
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Dynamic Optimization of Edge Aggregation
Structures and Update Frequencies for Efficient

Distributed Hierarchical Model Training
Xiaolong Xu, Senior Member, IEEE, Jiayang Sun, Guangming Cui, Lianyong Qi, Senior Member, IEEE,
Muhammad Bilal Senior Member, IEEE, Wanchun Dou, Zhipeng Cai, Fellow, IEEE and Jon Crowcroft,

Fellow, IEEE

Abstract—Edge computing enables distributed machine learn-
ing models to be deployed and trained near the user space.
However, the intricate nature of edge computing raises several
challenges to distributed machine learning frameworks: 1) infe-
rior convergence arising from non-independent and identically
distributed (non-IID) edge data; 2) inefficient structural adap-
tation, where device dynamism complicates the adjustment of
aggregation structure; and 3) reduced training efficiency, as
resource heterogeneity and fluctuations create systemic strag-
glers. To address these issues, a distributed hierarchical model
training framework has been proposed by considering the
dynamic aggregation structure and frequency in this paper.
This framework designs an Edge Aggregation Structure and
Frequency method, namely EASF, for distributed model training
in heterogeneous edge computing environments. First, a dy-
namic distributed aggregation structure method is formulated
to consider various data distribution patterns. This method
constructs and modifies the aggregation structure in a distributed
manner to adapt to variations in working edge devices. Second,
a self-adapted aggregation frequency method and a timeout
abandonment mechanism are proposed to allow each node to
update its aggregation frequency adaptively. Lastly, a theoretical
analysis demonstrates the convergence property of the EASF
method in dynamic environments. Extensive experiments have
been conducted on a set of open testbeds. Results show that
the EASF significantly improves the efficiency and accuracy of
hierarchical model training in heterogeneous edge computing.

Index Terms—Edge computing, distributed machine learning,

X. Xu, J. Sun, and G. Cui are with the School of Software, Nanjing
University of Information Science & Technology, China. X. Xu and G. Cui
are also with the Jiangsu Province Engineering Research Center of Advanced
Computing and Intelligent Services.
E-mail: xlxu@ieee.org; {202412211536, gcui}@nuist.edu.cn.

L. Qi is with the College of Computer Science and Technology,
China University of Petroleum (East China), Qingdao, China. E-mail:
lianyongqi@gmail.com.

Muhammad Bilal is with the School of Computing and Communications,
Lancaster University, Bailrigg, Lancaster LA1 4WA, United Kingdom.
E-mail: m.bilal@ieee.org.

W. Dou is with the State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China. E-mail: douwc@nju.edu.cn.

Z. Cai is with the Department of Computer Science, Georgia State
University, USA. Email: zcai@gsu.edu

Jon Crowcroft is with the Department of Computer Science and
Technology, University of Cambridge, United Kingdom. E-mail:
jon.crowcrf@cl.cam.ac.uk.

Manuscript received xxx; revised xxx.
This work was supported in part by the National Natural Science Foundation

of China under Grant 92267104 and Grant 62372242, and in part by the
Jiangsu Provincial Major Project on Basic Research of Cutting-edge and
Leading Technologies, under Grant BK20232032.

hierarchical model training

I. INTRODUCTION

EDGE computing, an emerging computing paradigm [1],
decentralizes computational tasks from a remote cloud to

edge servers [2]. This shift towards localized data processing
facilitates services with low latency, high reliability, and high
privacy [3]. Furthermore, edge computing empowers artificial
intelligence with the capability to process data at the network’s
edge and train models distributedly [4]–[7].

The evolution of edge computing has highlighted the po-
tential and value of distributed machine learning [8], [9]. This
approach delegates the execution of training tasks to edge
devices, which retrieve model data from edge servers and use
local data for training [10]. Leveraging the computing and stor-
age capabilities of edge devices, distributed machine learning
methods can enhance service quality and efficiency [11], [12].
They provide intelligent support for various application fields,
such as intelligent perception, prediction, and optimization,
security, and privacy [13].

Federated Learning (FL) [14] is a representative distributed
machine learning framework applied to edge computing. It
employs a centralized structure where workers are trained
using local data, and model parameters are aggregated on a
central server [15]. When the number of training devices is
large, a substantial volume of model parameters needs to be
transmitted across the network in multiple rounds, potentially
leading to network congestion and communication failures.
The central server faces significant communication pressure
and is the single point of failure. Additionally, FL is suscep-
tible to aggregation delays caused by stragglers, resulting in
decreased overall training efficiency [16]. To address these
issues, several decentralized structures have been proposed,
such as Gossip Learning (GL) [17], [18]. Training devices are
permitted to aggregate model parameters from other devices,
effectively mitigating single points of failure. However, when
the data is non-Independent and Identically Distributed (non-
IID) [19], GL, which lacks a model synchronization mecha-
nism, tends to yield inferior convergence [20].

Hierarchical model training frameworks, such as Hierarchi-
cal Federation Learning (HFL) [21] and E-Tree learning [16],
introduce intermediate levels to perform partial aggregation

0000–0000/00$00.00

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

operations, which effectively alleviates the communication
load on the central node and mitigates the impact of single-
point failures [22]. However, to achieve optimal performance
in realistic edge environments, several critical and intercon-
nected challenges must be addressed. First, data is typically
non-IID and varies significantly in quality across different
devices. Designing an appropriate aggregation structure that
reduces both communication costs and the model deviation
caused by this data disparity remains a considerable challenge.
Second, this challenge is amplified by device dynamism, as
nodes frequently join and leave. Existing adaptation methods
often rely on a central controller, which requires extra deploy-
ment overhead, may be slow to respond to such changes, and
introduces a fatal single point of failure. Third, beyond struc-
tural concerns, the combination of resource heterogeneity and
dynamic fluctuations in device capabilities, such as available
computational power and bandwidth, makes setting an optimal
aggregation frequency a major hurdle. Any fixed frequency in-
evitably leads to systemic inefficiencies, forcing faster devices
to idle while waiting for stragglers and ultimately degrading
overall training performance. These issues highlight a pressing
need for a framework without centralized control, capable of
supporting both on-the-fly structural management and locally
adaptive update scheduling.

To address these challenges in edge computing environ-
ments, we propose a distributed hierarchical model training
framework featuring the Edge Aggregation Structure and
Frequency (EASF) method. EASF employs a Distributed
aggregation Structure Formation (DSF) method to manage
the aggregation structure and an Adaptive Adjustment of
aggregation Frequency (AAF) method, complemented by a
timeout mechanism, to orchestrate the training process. The
main contributions of this paper are as follows:

• We propose the DSF method, where edge devices con-
struct and adjust the aggregation structure in a distributed
manner. This approach is specifically designed to handle
the challenges of non-IID data and device dynamism,
while eliminating the deployment overhead and single-
point-of-failure risks of a central controller.

• We present the AAF method, complemented by a time-
out abandonment mechanism. It enables each node to
adaptively adjust its aggregation frequency through real-
time, collaborative decision-making between parent and
child nodes, thereby maximizing resource utilization and
improving training efficiency.

• We conducted a theoretical analysis of the EASF, showing
its convergence in dynamic edge computing environ-
ments.

• We conduct extensive experiments in simulated dynamic
edge computing environments. The results show that
our method achieves higher model accuracy and faster
convergence speed compared to existing methods.

II. RELATED WORK

The heterogeneity of data and resources in edge computing
environments presents significant challenges to the perfor-
mance of distributed machine learning. To address these issues,

researchers have explored solutions from various perspectives.
One line of research focuses on mitigating heterogeneity
within traditional centralized frameworks through methods
such as client selection and automatic grouping [23]–[26].
Another promising approach involves leveraging hierarchical
architectures to enhance scalability and reduce communication
bottlenecks [20], [27], [28]. A third, complementary direction
concentrates on optimizing a critical training parameter—the
aggregation frequency—to dynamically balance local compu-
tation with global synchronization in response to environmen-
tal changes [16], [29]–[32].

A. Addressing Heterogeneity in Distributed Machine Learning

Data heterogeneity primarily manifests in distribution, scale,
and quality, while resource heterogeneity is reflected in
computational power, storage capacity, and communication
bandwidth. The development of suitable distributed machine
learning methods to alleviate the impact of heterogeneity
on model training has become a pivotal focus of numerous
research endeavors.

For instance, Ma et al. [23] proposed an iterative algorithm
to optimize the joint utilization of storage and computation
capacities, which in turn reduces service response time and
outsourcing traffic. Fraboni et al. [24] introduced a client
selection scheme that groups clients into different sampling
distributions, enhancing the convergence stability and quality
of FL. Liu et al. [25] developed an innovative communication
method named FedCPF for Vehicle Edge Computing. This
method formulates local training strategies and participation
rules for clients, resulting in efficient communication and
quicker convergence. He et al. [26] proposed an algorithm
named Auto-Group, which automatically groups users based
on data distribution, thereby speeding up the training process.

The aforementioned methods are primarily applied to dis-
tributed model training with a centralized structure. However,
this structure faces significant challenges in balancing resource
utilization and communication pressure, especially as the
number of devices scales.

B. Leveraging Hierarchies to Mitigate Heterogeneity

The hierarchical model training framework possesses the
ability to classify clients based on distance or resource. It
excels in diminishing communication overhead and accommo-
dating non-IID data. During the design phase of a hierarchical
structure, several considerations are paramount, including the
criteria for grouping and the strategy for model aggregation.

For example, Hu et al. [20] introduced a hierarchical ar-
chitecture called Spread, which distributes the load of model
aggregation, ensuring high-quality model training. Lim et al.
[27] proposed a dynamic resource allocation framework for
HFL. This framework optimizes resource distribution and in-
centivizes participation, ultimately enhancing the performance
of edge intelligence systems. You et al. [28] proposed a
hierarchical personalized federated learning algorithm named
HPFL. By jointly optimizing the scheduling strategy and
bandwidth allocation of edge servers, HPFL strikes a balance
between training loss and round delay.

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

The aforementioned works effectively distribute the aggre-
gation load and enable dynamic resource allocation, show-
ing clear advantages in scalability and efficiency. Therefore,
acknowledging these benefits, the hierarchical structure is
employed for model training in this paper.

C. Adaptive Frequency in Heterogeneous Environments

The aggregation frequency is a critical parameter in dis-
tributed model training, directly influencing the trade-off be-
tween communication overhead and model convergence speed.
To improve training efficiency, especially in heterogeneous
edge computing environments, several studies have focused
on optimizing this frequency.

In the context of FL for edge computing, Wang et al. [29] in-
troduced an approach that adjusts a single, identical frequency
for all clients to balance computation and communication. Xu
et al. [30] proposed to jointly optimize a uniform local update
frequency and model compression ratio for all clients based
on a theoretical linkage. Yan et al. [31] adapted the local
update frequency to balance the training of different model
parts created by neural composition, a technique used to serve
clients with varying model sizes. For the client-edge-cloud
hierarchical network, Luo et al. [32] proposed to adaptively
compute different frequencies for nodes to equalize their round
completion times based on a benchmark calculated by the
cloud server. Yang et al. [16] proposed the KMA and RAF
algorithm to construct a hierarchical structure and determine
a fixed aggregation frequency based on a pre-training phase.

