nature cities

Supplementary information

https://doi.org/10.1038/s44284-025-00320-z

The dependence of urban tick and Lyme disease hazards on the hinterlands

In the format provided by the authors and unedited

Table S1: Summary of the average density of nymphs (/100m² ±sd), nymphal infection prevalence (%) and Lyme disease hazard (density of infected nymphs) (/100m²) in urban (109 site visits) and hinterland sites (112 site visits) for each city surveyed. In bold are the six cities in which we detected ticks in urban greenspaces.

		Hinterland		Urban			
	Nymph density	Infection prevalence	Lyme disease hazard	Nymph density	Infection prevalence	Lyme disease hazard	
Burnley	0	-	0	0	-	0	
Cannock	0	-	0	0	-	0	
Carlisle	22.3±37.2	4.7% (24/507)	1.06	0.1±1.2	0% (0/2)	0	
Dunfermline	19.3±29.7	10.9% (33/302)	2.11	15.0±25.1	1.6% (4/253)	0.24	
Durham	0.1±0.12	-	0	0	-	0	
Falkirk	26.8±62.5	4.7% (16/339)	1.26	9.5±15.6	4.9% (9/184)	0.46	
Halifax	0	-	0	0	-	0	
Harrogate	1.5±6.1	0% (0/55)	0	0	-	0	
Inverness	25.7±35.8	9.9% (57/573)	2.56	19.5±32.7	8.2% (28/343)	1.59	
Keighley	1.1±4.2	0% (0/8)	0	0	-	0	
Kilmarnock	6.1±17.1	1.8% (1/56)	0.11	0	-	0	
Kings Lynn	0.9±3.7	1.9% (1/54)	0.02	0	-	0	
Macclesfield	0.1±1.1	0% (0/1)	0	0	-	0	
Perth	51.3±68.9	9.3% (60/644)	4.78	6.1±12.9	16.8% (17/101)	1.03	
Scarborough	14.7±20.5	7.2% (22/306)	1.06	1.7±4.8	9.1% (2/22)	1.15	
Wrexham	0	-	0	0	-	0	

Table S2: Outputs from the selected generalised linear mixed effects models. Models focussing on nymph density were analysed at the transect level (presence/absence of a nymph) and models focusing on Lyme disease hazard were analysed at the site/visit level (presence/absence of infected nymphs for each site/visit). Models used a binomial error distribution and included site, city and survey month as random intercepts. Delta AICc indicates the difference in AICc when removing the variable compared to the selected model (lower AICc is better fit).

Parameter	Estimate (standa error)	rd Z value	p-value	Delta AICc
Model: Differences in nymph density b		spaces and	hinterland v	
Intercept	-3.40 (0.69)	-4.93	<0.001	
Type: urban (baseline: hinterland)	-2.55 (0.58)	-4.42	<0.001	17.5
Latitude	2.86 (0.62)	6.60	<0.001	14.2
Annual cumulative rainfall	-0.93 (0.59)	-1.59	0.11	0.6
Ground vegetation density	-0.20 (0.07)	-2.71	0.007	5.3
Year: 2023 (baseline: 2022)	0.93 (0.22)	4.23	<0.001	16.3
Model: Differences in Lyme disease ha	nzard between urban	greenspace	s and hinte	rlands
Intercept	-4.66 (3.07)	-1.52	0.13	
Type: urban (baseline: hinterland)	-12.13 (6.46)	-1.88	0.06	23.4
City latitude	8.20 (3.73)	2.20	0.03	6.4
Model: Effect of hinterland nymph den	sity on urban greens _i	pace tick de	ensity	
Intercept	-6.53 (1.00)	-6.52	<0.001	
Nymph density in hinterland	0.06 (0.01)	4.92	<0.001	21.8
Latitude	2.66 (0.94)	2.83	0.005	7.4
Veg density	-0.40 (0.15)	-2.68	0.007	5.8
Model: Effect of hinterland nymph den	sity on urban greens _i	pace Lyme o	disease haza	ard
Intercept	-19.09 (6.56)	-2.91	0.004	
Nymph density in hinterland	14.12 (4.58)	3.08	0.002	9.1
Year: 2023 (baseline: 2022)	-16.94 (5.93)	-2.86	0.004	8.9
Model: Effect of hinterland landcover of	on urban greenspace	nymph den	sity	
Intercept	-6.52 (1.20)	-5.43	<0.001	
% Woodland cover	1.55 (0.89)	1.74	0.08	0.7
% built-up cover	-2.78 (1.19)	-2.33	0.02	5.8
Year: 2023	1.25 (0.35)	3.54	<0.001	10.6
Vegetation density	-0.50 (0.15)	-2.61	0.009	5.3
Model: Effect of hinterland landcover of	on urban greenspace	Lyme disea	se hazard	
Intercept	-60.86 (21.72)	-1.80	0.005	
Year: 2023	-27.82 (8.62)	-3.23	0.001	10.0
Vegetation density	5.60 (2.78)	2.01	0.04	1.5

