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Abstract

We study the Lagrangian isotopy classification of Lagrangian spheres in the Milnor

fibre, Bd,p,q, of the cyclic quotient surface T-singularity 1
dp2

(1, dpq − 1). We prove

that there is a finitely generated group of symplectomorphisms such that the orbit of

a fixed Lagrangian sphere exhausts the set of Lagrangian isotopy classes. Previous

classifications of Lagrangian spheres have been established in simpler symplectic

4-manifolds that admit global genus 0 Lefschetz fibrations, which Bd,p,q does not.

We construct Lefschetz fibrations for which the Lagrangian spheres are isotopic to

matching cycles, which reduces the problem to a computation involving the mapping

class group of a surface. These fibrations are constructed using the techniques of

J-holomorphic curves and Symplectic Field Theory, culminating in the construction

of a J-holomorphic foliation by cylinders of T ∗S2. Our calculations provide

evidence towards the symplectic mapping class group of Bd,p,q being generated by

Lagrangian sphere Dehn twists and another type of symplectomorphism arising as

the monodromy of the 1
p2
(1, pq − 1) singularity.
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Chapter 1

Introduction

1.1 Lagrangian isotopy problems

Let (M,ω) be a symplectic manifold. That is, a smooth manifoldM equipped with a

closed, and non-degenerate 2-form ω. In symplectic topology, one is often concerned

with the study of certain submanifolds called Lagrangians.

Definition 1.1.1. A Lagrangian submanifold L of (M,ω) is a half-dimensional

submanifold1 on which the restriction of the symplectic form to the tangent bundle

TL vanishes. That is, dimL = 1
2
dimM , and ω|TL ≡ 0.

There are various notions of equivalence of Lagrangians, and in this work,

we focus on isotopy equivalence. Before stating what this means, recall that a

symplectomorphism of (M,ω) is a diffeomorphism ϕ : M → M such that ϕ∗ω = ω.

A stronger notion is that of a Hamiltonian diffeomorphism. Let H : M → R be

a smooth function — referred to as a Hamiltonian in symplectic geometry — and

consider the vector field equation

ιV ω = ω(V, ·) = −dH.

Non-degeneracy of ω implies that this has a unique solution, which we write as

VH . The Hamiltonian flow ϕHt — also called a Hamiltonian isotopy — of H is

1Elementary linear algebra implies that the dimension of a symplectic manifold is always even.
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Chapter 1. Introduction

defined to be the flow of the vector field VH . Note that (ϕHt )
∗ω = ω, so these are

symplectomorphisms. The time-1 flow ϕH1 is called a Hamiltonian diffeomorphism

of (M,ω).

Definition 1.1.2. Let L,L′ ⊂ (M,ω) be two Lagrangian submanifolds. We say

that L and L′ are

1. Lagrangian isotopic if there exists a smooth isotopy Lt such that L0 = L,

L1 = L′, and Lt is Lagrangian for each t.

2. symplectic isotopic if there exists an isotopy ϕt : M → M of symplectomor-

phisms such that ϕ0 = idM and ϕ1(L) = L′.

3. Hamiltonian isotopic if there exists a Hamiltonian isotopy ϕHt such that

ϕH1 (L) = L′.

These properties are listed in increasing order of strength, that is

Hamiltonian isotopic =⇒ symplectic isotopic =⇒ Lagrangian isotopic.

In general, these are strict implications; two Lagrangian isotopic submanifolds are

not necessarily symplectic isotopic, and so on.

We focus on a particular instance of this isotopy classification: that of Lagrangian

2-spheres in a certain family of symplectic 4-manifolds. Elementary symplectic

geometry shows that the above notions of isotopy equivalence are the same for

Lagrangian spheres of dimension n > 1. This is due to basic isotopy extension

results [38, §3.4] combined with the fact that the first de Rham cohomology group

vanishes: H1(Sn) = 0, for n > 1.

Classifications of Lagrangian spheres have been achieved in various cases:

starting with Hind [23] who proved that every Lagrangian sphere in S2 × S2 is

Hamiltonian isotopic to the anti-diagonal2 ∆̄ = {(x,−x) ∈ S2 × S2}. Evans [15]

2Here the symplectic form on S2×S2 is obtained by taking the direct product of a volume form

on S2 with itself, so the factors S2 × {point} and {point} × S2 have equal symplectic area. We’ll

call this the monotone form.
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1.1. Lagrangian isotopy problems

then proved a similar theorem for Lagrangian spheres in certain del Pezzo surfaces.3

These theorems give examples of symplectic manifolds where Lagrangian knotting

does not occur, that is, two Lagrangian spheres are Lagrangian isotopic if, and only

if, they are smoothly isotopic.

On the other hand, Seidel proved [44] that Lagrangian knotting occurs in general.

The proof revolves around a special symplectomorphism associated to a Lagrangian

sphere L called a generalised Dehn twist4 τL. Many of Seidel’s papers give the

explicit construction of the Dehn twist, and we refer to [48].5 The headline is

that the squared twist τ 2L is smoothly isotopic to the identity map, but it may, or

may not, be symplectically isotopic depending on the ambient symplectic manifold

(M,ω). For example, in T ∗S2 equipped with the canonical symplectic form ωcan

— defined in Equation (1.3.5) — any iterate τ k of the Dehn twist about the zero-

section is not isotopic to the identity map through symplectomorphisms. In fact,

more is true: τ generates the symplectic mapping class group of (T ∗S2, ωcan), which

is defined to be the group of connected components of the group of compactly-

supported symplectomorphisms, see [43]. However, the squared Dehn twist about

the antidiagonal in S2×S2 (again with the monotone form) is symplectically isotopic

to the identity map.

Despite this, classifications of Lagrangian spheres in manifolds where knotting

occurs have been achieved. Consider the Milnor fibre of the An surface singularity.

That is, the complex manifold Wn given by the equation

Wn = {(z1, z2, z3) | z21 + z22 + zn+1
3 = 1} ⊂ C3.

Equipped with the restriction of the symplectic form ωC3 = i
2

∑3
i=1 dzi ∧ dz̄i, this

is a symplectic 4-manifold. In [24], Hind proves that any Lagrangian sphere in

3A symplectic del Pezzo surface is either S2 × S2 or CP2 blown-up in n < 9 generic points

equipped with an anticanonical Kähler form [15, Definition 1.3]. Evans proves that no Lagrangian

knotting occurs in the n = 2, 3, 4 cases.
4In the case n = 1 this is the classical Dehn twist.
5Although, the authoritative reference for generalised Dehn twists should probably Seidel’s

thesis [42].
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Chapter 1. Introduction

W1 or W2 is Lagrangian isotopic to one obtained from a finite set of “standard”

Lagrangian spheres by applying Dehn twists about these standard spheres. Wu [57]

then extended this result to all Wn. One can rephrase these results as saying that

the only symplectic knotting of Lagrangian spheres in the An Milnor fibres comes

from Dehn twists. The main result of this thesis proves the corresponding result

for a similar class of symplectic manifolds, which are also Milnor fibres of complex

surface singularities, see Theorem 1.2.2 for the statement.

1.2 Cyclic quotient surface singularities and Bd,p,q

Let n > 1 be an integer and let a ≥ 1 be coprime to n. Consider the action of the

group of n-th roots of unity, Γn, on C2 with weights (1, a):

µ · (x, y) = (µx, µay).

The quotient space C2/Γn is a singular manifold called the cyclic quotient surface

singularity of type 1
n
(1, a). Now let d, p, q > 0 be integers with p > q coprime. The

Adp−1 singularity is the variety

{(z1, z2, z3) ∈ C3 | z1z2 = zdp3 },

and the group Γp acts on it with weights (1,−1, q). The cyclic quotient singularity

1
dp2

(1, dpq − 1) is analytically isomorphic to the quotient Adp−1/Γp via the map

C2/Γdp2 → Adp−1/Γp : (x, y) 7→ (xdp, ydp, xy). The symplectic manifold Bd,p,q is

defined to be the Milnor fibre of this singularity. Its symplectic structure is inherited

from C3 since the Γp action is by symplectomorphisms. As a result, we can explicitly

write

Bd,p,q :=

(
z1z2 −

d∏
i=1

(zp3 − i)

)/
Γp.

Remark 1.2.1. Observe that we can recover the case of the Milnor fibres of the Ad−1

singularities, Wd−1, by setting p = 1 and q = 1.6

6After a holomorphic change of coordinates (ζ1, ζ2) = ( 12 (z1 + z2),
1
2i (z1 − z2)) the equation
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1.2. Cyclic quotient surface singularities and Bd,p,q

(0, 1)
(dp2, dpq − 1)×

×
(p, q)

Figure 1.1: A fundamental action domain for Bd,p,q. The labels indicate the

primitive integer direction of each arrow and ray. Drawn here is the case (d, p, q) =

(2, 2, 1).

Following §7.4 of [17], Bd,p,q can be equipped with a Hamiltonian system that

gives it the structure of an almost toric manifold. A fundamental action domain

for this system is shown in Figure 1.1. This picture determines Bd,p,q up to

symplectomorphism, and is useful for visualising its topology. Over the dotted lines

connecting the crosses live d− 1 Lagrangian 2-spheres, and over the line connecting

the unique vertex of the wedge to the leftmost cross lives a Lagrangian CW-complex

called a (p, q)-pinwheel. This is a Lagrangian immersion of a 2-disc, which is an

embedding on the interior, and maps p-to-1 on the boundary [30, 19]. We shall refer

to these d−1 spheres as the standard Lagrangian spheres in Bd,p,q, and denote their

associated Dehn twists by τ1, . . . , τd−1. The CW-complex formed by the topological

wedge sum of these d − 1 spheres and the (p, q)-pinwheel is called the Lagrangian

skeleton of Bd,p,q.

Similarly to the case of Lagrangian spheres, one can define a symplectomorphism

associated to a Lagrangian (p, q)-pinwheel, which we write as τp,q. The construction

is carried out in Chapter 5. The only thing to note for now is that τp,q is a compactly-

supported symplectomorphism of Bd,p,q with support in a neighbourhood of the

pinwheel itself.

We are now ready to state the main result.

for Ad−1 = Bd,1,1 becomes ζ21 + ζ22 + P (z3) for some polynomial P . An isotopy from P (z) =

−
∏d

i=1(z − i) to P (z) = zd − 1 through polynomials with pairwise distinct non-zero roots then

yields the claimed identification.

5



Chapter 1. Introduction

Theorem 1.2.2. Let L ⊂ Bd,p,q be a Lagrangian sphere. Then L is compactly-

supported Hamiltonian isotopic to a sphere obtained by applying a word of symplec-

tomorphisms generated by τ1, . . . , τd−1, and τp,q, to a standard sphere.

For a more precise statement, see Theorem 5.3.1.

Remark 1.2.3. This is a natural extension of Wu’s result [57] on the An Milnor fibres.

In particular, the only symplectic knotting of Lagrangian spheres comes from twists

about the components of the Lagrangian skeleton of Bd,p,q.

1.3 Outline of the proof

At its core, the idea of the proof is to use the theory of Lefschetz fibrations and

matching cycles to construct Lagrangian isotopies of spheres. So, we begin with a

brief recap on the key features of Lefschetz fibrations that are relevant to us.