However, these methods often rely on a centralized con-
troller to determine the aggregation structure and frequency,
or to force all clients to align with a uniform or benchmark-
derived frequency, which can lead to resource underutiliza-
tion. RAF is primarily designed for static edge computing
environments and lacks adaptability to dynamic changes in
device status and available resources. In contrast, our proposed
method in this paper addresses these limitations by introducing
a framework that employs distributed control, allowing each
node to collaboratively adjust its frequency in real-time with its
parent, ensuring that model training maintains high efficiency
and accuracy in dynamic edge environments.

III. THEORETICAL FOUNDATIONS AND PROBLEM
FORMULATION

This section formulates the distributed hierarchical model
training framework in an edge computing environment from
the edge devices’ perspective. The ideas employed in this
paper can be applied to other hierarchical frameworks easily.
Now, we delve into the theoretical foundations of hierarchical
model training and outline the problem formulation.

A. Theoretical Foundations

Fig. 1 depicts the structure of hierarchical model training.
This structure follows a tree-based approach, where leaf nodes
correspond to training nodes, and non-leaf nodes function as
aggregation nodes.

To illustrate a conventional approach to hierarchical struc-
ture construction, we take the K-Means and average accuracy

level 0

training nodes

level 1

partial
aggregation

nodes

level 2

global
aggregation

node

Fig. 1. An example of hierarchical model training structure.

(KMA) algorithm [16] as a representative example. This algo-
rithm enables an edge device to serve as both a training node
and multiple aggregation nodes within a hierarchical structure.
Initially, edge devices are divided into several clusters based
on the network topology and data distribution. The clustering
principle considers communication delay and data distribution,
where the difference in data distribution is quantified by the
pre-training accuracy of each device. Subsequently, a central
device is selected as the aggregation node for each cluster,
with the criterion being to minimize the overall communication
delays between the central device and other devices within the
cluster, i.e.,

chl = argmin
nh
i ∈Ch

l

∑
nh
j ∈Ch

l ,i̸=j

di,j , (1)

where Ch
l denotes cluster l at level h, chl is the central node of

Ch
l , nh

i is a node of device vi at level h, and di,j is the commu-
nication delay between devices vi and vj . Then, employing a
bottom-up approach, the central device is recursively selected
as the aggregation node for each cluster until the root node is
chosen. A key characteristic of this approach is its reliance on
a centralized controller for construction, resulting in a static
structure that is less responsive to the frequent topological
changes in dynamic edge environments.

Upon the construction of a tree-based aggregation structure,
the hierarchical model training can be initiated. The training
process follows a bottom-up approach. Initially, each leaf node
utilizes its dataset for training, updates the model parameters
locally, and transmits the model parameters to the parent node.
After receiving the model parameters sent by each child node,
the non-leaf node averages them to aggregate the model. If the
preset number of updates is not reached, the updated model is
dispatched to each child node to continue training. When the
preset number of updates is achieved, the model parameters
are transmitted to the parent node. By analogy, when the root
node receives the model parameters from each child node and
accomplishes the global model aggregation, a complete round
of training concludes. After that, the root node disseminates
the global model to each node via the aggregation structure
for the next round of training.

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

1

1

3

3

1 2 4

f=2 f=1

f=1 f=4 f=3 f=1

(a) aggregation structure and frequency

1

time

2

3

4

time

1

2

3

4

local training

transmission

aggregation

waiting

model training in static edge computing environment

model training in dynamic edge computing environment

(b) time utilization for a round of model training

Fig. 2. Time utilization of static aggregation frequency in hierarchical model
training: Impact of static vs. dynamic edge environments on stragglers and
idle time.

Regarding the preset of the number of updates mentioned
above, several weak synchronization methods have been pro-
posed, such as the Resource-based Aggregation Frequency
controlling (RAF) algorithm [16]. During the pre-training
phase, each aggregation node collects the calculation and
transmission time of all its child nodes. The aggregation
node determines the time required for this aggregation by
considering the total time of the child node with the longest
duration. Subsequently, it calculates the number of updates
that can be performed for each child node, which corresponds
to the aggregation frequency. Crucially, this frequency is
determined based on a one-time pre-training phase, rendering
it a fixed value that cannot adapt to real-time fluctuations in
device resources.

The aggregation frequency set by the RAF algorithm may
be as shown in Fig. 2a. Given a static edge computing
environment, where the computational and communication
resources of the devices remain constant, the time utilization
of hierarchical model training, which employs the aggregation
structure and frequency in Fig. 2a, is presented in the top
figure in Fig. 2b. Among them, nodes of different colors in
Fig. 2a perform different tasks, and the colors of the processes
in Fig. 2b correspond to the tasks of the same colors in Fig.
2a. Each device performs maximum updates within a restricted
timeframe, thereby accelerating the convergence speed of the
global model.

However, the actual edge computing environment is in-
herently dynamic, with potential variations in numerous fac-
tors, including the working status of devices, computational
resources, and channel bandwidth. In such environments,
structure formation methods that rely on a central controller
can be slow to adapt to device changes and may introduce a

fatal single point of failure. Furthermore, adhering to a preset
aggregation frequency, calculated based on a prior state, can
prove suboptimal. This may lead to the scenario depicted in
the bottom figure in Fig. 2b, where resource allocation is
inefficient, causing some devices to idle for extended periods
and thereby diminishing overall training efficiency. These
limitations motivate our work to design a framework that
overcomes these challenges, the formal problem of which is
defined next.

B. Problem Formulation
We characterize a dynamical edge computing environment

with N edge devices as Et = {GEt
, PEt

, OEt
}, which

encompasses:
• Network Topology Graph: Denoted by GEt

=
{VEt , BEt}, where VEt = {vi}Ni=1 represents the set of
edge devices, and BEt = {bi,j}(i, j ∈ [1, N]) signifies
the network bandwidths between these devices. Here, bi,j
indicates the bandwidth value between devices vi and vj .
Although GEt

is a connected graph, it may not be fully
connected, as devices may establish connections within
the network through multi-hop communication.

• Computational Power: Denoted by PEt = {pi}Ni=1 ,
where pi is the available computational power of device
vi, which may fluctuate due to other tasks.

• Working Status: Denoted by OEt
= {oi}Ni=1, where oi

is the working status of device vi.
The aggregation structure St = {Ch

l , c
h
l }(h ∈ [0, H − 1])

delineates the hierarchical arrangement, comprising H levels.
In this context, Ch

l = {nh
i }(i ∈ [1, N]) constitutes the l-th

cluster at level h. Each node in this cluster shares a common
parent node, denoted as chl . An edge device vi may be depicted
as a node within St multiple times, albeit only once per level.

The hierarchical model training follows a weak synchroniza-
tion protocol. Here, fh

i signifies the aggregation frequency,
indicating the number of updates that nh

i executes prior
to transmitting data to its parent node. For leaf nodes, fh

i

corresponds to local training iterations; for non-leaf nodes, it
relates to model aggregations.

Initially, each device commences with identical model pa-
rameters ω, and the loss function is denoted by F (ω). During
the r-th training round, operations adhere to the aggregation
structure St. For the node n0

i in cluster C0
l at level 0,

undertakes training using its dataset Di, updating its model
parameters as follows:

ωm
i = ωm−1

i − αi∇F (ωm−1
i), (2)

where ωm
i is the model parameters after the m-th update,

and αi represents the learning rate. After f0
i local updates, the

updated model parameters ω
f0
i

i are transmitted to the parent
node c0l .

For the cluster Ch
l at the h-th level, assuming that the device

corresponding to the central node chl is vi, then the aggregation
node of Ch

l is nh+1
i . It gathers model parameters from all

nodes in Ch
l and aggregates them by:

|Di,h+1| =
∑

nh
j ∈Ch

l
|Dj,h| , (3)

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

0 2 3 5 6 7 9

5 9

9

DSF: Distributed Aggregation Structure Formation
Construction of Aggregation Structure in Distributed Manner

Network Topology

5
1

3

4

2 6

0
7

9

8

5
1

3

4

2 6

0
7

9

8
Initial Center, Cluster

5
1

3

4

2 6

0
7

9

8
Reselection of Center

0 1 2 3 4 7 9

1 9

1

Center of Higher-level

Dynamic Adjustment of Aggregation Structure

Device 6 Joins Device 5 Joins Device 4 Leaves Current Structure

5
1

3

4

2 6

0
7

9

8

5
1

3

4

2 6

0
7

9

8

Tuning between Clusters

5
1

3

4

2 6

0
7

9

8

Device 1 Leaves

5
1

3

4

2 6

0
7

9

8

5
1

3

4

2 6

0
7

9

8

Improved Hierarchical Model Training Process

Local
Training

AAF-D:
Decision

Timeout
Abandonment

Partial
Aggregation

Model
Parameter

Timeout
Abandonment

Global
Aggregation

AAF-D
Decision

Model
Parameter

AAF-R:
Recommend

AAF-R:
Recommend

Actual Time
and Frequency

Actual Time
and Frequency

Tree-based
Aggregation

Structure

Fig. 3. The overall structure of the EASF method.

ωm
i =

∑
nh
j ∈Ch

l
|Dj,h|ω

f0
j

j

|Di,h+1|
, (4)

where nh
j is a node in cluster Ch

l , |Dj,h| is the aggregate
of sample counts from all child nodes of device vj at level
h. Specifically, when h = 0, |Dj,0| signifies the number of
samples of Dj . After performing the aggregation, device vi
disseminates the model parameters to its descendant nodes
along St. Subsequent to fh

i iterations of aggregation, vi
uploads the model parameters to its parent node.

By analogy, when the root aggregation node finalizes the
aggregation, this round of training concludes. The global
model parameters are signified as ωr

G. The time spent on this
training round, represented as Tr, refers to the total duration
from the start of model parameter dissemination by the root
aggregation node to the completion of global aggregation. For
the subsequent training round, the root node distributes the
model parameters to all descendant nodes via St.

After R training rounds, the training duration Ttotal and the
final global model parameters ωtotal

G are defined as follows:

Ttotal ≜
∑R

r=1Tr, (5)

ωtotal
G ≜ argmin

ω∈{ωr
G,r=1,2,...,R}

F (ω). (6)

The optimization challenge is to construct and adjust the
optimal aggregation structure St and aggregation frequency
fh
i for each device. The goal is to minimize the global loss

function of the model within the given time T :

min
St,fh

i

F (ωtotal) , s.t. Ttotal ≤ T. (7)

IV. EDGE AGGREGATION STRUCTURE AND FREQUENCY

In this section, we propose a novel method, EASF, designed
for the construction and adjustment of the edge aggregation
structure and frequency within a dynamic edge computing
environment. EASF is applicable to most scenarios involving
hierarchical model training, regardless of whether privacy
protection is required. This is because it maintains privacy
by transmitting only model parameters and other necessary

content between nodes, rather than local data. The overall
structure is shown in Fig. 3.