Model: Effect of city landcover on urban greenspace nymph density

Intercept	-6.44 (1.16)	-5.56	<0.001	
Latitude	3.30 (1.10)	2.99	0.003	7.5
Year: 2023	1.20 (0.35)	3.44	<0.001	9.9
Vegetation density	-0.39 (0.15)	-2.57	0.01	5.0
Model: Effect of city on urban greenspa	ce disease hazard			
Intercept	-60.86 (21.72)	-1.80	0.005	
Year: 2023	-27.82 (8.62)	-3.23	0.001	10.0
Vegetation density	5.60 (2.78)	2.01	0.04	1.5
Model: Effect of urban/hinterland conne	ectivity on urban gree	nspace nyi	mph density	•
Intercept	-6.44 (1.16)	-5.56	<0.001	
Latitude	3.30 (1.10)	2.99	0.003	7.5
Year: 2023	1.20 (0.35)	3.44	<0.001	9.9
Vegetation density	-0.39 (0.15)	-2.57	0.01	5.0
Model: Effect of urban/hinterland conne	ectivity on urban gree	nspace Lyi	me disease l	hazard
Intercept	-60.86 (21.72)	-1.80	0.005	
Year: 2023	-27.82 (8.62)	-3.23	0.001	10.0
Vegetation density	5.60 (2.78)	2.01	0.04	1.5

Table S3: Summary of published study that investigated tick density, nymphal infection prevalence and Lyme disease hazard in the south of England between 2008 and 2018.

Urban area	Sites	Year	Larval density (/100m)	Nymph density (/100m)	Adult density (/100m)	Nymphal infection prevalence (%)	Lyme disease hazard (/100m)	Ref
Bath	14 sites	2017	0.06	0.13	0.02	7.14% (n=42)	0.02	1
			(0-0.42)	(0-0.78)	(0-0.07)	(0-7.7%)	(0-0.21)	
Bristol	38 sites	2017	0	0.01	0.002	0	0	1
				(0-0.57)	(0-0.03)			
London	Brompton Park	2018	n.d	0	0	n.d	n.d	2
	Bushy Park	2013,	0	1.99	0.003	0% (n=51)	0	2,3
		2018		(0.9-3.5)	(0-0.01)			
	Green Park	2018	0	0	0	n.d	0	2
	Greenwich Park	2018	0	0	0	n.d	0	2
	Hampton Park	2013	0	0	0	n.d	0	3
	Hyde Park	2018	0	0	0	n.d	0	2
	Kensington Park	2018	0	0	0	n.d	0	2
	Regent Park	2018	0	0	0	n.d	0	2
	Richmond Park	2008-	134.8	18.98	0.46	5.4% (n=1146)	1.22	2–8
		2018	(12.9-585)	(0-136)	(0-2)	(0-13%)		
	St James Park	2018	0	0	0	n.d	0	2
	Wimbledon common	2013	0	0	0	n.d	0	3
Salisbury	25 sites	2013- 2015	n.d	2.6	0.4	18.1% (n=349)	0.47	9
Southampton	20 sites	2017	0.28	0.31	0.03	4.06% (n=271)	0.13	1
			(0-3.06)	(0-5.23)	(0-0.17)	(0-33.3%)	(0-1.36)	