1.3.1 What is a Lefschetz fibration?

Let M be an 4-dimensional oriented manifold, and S an oriented surface. In this

paper, a Lefschetz fibration will mean the following (taken from [55, Definition 3.18]):

Definition 1.3.1. A Lefschetz fibration is a smooth map π : M → S with finitely

many critical points Mcrit, and, for each p ∈ Mcrit, there exist complex coordinate

charts at p ∈ M and π(p) ∈ S agreeing with the orientations, such that, in these

coordinates, we have

π(z1, z2) = z21 + z22 . (1.3.1)

Remark 1.3.2. 1. In words, this can be interpreted as saying that π is a fibre

bundle away from a (real) codimension 2 subset of singular fibres, each of

which is modelled on the A1 node. The fibres are two dimensional surfaces,

the critical fibres being singular. We will often assume that each fibre has at

most 1 singularity.

6



1.3. Outline of the proof

2. In general, a Lefschetz fibration isn’t actually a fibration in the topological

sense. Indeed, the most basic example

π : C2 → C : π(z1, z2) = z21 + z22

reveals that the fibres are not all homotopy equivalent. The smooth fibres

π−1(z) (z ̸= 0) are homeomorphic to C× = C\{0}, whilst π−1(0) is the wedge

sum of two planes C ∧ C.

To introduce symplectic geometry to the story, we consider the situation where

the ambient spaceM is equipped with a closed 2-form Ω that restricts to a positively

oriented area form on the (smooth parts of the) fibres of π. This implies that each

fibre Mz = π−1(z) is a symplectic manifold with symplectic form Ω|Mz . This extra

structure picks out a connection on the tangent bundle TM by taking the symplectic

orthogonal complement to the tangent spaces of the fibres: for p ∈Mz\Mcrit define

the horizontal space H(p) to be

H(p) := TpM
Ω
z := {v ∈ TpM | Ω(v, w) = 0, ∀w ∈ TpMz}.

Given an embedded smooth path γ : [0, 1] → S\Scrit, we define the parallel transport

along γ as with any fibre bundle with connection (see [31, Chapter II], for example).

Explicitly, since dπ(p)|Hp : Hp → Tπ(p)S is a linear isomorphism, we can define the

(unique) vector field X̃ (defined on the pullback γ∗π) by the condition

dπ(p)|Hp(X̃(p)) =
dγ

dt
(π(p)).

The parallel transport of γ is defined to be the map τγ : Mγ(0) → Mγ(1) which

integrates the vector field X̃.

Remark 1.3.3. Of course, we need some condition to tell us that τγ is well-defined.

For example, it is enough to assume that π has closed fibres, as we’ll make use of in

this thesis. For other cases we’ll justify the existence of τγ as and when we need. A

reference on Lefschetz fibrations in the exact symplectic setting is [47, Part III].

7



Chapter 1. Introduction

1.3.1.1 Vanishing and matching cycles

With this in hand, we can define the notions of vanishing paths, cycles, and thimbles.

A vanishing path is an embedded path γ : [0, 1] → S such that γ−1(Scrit) = {1}. Let

p1 ∈Mγ(1), be a critical point and consider the parallel transport for the restriction

γs := γ|[0,s], s < 1. Define the map τ1 : Mγ(0) → Mγ(1) from the smooth fibre Mγ(0)

to the singular one Mγ(1) by

τ1 := lim
s→1

τγs .

This is well-defined and continuous [18, Lemma 1.2]. Therefore, we can define the

vanishing cycle Vγ ⊂ Mγ(0) to be the locus of points that are transported to the

singular point p1:

Vγ = {p ∈Mγ(0) | τ1(p) = p1 ∈Mγ(1) ∩Mcrit}.

Define also the vanishing thimble associated to γ to be

∆γ :=
⋃

s∈[0,1]

τγs(Vγ).

That is, ∆γ is the trace of the vanishing cycle under the parallel transport maps τγs .

It is an embedded 2-ball, as one can prove by expressing ∆γ as the stable manifold

of a hyperbolic vector field [46, Lemma 1.13]. Moreover, it satisfies7 Ω|T∆γ ≡ 0. The

vanishing cycle Vγ is the boundary of ∆γ, which is therefore a Lagrangian8 S1 in

Mγ(0).

Similarly there are matching paths and cycles. A matching path γ : [−1, 1] → S

is an embedded path such that γ−1(Scrit) = {−1, 1}. Therefore, the restrictions

γ+ := γ|[0,1], and γ− := γ|[−1,0] define two vanishing paths, for which we form the

vanishing thimbles ∆γ± . If the corresponding vanishing cycles Vγ± are equal, we

7We avoid saying the word Lagrangian here, since we aren’t assuming that the 2-form Ω is

symplectic on the ambient space M .
8Of course, saying Lagrangian here is redundant, since any 1-dimensional submanifold of a 2-

dimensional symplectic manifold is Lagrangian. However, in higher dimensions this is still true

and thus non-trivial.

8



1.3. Outline of the proof

can glue the two thimbles together to form a Lagrangian 2-sphere Σγ called the

matching cycle. Of course, the condition that Vγ+ = Vγ− is not always satisfied, so

one needs to be slightly more careful to define Σγ in general. Provided that Vγ±

are symplectically isotopic in Mγ(0), these complications can be surmounted, but we

delay talking about them for now. For the full construction in the exact case, see

[47, 16g].

1.3.1.2 Matching cycles and Lagrangian isotopies

Consider an isotopy of matching paths γs : [−1, 1] → S. By finiteness of the set of

critical values Scrit, this is an isotopy rel the end points: γs(±1) = γ0(±1). Such

an isotopy gives rise to a Lagrangian isotopy of the corresponding matching cycles.

That is, Σγs is a Lagrangian isotopy from Σγ0 to Σγ1 . Therefore, we have a map

{matching paths}/isotopy → {Lagrangian spheres}/Lagrangian isotopy. (1.3.2)

In general, this map is neither injective nor surjective, meaning that two non-isotopic

matching paths can give rise to Lagrangian isotopic matching cycles, and not every

Lagrangian sphere need be realised as the matching cycle of a matching path [47,

Example 16.12]. The grand plan of the proof of Theorem 1.2.2 is to show that, in

the case of Bd,p,q, there exists a Lefschetz fibration9 such that the above map is a

bijection. Most of the work involved is proving surjectivity, for which we employ

the theory of J-holomorphic curves. We state this as a theorem, as it is the main

technical achievement of this thesis:

Theorem 1.3.4 (Corollary 4.3.3). There exists a genus 0 Lefschetz fibration defined

on an open dense subset of Bd,p,q such that any Lagrangian sphere L is Lagrangian

isotopic to a matching cycle.

The main theorem (Theorem 1.2.2) follows from this and a computation involving

the theory of mapping class groups of surfaces, see Chapter 5.

9A Lefschetz fibration of sorts. See Section 2.5.

9



Chapter 1. Introduction

Remark 1.3.5. Contrast the above with work of Auroux, Muñoz, and Presas [3]

where they prove a similar theorem. However, they construct a Lefschetz fibration

for each Lagrangian sphere, whereas we construct a single Lefschetz fibration for

which all Lagrangian spheres are isotopic to matching cycles.

1.3.2 What is a J-holomorphic curve?

Most of the technical drive behind the proof comes from the theory of J-holomorphic

curves in symplectic manifolds.

Definition 1.3.6. Let M be a smooth manifold. An almost complex structure on

M is an endomorphism of the tangent bundle J : TM → TM such that J2 = −1.

Suppose we have a Riemann surface (Σ, j) and a map u : Σ → M . We say that u

is a (j, J)-holomorphic curve (or simply J-holomorphic if the complex structure on

the domain is understood) if it satisfies the differential equation

J ◦ du = du ◦ j. (1.3.3)

The classic example of a J-holomorphic curve is a holomorphic curve in a complex

manifold. They have seen fantastic applications in symplectic topology — especially

in dimension 4 — since Gromov originally introduced them in a groundbreaking

paper [22] in 1985.

We’ll use J-holomorphic curves to construct Lefschetz fibrations on Bd,p,q that

are somehow adapted to the Lagrangian sphere L ⊂ Bd,p,q. Eventually, we end up

with a Lefschetz fibration for which L is Lagrangian isotopic to a matching cycle,

proving surjectivity of the map in Equation (1.3.2).

The basic idea is as follows. Given an almost complex structure J , we consider

a family of J-holomorphic curves, called a moduli space, written M(J), comprised

of an open dense subset of smooth curves M(J), and finitely many singular curves

∂M(J) := M(J)\M(J). The singular curves come in two types: genus zero nodal

curves with exactly two components, and a unique exotic curve which generally has

many genus 0 components. On the complement of the exotic curve, the natural

10



1.3. Outline of the proof

map πJ : Bd,p,q → M(J) defined by mapping a point to the unique curve it lies

on is a Lefschetz fibration. Therefore, we seek an almost complex structure J —

adapted to L in some way — such that L is Lagrangian isotopic to a matching cycle

of πJ . We will construct such a J through a technique called neck stretching (the

details of which are outlined in Section 1.3.3). This is not quite enough, however,

since we want a single Lefschetz fibration whose matching cycles exhaust the set of

Lagrangian isotopy classes of spheres. We resolve this via a basic argument involving

the connectivity of the space of almost complex structures. Indeed, a 1-parameter

family of almost complex structures Js yields a 1-parameter family of Lefschetz

fibrations πs := πJs and corresponding Lagrangian isotopies between their matching

cycles. With this in mind, fix a reference almost complex structure Jref and its

corresponding Lefschetz fibration πref := πJref . Then we can choose a homotopy Js

from J0 = J to J1 = Jref to obtain a Lagrangian isotopy from L to a matching cycle

of πref .

A few comments are in order about the above sketch. Firstly, we discuss the

smoothness of πJ and M(J). The subset M(J) is a smooth manifold under

certain conditions. Proving this is a long and technical argument involving applying

the implicit function theorem in infinite dimensions. A comprehensive reference on

the case of closed J-holomorphic curves is [37] (in particular, see Chapter 3 therein

for the proof of smoothness of the moduli space). Fortunately for us, in dimension

4 there are exceptionally powerful automatic transversality results [25, 52] which

guarantee that the moduli space of smooth curves M(J) is a smooth manifold under

simple conditions. For example, in the case of a closed genus 0 curve u : S2 → M ,

a neighbourhood of u is a smooth manifold if

c1(u) = c1(u
∗TM) > 0,

where c1(u
∗TM) is the first Chern number10 of u∗TM .

One can assign a topology to M(J) which agrees with the manifold topology on

the subset M(J). Indeed, a remarkable insight of the paper [22] demonstrated that

10For an embedded J-holomorphic curve u : Σ → M with u∗[Σ] = A ∈ H2(M ;Z) the adjunction
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Chapter 1. Introduction

there is a well-behaved compactness theory for J-holomorphic curves in the presence

of a symplectic form which tames J , in the sense that, for all v ∈ TM non-zero,

ω(v, Jv) > 0. (1.3.4)

The full details of the theory we tacitly use here can be found in [37, Chapters 4–

6]. To sketch what can happen, take a sequence of closed J-holomorphic curves

uν : Σ → M with uniformly bounded symplectic area,11 that is, there exists C > 0

such that

E(uν) :=

∫
Σ

u∗νω < C.

Suppose further that the L∞-norm of the derivatives is unbounded:

sup
ν

∥duν∥L∞ = ∞.