The left half of Fig. 3 presents the Distributed aggregation
Structure Formation (DSF) method. The upper portion out-
lines the structure construction process, where devices in the
network iteratively determine clusters and central nodes in a
distributed manner, resulting in a tree-based aggregation struc-
ture. The lower portion describes the dynamic adjustment of
the aggregation structure, accommodating changes in the edge
environment when devices join or leave. Detailed explanations
of DSF are provided in Subsection IV-A.

The right half of Fig. 3 illustrates the improved hierarchi-
cal model training process, which incorporates the Adaptive
Adjustment of aggregation Frequency (AAF) method and a
timeout abandonment mechanism into the basic training pro-
cess. The AAF method consists of two components: AAF-R
(where the parent node recommends the aggregation frequency
for child nodes) and AAF-D (where the child node decides the
aggregation frequency). The timeout abandonment mechanism
allows the parent node to discard model data from laggards.
Subsection IV-B provides a comprehensive discussion of these
methods.

A. Dynamic Distributed Aggregation Structure

In this subsection, we introduce a distributed method for
dynamically constructing and adjusting the tree-based aggre-
gation structure. This method aims to simultaneously achieve
the following two objectives:

• Minimize communication consumption by ensuring low
delays and hops between devices within each cluster.

• Enhance the efficiency of model training by maintaining
the data distribution of each cluster close to the global.

Aggregation Structure Constructing. Before constructing
the aggregation structure, each edge device is required to
undergo the same number of epochs of pre-training to de-
termine its respective pre-training accuracy. The pre-training
aims to measure sample distribution via pre-training accuracy
to enable effective clustering. The number of epochs is pre-
determined based on the selected model to ensure sufficient
accuracy differences among devices are revealed with low
computational cost. Each device only needs to undergo one

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

round of pre-training, which can be completed at any time
before participating in the formal training. Additionally, it
needs to engage in communication with proximate nodes to
obtain both its own degree and the degrees of neighboring
nodes within the network topology. Following a period of
information exchange, each node can accumulate a substantial
amount of pre-training accuracy data from other nodes, thereby
enabling the calculation of the global average pre-training
accuracy, denoted as ACC.

We strive for each cluster’s data distribution to resemble the
global distribution. However, due to privacy constraints, direct
sample data transmission between devices is often prohibited.
To assess sample distribution, we rely on pre-trained accuracy.
Clusters with an average pre-trained accuracy close to the
global average ACC tend to exhibit more uniform data
distribution and better training performance [16]. To quantify
the impact of device variations within a cluster on the average
pre-trained accuracy, we design the following formula:

δ = |Accold −ACC| − |Accnew −ACC|, (8)

where Accold represents the average pre-trained accuracy
before the cluster change, and Accnew represents the accuracy
after the change. A positive δ indicates that the average pre-
trained accuracy after the cluster change is closer to ACC,
while a negative δ indicates the opposite. Larger δ values
suggest greater improvement in the alignment between cluster
average pre-trained accuracy and ACC after the change.

The detailed process of constructing the aggregated structure
is as follows:

Central Node Selecting: The selection of the central node
is predicated on the two-hop probability, which is similar to
the method in paper [33]. Initially, each device computes its
two-hop return probability as follows:

THP (vi) =
∑

vj∈Nbr(vi)

(
1

Deg (Vi)×Deg (vj)

)
, (9)

where Nbr(vi) represents the set of neighboring nodes of
device vi, and Deg (vi) denotes its degree. Devices with
higher THP values are more likely to return to themselves
within two hops when transmitting messages, indicating that
they have more neighbors in the network topology. Compared
to devices with lower THP values, selecting such devices
as initial central nodes will reduce communication overhead
and improve communication efficiency during the clustering
process. Consequently, devices with THP values exceeding
those of all their neighboring devices are designated as central
nodes.

Initial Clustering Building: Along the network topology
diagram, the central node dispatches messages to other nodes,
prompting them to select a cluster. The non-central node
waits for a certain duration to receive these messages and
then selects the cluster associated with the central node that
offers the least communication delay, provided it is within
a limited hop count. If no central node falls within the hop
count, the non-central node opts for the central node with the
fewest hops. Next, the non-central node sends a message to

Algorithm 1 Generation of Transferable Nodes List
Input: Pre-training accuracy {acci} of all nodes in the cluster

C0
l , the global average pre-training accuracy ACC, the

rate ρe(ρe > 1.0) of excess size
Output: A list TNl of transferable nodes

1: Initialize TNl as an empty list
2: Accl =

∑
n0
i∈C0

l
acci/Size(C

0
l)

3: for node n0
j in C0

l and n0
j is not c0l do

4: Accl j =
∑

n0
i∈C0

l ,i̸=j acci/(Size(C
0
l)− 1)

5: calculate δj by Equation (8)
6: if δj > 0 then
7: Append n0

i to TNl

8: end if
9: end for

10: if Size(C0
l) exceeds ρe times the average cluster size of

nearby central nodes then
11: while Size(TNl) is less than half of Size(C0

l) do
12: Identify the node n0

k with the maximum hops from
the central node in C0

l and not in TNl

13: Append n0
k to TNl

14: end while
15: end if

the selected node expressing the intent to join its cluster. After
dispatching the information messages, the central node waits
for a certain period before incorporating all nodes that have
expressed interest in joining its cluster.

Adjusting between Clusters: The central node obtains the
cluster sizes (i.e., the number of nodes in the cluster) of
nearby central nodes through communication within a certain
hop limit. If the size of its own cluster surpasses the average
cluster size, it should generate a list of transferable nodes by
Algorithm 1. The central node evaluates whether the removal
of any non-self node will bring the cluster’s average pre-
training accuracy Accl closer to the global average ACC. If
so, it adds the node to the list (lines 3-9). However, when Accl
is already very close to ACC, removing any node may cause
a deviation in the average value. If the cluster size is large, but
the central node is reluctant to transfer nodes, smaller clusters
nearby may struggle to acquire their source nodes, making
it difficult to balance the data distribution of each cluster.
Therefore, we mandate that the central node, whose cluster
size exceeds a certain ratio of the average of the nearby central
nodes’, selects nodes distant from itself as the transferable
node (lines 10-15).

Upon receiving a list of transferable nodes from another
central node, the central node calculates the impact value δ of
each node if it were to join the cluster, based on Equation (8).
Considering hop count and communication delay constraints,
the node with the highest positive δ value is selected. If the
cluster size is significantly smaller than the nearby average
cluster size and none of the transferable nodes are suitable for
the cluster, the central node is compelled to select a node with
the lowest hop count. After selecting a node, the central node
notifies the source cluster center and refrains form selecting
any other transferable node until it receives a response from
the source central node.

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

The central node that sends the list of transferable nodes
may receive responses from multiple central nodes desiring to
incorporate certain nodes into their clusters. Provided that the
cluster size does not fall below a specific ratio of the average
cluster size of the nearby central nodes, it is sequentially
determined whether the removal of the node can align the
cluster’s average pre-training accuracy more closely with the
global average by Equation (8). The central node then issues a
response indicating agreement or disagreement. If agreement is
reached, these two central nodes update the cluster information
and notify their neighboring central nodes.

In the event of a change in the cluster of the central node,
or if several changes in nearby central nodes’ clusters are
detected, the central node attempts to regenerate and resend a
list of transferable nodes, followed by subsequent operations.
This process continues until there is no change in the cluster
or after several iterations.

Central Node Reselecting: The central node of a cluster will
be tasked with gathering information from all nodes within
the cluster. To minimize communication consumption, it is
crucial to select an appropriate central node. Following the
initial clustering and adjustment phases, the current central
node may not be the most suitable. Consequently, we allow the
current central node to coordinate all nodes within the cluster
to reselect the central node. Through a series of inter-cluster
communications, each node obtains the delay associated with
other nodes in the cluster and conveys this information to the
central node. The central node then selects the new central
node in accordance with Equation (1).

Since edge devices are permitted to serve as aggregation
nodes, in practice, some edge devices may lack sufficient
bandwidth, power, computational capability, storage capacity,
or other resources to fulfill the role effectively. If such a device
is selected as the cluster central node by Equation (1), it will
be necessary to reselect a central node from the remaining
devices within the cluster. Similarly, this principle applies to
subsequent dynamic adjustments.

The new central nodes communicate with each other to
obtain the communication delay between them. This allows the
determination of the global central node according to Equation
(1), completing the construction of the 3-level aggregation
structure. If the total number of devices is too large, resulting
in a significant number of central nodes (clusters), the 3-level
aggregation structure may still impose substantial communi-
cation pressure on the global central node. In this case, the
clustering method similar to the one previously described is
employed to construct additional levels of clusters for the
central nodes until the global central node is determined.
During this process, the data distribution does not need to
be considered.

Dynamic Adjustment of Aggregation Structure. In a
dynamic edge computing environment, the working status
of each device changes over time. Consequently, it becomes
necessary to adapt the aggregation structure to ensure compat-
ibility with hierarchical model training. In addition to the two
objectives introduced at the beginning of this subsection, the
adjustment also strives to maintain the parent-child relation-
ships within the nodes of the tree-based aggregation structure.

The rationale behind this will be further elaborated upon in
subsequent content.

Departure Nodes Removing: When a device exits the train-
ing process, it may proactively inform other devices. However,
there may be instances where it is unable to do so due to
issues such as system failure. In such cases, the departure
needs to be detected by neighboring nodes, which then take
on the responsibility of notifying the relevant devices. If
the departing device vi is located solely at level 0 of the
aggregation structure, it functions only as a training node n0

i .
Upon its cluster’s central node c0l in cluster C0

l becoming
aware of its departure, c0l can remove n0

i from C0
l and relay

this information to other nodes.
If the departing device vi appears at its maximum level

hmax(hmax ≥ 1), it recurs across all levels from 0 to hmax.
Assume that vi serves as the central nodes of clusters from
C0

l 0 to Chmax

l hmax
. The leaf node n0

i in C0
l 0 can still be directly

removed from the cluster. However, the central node c0l 0

necessitates reselection. If vi is capable of sending messages
upon departure, it should notify the node in C0

l 0 that has the
least delay from it. This chosen node then acts as a temporary
central node and organizes the cluster to reselect the central
node c0l 0 by Equation (1). If vi is unable to send departure
messages, the first node in its cluster that detects its departure
assumes the role of a temporary central node to perform the
same operation. Suppose the new central node chl h of the
cluster Ch

l h at level h, where vi was originally located, is
acted on by device vj . Then vj needs to communicate with
other nodes at level h + 1 and replace nh+1

i with nh+1
j in

the corresponding cluster Ch+1
l h+1. If h+ 1 < hmax, it implies

that vi initially served as a cluster center at level h+1. In this
scenario, the process of selecting a new central node and node
replacement must be performed recursively until the hmax

level is reached.
New Devices Integrating: The departure of devices may

result in an increased disparity in data distribution across
clusters, thereby slowing down the convergence speed of the
model. Consequently, when a new device joins the training, it
should be integrated into an appropriate cluster.