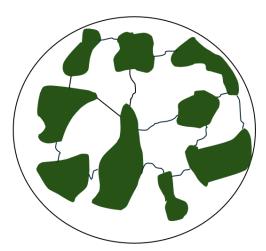

Figure S1: Map representing the 16 UK cities that were surveyed for this study. The map contains public sector information licensed under the Open Government Licence v3.0 (UK outline). Source: ONS, Open Geography Portal.

Table S4: Number of visits, population size, cumulative annual rainfall, woodland cover (%), built-up cover (%) within the city (0-5 km) from city centre) and in the hinterlands (5-10 km) from city centre) and connectivity (least cost path) metrics for each city. In bold are the six cities in which we detected ticks in urban greenspaces.

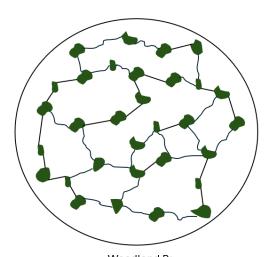

				5 km		Between 5		
Urban area	Number of visits	Population size	Cumulative annual rainfall	% woodland	% built- up	% woodland	% built-up	Connectivity (LCP)
Burnley	1	73021	1314.5	15.6	25.5	11.1	11.1	0.48
Cannock	1	63054	691.86	25.4	26.1	26	23.4	0.1
Carlisle	2	74281	918.8	11.5	19.7	11.7	10.1	0.38
Dunfermline	2	55480	1082.04	17.6	30	14.7	12.4	0.23
Durham	1	48069	675.65	21.7	25.8	17.8	17.1	0.22
Falkirk	2	103020	971.67	20.6	24.9	21	13.8	0.32
Halifax	1	88134	1041.25	13.5	29.4	12.5	22.1	0.35
Harrogate	1	75070	646.93	20.6	35.1	21.3	19.9	0.32
Inverness	2	47820	755.02	18.5	17.4	27.6	6.4	0.07
Keighley	1	57345	1057.27	13.3	20	10.8	16.6	0.25
Kilmarnock	1	47400	980.8	18.3	22.4	20.8	16.2	0.3
Kings Lynn	1	47610	660.31	14.7	30.7	16.6	21.7	0.26
Macclesfield	2	64199	868.4	29.2	25.1	23.6	17.5	0.15
Perth	2	47220	864.98	24.3	20	27.6	12.7	0.1
Scarborough	2	61285	635.58	18	26.7	18.5	14.5	0.2
Wrexham	1	65200	728.74	13.2	24.1	15.4	15.8	0.26

Table S5: Cost values assigned to each UKCEH land cover class to create the cost raster layer for deer movement throughout the landscape. This cost matrix was used to generate the urban-hinterland interface connectivity metric. Cost values for each land cover class were computed based on published literature 10-14

Land cover class	Cost	Land cover class	Cost		Cost
	value		value		value
Deciduous woodland	1	Fen	30	Supralittoral rock	100
Coniferous woodland	1	Heather	30	Supralittoral sediment	100
Arable	60	Heather grassland	30	Littoral rock	100
Improved grassland	40	Bog	30	Littoral sediment	100
Neutral grassland	30	Inland rock	40	Saltmarsh	300
Calcareous grassland	30	Saltwater	1000	Urban	1000
Acid grassland	30	Freshwater	1000	suburban	300

Woodland A:
Average path cost: 1968
Average patch area: 5800
Cost metric: 1968/5800 = **0.34**

Woodland B:
Average path cost: 1968
Average patch area: 700
Cost metric: 1968/700 = **2.8**

For a deer, moving through woodland A is <u>less costly</u> compared to woodland B (i.e. woodland A is more connected)

Figure S2: Examples explaining why we incorporated woodland patch area into our connectivity metrics. Fictional woodlands A and B both have the same average path cost however, we assume woodland A to be better connected for deer movement, as woodland patches are larger, which is why we decided to divide the average path cost by the average patch area.