Then uν has a subsequence that converges to a singular J-holomorphic curve. This

type of convergence is known as bubbling, since a finite portion of the energy E(uν)

gets concentrated to a point as ν → ∞, and (after reparametrising) one sees another

J-holomorphic curve emerging at this point. In this thesis, we will largely deal with

the simplest case where the limiting singular curve is a nodal curve with two genus

0 components. The example of the family of smooth conics (xy = ϵz2) ⊂ CP2

degenerating to the singular one (xy = 0) as ϵ→ 0 illustrates the picture well.12

Under this notion of convergence, M(J) will be a (compact) metric space, but in

general it is no longer a manifold. However, in the simple cases considered here, the

formula [37, Theorem 2.6.4] states that

c1(u) = A ·A+ χ(Σ).

11This uniform bound will always be satisfied for us, since we will only consider sequences of

curves that represent the same homology class.
12The parametrisation uϵ : C → CP2 : uϵ(w) = [w2 : ϵ : w] converges C∞

loc to the line u+
0 (w) =

[w : 0 : 1]. In this example, the bubbling happens at the point w = 0. Using the map ϕϵ :

B 1
ϵ
(0) → C : ϕϵ(w) = ϵw, we reparametrise uϵ to see the bubble forming: uϵ ◦ ϕϵ converges to

u−
0 (w) = [0 : 1 : w].

12



1.3. Outline of the proof

complement of the exotic curve can be equipped with a smooth structure that agrees

with that given by the implicit function theorem on the locus of smooth curves.

Secondly, we need to justify the claim that the maps πJ : Bd,p,q → M(J) are

actually Lefschetz fibrations. The singular curves with two components that appear

inM(J) form the critical fibres of the map πJ : Bd,p,q → M(J). This claim implicitly

depends on showing that the local coordinate form in Equation (1.3.1) holds at the

nodal points of these curves, which follows from an argument of Wendl and Lisi

sketched in [55, Appendix A]. We discuss it here in Section 2.5.

Thirdly, we outline why 1-parameter families of almost complex structures Js

give rise to 1-parameter families of Lefschetz fibrations πs. This amounts to showing

that, as we vary the almost complex structure J , the structure of the moduli spaces

M(Js) is essentially unchanged. In practise it requires showing that no further

bubbling occurs as we vary J , which is done in Section 2.4.2. This analysis is

heavily reliant on two big results: (1) automatic tranversality, which ensures that

when we deform J there are still solutions to Equation (1.3.3); and, (2) positivity

of intersections, which gives strong geometric constraints on J-holomorphic curves.

Positivity of intersections was first proved in full generality by McDuff [36]. The

statement relevant to us is:

Theorem 1.3.7 (Positivity of intersections). Let u : Σ → M , and v : Σ′ → M be

two closed J-holomorphic curves such that u−1(im v) contains no non-empty open

set. Then the intersection number u · v = u∗[Σ] · v∗[Σ′] is non-negative, and it equals

0 if, and only if, u and v are disjoint.

Finally, we briefly discuss the motivation for using neck stretching to construct an

almost complex structure adapted to L, and specifically, why one would expect this

to produce a Lefschetz fibration with a matching cycle isotopic to L. The starting

point is Weinstein’s Lagrangian neighbourhood theorem [51]. Recall the canonical

1-form λcan defined on the cotangent bundle of any smooth manifold M . Given

coordinates (q1, . . . , qn) on M , let (p1, . . . , pn, q1, . . . , qn) be the induced coordinates

on T ∗M , so that the point (p1, . . . , pn, q1, . . . , qn) represents the covector
∑n

i=1 pidqi.

13



Chapter 1. Introduction

In these coordinates, λcan has the following form:

λcan =
n∑
i=1

pidqi.

We define the canonical symplectic form on T ∗M by

ωcan = dλcan. (1.3.5)

Notice that the zero-section 0M ⊂ T ∗M is Lagrangian with respect to ωcan. We-

instein’s Lagrangian neighbourhood theorem says that any Lagrangian L ⊂ (N,ω)

diffeomorphic to M in some symplectic manifold (N,ω) admits a neighbourhood

symplectomorphic to a neighbourhood of 0M ⊂ (T ∗M,ωcan). This means we can

understand the symplectic geometry locally in a neighbourhood of a Lagrangian

simply by considering its cotangent bundle.

The following example acts as a local model for a Lefschetz fibration in a

neighbourhood of a Lagrangian sphere:

Example 1.3.8. LetQ = (z21+z
2
2+z

2
3 = 1) ⊂ C3 be the affine quadric equipped with

the restriction of the standard symplectic form on C3. This is symplectomorphic

to (T ∗S2, ωcan) [42, Lemma 18.1] via a symplectomorphism that identifies the zero-

section with the real locus of Q. The projection πQ : Q → C : π(z) = z3 is a

genus 0 Lefschetz fibration with exactly two singular fibres π−1
Q (±1). Moreover, the

matching cycle of the path γ : [−1, 1] → C : γ(t) = t is exactly the real locus ℜQ.

See Figure 1.2 for a cartoon of πQ.

Weinstein’s Lagrangian neighbourhood theorem allows us to compare Lefschetz

fibrations on Bd,p,q to πQ by restricting them to a neighbourhood of a Lagrangian

sphere L. Starting with an initial almost complex structure J , neck stretching yields

a specific deformation Jt of J such that, for t ≫ 0, the Jt-holomorphic curves that

pass through a fixed neighbourhood of L closely resemble the fibres of πQ. As L is

identified with the real locus ℜQ in the above model, and ℜQ is a matching cycle

of πQ, one might hope that, in some sense, L is close to being a matching cycle of

πJt for large t. We formalise this in Chapter 4 and prove that t can be chosen large

enough so that L is Lagrangian isotopic to a matching cycle of πJt .

14



1.3. Outline of the proof

×
−1

×
10

Figure 1.2: A cartoon of the Lefschetz fibration πQ : Q → C on the affine quadric

Q. The shaded sphere is the real locus, which is the matching cycle corresponding

to the dashed matching path drawn in the base. It intersects the regular central

fibre in the vanishing cycle, indicated in the figure by the dotted circle.

1.3.3 What is neck stretching?

Neck stretching, or the splitting construction, is a process by which we alter an

almost complex structure in a neighbourhood of a particular hypersurface of a

symplectic manifold. We refer to [14, §1.3], [5, §3.4], or [9, §2.7] for the full

construction, as we will only need a special case of it here. Note that the Lagrangian

isotopy theorems mentioned earlier [23, 15] crucially rely on it.

Consider a Lagrangian L of a closed symplectic manifold (X,ω) and equip L

with a Riemannian metric. This allows us to define the sphere bundle of covectors

of a fixed length:

T ∗
RL := {v ∈ T ∗L | |v| = R}.

Along with the restriction of the canonical 1-form λcan, the pair (T ∗
RL, λcan) is an

example of a contact manifold. For us, this will mean the following:

Definition 1.3.9. Let M be a manifold of dimension 2n − 1. A contact form

15



Chapter 1. Introduction

λ ∈ Ω1(M) is a 1-form satisfying

λ ∧ dλn−1 ̸= 0.

The distribution ξ = kerλ is called the contact structure and the pair (M, ξ) is a

contact manifold. Notice that the pair (ξ, dλ) forms a symplectic vector bundle.

That is, dλ restricts to a non-degenerate form on each contact plane ξp.

The manifold R×M equipped with the 2-form d(erλ) is symplectic and the pair

(R×M, d(erλ)) is called the symplectisation of (M,λ).

Remark 1.3.10. 1. We give this general definition to condense the notation

slightly, although the reader should keep in mind that we will only be interested

in the case where (M,λ) = (T ∗
RL, λcan) as above.

2. For an example of neck stretching around a Lagrangian submanifold other than

a sphere see the work of Dimitroglou-Rizell, Ivrii, and Goodman [11] where

they prove the nearby Lagrangian conjecture for T ∗T 2.Examples of stretching

around non-orientable Lagrangian surfaces can be found in [39, 16].

3. The map

Φ : R× T ∗
RL→ T ∗L\0L : Φ(r, v) = erv

is an exact symplectomorphism. That is, it satisfies,

Φ∗λcan = erλcan|T ∗
RL
.

Therefore, by the Weinstein Lagrangian neighbourhood theorem, some portion

[−ϵ, ϵ] × T ∗
RL symplectically embeds into M . We’ll call this the neck region,

or simply the neck.

On symplectisations, we can define a special class of almost complex structures,

but to do so, we need to take the taming condition (1.3.4) one step further:

Definition 1.3.11. An almost complex structure J on a symplectic vector bundle

(E,ω) → X is called compatible with ω when it satisfies the taming condition of

16



1.3. Outline of the proof

Equation (1.3.4) and ω is J-invariant: for all u, v ∈ E,

ω(Ju, Jv) = ω(u, v). (1.3.6)

This is equivalent to saying that the tensor field g defined by

g(u, v) := ω(u, Jv)

is a bundle metric on E.

On R×M there are two special vector fields: ∂r given by the R-coordinate, and

the Reeb vector field Rλ defined by

λ(Rλ) ≡ 1, and ιRλ
dλ ≡ 0.

Definition 1.3.12. We say that an almost complex structure J on a symplectisation

R×M is cylindrical when

1. J∂r = Rλ,

2. J is invariant under R-translation, and

3. the restriction J |ξ of J to the contact structure ξ is a compatible almost

complex structure on the symplectic vector bundle (ξ, dλ) →M .

Since the neck region is symplectomorphic to part of a symplectisation, we can

consider the class of almost complex structures J on X that restrict to a cylindrical

almost complex structure JM on the neck [−ϵ, ϵ] ×M . These are sometimes called

almost complex structures that are adapted to the hypersurface {0}×M ⊂ X, but we

will often abuse language and call them cylindrical. The process of neck stretching

is to start with one of these adapted almost complex structures and replace the

neck with larger and larger portions [−t− ϵ, ϵ]×M of R×M along with an almost

complex structure that is cylindrical along this longer neck. More precisely, following

[9, §2.7] excise the neck region to obtain a compact manifold13 Y := X\(−ϵ, ϵ)×M

13In [9] this is denoted by X̄0.
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Chapter 1. Introduction

with boundary ∂Y = M− ⊔M+, where M± = {±ϵ} ×M ⊂ X. Form the stretched

manifold Xt by

Xt := Y ∪M−⊔M+ [−t− ϵ, ϵ]×M,

which is diffeomorphic to X. Define the almost complex structure Jt on Xt by

Jt =

J, on Y

JM , on [−t− ϵ, ϵ]×M.

(1.3.7)

The family of almost complex structures Jt is called a neck stretch of J .

A neck stretch Jt has no well-defined limit on X as t → ∞. However, due to

their R-invariant nature on the neck, they can be seen to converge (on compact

subsets) to almost complex structures on either the symplectisation R×M , or the

completed14 symplectic manifold Ŷ = Y ∪M− [−ϵ,∞)×M ∪M+ (−∞, ϵ]×M . Taking

a monotonic sequence tk → ∞ and the corresponding neck stretch Jk := Jtk , we

consider sequences fk : Σ → Xk of Jk-holomorphic curves with uniformly bounded

energy.15 To make sense of a limit of fk as k → ∞ we need to recall the notion of

a holomorphic building. Essentially, this is a map F : Σ∗ → X∗ from a (potentially

disconnected and punctured) Riemann surface Σ∗ =
⊔N
ν=0 Σ

(ν) to the manifold

X∗ = Ŷ ⊔
N⊔
ν=1

R×M,

where the restriction F (ν) = F |Σ(ν) to each level maps into

X(ν) =

X̂, if ν = 0, N + 1

R×M, if ν = 1, . . . , N.