When device vi wants to participate, it needs to com-
municate with central nodes of clusters at level 0 within a
certain communication delay and hop count to ascertain their
cluster size and average pre-training accuracy. Following this,
vi executes Algorithm 2 to select an appropriate cluster. It
joins the cluster where its inclusion would result in the highest
improvement of data distribution (lines 1-8). If there are no
candidate clusters that satisfy the conditions of communication
delay and hop count, vi joins the cluster whose central node
has the fewest hops from vi (lines 9-12).

It is worth noting that the burden on coordinating nodes
throughout the structure’s construction and adjustment is min-
imal, owing to simple computations and lightweight informa-
tion exchange. This inherently low overhead is complemented
by our dynamic reselection mechanism, which ensures the
central node role is not permanently fixed, preventing any
single device from being disproportionately burdened over
time. These design principles collectively enhance network
fairness and stability, making the framework suitable for

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

Algorithm 2 Appropriate Cluster Selection
Input: The average pre-training accuracy {Accl} of clusters

{C0
l }, the global average pre-training accuracy ACC, the

pre-training accuracy acci of device vi
Output: The cluster C0

l∗ that vi chooses to join
1: Initialize C0

l∗ = None, max δ = −100.0
2: for cluster C0

l in {C0
l } do

3: Accl i =
Accl×Size(C0

l)+acci
Size(C0

l)+1

4: calculate δl by Equation (8)
5: if δl > max δ then
6: C0

l∗ = C0
l , max δ = δl

7: end if
8: end for
9: if C0

l∗ is None then
10: Identify the central node c0q with the least number of

hops from vi through communication
11: C0

l∗ = C0
q

12: end if

resource-constrained and heterogeneous edge environments.

B. Hierarchical Model Training

In this subsection, we improve the basic hierarchical model
training process. Our objective is to maximize device resource
utilization and achieve superior results within the given time
constraints. Subsequent content will detail each of the addi-
tional steps integrated into the training process.

Recommendation for Child Nodes (AAF-R). To dynam-
ically adjust the aggregation frequency, we propose a method
for calculating the recommended aggregation frequency and
computation time for child nodes. This calculation is per-
formed by the aggregation nodes. The procedure mainly
consists of the following two steps:

Step 1: During the m-th aggregation, the aggregation node
nh+1
j within the cluster Ch

l collects the model parameters from
each child node nh

i . It also gathers their respective computation
times ticomp, model transmission times tidownload, tiupload, and
the actual aggregation frequency fh

i . The average computation
time for each training or aggregation of each child node in this
aggregation is then computed as:

tiavgcomp =
ticomp

fh
i

. (10)

The actual computation time expended by the aggregation
node nh

j in this aggregation is given by

tmreal = max
nh
i ∈Ch

l

(ticomp + tidownload + tiupload). (11)

Considering that the time cost of model parameter aggregation
is relatively small [16] - and such minor costs are often
disregarded in time calculations - and the overhead of our AAF
method is even smaller, we focus exclusively on the dominant
costs of training and transmission. Therefore, the aggregation
node predicts the average computation time tipredavgcomp, the
model transmission time tipreddownload, and the model upload
transmission time tipredupload of each node in the (m + 1)-th

Algorithm 3 Recommendation of Aggregation Frequency and
Computation Time for Child Nodes
Input: Computation time tmpred and tmreal, slow growth rate

ρg(ρ > 1.0), predicted time tipredavgcomp and tipredtran
for child nodes

Output: Predicted computation time tm+1
pred , recommended ag-

gregation frequency rfh
i and recommended computation

time rticomp

1: if tmpred is None or tmreal < tmpred then
2: tm+1

pred = tmpred
3: else
4: tm+1

pred = min(tmreal, t
m
pred × ρg)

5: end if
6: for each child node nh

i of the aggregation node do
7: rticomp = tm+1

pred − tipredtran

8: rfh
i =

⌊
rticomp

tipredavgcomp

⌋
9: end for

aggregation. The prediction model at this stage is designed
to be modular and can be replaced by other forecasting algo-
rithms. For this study, we employ exponential smoothing as a
representative method due to its low computational overhead
and effectiveness, making it suitable for resource-constrained
edge environments. The formula is given as:

tm+1 = βtm+1 + (1− β)tm. (12)

The total transmission time for each child node nh
i in the

(m+ 1)-th aggregation is computed as:

tipredtran = tipreddownload + tipredupload. (13)

Step 2: According to Algorithm 3, the aggregation node
nh+1
j recommends aggregation frequency and computation

time for each child node. Initially, nh+1
j predicts the com-

putation time tm+1
pred for the (m + 1)-th aggregation (lines 1-

5). This strategy ensures a gradual increase in computation
time for aggregation. It extends the trainable time for each
training node and reduces the probability of instances where
the training time for a node, which only trains once, would
exceed the recommended computation time. Subsequently,
nh+1
j calculates the recommended aggregation frequency rfh

i

and computation time rticomp for each child node in the
next aggregation (lines 6-9). This method, which utilizes the
predicted value for calculation, is tantamount to an upgrade of
the RAF algorithm [16].

Adaptive Aggregation Frequency Decision (AAF-D). In
this subsection, we propose an adaptive aggregation frequency
decision-making method. The method is implemented by
both training nodes and non-root aggregation nodes. What
they should do is determine their own aggregation frequency
by referring to the recommended aggregation frequency and
computing time provided by the parent node, in conjunction
with their own actual situation.

During the initial round of training, or when a new parent-
child node relationship is established, the child node nh

i has

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

Algorithm 4 Adaptive Aggregation Frequency Decision

Input: Recommended aggregation frequency rfh
i , recom-

mended computation time rticomp, appropriate timeout
ratio ρa(ρa > 1.0), prevention timeout ratio ρp(ρp < 1.0)

Output: Actual aggregation frequency fh
i , actual total update

time consumed titotalcomp

1: titotalcomp = 0

2: Updated times uh
i = 0

3: repeat
4: Update once and record the time consumed tiupdate
5: titotalcomp = titotalcomp + tiupdate
6: uh

i = uh
i + 1

7: Predict the time consumed tipredcomp for the next update
8: Predict the total time consumed after the update

tipredtotal = titotalcomp + tipredcomp

9: until (uh
i < rfh

i and tipredtotal > rticomp × ρa) or (uh
i ≥

rfh
i and tipredtotal > rticomp × ρp)

10: fh
i = uh

i

not received rfh
i and rticomp from the parent node. Conse-

quently, the aggregation frequency fh
i is set to 1. After a single

update, the node uploads the model parameters and other data
to the parent node.

Upon receiving rfh
i and rticomp from the parent node, the

child node can employ Algorithm 4 to adaptively determine
the aggregation frequency. Specifically, the node executes an
update and records the time consumed tiupdate. Subsequently, it
calculates the total time titotalcomp and the number of updates
uh
i (lines 4-6). The time tipredcomp for the next update is

predicted based on the time of recent updates, using the
exponential smoothing method. The total time tipredtotal after
the next update is then predicted (lines 7-8). Following this,
the node decides whether to continue with the update (line
9). If uh

i has not reached rfh
i , and if the time taken slightly

exceeds rticomp, the device is still permitted to perform the
next update. If uh

i has reached rfh
i , the device is allowed to

overtrain while preventing a timeout. After the loop is exited
and the update is completed, the device uploads the data to
the parent node.

Due to the heterogeneity of resources in the dynamic
edge computing environment and the relationships between
devices in the aggregation structure, the method might set the
aggregation frequency either too high or too low for some
nodes. A significant difference in aggregation frequency could
introduce excessive residuals, leading to model oscillation and
a decrease in convergence speed. To mitigate this, we could
constrain the range of the aggregation frequency. When the
aggregation frequency reaches the upper limit, the updates
are suspended, and the decision algorithm ceases to determine
whether to continue with the update.

Combination of DSF and AAF Method. In Subsection
IV-A, we proposed the DSF method for the aggregation struc-
ture. Consider nodes nh

i and nh+1
j , which share a parent-child

relationship, with nh
i as the child node and nh+1

j as the parent
node. If neither vi nor vj is scheduled for removal, the parent-
child relationship between nh

i and nh+1
j will not change. The

DSF method aims to preserve as much aggregation frequency
data as possible.

The combination of DSF and AAF is detailed as follows:
After the initial construction of the aggregation structure,

each child node is assigned rfh
i = 1 and rticomp = None.

During the first training round, each node uploads data after
a single update. Upon receiving the data, the parent node
provides rfh

i and rticomp to the child nodes following the
AAF-R method. In the subsequent updates of the child nodes,
the actual aggregation frequency fh

i is adaptively adjusted
according to the AAF-D method.

After the adjustment of the aggregation structure following
the DSF method, rfh

i and rticomp are discarded for any parent-
child relationships that were removed during the adjustment
process. For any new parent-child relationships established
during the adjustment process, because there has not been
any previous transmission of model parameters between these
two nodes, there is no transmission time information available.
Therefore, the computational time and aggregation frequency
cannot be recommended as described in lines 7-8 of Algorithm
3. Consequently, each child node is assigned rfh

i = 1 and
rticomp = None. Despite the possibility that these nodes might
have had a parent-child relationship in the past, the dynamic
nature of edge computing environments implies that factors
such as device computational power and channel bandwidth
are continually changing. Relying on outdated time values or
considering only computational time without accounting for
transmission time would likely result in the node becoming a
straggler. Conversely, initially using an aggregation frequency
of 1 is a more cautious approach. Data is uploaded after a
single update before the child node receives new rfh

i and
rticomp recommended by the parent node.

Timeout Abandon Mechanism. In a dynamic edge com-
puting environment, the training of edge devices may be af-
fected by various factors. For example, they might prematurely
exit training due to failures or power issues, or they may have
limited computational resources if occupied with other tasks.
Despite the method AAF enabling the device to adaptively
adjust without strictly following the recommended value, it
may still fall behind. For instance, irrespective of whether
Algorithm 4 is employed for decision-making, the device
must complete at least one update before uploading data. If
this process is time-consuming, the device could become a
straggler. If the aggregation node waits until all child nodes
upload data, it may be delayed in aggregating due to the
presence of stragglers and might even never receive the data of
a child node. This could result in a decrease in model training
efficiency and even a halt in model training.

Therefore, it is essential to integrate a timeout abandonment
mechanism into hierarchical model training. We introduce a
straightforward timeout abandonment mechanism. In Algo-
rithm 3, the aggregation node predicts the computation time
tm+1
pred for the next aggregation during the m-th aggregation.

The predicted value can serve as the benchmark during the
(m + 1)-th aggregation waiting period of the node. We can
establish a timeout abandon ratio ρt(ρt ≥ 1.0), and the timeout
abandonment threshold is defined as:

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

tm+1
timeout = tm+1

pred × ρt. (14)

If the aggregation node waits beyond tm+1
timeout and still does

not receive data from some child nodes, it ceases the wait and
only utilizes the received model data for aggregation.

