected by the Resource

Transport Hypothesis, or the widely recognized Corner’s rules, cannot fully explain
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the observed positive relationship between root diameter and seed mass.

Although plant height was positively correlated with seed mass (» = 0.32, Extended
Data Fig. 6), consistent with the empirical Corner’s rules, its weak relationship with
root vessel diameter (r = 0.17, Extended Data Fig. 6) likely limits the indirect pathway
by which vessel traits might influence seed size. These findings may explain why the
Resource Transport Hypothesis was not supported. Indeed, the weak correlation
between plant height and root vessel diameter warrants further investigation.

In contrast to the root vessel diameter-seed mass relationship, we found a stronger
positive correlation between root cortical thickness and seed mass, with a significant
correlation in AM plants (green filled circles in Fig. 4b) but no such correlation in
ECM plants (green open circles in Fig. 4b). Conditional correlation analysis further
confirmed the positive correlation between cortical thickness and seed mass (» = 0.24,
P <0.01) in AM plants. This root cortex-seed relationship was consistent within each
growth form (trees and shrubs) (Extended Data Figs. 3b and e) and climatic zone
(tropical and subtropical) (Extended Data Figs. 4b, e and h) in AM plants, while it was
absent in ECM plants.

The lack of a significant relationship between vessel diameter and seed mass in
ECM plant species further challenges the universal applicability of the Corner’s rules.
In AM plants, thicker cortices are closely related to greater mycorrhizal colonization
by providing more intraradical space for fungi symbiosis®*'. These AM fungi could
enhance phosphorus uptake for larger seed production. Consistent with the

expectation of Mycorrhizal P Uptake Hypothesis, we observed a positive correlation
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between cortical thickness and seed phosphorus mass (» = 0.33, P <0.05) in AM
plants and no correlation (» = 0.001, P = 0.88) in ECM plants. This suggests that the
nutritional function of mycorrhizal association, particularly for commonly limiting
nutrients such as P, potentially explains the root-seed relationship.

Since our field-measured data (Fig. 4, Extended Data Fig. 2a and c¢) were from
mature plants and the Pathogen Resistance Hypothesis was originally based on
seedling roots*!, we also analyzed both mature and seedling roots for the same
species, using field samples and literature data. This follow-up analysis showed a
strong positive correlation in absorptive root diameter between the mature plants and
their respective seedlings (Extended Data Fig. 7), indicating trait consistency over
ontogeny. Several lines of evidence also support the Pathogen Resistance Hypothesis
and Mycorrhizal P Uptake Hypothesis, which suggests that the resistance to soil-
borne pathogens together with P uptake by symbiotic mycorrhizal fungi in root cortex

may also regulate the root-seed relationship.
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Figure 4 | Relationships between root anatomical traits and seed mass. The analyses were
performed using our field-measured data. For arbuscular mycorrhizal (AM) plant species, seed
mass is positively correlated with both vessel diameter (tan filled circles, a, logio(y) = 7.34logio(x)
-4.14,r=0.16, P=1.45 x 102, 95% CI = 6.71-8.04, n = 458) and root cortical thickness (green
filled circles, b, logio(y) = 4.81 logio(x) - 7.60, = 0.33, P=0.002, 95% CI = 4.43-5.23, n = 488).
Both regressions are performed using the standardized major axis (SMA) regression. In contrast,
no correlation is observed for ectomycorrhizal (ECM) plant species (tan open circles, a, r= 0.04,
P=0.77, n="71; green open circles, b, r=0.06, P = 0.62, n = 78; regression lines not shown).
Significance was tested using a two-sided #-test. Data are plotted on logarithmic scales (logio) for

both axes, with each point representing a single plant species.

First, AM plants, particularly obligate AM species compared with non-mycorrhizal
ones, tend to produce large seeds'®***. These large seeds give rise to absorptive roots
with larger diameters, which attract and sustain more mycorrhizal hyphae that, in turn,
allow the plants to acquire more P and help fend off soil pathogens!** through
secreting antagonistic compounds, enhancing immunity of host roots (even leaves®”),
and/or competing for photosynthate or infection sites in cortical cells**.

364346 along with our integrated analysis, indicate that

Second, previous studies
tropical and subtropical plant species potentially experience greater pathogen pressure
than species in temperate regions. The higher levels of mycorrhizal colonization
observed in tropical and subtropical roots, as compared to temperate ones (Extended

Data Fig. 8a), may be a result of this geographic pattern of soil pathogens. The greater

pathogen presence in more moist and warmer climatic zones can, in turn, select for
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thicker root diameter and root cortex in these regions’!, providing enhanced pathogen
resistance likely through the above mechanisms by accommodating more mycorrhizal
fungi within the cortex®. Moreover, (sub-)tropical ecosystems are well-known to
experience more prominent P-limitations than temperate ecosystems*’. Consequently,
higher mycorrhizal colonization in thicker absorptive roots of (sub-)tropical plants
could help meet the elevated P demands associated with producing larger seeds. These
phenomena may explain the significant positive correlation between seed mass and both
root diameter and cortical thickness (Figs. 3 and 4a).