14The completion of a symplectic manifold W with contact-type boundary (M,λ) is obtained

by gluing on infinite half-cylinders of the form [0,∞) × M or (−∞, 0] × M . The distinction

between these cases comes from the fact that each connected component M ′ of M has a collar

neighbourhood symplectomorphic to ((−ϵ, 0]×M ′, d(e±rλ)). The sign of ∞ in the intervals agrees

with the sign of r in d(e±rλ).
15The definition of energy is a little technical in general [5, §6.1]. However, in our case, as we are

neck stretching around a contact-type hypersurface in a closed manifold, the energy bound will be

automatically satisfied by considering sequences of homologous curves.
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1.3. Outline of the proof

X
(0)
+

R×M

X
(0)
−

Figure 1.3: An example of a genus 1 holomorphic building with 3 levels: a top and

bottom, and one symplectisation level in between.

The limits of the neck stretch sequence Jt fit together into an almost complex

structure J∗ on X∗, with respect to which F is J∗-holomorphic. That is, F (ν)

is a J (ν)-holomorphic curve in X(ν). One should imagine the curves fk becoming

stretched so much as k → ∞ that they “break” into multiple curves in the limit. See

Figure 1.3 for a picture illustrating the level structure of a holomorphic building.

See also [5, Figure 11] and [9, Figure 1] for more sophisticated cartoons of what

happens.

We will only consider the case where M is a separating hypersurface in X,
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Chapter 1. Introduction

meaning that Y = X\(−ϵ, ϵ)×M has two connected components16 Y±. This means

that X(0) = Ŷ decomposes into two components X
(0)
± , which are the completions of

Y±. The 0-level of a holomorphic building then naturally splits into two components

called the top and bottom levels: Σ(0) = Σ
(0)
+ ⊔ Σ

(0)
− and F

(0)
± := F |

Σ
(0)
±

maps into

X
(0)
± . As the completions of the symplectic manifolds Y±, X

(0)
± come equipped with

symplectic forms ω± satisfying:

(X
(0)
+ , ω+) ∼= (X\L, ω) and (X

(0)
− , ω−) ∼= (T ∗L, dλcan).

Moreover, the stretched manifolds Xt can be equipped with natural symplectic

structures [9, Example 2.4]:

ωt =


ω, on Y+,

d(erλ), on [−t− ϵ, ϵ]×M,

e−tω, on Y−,

which converge (on compact subsets and after rescaling by et in the case of X
(0)
− ) to

the familiar symplectic forms ω on X
(0)
+

∼= X\L and dλcan on X
(0)
−

∼= T ∗L.

The power of this technique will come from our understanding of J-holomorphic

curves in X
(0)
−

∼= T ∗L ∼= T ∗S2. It follows from the techniques of Hind [23] and

automatic transversality [52] that any cylindrical almost complex structure on T ∗S2

admits two transverse foliations by J-holomorphic planes (once punctured spheres).

These are analogous to the transversely intersecting foliations of S2×S2 by horizontal

[S2 × {point}] and vertical [{point} × S2] spheres. The relevant facts are collected

in Section 3.3.

Using these foliations, and intersection theory for punctured J-holomorphic

curves [50], we deduce what happens to the curves in the moduli spaces M(Jt)

as t → ∞. This is the purpose of Section 3.4. They give rise to a J-holomorphic

foliation of T ∗S2 by cylinders (copies of C× = C\{0}) in the limit, whose leaves

form the fibres of a Lefschetz fibration akin to πQ of Example 1.3.8. The crucial

16The sign of Y± corresponds to that of the boundary ∂Y± = {±ϵ} ×M .
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1.3. Outline of the proof

consequence of this is that our Lagrangian sphere L will be a matching cycle of

the limiting Lefschetz fibration. We then apply a uniform convergence argument to

show that, for sufficiently large neck stretches (sufficiently large t), L is Lagrangian

isotopic to a matching cycle of one of the Lefschetz fibrations π : Bd,p,q → M(Jt).

This is covered in Chapter 4.

1.3.4 Compactifying Bd,p,q

The previous discussion is almost enough to prove Theorem 1.3.4. However, we

have oversimplified some details for the sake of narrative clarity. Perhaps the most

glaring omission is that the domain of the Lefschetz fibration π : Bd,p,q → M(J)

is non-compact, but in Section 1.3.3 we quietly assumed that the ambient manifold

X was closed. The construction of the map π actually goes as follows. First,

in Section 2.2, we find a suitable compactification Xd,p,q (of a suitable subset) of

Bd,p,q whose symplectic geometry reflects enough of that of Bd,p,q to be able to

construct the Lagrangian isotopy in Xd,p,q and the pull this back to Bd,p,q. Then

we consider the moduli space of genus 0 curves living in a distinguished homology

class F ∈ H2(Xd,p,q;Z) satisfying F 2 = F · F = 0, and show that it has the nice

compactification and invariance (under deformations of J) properties described in

Section 1.3.2. This is carried out in Section 2.4.

The purpose of compactifying is to make use of the simpler theory of closed J-

holomorphic curves in closed symplectic manifolds. Compactifying gives a method

to control the bubbling that occurs as we vary J , and ultimately prove that this

is well behaved (Corollary 2.4.16). Otherwise, working directly with Bd,p,q would

force one to work with punctured curves. This approach would need an alternative

argument to control bubbling/breaking.17

The method of producing the compactification Xd,p,q comes from the almost

17Although, the author believes this is achievable and even desirable, in fact, since this would

avoid annoying arguments like Lemma 4.3.2. However, the compactness theory for punctured

curves is more complicated.
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(0, 1)
(dp2, dpq − 1)

×
×

(p, q)

×
×

(r, rq−1
p

)

Figure 1.4: The symplectic cut performed to “chop off” the non-compact end

of Bd,p,q. The cut is indicated by the dash-dot line which has primitive integer

direction
(
r, rq−1

p

)
, where r is the unique integer 0 < r < p such that rq ≡ 1 mod p.

The preimage of the area below the horizontal dashed line is a compact symplectic

submanifold with boundary whose symplectic completion is symplectomorphic to

Bd,p,q. Drawn here is the most basic example (d, p, q) = (2, 2, 1). However, this is

not indicative of the general case: when q > 1 the dash dot line corresponding to

the symplectic cut will have positive gradient. See Figure 1.5 for another example.

toric structure on Bd,p,q. Using a technique called symplectic cut (originally due to

Lerman [33]) one can essentially “chop off” the non-compact end of Bd,p,q to obtain

a closed symplectic manifold (see Figure 1.4). Doing so introduces a number of

singularities, which must be resolved to produce a smooth manifold. All this is done

in Lemma 2.2.1. The requisite knowledge is presented lucidly in [17].
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1.3. Outline of the proof

(18, 11)

(2, 1)

×

×

Figure 1.5: Another example of Bd,p,q after cutting. Here (d, p, q) = (2, 3, 2) is

drawn. As is clear, the pictures quickly become unwieldy in this form. See Figure 2.7

for an integral affine transformation of the fundamental action domain of Bd,p,q that

behaves better under increasing the values (d, p, q).
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Chapter 2

A compactification of Bd,p,q and its

Lefschetz fibrations

This chapter achieves two goals. Firstly, we use an almost toric structure on Bd,p,q

to construct a compactification X = Xd,p,q via a series of symplectic cuts (see

Lemma 2.2.1). Secondly, we show that for every almost complex structure J on X

satisfying some constraints (but importantly including any almost complex structure

arising from neck stretching) there exists a J-holomorphic foliation ofX whose leaves

form a Lefschetz fibration (Proposition 2.5.1) on an open dense subset.

2.1 Spiel on toric base diagrams

In this chapter we use a little of the theory of (almost) toric geometry. As mentioned

in the introduction, the requisite knowledge can be found in [17] and the references

therein. We state the main definition of a Delzant polytope here for convenience

(taken from Definition 3.5 in [17]).

Definition 2.1.1. A rational convex polytope P (which we will call a moment

polytope or simply a polytope) is a subset of Rn defined as the intersection of a finite

collection of half spaces {x ∈ Rn |
∑n

i=1 αixi ≤ b} with αi ∈ Z and b ∈ R. We say

that P is a Delzant polytope if it is a convex rational polytope such that every point
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2.1. Spiel on toric base diagrams

on a k-dimensional facet has a neighbourhood that is integral affine isomorphic (an

isomorphism of the form Ax+ b with A ∈ SLn(Z) and b ∈ Rn) to a neighbourhood

of the origin in the polytope [0,∞)n−k×Rk. A vertex of a polytope is called Delzant

if the germ of the polytope at that vertex is Delzant.

Remark 2.1.2. 1. The Delzant condition is important since it means that the

symplectic manifold corresponding to the polytope is smooth.

2. Importantly, as we only work with 4-dimensional symplectic manifolds

(corresponding to n = 2 in the above definition), a vertex v of a polygon

is Delzant if, and only if,1 the primitive integer vectors u and w pointing along

the edges that meet at v form a matrix u ∧ w with determinant ±1.

Let p, q ∈ Z be such that gcd(p, q) = 1, then write 0 < r < p for the unique

integer such that qr ≡ 1 mod p. Consider the singular toric manifold with the non-

Delzant moment polygon, Π(p, q), shown in Figure 2.1. As in [17, §4.5], we can use

1
p
(1, q) (p, q)

1
p
(1, p− r)

Figure 2.1: The moment polygon Π(p, q).

symplectic cuts to resolve the cyclic quotient singularities present in the symplectic

orbifold corresponding to the polygon Π(p, q). The minimal resolution of Π(p, q) is

a smooth toric manifold with moment polygon sketched in Figure 2.2.

Denote the continued fractions p
q
= [x1, . . . , xm] and

p
p−r = [y1, . . . , yk]. We use

1Note that, for n-dimensional facets (interior points) the Delzant condition is trivial, and for n−1

dimensional facets (faces) the condition is automatically satisfied since they lie on hypersurfaces

of the form {x ∈ Rn |
∑n

i=1 αixi = b}. Therefore, checking the vertices of a 2-dimensional polygon

is enough to verify whether it is Delzant or not.
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−x1 · · · −xm
(p, q)

−y1
. .
.

−yk

Figure 2.2: The minimal resolution of Π(p, q). The vertices are marked for clarity.

The labels −xi, and −yj represent the self-intersection numbers of the symplectic

spheres that live above the corresponding edges. The label (p, q) indicates the

primitive integer direction of its edge.

the Hirzebruch-Jung convention for continued fractions, meaning:

[x1, . . . , xm] := x1 −
1

x2 − 1
. . .− 1

xm

.

Recall that a zero continued fraction (ZCF) is one which evaluates to zero:

[a1, . . . , al] = 0.

Blowing up [a1, . . . , al] corresponds to replacing it with any one of the following:

[1, a1 + 1, . . . , al], [a1, . . . , ai + 1, 1, ai+1 + 1, . . . , al], or [a1, . . . , al + 1, 1],

all of which are ZCFs themselves [17, Example 9.10]. The reverse operation is

called blow down, and any ZCF admits a blow down to [1, 1] [17, Lemma 9.11].

The following lemma collects some facts that we will use when constructing the

compactification.