C. Theoretical Analysis of EASF

To investigate the impact of device dynamics on model
training, we conducted a convergence analysis of the EASF
method, using a three-level aggregation structure as a repre-
sentative example. Given that DSF focuses on constructing and
adjusting aggregation structures to align the data distribution
within each cluster closer to the global, we introduce the
variable ∆r to quantify its effectiveness, representing the
discrepancy in data distribution in the r-th round:

∆r =
1

Kr

Kr∑
l=1

∥ωr
l − ωr

G∥2, (15)

where Kr denotes the number of clusters at level 0, and ωr
l is

the model parameters of the partial aggregation for cluster l in
the r-th training round. For convenience, we denote the total
sum of samples of all devices in the cluster l in the r-th round
as Dr

l , and the total sum of samples of all devices involved
in training as Dr

G =
∑Kr

l=1 D
r
l .

Assumption 1 (L-Smoothness). Assume that the loss function
F is L-smooth, where L > 0:

F (ω2) ≤ F (ω1) +∇F (ω1)
⊤(ω2 − ω1) +

L

2
∥ω2 − ω1∥2.

(16)
Assumption 2 (Boundedness Below). Assume that the global
loss function F is bounded from below, i.e., there exists a value
Finf such that F (ω) ≥ Finf for all ω.
Assumption 3 (Dynamic Discrepancy Decay). Assume that
the discrepancy ∆r in data distribution satisfies the following
changes as the aggregation structure is adjusted by DSF:

∆r ≤ λ∆r−1 + ε, 0 < λ < 1, ε > 0, (17)

where λ quantifies DSF’s adjustment capability, and ε repre-
sents the perturbations stemming from the dynamic nature of
edge devices.

Based on the aforementioned assumptions, we analyze
the convergence bounds for non-convex objectives under the
dynamics of the devices.
Theorem. Under Assumptions 1-3, for a learning rate α
satisfying 0 < α < 1

L , after R rounds of training, the average
squared gradient norm of the global model satisfies:

1

R

R−1∑
r=0

E
[
∥∇F (ωr

G)∥2
]
≤ 2(F (ω0

G)− Finf)

αR

+
κ∆0(1− λR)

R(1− λ)
+

κε

1− λ
. (18)

As R → ∞, the expression simplifies to:

lim
R→∞

1

R

R−1∑
r=0

E
[
∥∇F (ωr

G)∥2
]
≤ κε

1− λ
, (19)

where κ > 0 is a constant.
Proof. Based on the EASF method, the global model update
can be expressed as:

ωr+1
G =

1

Dr
G

Kr∑
l=1

Dr
l ω

r
l . (20)

We interpret this update as an approximate gradient descent
step:

ωr+1
G = ωr

G − α (∇F (ωr
G) + ϵr) , (21)

where ϵr is the error term due to the discrepancy between
the cluster models and the global model. To quantify ϵr, we
define the virtual gradient:

∇̃F (ωr
G) =

1

α

(
ωr

G − 1

Dr
G

Kr∑
l=1

Dr
l ω

r
l

)
ϵr = ∇̃F (ωr

G)−∇F (ωr
G).

(22)

We assume that: E∥ϵr∥2 ≤ κ∆r, where κ captures the influ-
ence of the clustering structure and device dynamics on the
error term ϵr. Its value is affected by the aggregation quality
and the perturbations caused by edge device fluctuations.

Using the L-smoothness, we have:

F (ωr+1
G) ≤F (ωr

G)− α∇F (ωr
G)

⊤ (∇F (ωr
G) + ϵr)

+
Lα2

2
∥∇F (ωr

G) + ϵr∥2.

≤F (ωr
G) +

(
−α+

Lα2

2

)
∥∇F (ωr

G)∥2

+
(
Lα2 − α

)
∇F (ωr

G)
⊤ϵr +

Lα2

2
∥ϵr∥2.

(23)

For the cross term, when 0 < α < 1
L , applying Young’s

inequality:

(
Lα2 − α

)
∇F (ωr

G)
⊤ϵr ≤α− Lα2

2
∥∇F (ωr

G)∥2

+
α− Lα2

2
∥ϵr∥2.

(24)

Substituting back, we get:

F (ωr+1
G) ≤ F (ωr

G)−
α

2
∥∇F (ωr

G)∥2 +
α

2
∥ϵr∥2. (25)

Rearranging the terms, taking the expectation, and applying
the bound on the error term gives:

α

2
E[∥∇F (ωr

G)∥2] ≤ E[F (ωr
G)− F (ωr+1

G)] +
ακ

2
E[∆r].

(26)
Summing the inequality over all rounds from r = 0 to R−1

leads to:

α

2

R−1∑
r=0

E[∥∇F (ωr
G)∥2]

≤
R−1∑
r=0

E[F (ωr
G)− F (ωr+1

G)] +
ακ

2

R−1∑
r=0

E[∆r].

(27)

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

The first term on the right is a telescoping sum, bounded
by Assumption 2:

R−1∑
r=0

E[F (ωr
G)− F (ωr+1

G)]

= E[F (ω0
G)− F (ωR

G)] ≤ F (ω0
G)− Finf .

(28)

The bound for the second term on the right is obtained from
Assumption 3:

R−1∑
r=0

E[∆r] ≤
R−1∑
r=0

(
λr∆0 +

ε

1− λ

)
=

1− λR

1− λ
∆0 +

Rε

1− λ
.

(29)
Substituting these bounds and dividing by αR

2 yields the
final result:

1

R

R−1∑
r=0

E
[
∥∇F (ωr

G)∥2
]

≤ 2(F (ω0
G)− Finf)

αR
+

κ

R

(
1− λR

1− λ
∆0 +

Rε

1− λ

)
=

2(F (ω0
G)− Finf)

αR
+

κ∆0(1− λR)

R(1− λ)
+

κε

1− λ
.

(30)

We note that the convergence bounds are influenced by
both ε and λ, which together encapsulate the characteristics of
the data distribution, the adjustment effect of the DSF on the
aggregation structure, and the dynamic behavior of the device.
Lower values of ε and λ correspond to a tighter convergence
bound, ensuring the model reaches a more stable stationary
point. Additionally, model training factors, including the loss
function and learning rate α, play a significant role in shaping
convergence behavior. These parameters should be meticu-
lously tailored to the specific scenario to achieve optimal
convergence performance.

V. EXPERIMENTAL RESULTS

To evaluate the performance of the EASF method intro-
duced in Section IV, we have conducted experiments in a
simulated dynamic edge computing environment.

A. Experimental Setup

Simulated Edge Computing Environment: We simulate a
dynamic edge computing environment with the following
characteristics: The network topology graph GEt

is randomly
generated and incorporates a total number of N edge devices.
The actual computing power of each device dynamically fluc-
tuates. During the training period, each device may undergo
several busy periods. Training can only resume after these busy
periods. Initially, each device has a 0.7 probability of being
in a working status, a condition that changes over time. We
simulate the time for model transmission and training mainly
based on the network bandwidth BEt

and computational power
PEt at time t.

Models: In our experiments, we utilizes four distinct mod-
els: a Convolutional Neural Network (CNN) comprising two
convolutional-pooling layers and two fully connected layers,
a Multilayer Perceptron (MLP) with four fully connected

layers, a Long Short-Term Memory (LSTM) network classifier
with two LSTM layers, a Transformer classifier featuring two
Transformer encoder layers, and a ResNet-18, a deep residual
network with 18 layers.

Datasets: We employ the MNIST dataset [34] and EMNIST-
Balance (EMNIST) dataset [35]. MNIST includes handwritten
digits in 10 classes, while EMNIST consists of handwritten
characters in 47 classes. Each sample is a 28×28 pixel image.
Additionally, we use the 20newsgroups dataset [36], which
contains news articles on 20 topics. We select samples from
10 of these topics for our experiments. Furthermore, we
use ImageNet-10, a subset of the full ImageNet dataset [37]
containing 10 classes of high-resolution images.

Optimizer: For the CNN model, we use the SGD optimizer
with a learning rate of 0.1. For the MLP model, we use the
Adam optimizer with a learning rate of 0.0002. For the LSTM
and Transformer models, we use the Adam optimizer with a
learning rate of 0.01. For the ResNet-18 model, we use the
Adam optimizer with a learning rate of 0.0001. The batch size
for all optimizers is set to 64, except for the ResNet-18 model,
where it is 32.

Data Distribution: To simulate various data distributions,
we adopt settings similar to those in [38], assigning a range
of classes and a random number of training samples to each
device to represent non-IID data. For MNIST, each device
is assigned between 200 and 300 samples; for EMNIST, the
range is 300 to 500; for 20newsgroups, the range is 400 to
600; and for ImageNet-10, the range is 250 to 350.

Pre-training: The CNN, MLP, and ResNet-18 models are
pre-trained for 1 epoch, while the LSTM and Transformer
models undergo 3 epochs of pre-training. To ensure fairness
in comparisons with methods that exclude this step, we use
it solely to measure pre-training accuracy, resetting model
parameters to their initial state before formal training begins.

Hardware and Software Setup: Our experiments were con-
ducted on a system equipped with a single NVIDIA GeForce
RTX 4060 GPU. The experimental code was developed using
Python 3.9 and PyTorch 2.1.0. We emulate the communica-
tion between edge devices using multi-thread interaction and
estimate the training and communication time for each device,
reflecting real-world conditions.

B. Comparative Methods

This section introduces the methods to be compared with
the EASF method, which are the Strong Synchronization (Syn)
method [39], Hierarchical Federated Learning (HFL) [21], and
the KMA-RAF [16] method.

Syn Method: This approach utilizes a distributed method to
construct and adjust the aggregation structure. It is originally
from [33], taking into account communication delay and
hop count. Devices in close proximity are grouped together.
The aggregation frequency is strictly synchronized across all
nodes, with each node assigned an aggregation frequency of
1. Each node completes a single iteration of the update before
uploading the data.

HFL Method: This method is also a type of strong synchro-
nization method, where the aggregation frequency is the same

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

at the same level. In the experiment, we set the aggregation
frequency of the training nodes to 2, while the aggregation
frequency of the aggregation nodes remained at 1.

KMA-RAF Method: The KMA algorithm considers both the
sample distribution and communication delay of the devices.
It is employed to construct and adjust aggregation structures
through an additional control node. The initial aggregation
frequency for all nodes is set to 1. During the training
process, each aggregation node employs the RAF algorithm
to determine the aggregation frequency for each child node
upon receipt of the aggregation data. When the aggregation
structure changes, the method proposed in Subsection IV-B is
invoked to maintain the aggregation frequency corresponding
to the unchanged parent-child relationship. The remaining
aggregation frequencies are reset to 1.

Neither of the three comparison methods integrates the
abandonment mechanism. All devices participating in the
experiment will send a notification to the parent node upon the
termination of their training. Upon receiving such a message
from a child node, the parent node will discontinue receiving
data from that particular child node.

C. Comparative Experiment: Results and Analysis
To assess the impact of the DSF method for weakly syn-

chronous hierarchical model training, we maintain a relatively
stable simulated edge computing environment. The computing
power and the working status of each device fluctuate grad-
ually. We configure the number of edge devices to 40 and
80, with each device receiving 2 types of sample data for
MNIST. Additionally, we set the number of edge devices to
60, with each device handling 10 and 15 types of sample data
for EMNIST. Our proposed method DSF is compared with the
KMA algorithm. The optimization of aggregation frequency
is achieved by the AAF and RAF algorithms, respectively.
Neither of these methods employs the abandon mechanism.