Third, we note an increasing trend of soil fungal pathogen richness (potentially
pathogen combinations or pathogenicity per tree species) from tropical to cold
temperate regions in China*® (Fig. 5 and Extended Data Figs. 8b-e). Alongside our root
anatomical data, we further found strong positive correlations between root diameter,
cortical thickness, and soil fungal pathogen richness in AM plants (Figs. 5a, ¢ and
Extended Data Figs. 8b, d), but not in ECM plants (Figs. 5b, d and Extended Data Figs.
8c, e). Therefore, the significant association between seed mass and the mycorrhizal
collaboration dimension of the roots, particularly their role in pathogen defense, likely
explains the independence of this dimension from the resource acquisitive-conservative
strategy gradient in the previously described root economics space®. This relationship
provides a novel perspective —well-supported by substantial empirical evidence —on
the origins of the two-dimensional root economics space>*®, and offers an interesting
expansion on the relationship between chemical protection in roots and potential

pathogen pressure*®.
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Figure 5 | Relationships between soil pathogen richness and root traits. Sampling sites in
temperate forests include HZ, LS, CBS, DLS, and TBS; subtropical sampling sites include JGS,
SNJ, GTS, JLS, and DHS; and tropical species were sampled in XSBN (see the Extended Data
Table 1 for details of these sites). Panels (a) and (b) show box-plots of root diameter (n = 535, n
=104), while panels (¢) and (d) show box-plots of cortical thickness for arbuscular mycorrhizal
(AM) and ectomycorrhizal (ECM) plant species (n = 535, n =101), respectively. For each plot, the
sites are arranged in order of increasing soil fungal pathogen richness, with corresponding values
(the number of Operational Taxonomic Units obtained by soil fungal sequencing) indicated below
each sampling site. Pearson correlation indicates a positive correlation between soil fungal
pathogen richness and both root diameter and cortical thickness in AM plant species (inset in
panel a, y = 0.005x + 0.16, »= 0.66, P = 0.04; inset in panel ¢, y =0.005x + 0.16, r=0.63, P =
0.03). Shaded areas indicates 95% confidence intervals of the regression lines. In contrast, no
significant correlations are observed for ectomycorrhizal (ECM) plant species (inset in panel b, =
0.04, P=0.91. inset in panel d, = 0.14, P = 0.69). Significance was tested using a two-sided #-
test. The inset figures show median values for root diameter and cortical thickness in each
sampling site. Soil fungal pathogen richness data were sourced from literature reporting soil
fungal pathogen patterns across forest sites in China*®, similar to our sampling sites. Box plots
indicate the median value (solid line), 25" and 75" percentiles (box), and the data range
(whiskers).

Our results further show no significant correlation of root diameter and seed mass

with family divergence time, a proxy of evolutionary age (Figs. 6a, b). It suggests that
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the environmental selection (e.g., increasing pathogen load and/or P limitation in
habitats where thick-root species often grow) for this adaptive trait syndrome (i.e., thick
absorptive roots accompanied with large seeds) may have always occurred within a
specific divergence time, supporting effective mycorrhizal symbiosis and pathogen

resistance.
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Figure 6 | Evolutionary trends of absorptive root diameter and seed mass. Spearman
correlations are conducted using our field-measured data. Absorptive root diameter (a) and seed
mass (b) are both no significant correlated with family divergence time (MYA, million years ago).
Panel a, r=0.1, P=0.319, n=97; panel b, r=0.19, P=0.066, n = 93. Significance was tested
using a two-sided #-test.

We found that the positive relationship between root diameter and seed mass is
stronger in non-woody plants than in woody plants (Extended Data Fig. 5), especially
in temperate regions where most non-woody plants in the literature have been studied
(Extended Data Fig. 9a). Non-woody plants typically exhibit lower mycorrhizal
colonization rates than woody plants with the same absorptive root diameter*’, based
on GRooT and literature data (Extended Data Figs. 9b, ¢). As a result, non-woody
plants require larger-diameter absorptive roots than woody plants to achieve similar
levels of mycorrhizal colonization, which facilitates both mycorrhizal P uptake and
defense against soil fungal pathogens. While previous studies have reported

differences in absorptive roots between non-woody and woody plants*’, our study is
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the first to specifically explain the differences between non-woody and woody plants
in terms of the root diameter-seed mass relationship, which could both be driven by

mycorrhizal associations.