Table S6: Table summarising the response variable, distribution, random effects and covariates for every generalised linear mixed effect model generated.

Response	distribution	Random effects	Covariates					
Models: Differences in nymph density and Lyme disease hazard between urban greenspaces and hinterland woodlands								
Nymph presence at the transect level	Binomial logit link	Town Site	Type (urban, hinterland) Year (2022, 2023)					
Presence of infected nymphs at the site/visit level		Month	Ground vegetation density City latitude Annual cumulative rainfall Population size					
Models: Effect of hinterland nymph den		e nymph der	sity and Lyme disease hazard					
Nymph presence at the transect level	Binomial logit link	Town Site	DON hint					
Presence of infected nymphs at the site/visit level		Month	Year (2022, 2023) City latitude Population size Annual cumulative rainfall Ground vegetation density					
Models: Effect of hinterland landcover o	n urban greenspace nyr	nph density a	and Lyme disease hazard					
Nymph presence at the transect level	Binomial logit link	Town Site	Woodland cover hinterland Built-up cover hinterland					
Presence of infected nymphs at the site/visit level		Month	Year (2022, 2023) Ground vegetation density Annual cumulative rainfall Population size					
Models: Effect of city landcover on urba	n greenspace nymph de	nsity and Lyr	me disease hazard					
Nymph presence at the transect level	Binomial logit link	Town	Woodland cover within town					
Presence of infected nymphs at the site/visit level		Site Month	Built-up cover within town Year (2022, 2023) City latitude					
			Ground vegetation density Year (2022, 2023) Population size					
			Annual cumulative rainfall					
Models: Effect of urban/hinterland connectivity on urban greenspace nymph density and Lyme disease hazard								
Nymph presence at the transect level	Binomial logit link	Town Site	Connectivity interface City latitude					
Presence of infected nymphs at the site/visit level		Month	Year (2022, 2023) Ground vegetation density Annual cumulative rainfall					

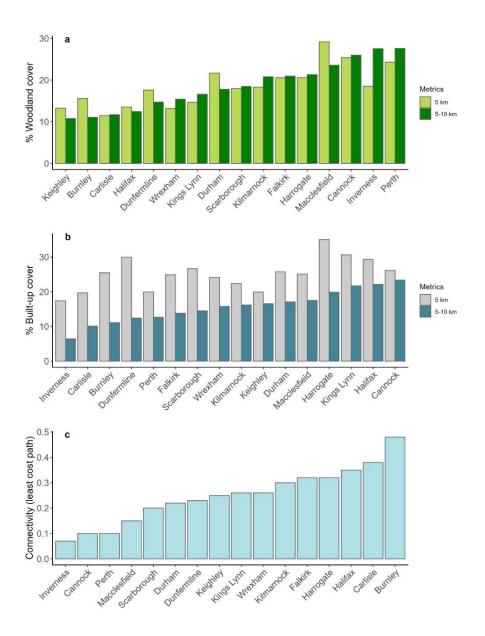


Figure S3: The 16 cities were chosen to achieve a broad spread of (a) woodland cover (%) and (b) built-up cover (%) across hinterlands (in a ring 5 – 10 km of each city centre; darker bars). Woodland (a) and built-up (b) covers are also shown within 5 km of each city centre, representing the area within and immediately adjacent to, each city (paler bars). Also shown is the (c) connectivity metric (least cost path) of the urban-rural interface (a ring of 4 – 6 km of each city centre). A low value indicates a more connected urban-rural interface (less costly for deer, as key tick hosts, to move through) and a high value represent a less connected (more costly) environment to move through. Landcover was extracted using the 2021 UKCEH landcover map¹⁵.