Lemma 2.1.3. 1. The continued fraction χ = [x1, . . . , xm, 1, y1, . . . , yk] is a

ZCF. Then, since xi, yi ≥ 2, there is a unique sequence of blow ups from

the ZCF [1, 1] to χ.
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2.1. Spiel on toric base diagrams

2. The symplectic sphere corresponding to the edge marked (p, q) in the polygon

of Figure 2.2 has self intersection −1.

Proof. (1). The fact that χ = 0 follows from a simple computation using the relation

qr ≡ 1 mod n. Since

χ = x1 −
1

x2 − 1
. . .− 1

1−[y1,...,yk]−1

,

we calculate that

1− [y1, . . . , yk]
−1 = 1− p− r

p
=
r

p
.

Since the continued fraction of p
r
is just the reverse of that of p

q
, we find that

1

1− [y1, . . . , yk]−1
=
p

r
= [xm, . . . , x1],

which we use to see

χ = x1 −
1

x2 − 1
. . .− 1

xm−[xm,...,x1]

.

Since

xm − [xm, . . . , x1] =
1

[xm−1, . . . , x1]
,

it follows that χ = 0.

As is well-known, see for example [17, Lemma 9.11], every ZCF can be obtained

from [1, 1] via iterated blow up, and the uniqueness follows from the observation

that χ has a unique entry equal to 1. Therefore, the initial blow up must be [1, 1] →

[2, 1, 2], and subsequent blow ups must be adjacent to the unique 1 entry in the

ZCF.2

(2). We prove this by direct computation. Consider the part of the polygon

shown in Figure 2.3(a). Recall that each of the vertices were the result of resolving a

singularity corresponding to the polygon π(p, a) in Figure 2.3(b) for some 0 < a < p.

In particular, let A ∈ SL2(Z) be the unique matrix that maps the vertex of π(p, a)

to the 1
p
(1, p− r) vertex in Figure 2.1. That is, A satisfies

(0, 1)A = (−p,−q), and (0, 1)A−1 = (p, a).

2For example, [2, 1, 2] → [3, 1, 2, 2] is permissible, whilst [2, 1, 2] → [1, 3, 1, 2] isn’t.
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(a)

(γ, δ)

(p, q)

(α, β)
(b)

(p, a)

Figure 2.3: (a) A neighbourhood of the edge (p, q) in the polygon of Figure 2.2.

(b) the moment polygon π(p, a).

Then, since (α, β) = (1, 0)A we have that3 0 < α = a < p. A similar argument

shows that 0 < γ < p.

Both vertices in Figure 2.3(a) are Delzant, which means

−δp+ γq = det

 p q

−γ −δ

 = 1, and

−αq + βp = det

 α β

−p −q

 = 1.

(2.1.1)

Reducing modulo p yields γ ≡ −α mod p, which, combined with the fact that

0 < α, γ < p, means γ = p−α. Lemma 3.20 of [17], asserts that the self intersection

of the (p, q)-edge is given by

det

−γ −δ

α β

 = −γβ + δα.

Therefore, in view of equation (2.1.1), we have that

−γβ + δα =
−γ − α

p
= −1,

which completes the proof.

3Indeed,

A−1 =

∗ ∗

p a


so that

α = (1, 0)A

1

0

 = (1, 0)

 a ∗

−p ∗

1

0

 = a.
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2.2. Compactification construction

Remark 2.1.4. A more conceptual way to prove statement (2) above is to use the

fact that there is a unique series of blow ups

[1, 1] → [x1, . . . , xm, 1, y1, . . . , yk]

and perform the corresponding symplectic blow ups as in Figure 2.4. Indeed,

Example 9.10 and Corollary 9.13 of [17] show that the combinatorics of these two

procedures are the same. Thus, we obtain two families of toric moment polygons,

(1, 1)
(2, 1)

(3, 2)

[1, 1] [2, 1, 2] [2, 2, 1, 3]

Figure 2.4: An example of blowing up the toric manifold associated to the ZCF

[1, 1]. The symplectic cuts made are labelled with the primitive integer direction

they point in. The vertices are marked for clarity.

one from resolving all the polygons Π(p, q), and the other from blowing up ZCFs.

Note in particular that the second family of polygons will necessarily have a unique

edge with self intersection −1. An inductive argument on the length of the blow-

ups of the ZCFs shows that these families coincide, from which it follows that the

(p, q) edge in Figure 2.2 must be a −1-curve, since all the other edges are of self

intersection at most −2.

2.2 Compactification construction

The Fubini-Study form ωFS on CP2 can be defined as the symplectic reduction

of (C3, ωC3) with respect to the Hamiltonian 1
2
|z|2 at the regular level (1

2
|z|2 =

1) [17, Example 4.9].4 It has a Hamiltonian torus action with moment polygon

4Equivalently, in each of the usual affine coordinate patches on CP2 we have

ωFS = i∂∂̄ log(1 + |z1|2 + |z2|2).
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(a) (b) 1
p
(1, q)

1
p
(1, p− r)

×
×

Figure 2.5: (a) The moment polygon of (CP2, ωFS). (b) The almost toric base

diagram of the compactification X (modulo resolving the marked singularities as in

Figure 2.2).

(a)

(b)
×

Figure 2.6: (a) A symplectic cut at a Delzant vertex. (b) A non-toric blow up at

an edge of a moment polygon.

Figure 2.5(a). The next result shows that we can perform a series of alterations to

this polygon, called symplectic cuts and non-toric blow ups, to obtain a symplectic

compactification of Bd,p,q determined up to symplectic deformation5 by the polygon

Figure 2.5(b). Performing a symplectic cut to a Delzant vertex in a moment polygon

is characterised by Figure 2.6(a). The non-toric blow up transforms a polygon as in

Figure 2.6(b). Both of these operations correspond to the symplectic blow up. The

reader may consult Sections 4.4 and 9.1 of [17] for further details.

This definition ensures that
∫
H
ωFS = 2π for the class H of a projective line.

5The reason this is not “up to symplectomorphism” is because of the freedom of choice over

the affine lengths of the edges introduced by resolving the singularities. However, this is largely

inconsequential.
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2.2. Compactification construction

Lemma 2.2.1. There exists a number6 µ > 0 and a symplectic compactification

(X,ω) = (Xd,p,q, ωd,p,q) of Bd,p,q such that (X,ω) is a blow up of (CP2, µωFS). The

blow ups compute a basis {H,S,Ei, Ej | 0 ≤ i ≤ n, 1 ≤ j ≤ d} of H2(X) such that

the following holds:

1. H is the class of a line in CP2, S and Ei are exceptional curves corresponding

to symplectic cuts, and Ej are exceptional curves corresponding to non-toric

blow ups;

2. n = m+ k − 1 is equal to the number of blow ups

[1, 1] → [x1, . . . , xm, 1, y1, . . . , yk]

determined by Lemma 2.1.3;

3. the ω-areas of the non-toric curves Ej are all equal, that is, there exists l > 0

such that, for each 1 ≤ j ≤ d,

ω(Ej) = l;

and,

4. define the homology class of a smooth fibre by F := H − S, then ω(F ) = 2l,

and ω(F ) > ω(En).

Proof. Consider the almost toric base diagram of Bd,p,q shown in Figure 2.7(a).7

Choose A ∈ SL2(Z) such that (0, 1)A = (p, q). Writing A =

r s

p q

, the condition

detA = 1 ensures that qr ≡ 1 mod p and we may choose A such that 0 < r < p.

Applying A−1 to the base diagram then yields Figure 2.7(b). We make a series of

symplectic cuts, shown as dash dot lines in Figure 2.8: first a horizontal one at

6The actual value of µ is irrelevant, but one can calculate it to be
√
2 times the Euclidean

distance of the diagonal edge from the top-right vertex in the polygon shown in Figure 2.5(a).
7Note that the figures drawn here are for the case (d, p, q) = (2, 2, 1) but the process works for

all triples.
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Chapter 2. A compactification of Bd,p,q and its Lefschetz fibrations

(a)

(0, 1)
(dp2, dpq − 1)×

×
(p, q)

(b)

(−p, r)

(p, dp− r)(−1, 1)

(1, 1)×
×

(0, 1)

Figure 2.7: The figure from left to right shows the effect of the transformation A−1.

The dashed rays in (b) are included to show the extremes that the solid rays cannot

cross since 0 < r < p and d > 1.

some level above the focus-focus critical values; and then vertical cuts on either

side. Doing so introduces two cyclic quotient singularities, which are marked in the

figure. Taking the minimal resolution yields the desired compactification X.

(a) ×
×

(b) 1
p
(1, q)

1
p
(1, p− r)

×
× l

Figure 2.8: Performing symplectic cuts (dash dot lines) to compactify Bd,p,q.

After performing the vertical cuts, we obtain a manifold with two cyclic quotient

singularities, which are marked as bullets in the figure, along with their type. The

dashed line labelled l indicates the affine displacement of the right hand vertical cut

from the monodromy eigenline.

We now perform a sequence of blow-downs to the base diagram of X terminating

at the moment polygon of CP2 (Figure 2.10(b)). This proves that X is a blow-up

of CP2 and the sequence of blow-downs we perform picks out the claimed basis

of H2(X). To this end, we rotate the branch cut by 90◦ anticlockwise (see [17,

Section 7.2]), to obtain8 Figure 2.9(a). The d bites in the diagram correspond to the

exceptional loci of d non-toric blow ups. In particular, they represent a collection

8Note that we continue to draw the base diagram of the singular manifold (Figure 2.8(b))

prior to taking the minimal resolution. This is to make the pictures easier to draw and interpret.
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2.2. Compactification construction

of d disjoint symplectic −1-spheres. Moreover, each of them has ω-area equal to l,

since the focus-focus critical values are all the same affine length l from the right-

hand vertical edge. Label the homology classes of these spheres by Ej and blow

them down to obtain Figure 2.9(b). Observe that the singularities of the resultant

(a)

1
p
(1, p− r)

1
p
(1, q)

×

×

(b)

1
p
(1, p− r)

1
p
(1, q)

Figure 2.9: Non-toric blow downs.

manifold are modelled on a reflection about the vertical axis of those of9 Π(p, r).

Therefore, the minimal resolution is given by (the reflection of) Figure 2.2. Then

Lemma 2.1.3 implies that there is a unique sequence of toric blow downs to the

polygon in Figure 2.10(a), which is the moment polygon of CP2#2CP2. Reversing

this process, that is blowing up instead of down, yields the desired sequence of blow

ups from (CP2, µωFS) to (X,ω). Labelling the homology classes of the exceptional

loci of the toric blow ups as S and Ei, and the non-toric ones as Ej, we obtain the

claimed basis

{H,S,Ei, Ej | 0 ≤ i ≤ n, 1 ≤ j ≤ d}.

We have established properties (1)–(3), so it remains to show (4). The equality

ω(H − S) = 2l can be seen by examining Figure 2.8(b): ω(H − S) is equal to (2π

times) the affine length of the horizontal edge and the vertical cuts can be made

equidistant from the monodromy eigenline. The inequality ω(H − S) > ω(En)

Drawing the resolved manifold would involve long chains of edges as in Figure 2.2, the precise

directions and lengths of which add nothing to the proof, so we omit them.
9This is not a typo; reflection in the vertical acts as inverse modulo p on the singularity:

1
p (1, q) 7→

1
p (1, r).
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Chapter 2. A compactification of Bd,p,q and its Lefschetz fibrations

(a)

E0

H − E0

F = H − S

S
(b)

H

Figure 2.10: (a) The moment polygon of the toric manifold obtained by blowing

down Xd,p,q. The edges are labelled with the corresponding homology classes. (b)

The moment polygon of CP2, obtained by blowing down the edges labelled S and

E0.

follows from considering Figure 2.11, which is the same polygon as in Figure 2.9(b).