Conclusions

In summary, by analyzing the largest dataset on root traits and seed mass to date, we
offer new insights into the connection between plant resource acquisition,
reproduction by seeds, and pathogen protection in seedlings. Specifically, we found
that large seeds are associated with thick absorptive fine roots. This link does not
result from enhanced resource transport by larger vessel areas. Instead, it arises from a
larger cortical area, supporting mycorrhizal symbionts that, in turn, help mycorrhizal
P uptake and/or defense against soil pathogens and ultimately improve seedling
survival and influences plant-soil feedbacks by affecting root morphology *.
Furthermore, this potential duality of function raises questions about the
multifunctionality hypothesis by Newsham et al.>’, which posits a tradeoff between
nutrient acquisition and pathogen defense, highlighting the need for more empirical
studies to test this hypothesis. Our findings suggest practical applications in
agriculture and forestry, such as selecting or cultivating AM plants with large seeds
and hence thick absorptive roots to reduce the negative plant-soil feedback through
their strong mycorrhizal association against soil pathogens. Importantly, this co-
variation is strongly influenced by mycorrhizal type: it is present in AM plants but
absent in ECM plants, likely due to an inherent difference in pathogen resistance

between the two mycorrhizal types. The dual function of AM fungi in P uptake and
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pathogen defense offers a fresh perspective on how above- and belowground plant
organs coordinate to shape whole plant life-history strategies and their adaptation to
heterogeneous environments. Understanding this coordination helps predict how plant
species will perform and distribute themselves in environments that differ in P
availability and pathogen load, particularly under global change. Finally, critical
experiments are needed in the future to dissect the dual role of AM association as well

as their relative contributions to the global coordination between root and seed traits.
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Methods

Study Sites: This study was conducted in 11 representative forest ecosystems across
in tropical (1 site), subtropical (5 sites), and temperate regions (5 sites) in China. The
tropical forest we sampled here is the typical forest and the hotspot of plant diversity
in China. To get more generalization of the result in the tropical forest, we collected
the largest number of plant species in this forest across all the 11 sampling sites.
Detailed information on the sampling sites and the species number sampled can be
found in Extended Data Table 1. We collected mature fruits and seeds of common
woody plant species (trees and shrubs) from each site.

Sampling Approach and Trait Measurements: We first measured the height of each
sampled individual. Following the methods of Schneider et al. (2021)°!, we collected
fruits and seeds’!. For each plant species, more than three mature individuals were
selected, and more than 50 mature fruits or seeds were collected from each plant
individual, the number depending on how many fruits or seeds matured in the
individual plant. For small-sized seeds, more than 100 seeds per plant species were
collected. For species with limited or unavailable seed sources for collection, seeds
were obtained from the Germplasm Bank of Wild Species in Southwest China. The
fruit pulp or associated structures (e.g., wind-dispersed appendages) were removed
from each species, and seed size and dry weight were measured®. The dry mass of
30-50 seeds per species was measured (70°C, >72 hr); for small seeds, 100 seeds were
measured, and for extremely small seeds, the weight per thousand seeds was used to

calculate individual seed dry weight>!->*, For each species, we also collected at least
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30 intact and undamaged leaves from the upper canopy to measure leaf morphological
and chemical traits*. Leaf area (LA; cm?) was measured using a Li-3000C portable
leaf area meter (Li-COR, Lincoln, NE, USA). Leaves were scanned, dried (60°C for
48 hr), and weighed to calculate specific leaf area (SLA; cm? g'). Leaves were then
ground and analyzed for N concentration (LN%) using an elemental analyzer (IR-MS;
Thermo Fisher Scientific, Waltham, MA, USA). Seed phosphorus concentration was
measured for randomly selected 44 AM plant species and 28 ECM plant species
following the Mo—Sb colorimetrical method after digestion of the seed samples with
H>S04H,05%.

Root samples were collected following established methods?*3!#°. Lateral roots
were traced from the main root of each tree, and branches containing at least five root
orders were selected. Surface soil was carefully brushed off, and a portion of each
root sample was washed with deionized water and placed in FAA solution (9 ml 70%
ethanol, 9 ml deionized water, 1 ml formaldehyde, and 1 ml acetic acid) for
anatomical measurements. The remainder of the sample was stored on ice and
transported to the lab for root morphological and chemical analyses>*3!4%36,

In the laboratory, roots were cleaned with deionized water to isolate absorptive
roots, specifically the 2-3 most distal root orders composed primarily of primary
structures**314%36_ Some absorptive roots were scanned using a root scanner (Epson
Perfection V700 Photo scanner, Epson Company, Ltd, Japan), and root length,

volume, and diameter (RD; mm) were calculated using WinRHIZO software

(WinRhizo Pro 2007d software, Regent Instruments, Canada). The roots were then
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dried (60°C for several days) and weighed to calculate specific root length (SRL; m/g)
and tissue density (RTD; g/cm?). Another portion of the root sample was dried,
ground, and analyzed for N concentration (Root N, %) using an elemental analyzer
(IR-MS; Thermo Fisher Scientific, Waltham, MA, USA).