Fig. 4 presents the experimental results. The aggregation
structure of KMA is controlled by a control node, making
it challenging to adjust promptly when the working status of
the devices changes, necessitating the completion of a whole
round of training. Simultaneously, many original parent-child
relationships may be destroyed during the adjustment, and the
aggregation frequency information may be lost, leading to a
decrease in the global model’s training efficiency. If the control
node is faulty, it may halt the overall training progress. In
contrast, DSF performs through a distributed approach. Each
subtree of the structure is controlled by an aggregation node.
When the device leaves or joins, the aggregation structure can
be adjusted immediately. Even if it is a central node, the rest
of the devices in the cluster can quickly re-select the central
node. Simultaneously, the aggregation frequency information
is retained as much as possible during the adjustment of the
aggregation structure. Regardless of whether RAF or AAF is
used to optimize the aggregation frequency, the model training
efficiency is higher than KMA. It is evident that DSF is
more suitable for constructing and adjusting the aggregation
structure of hierarchical model training.

To evaluate the effectiveness of the overall method EASF
across various edge computing environments, we reconfigure

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy

0

50

100

150

200

250

300

350

400

450

500

Ti
m
e
(s
ec

on
ds

)

KMA-RAF
KMA-AAF
DSF-RAF
DSF-AAF

(a) 40 devices, MNIST

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy

0

50

100

150

200

250

300

350

400

Ti
m

e
(s

ec
on

ds
)

KMA-Raf
KMA-AAF
DSF-Raf
DSF-AAF

(b) 80 devices, MNIST

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Accuracy

50

100

150

200

250

300

350

400

450

500

Ti
m
e

(s
ec

on
ds

)

KMA-RAF
KMA-AAF
DSF-RAF
DSF-AAF

(c) 10-class non-IID data, EMNIST

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Accuracy

50

100

150

200

250

300

350

400

Ti
m
e

(s
ec

on
ds

)

KMA-RAF
KMA-AAF
DSF-RAF
DSF-AAF

(d) 15-class non-IID data, EMNIST

Fig. 4. Performance comparison of different aggregation structure construc-
tion and adjustment methods on MNIST and EMNIST.

the simulated edge computing environment to more closely
resemble real-world conditions. Fig. 5 and 6, along with Table
I and II depict the performance of each method in simulated
edge computing environment with a diverse number of devices
(30, 60, 100, 150, 200). This experiment is conducted on
MNIST, where each device possesses 2 classes of non-IID
data. Fig. 7, Table III, and IV showcase the performance of
each method with varying data distribution on EMNIST. The
number of edge devices is fixed at 50, and the number of
classes with samples is set to 4, 8, 16, and 47(IID).

As depicted in the right-hand figures of Fig. 5 and 7,
the model accuracy of both EASF and KMA-RAF methods
is comparable and superior to that of Syn and HFL. This
is mainly due to the consideration of data distribution and
weak synchronization in these two methods. However, EASF
achieves the highest model accuracy within the same time-
frame. This can be attributed to the following two reasons:

Number of training iterations within each round: Both
EASF and RAF establish the aggregation frequency for each
node. EASF strives to maintain the parent-child relationship
in the original structure when the aggregation structure needs
adjustment, thus preserving the set aggregation frequency.
In contrast, KMA resets the aggregation structure, which
could lead to substantial alterations in the tree-based struc-
ture and the loss of numerous set aggregation frequencies.
Consequently, the subsequent training round becomes similar
to strong synchronization, where the aggregation frequencies
are predominantly 1. In an environment where changes are
frequent and the aggregation structure often requires adjust-
ment, KMA-RAF rarely optimizes the aggregation frequency,
resulting in fewer training iterations.

Duration of each round: As shown in Fig. 6, KMA-RAF has

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

0 50 100 150 200 250
Time (seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(a) 30 devices

0 3 6 9 12 15 18 21 24
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(b) 30 devices

50 100 150 200 250
Time (seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(c) 60 devices

2 4 6 8 10 12 14 16
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(d) 60 devices

0 50 100 150 200 250
Time (seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(e) 100 devices

2 4 6 8 10 12 14 16
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(f) 100 devices

50 100 150 200 250
Time (seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(g) 150 devices

2 4 6 8 10 12 14
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(h) 150 devices

50 100 150 200 250
Time (seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(i) 200 devices

2 4 6 8 10 12 14
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(j) 200 devices

Fig. 5. Performance comparison of methods with different number of Edge
Devices on MNIST.

the longest average duration per training round, while EASF
and Syn demonstrate shorter average durations, which are
relatively similar. Consequently, within a constrained training
time, EASF and Syn can execute more training rounds. This
outcome can be attributed to two primary factors: firstly, EASF
enables nodes to adjust their aggregation frequency based on
the actual situation, often leading to more frequent updates
within the computing time recommended by the parent node.
Conversely, RAF mandates the child node to update according
to the aggregation frequency set by the parent node, which
may cause the child node to lag due to factors such as device
computing power. This leads to longer training rounds for the

TABLE I
HIGHEST ACCURACY ACHIEVED WITHIN A CERTAIN TIME (250

SECONDS) WITH DIFFERENT NUMBERS OF EDGE DEVICES ON MNIST

Method Name
Number of Edge Devices

30 60 100 150 200
Syn 0.7805 0.7302 0.7348 0.7308 0.7594

KMA-RAF 0.8329 0.7846 0.8344 0.8798 0.8353
HFL 0.8266 0.8054 0.8601 0.8737 0.8709

EASF 0.8436 0.8755 0.9143 0.9186 0.9225

TABLE II
TIME TO FIRST EXCEED A CERTAIN ACCURACY (0.68) WITH DIFFERENT

NUMBERS OF EDGE DEVICES ON MNIST

Method Name
Number of Edge Devices

30 60 100 150 200
Syn 148.90 185.39 209.66 190.69 174.31

KMA-RAF 59.80 115.62 64.89 70.10 126.15
HFL 107.14 103.31 109.99 89.00 110.90

EASF 49.57 96.97 51.86 46.40 43.50

RAF method. Secondly, EASF incorporates an abandonment
mechanism, which allows aggregation nodes to disregard data
from slower nodes, preventing a delay in overall progress. This
feature is also a crucial reason why EASF can occasionally
surpass Syn in terms of the number of training rounds.

Considering the impact of varying numbers of edge devices,
Table I reveals that the model accuracy of EASF does not
significantly deviate from that of the other methods when the
number of devices is relatively small. However, as the number
of devices escalates, the model accuracy of EASF markedly
outperforms that of the other two methods. Table II further
underscores that the time required for Syn, KMA-RAF, and
HFL methods to attain a specified accuracy varies considerably
with the number of edge devices. In contrast, EASF not only
necessitates the least time to achieve a predetermined accuracy
but also exhibits relative stability in this aspect. It demonstrates
superior adaptability to fluctuating numbers of edge devices,
effectively handling edge environments with a large number
of edge devices.

30 60 100 150 200
Number of Edge Devices

0

5

10

15

20

Ti
m

e(
s)

Syn
KMA-RAF
HFL
EASF

Fig. 6. Comparison of average training time per round of different edge
devices and methods on MNIST.

IEEE TRANSACTIONS ON MOBILE COMPUTING 14

0 100 200 300 400 500
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Syn
KMA-RAF
HFL
EASF

(a) 4-class non-IID data

0 3 6 9 12 15 18 21 24 27
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(b) 4-class non-IID data

0 100 200 300 400 500
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Syn
KMA-RAF
HFL
EASF

(c) 8-class non-IID data

0 3 6 9 12 15 18 21 24 27
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(d) 8-class non-IID data

0 100 200 300 400 500
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Syn
KMA-RAF
HFL
EASF

(e) 16-class non-IID data

0 3 6 9 12 15 18 21 24 27
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(f) 16-class non-IID data

0 100 200 300 400 500
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Syn
KMA-RAF
HFL
EASF

(g) IID data

0 3 6 9 12 15 18 21 24 27
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(h) IID data

Fig. 7. Performance comparison of methods with different sample distribu-
tions on EMNIST.

Considering the data distribution varies, Tables III and IV
indicate that the more extreme the non-IID situation of data
distribution, the slower the improvement in model accuracy for
each method, and the lower the maximum accuracy achiev-
able within a specified timeframe. In all instances of data
distributions, EASF exhibits superior convergence efficiency
compared to the other methods. This underscores that EASF
possesses enhanced adaptability to various data distributions
and can effectively handle more extreme non-IID data distri-
butions.

To investigate the time utilization of each node, we per-
formed a statistical analysis in the scenario of training the
CNN model on MNIST. In the dynamic edge computing
environment, where devices may join or leave during training,
we only counted the time utilization of each node in the
training rounds it fully participated. The statistical results
are shown in Table V. For training time, due to the AAF
method, each node trains as much as possible within a limited
time. The average training time proportion of EASF nodes is
significantly higher than that of other comparison methods.

TABLE III
HIGHEST ACCURACY ACHIEVED WITHIN A CERTAIN TIME (500

SECONDS) WITH DIFFERENT SAMPLE DISTRIBUTION CLASSES ON
EMNIST

Method Name
Number of Sample Distribution Classes

4 8 16 47
Syn 0.4413 0.5898 0.6669 0.7131

KMA-RAF 0.5426 0.6930 0.7331 0.7898
HFL 0.5294 0.6856 0.7495 0.7835

EASF 0.6218 0.7395 0.7893 0.8139

TABLE IV
TIME TO FIRST EXCEED A CERTAIN ACCURACY (0.44) WITH DIFFERENT

SAMPLE DISTRIBUTION CLASSES ON EMNIST

Method Name
Number of Sample Distribution Classes

4 8 16 47
Syn 486.36 317.82 216.99 185.25

KMA-RAF 298.47 172.84 70.51 62.47
HFL 315.20 175.49 125.99 110.09

EASF 174.86 83.19 61.33 28.68

Transmission time is mainly determined by the number of
training rounds. Since RAF does not consider the dynamic
edge environment, setting a high aggregation frequency stati-
cally may lead to stragglers, resulting in fewer total training
rounds within a limited time. The number of training rounds
of EASF is similar to that of the Syn and HFL methods
because EASF considers communication factors in the DSF
method to reduce transmission time. Overall, EASF not only
maximizes trainable time but also reduces transmission time
through the optimization of the aggregation structure, resulting
in significantly lower overall idle waiting time compared to
other methods and achieving higher training efficiency.

In conclusion, EASF has the capability to construct and
adjust the aggregation structure and frequency according to the
actual situation, alleviate the communication pressure on the
control node, fully utilize device resources, and execute more
training rounds within a restricted timeframe. Consequently,
EASF can deliver superior model training performance and is
adept at handling a variety of edge environments, encompass-
ing a substantial number of edge devices and more extreme
non-IID data distributions.