ω(F )

e

λ

Figure 2.11: The moment polygon of Figure 2.9(b) with affine lengths indicated.

The edge e points in the (p,−r) direction. Since the edge corresponding to En is

obtained by symplectically cutting the bottom edge, we have the inequality ω(En) <

λ.

The edge corresponding to En is obtained by symplectic cutting the bottom edge

e of Figure 2.11, so its affine length ω(En) is strictly smaller than that of e, which

we denote by λ. Since e points in the direction (p,−r), we must have that λp =

ω(H −S), since the top edge is horizontal. As p > 1, we obtain that λ < ω(H −S).

This completes the proof.

Remark 2.2.2. The toric boundary D ⊂ X is a symplectic divisor of (X,ω), meaning
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2.3. Lagrangian spheres in Bd,p,q

that is a union of (real) codimension 2 symplectic submanifolds of (X,ω). It is a cycle

of transversely intersecting spheres, with each intersection point being positive. We

represent D by the dual intersection graph of its components in Figure 2.12(a).

Removing the components {S, F, S ′ := H − E0 −
∑d

j=1 Ej} yields a subgraph

F
S ′

...

En

...

S

(a) D =
(b) · · ·

En
· · ·D∞ =

m k

Figure 2.12: (a) The dual intersection graph of the divisor D ⊂ X. Vertices are

labelled with the respective homology classes of the component symplectic spheres.

The integers m and k correspond to the lengths of the continued fractions of p
p−r and

p
q
respectively, as in Lemma 2.1.3. (b) The subgraph consisting of spheres introduced

by resolving the singularities in the compactification process.

representing the part of the toric boundary obtained by resolving the singularities

in Figure 2.9, which we will call D∞.

2.3 Lagrangian spheres in Bd,p,q

We classify the homology classes in H2(Bd,p,q;Z) ∼= Zd−1 that support Lagrangian

spheres. The point of this is to show that, in the compactificationX, any Lagrangian

sphere L ⊂ Bd,p,q ⊂ X is homologous to e − e′ where e, e′ ∈ H2(X;Z) are classes

represented by J-holomorphic −1-curves. This will be important for our neck

stretching analysis performed in Section 3.

The homotopy type of Bd,p,q is a (p, q)-pinwheel wedged with d− 1 spheres [17,

Lemma 7.11]. Moreover, the standard Ad−1 configuration of Lagrangian spheres is

a generating set of the second homology:

H2(Bd,p,q) = H2(Bd,p,q;Z) = Z⟨Li : 1 ≤ i ≤ d− 1⟩,
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Chapter 2. A compactification of Bd,p,q and its Lefschetz fibrations

Therefore, the intersection form with respect to this basis is

Q :=



−2 1 0 · · · · · · · · · 0

1 −2 1 0 · · · · · · 0

0 1 −2 1 · · · · · · 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · · · · 1 −2 1

0 0 · · · · · · 0 1 −2


. (2.3.1)

Lemma 2.3.1. The set L ⊂ H2(Bd,p,q) of homology classes represented by

Lagrangian spheres in Bd,p,q is given by

L = {±(Li + Li+1 + . . .+ Lj) | 1 ≤ i ≤ j ≤ d− 1}. (2.3.2)

Proof. Put L′ = {±(Li + Li+1 + . . . + Lj) | 1 ≤ i ≤ j ≤ d − 1}. Recall that the

Picard-Lefschetz formula states that, for the 4-dimensional Dehn twist τL associated

to a Lagrangian 2-sphere L, the action of τL on homology is given by

(τL)∗(A) =

A+ (A · L)L, if A ∈ H2,

A, if A ∈ Hk, k ̸= 2,

see [48] for example. Since τL is a symplectomorphism, the image of any Lagrangian

submanifold under τL is again Lagrangian. Therefore, by iterating the calculation

(τLi
)∗Li+1 = Li+1 + (Li · Li+1)Li = Li+1 + Li,

we find that L′ ⊂ L.

On the other hand, Weinstein’s Lagrangian tubular neighbourhood theorem [51]

implies that any Lagrangian 2-sphere has self-intersection −2, which reduces the

reverse inclusion L ⊂ L′ to a matter of algebra. Indeed, consider the homology class

L =
∑d−1

i=1 aiLi of a Lagrangian sphere in Bd,p,q. Then, using Equation (2.3.1), we

have that

−2 = L2 = −2
d−1∑
i=1

a2i + 2
d−2∑
i=1

aiai+1.
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2.3. Lagrangian spheres in Bd,p,q

+1 +1
a1 = ±1, ad−1 = ±1

±(L1 + . . .+ Ld−1)
(i)

+1
+1

ai − ai+1 = 1, ad−1 = −1

−Li+1 − . . .− Ld−1

(ii)

+1 +1
ai−1 − ai = −1, aj − aj+1 = 1

Li + . . .+ Lj
(iii)

Figure 2.13: These diagrams demonstrate how the coefficients ai contribute to the

sum in Equation (2.3.3). The left circle represents the value of a1, and the right

that of ad−1; an open circle is 0, whilst a filled one is ±1. Adjacent coefficients

(ai and ai+1) with the same value are joined with a straight line. As indicated, a

contribution of +1 is made to the sum any time the horizontal line jumps or a circle

is filled. The labels to the right of each diagram detail the non-zero terms of the

sum and the homology class they represent.

Since (ai − ai+1)
2 = a2i − 2aiai+1 + a2i+1, we can rearrange the above to obtain

a21 +
d−2∑
i=1

(ai − ai+1)
2 + a2d−1 = 2. (2.3.3)

The left-hand side of this equation is a sum of square integers, so it follows that

exactly two of the terms a1, (ai− ai+1), or ad−1 have modulus equal to 1, whilst the

remainder are zero. From this we deduce that L ⊂ L′ by a case-by-case analysis

(although the reader may find Figure 2.13 alone sufficiently convincing).

We must have that |a1| ≤ 1 and that, for some k ≥ 0, the first k terms of the

sum S :=
∑d−2

i=1 (ai − ai+1)
2 are zero, implying that a1 = . . . = ak+1. There are

three cases (which Figure 2.13 exemplifies): either (i) k = d− 2 which implies that

a1 = . . . = ad−1 = ±1, or k < d − 2 and S has either (ii) one, or (iii) two non-zero

terms. In the case (ii), there exists i ≥ 1 such that

a1ad−1 = 0, a1 = . . . = ai,

|a1 + ad−1| = 1, and ai+1 = . . . = ad−1.
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On the other hand, for (iii) there exist 1 < i ≤ j < d− 1 such that

a1 = . . . = ai−1 = 0 = aj+1 = . . . = ad−1, and ai = . . . = aj = ±1.

These equations imply that L ∈ L′ and hence L = L′.

Remark 2.3.2. The Z-linear map ϕ : H2(Bd,p,q) → Rd generated by ϕ(Li) = ei−ei+1,

where e1, . . . , ed is the standard Euclidean basis of Rd, identifies H2(Bd,p,q) with

the Ad−1 lattice in Rd. In this context, the calculation of the homology classes of

Lagrangian spheres above is equivalent to computing the roots of Ad−1.

Lemma 2.3.3. The construction of X = Xd,p,q induces an injection H2(Bd,p,q) ↪→

H2(X) sending the generators Li of H2(Bd,p,q) to Ei − Ei+1 ∈ H2(X) (up to sign).

Proof. Zooming in to Figure 2.6(b), one can see that each sphere Li has a

neighbourhood Ni ⊂ Xd,p,q that looks like that shown in Figure 2.14. The second

×

×

Figure 2.14: A neighbourhood of one of the standard Lagrangian spheres Li ⊂ X.

homology of Ni is freely generated by F, Ei, Ei+1 ∈ H2(X), so we must have

Li = λF + µiEi + µi+1Ei+1.

Note that the left edge of the diagram in Figure 2.14 is part of the S sphere, which

is a non-zero class Si in H2(Ni, ∂Ni) satisfying

F · Si = 1, and Ej · Si = 0,

for j = i, i+ 1. Therefore, since Li is disjoint from Si, we find that λ = 0. Now, Li

must be a −2 class, and so

−2 = L2
i = −µ2

i − µ2
i+1,
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2.4. Moduli spaces of fibre curves

which implies that |µi| = 1 = |µi+1|. Finally, the Lagrangian condition ensures that

0 = ω(Li) = µiω(Ei) + µi+1ω(Ei+1) = l(µi + µi+1),

which shows that the coefficients µi and µi+1 must have opposite sign. Hence, the

result follows.

Combining the above with Lemma 2.3.1, we have proved the following:

Corollary 2.3.4. Any Lagrangian sphere L ⊂ Bd,p,q ⊂ X has homology class of the

form

[L] = Ei − Ej,

for some 1 ≤ i ̸= j ≤ d.

2.4 Moduli spaces of fibre curves

In this section, we examine the J-holomorphic curves of X that represent the

homology class F = H − S. First, we define the central object of study. Given

an almost complex structure J on X and a complex structure j on S2, define the

moduli space of genus 0 curves in the homology class F , M0,0(X,F ; J), to be the

set10 of maps u : (S2, j) → X satisfying

du ◦ j = J ◦ du and [u] := u∗[S
2] = F,

modulo the action of the reparametrisation group Aut(S2, j) ∼= PSL2(C). The

present goal is to prove that (after removing a single exotic stable curve) the forgetful

map

M0,1(X,F ; J) → M0,0(X,F ; J) (2.4.1)

gives rise to a Lefschetz fibration for all almost complex structures J in some suitable

subset J (∆) of the space of compatible structures J (X,ω), defined as follows.

10The notation used here is adopted from [37]. We’ll often suppress X in the notation

M0,0(X,F ; J).
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Chapter 2. A compactification of Bd,p,q and its Lefschetz fibrations

Definition 2.4.1. Let ∆ be a symplectic divisor in (X,ω), and define

J (∆) :=

{
J ∈ J (X,ω)

∣∣∣∣∣ each irreducible component of ∆ ad-

mits a J-holomorphic representative

}
.

The reason we’re interested in this space of almost complex structures is that

the Lagrangian spheres we consider live in the complement of a divisor in X. Under

neck stretching, the almost complex structure only changes in a small neighbourhood

of the Lagrangian, and so, supposing the initial almost complex structure J0 is a

member of J (∆), then Jt will also be for all t ≥ 0.

Consider the divisor D′ obtained by excising the single component corresponding

to the edge of the toric boundary of X with homology class En. That is, D
′ is given

by the subgraph of the dual intersection graph of D (Figure 2.12(a)) consisting of

every vertex except the bottom one. We are primarily concerned with the case

where ∆ = D′ in the above definition. We will show that, for each J ∈ J (D′),

there exists a unique J-holomorphic curve in the class En. Note that this does not

necessarily mean that J ∈ J (D), since the aforementioned curve may not have the

same image as the En-component11 of D. Indeed, a priori the Lagrangian sphere

L may intersect the En-component of D, whereas Corollary 3.4.11 shows that, for

a sufficiently long neck stretch Jt, the unique Jt-holomorphic curve of class En is

disjoint from L.