For each species, 15-20 first-order roots were selected from the FAA solution for
anatomical analysis. The procedure involved dehydration with alcohol, clearing with
xylene, embedding in paraffin, sectioning, and staining. Sections were photographed
under a microscope (Olympus BX-63, Japan), and cortical thickness (CT; um), vessel
diameter (VD; pm), and vessel density (VDen; n um?) were measured using Imagel
software (NIH Image, Bethesda, MD, USA)3136:57,

We collected soil samples from Xishuangbanna Tropical Rainforest Nature
Reserve, Dinghushan National Nature Reserve, Shennongjia National Nature Reserve,
Jigongshan National Nature Reserve, Changbaishan National Nature Reserve, and
Huzhong National Nature Reserve in the field according to the method described in
Hu et al. (2019) 6. We obtained data on soil fungal pathogens through sequencing.
Fungal functional guilds for fungal OTUs were also assigned using FUNGuild
according to Tedersoo et al. (2014)* and Hu et al. (2019)4°,

The Global Dataset Collection: We obtained global data on fine root traits
(including arbuscular mycorrhizal fungi colonization rates) from the GRooT
database*!. We obtained seed mass data from the TRY database® and from Carmona
et al. (2021)2. We also collected root and seed data not included in these databases

from other published studies, including Wright et al., 1999; Siqueira et al., 2001;
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Zangaro et al., 2005; Laughlin et al., 2010; Carmona et al., 2021; Mueller et al.,
2(0242-26-28,59,60

Mycorrhizal types of plants in both measured and collected datasets were
determined based on published studies and mycorrhizal classification databases®!-°.
For species whose mycorrhizal type was not confirmed in our databases and literature,
we determined it through field observations during sampling and anatomical analysis
of root paraffin sections. For a few plant species with the mycorrhizal type uncertain
(15 species), we inferred the mycorrhizal type, as always done in previous studies,
based on the predominant mycorrhizal type within the genus®!%’. Woody plants were
classified into arbuscular mycorrhizal (AM, 757 species), ectomycorrhizal (ECM, 140
species), ericoid mycorrhizal (ERM, 4 species), non-mycorrhizal (10 species), or
unknown (46 species). AM + ECM plant species were assigned to EM category based
on their ability to diverge from the ancestral stage of AM®®. Non-woody plants were
classified into AM (266 species), ECM (2 species), or unknown (29 species); AM +
NM plant species were treated as AM, because AM is favored by natural selection in
dual mycorrhizal associations®. For plant species with mycorrhizal status
undetermined, they were not included in the analyses of the impacts of mycorrhizal
types (AM vs. ECM) on plant trait relationships.
Data Analysis: We conducted type II linear regressions using standardized major axis
(SMA) to explore the bivariate plant trait relationships. The trait data were logio-

transformed before the SMA analysis to achieve normality. We used the “sma”

function from the “smart” package to test the difference of the SMA slopes between
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plant functional groups.
We first corrected species names and family information using The Plant List

(http://www.theplantlist.org). Then, a phylogenetic tree was constructed using the

“U.PhyloMaker” package®®, following the APG IV phylogenetic system® for all
analyses. Based on this phylogenetic tree, we calculated Blomberg's K using the
“Picante” package’® to evaluate the phylogenetic influence on each trait; generally, a
higher Blomberg's K indicates a greater phylogenetic influence’. Next, we performed
trait correlation analysis excluding phylogenetic effects using the “pgls” function in
the “caper” package’! (Extended Data Fig. 6).

We conducted PCA using the “factoextra” and “funspace” packages to determine
the major dimensions of trait variation among organs. Plant trait data were logio-
transformed and standardized before the PCA to meet the requirement of normal
distribution and variance homogeneity, respectively. To visualize the probability of a
given trait appearing in PCA space, we constructed two-dimensional kernel density
plots with contours using the “funspace” package’? and added contour lines. The color
gradient and contours correspond to the 0.25, 0.5, and 0.99 quantiles of the trait space,
highlighting areas with the corresponding probability of trait occurrence. We also
assess the evolutionary pattern of absorptive root diameter and seed mass using our
field-measured data. Family-level values of root diameter and seed mass were
assessed using “phytools” package and “anc.ML” function. All statistical analyses and

data visualizations were performed using R (v.4.3.2; R Core Team 2023) 7.
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The code utilized for this study is publicly available and is hosted in Figshare

(https://doi.org/10.6084/m9.tigshare.28300658).
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