D. Case Study

To further investigate the effectiveness of the EASF method
in real-world environments, we conducted a case study. In
this section, we enhanced the previously established simulated
edge computing environment to make it more realistic, includ-
ing:

• Some devices may be unable to serve as aggregation
nodes due to insufficient bandwidth, power, computa-
tional capability, or storage capacity.

• The introduction of a real-world factor, signal strength,
as an element affecting transmission time.

In real-world scenarios, edge devices are often required
to train with a variety of models and datasets. We trained

IEEE TRANSACTIONS ON MOBILE COMPUTING 15

50 100 150 200 250 300 350
Time (seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(a) MLP; MNIST

20 40 60 80 100 120 140
Time (seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

Syn
KMA-RAF
HFL
EASF

(b) CNN; MNIST

0 50 100 150 200 250 300
Time (minutes)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

Syn
KMA-RAF
HFL
EASF

(c) LSTM; 20newsgroups

10 20 30 40 50 60 70
Time (minutes)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

Syn
KMA-RAF
HFL
EASF

(d) Transformer; 20newsgroups

20 40 60 80 100 120
Time (minutes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Syn
KMA-RAF
HFL
EASF

(e) ResNet-18; ImageNet-10

Fig. 8. Performance comparison of the different methods across a variety of models and datasets. Each subfigure’s caption is formatted as ’Model; Dataset’.

TABLE V
AVERAGE TIME PROPORTION OF NODES IN TRAINING CNN MODEL ON

MNIST

Method Name Training Transmisstion Waiting
Syn 4.9% 29.3% 65.8%

KMA-RAF 8.9% 23.9% 67.2%
HFL 8.3% 27.9% 63.8%

EASF 18.2% 26.7% 55.1%

TABLE VI
IMPACT OF DIFFERENT MODULES ON EASF METHOD PERFORMANCE ON

EMNIST

Timeout Max Accuracy (400s)
Set DSF AAF Abandon Number of Classes

Mechanism 6 10
#1 × × × 0.5757 0.6880
#2 ✓ × × 0.6319 0.6775
#3 × ✓ × 0.6395 0.7457
#4 × × ✓ 0.5956 0.6850
#5 ✓ ✓ × 0.6647 0.7620
#6 ✓ × ✓ 0.6706 0.7518
#7 × ✓ ✓ 0.6729 0.7483

#8(ours) ✓ ✓ ✓ 0.7095 0.7753
Note: ✓indicates the proposed method in this paper is used; × indicates the

method is not used.

MLP and CNN models on the MNIST dataset, LSTM and
Transformer models on the 20newsgroups dataset, and the
ResNet-18 model on the ImageNet-10 dataset. The device
number was set to 30, with each containing samples from 5
classes.

The experimental results are presented in Fig. 8. The results
demonstrate that the EASF method outperforms others across
various models and datasets. This is primarily because the
aggregation frequency in EASF is primarily determined by
model training time and transmission time, without requiring
detailed consideration of various factors influencing time.
Moreover, it is not directly related to the specific models
or datasets being used. In summary, the EASF method is
applicable to a wide range of real-world scenarios.

E. Ablation Studies

To evaluate the impact of each component in the EASF
method on the hierarchical model’s performance during train-
ing, we conducted a series of ablation experiments.

EASF is primarily composed of three modules: the DSF
method for aggregation structure, the AAF method for aggre-
gation frequency, and a timeout abandonment mechanism. The
design and results of the ablation experiment are illustrated

0 50 100 150 200 250 300 350 400
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

e8 round:24
e6 round:21
e5 round:21
e2 round:14
e1 round:17

(a) DSF module, 6-class

0 50 100 150 200 250 300 350 400
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

e8 round:24
e6 round:19
e5 round:19
e2 round:12
e1 round:17

(b) DSF module, 10-class

0 50 100 150 200 250 300 350 400
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

e8 round:24
e7 round:23
e5 round:21
e3 round:19
e1 round:17

(c) AAF module, 6-class

0 50 100 150 200 250 300 350 400
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

e8 round:24
e7 round:23
e5 round:19
e3 round:23
e1 round:17

(d) AAF module, 10-class

0 50 100 150 200 250 300 350 400
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

e8 round:24
e7 round:23
e6 round:21
e4 round:26
e1 round:17

(e) abandon mechanism module, 6-class

0 50 100 150 200 250 300 350 400
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

e8 round:24
e7 round:23
e6 round:19
e4 round:26
e1 round:17

(f) abandon mechanism module, 10-class

Fig. 9. Impact analysis of various modules on the performance of the EASF
method on EMNIST.

in Table VI. The alternative strategy for DSF employs a
distributed clustering technique that groups nearby devices.
For AAF, the alternative is the RAF algorithm. Regarding the
abandonment mechanism, the method proposed in this paper
necessitates time predictions from the AAF method to deter-
mine the timeout abandonment threshold. Therefore, in this
experiment, when AAF is not utilized but the abandonment
mechanism is, the threshold is set to a fixed value.

As depicted in Fig. 9, we present the experimental results
in six subfigures, each illustrating the data distribution and the
impact of using a particular module.

Analysis of the DSF method: The effectiveness of DSF is
demonstrated in Fig. 9a and 9b. In Set #1, where none of the
methods of EASF are used, the model training exhibits low
accuracy and efficiency. Set #2, which incorporates the DSF
method, shows an improvement over Set #1, but lacks stability.
The improvement is primarily due to the fact that the clustering
method, which takes into account data distribution, is superior

IEEE TRANSACTIONS ON MOBILE COMPUTING 16

to merely considering delay and hop count in accelerating the
model’s convergence speed. The instability arises from the
preservation of substantial aggregation frequency information
during the structure adjustment process, but the aggregation
frequency obtained by RAF is not sufficiently accurate, leading
to the appearance of stragglers. In Set #2, neither the AAF
method nor the abandonment mechanism is present, which
may cause the overall progress of model training to be
delayed by the stragglers. Set #5 and #6, based on Set #2,
introduce the AAF method or a fixed threshold abandonment
mechanism. They noticeably improve the training efficiency,
but the efficiency and accuracy are still lower than Set #8,
which employs all the methods.

Analysis of the AAF method: Fig. 9c and 9d depict the effi-
cacy of AAF. As this method enables the device to adaptively
adjust the aggregation frequency based on the actual scenario,
all experiments using this method outperform those without it
in terms of model training. In Set #3, the lack of DSF results in
a significant loss of frequency information, leading to a minor
improvement in model training. Conversely, Set #5, #7, and #8
incorporate at least one of the DSF and timeout abandonment
mechanisms. The former helps in preserving the aggregation
frequency information, while the latter aids in reducing the
lag of the overall progress, thereby significantly enhancing the
efficiency of model training.

Analysis of the Timeout Abandonment Mechanism: Fig. 9e,
9f illustrate the experimental results of employing the timeout
abandonment mechanism. The presence of this mechanism
significantly reduces the average training time per round in Set
#4. However, it also necessitates the sacrifice of the trained
model parameters from a subset of the devices, leading to
a minimal improvement compared to Set #1. Set #6 and
#7, which incorporate DSF or AAF, effectively augment the
training efficiency. Set #8, which utilizes all the methods
of EASF, exhibits markedly superior efficiency and accuracy
relative to those that omit some modules.

To sum up, AAF forms the core of the EASF method.
It enables the edge devices in the dynamic edge computing
environment to adaptively adjust the appropriate aggregation
frequency. DSF takes into account the data distribution and
strives to retain as much aggregation frequency information
as possible during the adjustment of the aggregation structure.
The timeout abandonment mechanism effectively mitigates the
delay in overall training progress caused by the stragglers.
In a real-world edge computing environment, when a device
departs from training due to failure or other reasons and may
not be able to transmit relevant information promptly, the
abandonment mechanism becomes indispensable. The combi-
nation of the three components enables the training to achieve
optimal performance.

VI. CONCLUSION

In this paper, we present a distributed hierarchical model
training framework, featuring a novel method called EASF.
This method constructs and adjusts the tree-based aggregation
structure in a distributed manner, taking into account both the
data distribution and working status of edge devices. Further-
more, EASF adaptively adjusts the aggregation frequency in

accordance with the computational capacity of the devices, the
heterogeneity of communication resources, and the real-time
conditions of training. We also incorporate an abandonment
mechanism to mitigate the impact of slower devices on global
training, thereby enhancing the robustness of model training.

EASF requires the prediction of multiple time values. The
accuracy of these predictions is crucial as they indirectly
affect the actual aggregation frequency. In this study, we
mainly employ the exponential weighted method for predic-
tion. Future research could explore other prediction methods
to achieve higher accuracy and improve the adaptability of the
aggregation frequency.

REFERENCES

[1] N. Marz and J. Warren, Big data: principles and best practices of scalable
real-time data systems. Shelter Island, NY: Manning Publications, 2015.

[2] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A Survey on
Edge Computing Systems and Tools,” Proc. IEEE., vol. 107, no. 8, pp.
1537–1562, Aug. 2019.

[3] D. Xu et al., “Edge Intelligence: Empowering Intelligence to the Edge of
Network,” Proc. IEEE., vol. 109, no. 11, pp. 1778–1837, Nov. 2021.

[4] J. Mendez, K. Bierzynski, M. P. Cuéllar, and D. P. Morales, “Edge In-
telligence: Concepts, Architectures, Applications, and Future Directions,”
ACM Trans. Embed. Comput. Syst., vol. 21, no. 5, pp. 1–41, Sep. 2022.

[5] F. Al-Doghman, N. Moustafa, I. Khalil, N. Sohrabi, Z. Tari, and A.
Y. Zomaya, “AI-Enabled Secure Microservices in Edge Computing:
Opportunities and Challenges,” IEEE Trans. Serv. Comput., vol. 16, no.
2, pp. 1485–1504, Mar. 2023.

[6] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,”
Proc. IEEE., vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[7] Z. Qadir, M. Bilal, G. Liu, and X. Xu, “Autonomous Trajectory Optimiza-
tion for UAVs in Disaster Zone Using Henry Gas Optimization Scheme,”
arXiv:2506.15910, 2025.

[8] S. Wang et al., “When Edge Meets Learning: Adaptive Control for
Resource-Constrained Distributed Machine Learning,” in IEEE INFO-
COM, IEEE, Apr. 2018, pp. 63–71.

[9] H. Hu, D. Wang, and C. Wu, “Distributed Machine Learning through
Heterogeneous Edge Systems,” AAAI, vol. 34, no. 05, pp. 7179–7186,
Apr. 2020.

[10] W. Li, H. Hacid, E. Almazrouei, and M. Debbah, “A Comprehensive
Review and a Taxonomy of Edge Machine Learning: Requirements,
Paradigms, and Techniques,” AI., vol. 4, no. 3, pp. 729–786, Sep. 2023.

[11] M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi,
“Machine Learning at the Edge: A Data-Driven Architecture With Appli-
cations to 5G Cellular Networks,” IEEE Trans. on Mobile Comput., vol.
20, no. 12, pp. 3367–3382, Dec. 2021.