The existence of the J-holomorphic curve in the class En will then be used to

show that, for all J ∈ J (D′), the curves in the Gromov compactification M0,0(F ; J)

come in the following types:

• smooth curves of class F , called a smooth fibre curves ;

• nodal curves with exactly 2 components with homology classes Ej, F − Ej,

which will correspond to the Lefschetz critical fibres; and

• a single exotic nodal curve uJ∞ with n + 2 genus 0 components (where n is

11Although the reader will lose little by ignoring this fact.
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2.4. Moduli spaces of fibre curves

as in Lemma 2.2.1), all, except one (the component covering the unique J-

holomorphic curve in the class En), of which cover those of D∞ ∩D′.

Moreover, the unique J-holomorphic curves in the classes S and S ′ are sections of

the fibration (2.4.1) — see Corollary 2.4.16 and Proposition 2.5.1 for further details.

2.4.1 Almost complex structures on symplectic divisors

That J (D′) ̸= ∅, follows from straightforward extensions of results on the symplectic

neighbourhood theorem. See Appendix A.1 for the detailed construction. To

apply the results therein, we need to check that the components of D′ intersect

symplectically orthogonally. However, this follows from standard facts on toric

geometry, see [17, §3.2] for example. Indeed, each intersection point between

components of D is modelled on a Delzant corner of the moment polytope of

X, which is fibred symplectomorphic to (C2, ωC2) with its usual toric structure.

The components of D′ correspond to the coordinate planes in C2, which intersect

symplectically orthogonally. See Figure 2.15 for a cartoon picture of what happens.

Di

Dj

fibred

symplectomorphic
∼= C2

Figure 2.15: Intersecting components of the divisor D′ do so symplectically

orthogonally, since any Delzant corner of a moment polytope is integral affine

isomorphic to the standard one. The fibred symplectomorphism sends the pieces

Di and Dj to the coordinate planes in C2.
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2.4.2 Non-bubbling under variations of J

Choose J ∈ J (D′). In this section we show that the class En admits a J-

holomorphic representative. To this end, recall that the intersection pairing on

H2(X) = H2(X;Z) is non-degenerate. Given any subset A ⊂ H2(X) we denote the

orthogonal complement (with respect to the intersection pairing) of the submodule

Z⟨A⟩ it generates by A⊥. By non-degeneracy, dimA⊥ = codimZ⟨A⟩. This first

result is a basic application of positivity of intersections (Theorem 1.3.7).

Lemma 2.4.2. Let A ∈ H2(X) be any homology class represented by a nodal J-

holomorphic sphere, that is, there exists A ⊂ H2(X) such that A =
∑

Aα∈AAα

where each Aα ∈ A has a J-holomorphic representative. Let C ⊂ D be a connected

subgraph12 of D and suppose that A · Ci = 0 for each J-holomorphic component Ci

of C, and that, for some i, there exists ki ∈ N such that ki[Ci] ∈ A. Then, for all i,

there exist positive integers ki such that ki[Ci] ∈ A.

Proof. We induct on the number, m, of irreducible components of C. The base

case m = 1 is trivial, so assume the result holds for some m > 0. In other words,

C =
⋃

1≤i≤m+1(Ci) and, for 1 ≤ i ≤ m, there exist positive integers ki > 0 such

that ki[Ci] ∈ A. Note that, by construction, Cm+1 has at most two neighbours in

C, each of which it intersects exactly once positively. Therefore, we have that

Cm+1 ·
m∑
i=1

kiCi > 0.

Combining this with the assumption that A · Cm+1 = 0, we obtain(
A−

m∑
i=1

ki[Ci]

)
· Cm+1 < 0.

Positivity of intersections then implies that one of the remaining components Aα ∈

A\{ki[Ci] | 1 ≤ i ≤ m} covers Cm+1. Thus, there exists km+1 > 0 such that

km+1[Cm+1] ∈ A.

12In the sense of the dual intersection graph of D.
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Lemma 2.4.3. For any J ∈ J (D′), any stable curve of class En (if it exists) is

smooth: M0,0(En; J) = M0,0(En; J).

Proof. Consider the connected subgraph C ⊂ D consisting of D minus En and

its neighbours — that is, C consists of all the vertices except the bottom three

in Figure 2.12. Said another way, C is a the maximal subgraph none of whose

components intersect En. Denote the set of homology classes of the components of

C as C.

Suppose that u = (uα) ∈ M0,0(En; J) is a stable J-holomorphic curve in the class

En, and that, for some components uα of u and Ci of C, we have Aα := [uα] = ki[Ci].

Since F ∈ C, and, for all c ∈ C, En ·c = 0, we may apply Lemma 2.4.2 to deduce that

Aβ = kβF for some component uβ of u, which contradicts ω(F ) > ω(En) ≥ ω(Aβ).

Therefore, for all α, c ∈ C, and k ∈ N, we have Aα ̸= kc. Then, positivity of

intersections and En ∈ C⊥ imply that Aα ∈ C⊥ for all α. Indeed, 0 = En · c =∑
αAα · c and Aα · c ≥ 0.

A simple calculation shows that C is a rank n+ 2 linearly independent set, and

so, since dimH2(X) = n+ d+ 3, to explicitly describe Aα it suffices to find a rank

d+ 1 linearly independent set in C⊥. Let E−, E+ denote the neighbours of En ⊂ D

and note that E+ −E− ∈ C⊥, since they both intersect En once positively. Then it

is easily checked that

C⊥ = Z⟨En, E+ − E−, Ej − Ej+1 : 1 ≤ j < d⟩.

Recall that during the compactification process of Lemma 2.2.1, the curves E± were

introduced through symplectic cutting the toric boundary during the resolution of

singularities procedure. Since we have choice over the affine lengths of these cuts,

they can be made equal. That is, ω(E+) = ω(E−). Furthermore, by Lemma 2.2.1,

ω(Ej) = l does not depend on j, so we find that, for some integers λn, λ±, µj ∈ Z,

ω(Aα) = ω

(
λnEn + λ±(E

+ − E−) +
d−1∑
j=1

µj(Ej − Ej+1)

)
= λnω(En).
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That is, the ω-area of uα is an integer multiple of ω(En). Since∑
α

ω(Aα) = ω(En),

this is only possible if it is in fact equal to ω(En). Since non-constant J-holomorphic

curves have positive area, this implies that Aα = En and hence, u = uα is a smooth

curve.

Corollary 2.4.4. For any J ∈ J (D′), the class En admits a J-holomorphic

representative.

Proof. Let J (D′, En) denote the subset of J (D′) of almost complex structures that

admit a J-holomorphic representative of En. Section 2.4.1 says that J (D) ⊂

J (D′, En) is non-empty, and so, since c1(En) > 0, we may apply automatic

transversality [25] to show that J (D′, En) is open in J (D′). Moreover, by

Lemma 2.4.3, J (D′, En) is also a closed subset. Indeed, pick a sequence Jν ∈

J (D′, En) converging to J ∈ J (D′) and a corresponding sequence of curves

uν ∈ M0,0(En; Jν). Gromov compactness [37, Theorem 5.3.1] ensures that there is a

convergent subsequence uν → u, for some u ∈ M0,0(En; J). However, Lemma 2.4.3

states that u must actually be a smooth curve, and so we find that J ∈ J (D′, En).

Thus, since J (D′) is connected, we must have that J (D′, En) = J (D′).

Remark 2.4.5. Corollary 2.4.4 is a type of non-bubbling result. We can paraphrase

it by saying that “J-holomorphic curves in the class En do not bubble under

deformations of J ∈ J (D′).”

2.4.3 The universal J-holomorphic curve

For J ∈ J (D′), let EJ be the image of the unique J-holomorphic curve in the

homology class En. Recall that the symplectic divisor D∞ ⊂ D is that arising from

the resolution of singularities carried out in Lemma 2.2.1. By replacing the En-

component of D∞ with EJ we obtain a J-holomorphic divisor D∞,J . More precisely

this is (D∞ ∩D′) ∪ EJ . See Figure 2.16 for a sketch of how D∞ and D∞,J differ in
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...
...

EJ

Figure 2.16: Part of the divisors D∞ and D∞,J . The only difference between the

two is the central component: D∞,J contains the unique J-holomorphic curve EJ in

the class En, whereas the En-component of D∞ is part of the toric boundary divisor

of X.

a neighbourhood of EJ . Excising this divisor we obtain XJ := X\D∞,J , which we

will show in Section 2.5 is the open dense subset of X on which there exists a genus

0 J-holomorphic Lefschetz fibration.

Following Wendl [55, §7.3.3], we define the universal J-holomorphic curve to be

the forgetful map

πJ : M0,1(XJ , F ; J) → M0,0(XJ , F ; J).

Our goal is to prove that these moduli spaces can be endowed with smooth structures

that realise πJ as a smooth Lefschetz fibration. The only notable difference between

our situation and that in [55] is that the target manifold XJ is not closed. However,

due to the specifics of our situation, we can work around this and show that the

required results of [55, §7.3.4] hold here.

We prove the following results first under a mild genericity condition J ∈ Jreg(D
′)

explained in Definition 2.4.9 below, and then extend them to all J ∈ J (D′) by an

automatic transversality and non-bubbling argument as in Corollary 2.4.4.

Remark 2.4.6. The reason we invoke genericity in the first place is that it gives

us a convenient argument to deduce the structure of M0,0(XJ , F ; J). One may

wonder why we don’t just assume genericity henceforth and skip the automatic

transversality argument. The reason is that in Chapter 3 we will have to modify

our almost complex structures a few times, and knowing the results of this section
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apply to all J ∈ J (D′) makes those arguments more straightforward.

The reason that genericity is convenient for describing the structure ofM0,0(XJ , F ; J)

is that, as we harness in the proof of Lemma 2.4.11, it allows us to deduce that non-

smooth stable curves in M0,0(XJ , F ; J) are nodal curves with exactly two index 0

components intersecting each other exactly once transversely. This in turn facilitates

the application of the gluing theorem (see for example [55, Corollary 2.39]) to deduce

that each of these nodal curves has a neighbourhood homeomorphic to a 2-disc.

The result describing non-smooth stable curves in M0,0(XJ , F ; J) is crucial.

When we drop the genericity assumption, before Lemma 2.4.15, we need to reprove

it, in essence. This is where automatic transversality (combined with non-bubbling

results for certain index 0 curves) enters and tells us that we may still apply gluing

to understand the structure of M0,0(XJ , F ; J) for non-generic J .

Lemma 2.4.7 (c.f. Lemma 7.43 of [55]). The moduli space M0,0(XJ , F ; J) is

homeomorphic to the complex plane C.

Lemma 2.4.8 (c.f. Lemma 7.45 of [55]). The moduli spaces M0,1(XJ , F ; J) and

M0,0(XJ , F ; J) admit smooth structures, making them open manifolds of dimension

4 and 2 respectively, such that πJ is a Lefschetz fibration with genus zero fibres and

exactly one critical point in each singular fibre.