References

- Hansford, K. M. et al. Impact of green space connectivity on urban tick presence, density and Borrelia infected ticks in different habitats and seasons in three cities in southern England. Ticks Tick-Borne Dis 14, 102103 (2023).
- 2. Hansford, K. M. et al. Ixodes ricinus and Borrelia burgdorferi sensu lato in the Royal Parks of London, UK. Exp Appl Acarol **84**, 593–606 (2021).
- 3. Nelson, C., Banks, S., Jeffries, C. L., Walker, T. & Logan, J. G. Tick abundances in South London parks and the potential risk for Lyme borreliosis to the general public. *Med Vet Entomol* **29**, 448–452 (2015).
- 4. Cull, B. et al. A nationwide study on *Borrelia burgdorferi* s.l. infection rates in questing *Ixodes ricinus*: a six-year snapshot study in protected recreational areas in England and Wales. *Med Vet Entomol* **35**, 352–360 (2021).
- 5. Dobson, A. D. M., Taylor, J. L. & Randolph, S. E. Tick (*Ixodes ricinus*) abundance and seasonality at recreational sites in the UK: Hazards in relation to fine-scale habitat types revealed by complementary sampling methods. *Ticks Tick-Borne Dis* **2**, 67–74 (2011).
- 6. Greenfield, B. P. J. Environmental parameters affecting tick (*Ixodes ricinus*) distribution during the summer season in Richmond Park, London. *Biosci Horiz* **4**, 140–148 (2011).
- 7. Sorouri, R., Ramazani, A., Karami, A., Ranjbar, R. & Guy, E. C. Isolation and characterization of *Borrelia burgdorferi* strains from *Ixodes ricinus* ticks in southern England. *BioImpacts* 5, 71–78 (2017).
- 8. Vollmer, S. A. *et al.* Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. *Env. Microbiol* **13**, 184–192 (2011).
- 9. Hansford, K. M. et al. Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England. Ticks Tick-Borne Dis 8, 353–361 (2017).
- Balčiauskas, L., Wierzchowski, J., Kučas, A. & Balčiauskienė, L. Habitat Suitability Based
 Models for Ungulate Roadkill Prognosis. *Animals* 10, 1345 (2020).

- 11. Girardet, X., Conruyt-Rogeon, G. & Foltête, J.-C. Does regional landscape connectivity influence the location of roe deer roadkill hotspots? *Eur J Wildl Res* **61**, 731–742 (2015).
- 12. Gurrutxaga, M., Rubio, L. & Saura, S. Key connectors in protected forest area networks and the impact of highways: A transnational case study from the Cantabrian Range to the Western Alps (SW Europe). *Landsc Urban Plan* **101**, 310–320 (2011).
- 13. Loro, M., Ortega, E., Arce, R. M. & Geneletti, D. Assessing landscape resistance to roe deer dispersal using fuzzy set theory and multicriteria analysis: a case study in Central Spain.

 Landsc. Ecol. Eng. 12, 41–60 (2016).
- 14. VanAcker, M. C., Little, E. A. H., Molaei, G., Bajwa, W. I. & Diuk-Wasser, M. A. Enhancement of risk for Lyme disease by landscape connectivity, New York, New York, USA. *Emerg Infect Dis* **25**, 1136–1143 (2019).
- 15. Marston, C., Rowland, C. S., O'Neil, A. W. & Morton, R. D. Land Cover Map 2021 (10m classified pixels, GB). NERC EDS Environmental Information Data Centre https://doi.org/10.5285/398dd41e-3c08-47f5-811f-da990007643f (2021).