[12] Z. Wang, S. Liu, B. Guo, Z. Yu, and D. Zhang, “CrowdLearning: A
Decentralized Distributed Training Framework Based on Collectives of
Trusted AIoT Devices,” IEEE Trans. on Mobile Comput., pp. 1–18, 2024.

[13] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A Survey on Distributed Machine Learning,” ACM
Comput. Surv., vol. 53, no. 2, pp. 1–33, Mar. 2021.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proc. Int. Conf. Artif. Intell. Stat., vol. 54. PMLR, Apr.
2017, pp. 1273–1282.

[15] D. Chai, L. Wang, L. Yang, J. Zhang, K. Chen, and Q. Yang, “A Survey
for Federated Learning Evaluations: Goals and Measures,” IEEE Trans.
Knowl. Data Eng., pp. 1–20, 2024.

[16] L. Yang, Y. Gan, J. Cao, and Z. Wang, “Optimizing Aggregation
Frequency for Hierarchical Model Training in Heterogeneous Edge Com-
puting,” IEEE Trans. Mob. Comput., vol. 22, no. 7, pp. 4181–4194, Jul.
2023.

[17] R. Han, S. Li, X. Wang, C. H. Liu, G. Xin, and L. Y. Chen, “Accelerating
Gossip-Based Deep Learning in Heterogeneous Edge Computing Plat-
forms,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1591–1602,
Jul. 2021.

[18] Z. Tang, S. Shi, B. Li, and X. Chu, “GossipFL: A Decentralized Feder-
ated Learning Framework With Sparsified and Adaptive Communication,”
IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 3, pp. 909–922, Mar. 2023.

IEEE TRANSACTIONS ON MOBILE COMPUTING 17

[19] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-iid data
quagmire of decentralized machine learning,” in Int. Conf. Mach. Learn.,
PMLR, 2020, pp. 4387–4398.

[20] C. Hu, H. H. Liang, X. M. Han, B. A. Liu, D. Z. Cheng, and D.
Wang, “Spread: Decentralized Model Aggregation for Scalable Federated
Learning,” in Pro. Int. Conf. Parallel Process., Bordeaux France: ACM,
Aug. 2022, pp. 1–12.

[21] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-Edge-Cloud
Hierarchical Federated Learning,” in IEEE Int. Conf. Commun., IEEE,
Jun. 2020, pp. 1–6.

[22] M. S. H. Abad, E. Ozfatura, D. GUndUz, and O. Ercetin, “Hierarchi-
cal Federated Learning ACROSS Heterogeneous Cellular Networks,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2020, pp.
8866–8870.

[23] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative Service Caching
and Workload Scheduling in Mobile Edge Computing,” in IEEE INFO-
COM., IEEE, Jul. 2020, pp. 2076–2085.

[24] Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi, “Clustered Sampling:
Low-Variance and Improved Representativity for Clients Selection in
Federated Learning,” in Int. Conf. Mach. Learn., PMLR, Jul. 2021, pp.
3407–3416.

[25] S. Liu, J. Yu, X. Deng, and S. Wan, “FedCPF: An Efficient-
Communication Federated Learning Approach for Vehicular Edge Com-
puting in 6G Communication Networks,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 2, pp. 1616–1629, Feb. 2022.

[26] Z. He, L. Yang, W. Lin, and W. Wu, “Improving Accuracy and
Convergence in Group-Based Federated Learning on Non-IID Data,”
IEEE Trans. Netw. Sci. Eng., vol. 10, no. 3, pp. 1389–1404, May 2023.

[27] W. Y. B. Lim et al., “Decentralized Edge Intelligence: A Dynamic
Resource Allocation Framework for Hierarchical Federated Learning,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 536–550, Mar.
2022.

[28] C. You, K. Guo, H. H. Yang, and T. Q. S. Quek, “Hierarchical
Personalized Federated Learning Over Massive Mobile Edge Computing
Networks,” IEEE Trans. Wirel. Commun., vol. 22, no. 11, pp. 8141–8157,
Nov. 2023.

[29] S. Wang et al., “Adaptive Federated Learning in Resource Constrained
Edge Computing Systems,” IEEE J. Select. Areas Commun., vol. 37, no.
6, pp. 1205–1221, Jun. 2019.

[30] Y. Xu, Y. Liao, H. Xu, Z. Ma, L. Wang, and J. Liu, “Adaptive Control of
Local Updating and Model Compression for Efficient Federated Learn-
ings,” IEEE Trans. on Mobile Comput., vol. 22, no. 10, pp. 5675–5689,
Oct. 2023.

[31] J. Yan, J. Liu, S. Wang, H. Xu, H. Liu, and J. Zhou, “Heroes:
Lightweight Federated Learning With Neural Composition and Adaptive
Local Update in Heterogeneous Edge Networks,” in Proc. IEEE INFO-
COM 2024-IEEE Conf. Comput. Commun., 2024, pp. 831–840.

[32] L. Luo, C. Zhang, H. Yu, G. Sun, S. Luo, and S. Dustdar,
“Communication-Efficient Federated Learning With Adaptive Aggrega-
tion for Heterogeneous Client-Edge-Cloud Network,” IEEE Trans. Ser-
vices Comput., vol. 17, no. 6, pp. 3241–3255, Nov./Dec. 2024.

[33] Lakshmish Ramaswamy, B. Gedik, and L. Liu, “A distributed approach
to node clustering in decentralized peer-to-peer networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 16, no. 9, pp. 814–829, Sep. 2005.

[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE., vol. 86, no. 11, pp.
2278–2324, Nov. 1998.

[35] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “EMNIST: Ex-
tending MNIST to handwritten letters,” in Int. Joint Conf. Neural Netw.,
IEEE, May 2017, pp. 2921–2926.

[36] K. Lang, “NewsWeeder: Learning to Filter Netnews,” in Machine
Learning Proceedings 1995, Elsevier, 1995, pp. 331–339.

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conf. Comput.
Vis. Pattern Recog., 2009, pp. 248—255.

[38] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
Learning with Non-IID Data,” arXiv:1806.00582, 2018.

[39] F. Cicirelli, A. Giordano, and C. Mastroianni, “Analysis of Global
and Local Synchronization in Parallel Computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 5, pp. 988–1000, May 2021.

Xiaolong Xu received the Ph.D. degree in computer
science and technology from Nanjing University,
China, in 2016. He is currently a Full Professor with
the School of Software, Nanjing University of Infor-
mation Science and Technology. He has published
more than 100 peer-review articles in international
journals and conferences, including the IEEE TKDE,
IEEE TPDS, JSAC, IEEE TSC, IEEE TFS, IEEE
T-ITS, IJCAI, ICDM, ICWS, ICSOC, etc. He was
selected as the Highly Cited Researcher of Clarivate
(2021-2023). He received best paper awards from

Tsinghua Science and Technology at 2023, Journal of Network and Computer
Applications at 2022, and several conferences, including IEEE HPCC 2023,
IEEE ISPA 2022, IEEE CyberSciTech 2021, IEEE CPSCom2020, etc. His
research interests include edge computing, the Internet of Things (IoT), cloud
computing, and big data.

Jiayang Sun received the BEng degree in software
engineering from Nanjing University of Information
Science & Technology, China, in June 2024. Cur-
rently, he is pursuing a postgraduate studies at the
School of Software Engineering, Nanjing University
of Information Science & Technology. His research
interests include edge computing and distributed
machine learning.

Guangming Cui received his Master’s degree from
Anhui University, China, in 2018 and his PhD
degree from Swinburne University of Technology,
Australia, in 2022, in computer science. Currently,
he is an associate professor at Nanjing University
of Information Science & Technology, China. His
research interests include edge computing, service
computing, mobile computing and software engi-
neering.

Lianyong Qi received the Ph.D. degree from the
Department of Computer Science and Technology,
Nanjing University, China, in 2011. He is currently
a Full Professor with the College of Computer Sci-
ence and Technology, China University of Petroleum
(East China), China. He has already published more
than 100 articles, including the IEEE JSAC, the
IEEE TCC, TBD, FGCS, the Journal of Computa-
tional Social Science, CCPE, ICWS, and ICSOC.
His research interests include services computing,
big data, and the Internet of Things.

IEEE TRANSACTIONS ON MOBILE COMPUTING 18

Muhammad Bilal received the Ph.D. degree in in-
formation and communication network engineering
from the School of Electronics and Telecommuni-
cations Research Institute (ETRI), Korea University
of Science and Technology, Daejeon, South Korea,
in 2017. From 2018 to 2023, he was an Assistant
Professor with the Division of Computer and Elec-
tronic Systems Engineering, Hankuk University of
Foreign Studies, Yongin, South Korea. In 2023, he
joined Lancaster University, Lancaster LA1 4YW,
United Kingdom, where he is currently working

as a Senior Lecturer with School of Computing and Communications. His
research interests include design and analysis of network protocols, network
architecture, network security, the IoT, named data networking, blockchain,
cryptology, and future Internet.

Wanchun Dou is a lecturer in the received the Ph.D.
degree in mechanical and electronic engineering
from the Nanjing University of Science and Technol-
ogy, China, in 2001. He is currently a Full Professor
at the State Key Laboratory for Novel Software
Technology, Nanjing University. From April 2005
to June 2005 and from November 2008 to Febru-
ary 2009, he visited the Departments of Computer
Science and Engineering, Hong Kong University of
Science and Technology, Hong Kong, respectively,
as a Visiting Scholar. He has published more than

100 research papers in international journals and international conferences. His
research interests include workflow, cloud computing, and service computing.

Zhipeng Cai received the B.S. degree from Beijing
Institute of Technology, Beijing, China, in 2001, and
the M.S. and Ph.D. degrees from the Department of
Computing Science, University of Alberta, Edmon-
ton, AB, Canada, in 2004 and 2008, respectively.
He is currently a Professor with the Department
of Computer Science, Georgia State University, At-
lanta, GA, USA. His research has received funding
from multiple academic and industrial sponsors,
including the National Science Foundation and the
U.S. Department of State, and has resulted in over

100 publications in top journals and conferences, with more than 14500
citations, including over 80 IEEE/ACM transactions papers. His research
expertise lies in the areas of resource management and scheduling, privacy,
networking, and big data.

Jon Crowcroft received the degree in physics from
Trinity College, University of Cambridge, Cam-
bridge, U.K., in 1979, the M.Sc. degree in comput-
ing, and the Ph.D. degree from University College
London, London, U.K., in 1981 and 1993, respec-
tively. From 2016 to 2018, he was the Programme
Chair with Alan Turing Institute, U.K. National
Data Science and AI Institute, London, U.K. He is
currently a Researcher with Alan Turing Institute.
Since October 200l, he has been the Marconi Pro-
fessor of communications systems with Computer

Laboratory. His research interests include Internet support for multimedia
communications, scalable multicast routing, practical approaches to traffic
management, the design of deployable end-to-end protocols, opportunistic
communications, social networks, privacy preserving analytics, and techniques
and algorithms to scale infrastructure-free mobile systems. Dr. Crowcroft is
a Fellow of the Royal Society, ACM, British Computer Society, IET and the
Royal Academy of Engineering.