Definition 2.4.9. Fix J0 ∈ J (D′) and denote DJ0 := D′∪EJ0 . Let UJ0 = X\DJ0 ⊂

XJ0 and consider the subset of almost complex structures Jreg(UJ0 , J0) ⊂ J (D′)

defined to be those that satisfy

J |DJ0
= J |X\UJ0

= J0|X\UJ0
= J0|DJ0

,

and every J-holomorphic curve that maps an injective point13 into UJ0 is Fredholm

regular.14 This is a Baire subset15 [53, Theorem 4.8] (see also [56, Theorem A.4]

13An injective point of a curve u : Σ → X is one where u−1(u(z)) = {z} and du(z) is injective.
14A curve u is Fredholm regular when the linearisation of the Cauchy-Riemann operator at u is

surjective. Said another way, this means the moduli space near u is cut out transversely and is

thus a smooth manifold.
15A Baire subset is one which contains a countable intersection of open dense sets.
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and Remark 3.2.3 of [37]) and so we can choose a small perturbation of J0 that lives

in Jreg(UJ0 , J0). We shall abuse notation and denote this set by Jreg(D
′) since the

choice of J0 does not really matter.

Remark 2.4.10. One should think of the set UJ0 above as the set in which almost

complex structures in Jreg(D
′) are allowed to vary. Note that, since J |D∞,J0

=

J0|D∞,J0
we have that D∞,J = D∞,J0 and thus XJ = XJ0 .

We first prove a result that restricts the form of the non-smooth stable curves in

M0,0(XJ , F ; J).

Lemma 2.4.11. For every generic J ∈ Jreg(D
′), every non-smooth stable curve

u ∈ M0,0(XJ , F ; J) is a nodal curve with exactly two transversely intersecting

components u = (u1, u2) satisfying ([u1], [u2]) = (Ej, F − Ej) for some 1 ≤ j ≤ d.

In particular, there are no multiple covers.

Proof. Let Aα be the homology class of an irreducible non-constant component uα

of u = (uα)α. Since uα is disjoint from D∞,J0 , positivity of intersections implies that

Aα ·Dβ = 0 for each irreducible component Dβ of D∞,J0 . We write this condition as

Aα ∈ D⊥
∞,J0

. Since the components of D∞,J0 form a rank n+2 linearly independent

set, and dimH2(X) = n + d + 3, we find that D⊥
∞,J0

= Z⟨F, Ej : 1 ≤ j ≤ d⟩. Thus

we may write, for some integers λ, µj ∈ Z,

Aα = λF +
d∑
j=1

µjEj. (2.4.2)

We claim that c1(Aα) > 0 for all non-constant components of u. Indeed, this will

follow from the Fredholm regularity condition of J ∈ Jreg(D
′), provided that each

non-constant component passes through UJ0 . Now, by the open mapping theorem, a

J-holomorphic map uα : S2 → DJ0 is either constant, or covers a component of DJ0 .

However, since Aα ∈ D⊥
∞,J0

and the only component of DJ0\D∞,J0 =
S F S ′

disjoint from D∞,J0 is the F -component, the latter case would imply that Aα = F ,

which is only possible if u is smooth. Therefore, in the non-smooth case, we conclude

that every component uα passes through UJ0 . However, a priori, uα may not be
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simple, so we pass to its underlying simple curve, say u′α. This satisfies the condition

that it maps an injective point into UJ0 , and so, it is Fredholm regular, implying

that c1(u
′
α) > 0, and thus c1(uα) = c1(Aα) > 0.

Combining the above with the arguments of Proposition 4.8, Lemma 4.12,

and §4.3 of [55], we deduce that u is a nodal curve with exactly two embedded

components of index 0 intersecting transversely in a single node. Let us relabel the

components as u = (u1, u2). Since the index of a curve is given by

ind(u) = 2c1([u])− 2 ≥ 0, (2.4.3)

we find that c1(Ai) = 1 for both components (u1, u2) of u. As ui is embedded, the

adjunction formula [37, Theorem 2.6.4] says

c1(Ai) = A2
i + 2,

implying that A2
i = −1 and so

∑
j µ

2
j = 1, from which we deduce that exactly one

µj is non-zero, and furthermore, this coefficient is ±1. The equation

2λ+ µj = c1(Ai) = 1

ensures that either Ai = Ej, or, Ai = F − Ej. Finally, the condition

2∑
i=1

Ai = F

implies that the other component ui+1 of u satisfies [ui+1] = Ai+1 = F − Ai, from

which the result follows.

Remark 2.4.12. We call the types of nodal curves arising from Lemma 2.4.11 curves

of type (Ej, F − Ej).

Proof of Lemma 2.4.7 assuming genericity. A topological manifold structure on

M0,0(XJ , F ; J) is constructed via a gluing argument, such as that in the proof

of Lemma 7.43 in [55]. Our application of gluing is valid since Lemma 2.4.11

showed that the only non-smooth stable curves are nodal curves with exactly two

transversely intersecting components.
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It remains to show that M0,0(XJ , F ; J) is homeomorphic to C. To this end,

recall the evaluation map

ev : M0,1(XJ , F ; J) → XJ : ev([(u, x)]) = u(x).

In our case, ev is bijective, which follows by a standard foliation and compactness

argument (for example, combine [55, Proposition 2.53], with an argument such as

the end of the proof of Theorem 1.16 of [56]). Moreover, since it’s a proper map,16

and XJ is locally compact and Hausdorff, it follows that ev is a homeomorphism

onto XJ . Now fix a parametrisation v : S2 → X of the divisor component of class

S, and remove the unique point17 from the domain that maps to D∞,J . Then, since

S · F = 1, the composition πJ ◦ ev−1 ◦ v : C → M0,0(XJ , F ; J) is the required

homeomorphism.

Proof of Lemma 2.4.8 assuming genericity. The smooth structures on the moduli

spaces are constructed through the usual implicit function theorem argument [37,

§3] on the set of Fredholm regular curves, combined with the gluing argument at

the nodes given in [55, Lemma 7.45]. The same result there also shows that πJ also

has a Lefschetz fibration structure at the nodal points. Since these arguments are

inherently local, they also apply to our situation of the non-compact target manifold

XJ .

Corollary 2.4.13. For generic J ∈ Jreg(D
′), the moduli space M0,1(XJ , F ; J) is

homeomorphic to Y#kCP2, where Y is a ruled surface over M0,0(XJ , F ; J) ∼= C,

and k ≥ 0 is the number of nodal fibres. In particular, the Euler characteristic

satisfies

χ(M0,1(XJ , F ; J)) = k + 2. (2.4.4)

Proof. The homeomorphism claim is Corollary 7.46 of [55], and the Euler charac-

teristic formula then follows from a calculation using elementary properties of χ.

16Preimages of compact sets are compact.
17This is the point S ∩D∞,J .
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Specifically, Y is fibred by 2-spheres over C, and so

χ(Y ) = χ(S2)χ(C) = 2,

and connect summing with CP2 increases χ by 1.

Corollary 2.4.14. For every generic J ∈ Jreg(D
′), there are exactly d non-smooth

stable curves in M0,0(XJ , F ; J) given exactly by the curves of type (Ej, F − Ej) for

all 1 ≤ j ≤ d.

Proof. Since the evaluation map ev : M0,1(XJ , F ; J) → XJ is a homeomorphism

and, by Corollary 2.4.13, we have that

#nodal curves + 2 = χ(M0,1(XJ , F ; J)) = χ(XJ) = d+ 2,

and so there must be exactly d nodal curves inXJ , all of which are of type (Ej, F−Ej)

by Lemma 2.4.11. Since a nodal curve of this type is unique, that is, for each

1 ≤ j ≤ d, there is at most one nodal curve of type (Ej, F − Ej), then there is

exactly one for each integer j.

It is at this moment that we drop the genericity condition. The next result is a

generalisation of Lemma 2.4.11, and it will be used to show that all of the previous

results that relied on genericity continue to hold.

Lemma 2.4.15. For every (not necessarily generic) J ∈ J (D′), a non-smooth

stable curve in M0,0(XJ , F ; J) must be of type (Ej, F − Ej) for some 1 ≤ j ≤ d.

Proof. The argument is similar to that of Corollary 2.4.4. We will show that the

set of almost complex structures J (D′, A) that support a J-holomorphic curve in

the class A ∈ H2(X), where A is one of the classes Ej, F − Ej, is equal to the whole

space J (D′) by automatic transversality and non-bubbling results. The fact that

J (D′, A) is non-empty follows immediately from Corollary 2.4.14, so we need only

prove the non-bubbling results.
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Suppose that J ∈ J (D′), assume that A = Ej, and let u ∈ M0,0(Ej; J) be a

stable curve of class Ej. Choose a non-constant component uα of u and note, as in

the proof of Lemma 2.4.3, that Lemma 2.4.2 ensures that

Aα = [uα] ∈ (D∞,J ∪ S)⊥.

Since D∞ ∪ S forms a rank n + 3 linearly independent set in H2(X), we find that

(D∞,J ∪ S)⊥ = Z⟨Ek : 1 ≤ k ≤ d⟩, and so, for some integers µk ∈ Z

Aα =
d∑

k=1

µkEk.

Recall that the areas of the classes Ek are all equal to l. Thus, we have that ω(Aα)

is an integer multiple of l:

ω(Aα) = l
d∑

k=1

µk.

However, this is only possible if ω(Aα) = l, and so we conclude that u = uα is

actually a smooth curve.

Repeating the above argument with Ej replaced with F −Ej and S replaced with

S ′ shows that F − Ej curves also don’t undergo bubbling. Hence, by the argument

of Corollary 2.4.4, J (D′, A) = J (D′). Summarising, we have shown that the classes

Ej, F − Ej are J-holomorphic for all J ∈ J (D′). It remains to show that any non-

smooth stable curve must be of type (Ej, F − Ej).

Suppose that we have a stable curve u ∈ M0,0(XJ , F ; J) that is not of type

(Ej, F − Ej) for all 1 ≤ j ≤ d. Then, since the classes Ej and F − Ej are J-

holomorphic, a simple positivity of intersections argument, akin to Lemma 2.4.2,

implies that u has no components in common with Ej and F −Ej. In particular, for

any component uα of u, we have that

Aα ∈

(
D∞,J ∪

d⋃
j=1

Ej

)⊥

= Z⟨F ⟩,

and so u must actually be a smooth curve. This completes the proof.

Corollary 2.4.16. For every J ∈ J (D′) the compactifying curves in M0,0(X,F ; J),

that is, the elements of M0,0(X,F ; J)\M0,0(X,F ; J), are given exactly by:
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• for each 1 ≤ j ≤ d, a nodal curve of type (Ej, F − Ej), and

• a stable curve uJ∞ whose components cover those of D∞,J . We call this the

exotic curve in M0,0(X,F ; J).

In particular, M0,0(X,F ; J) is homeomorphic to S2.

Proof. To prove that the curves of type (Ej, F−Ej) do indeed exist, we wish to repeat

the argument of Corollary 2.4.14. We achieve this by noting that Lemmata 2.4.7

and 2.4.8 continue to hold in the non-generic case, since the only way they depend

on genericity is to prove that non-smooth stable curves consist only of nodal curves

with exactly two components intersecting transversely, but Lemma 2.4.15 shows that

this continues to hold in the non-generic case. Hence, the result of Corollary 2.4.14

continues to hold.

To see that the stable curve uJ∞ ∈ M0,0(X,F ; J) exists, we use the fact that

ev : M0,1(XJ , F ; J) → XJ is a homeomorphism to pick a sequence of smooth

curves uν ∈ M0,0(X,F ; J) passing through points xν ∈ X converging to x ∈ D∞,J .

Gromov compactness allows us to extract a convergent subsequence uν → uJ∞. Since

F 2 = 0, the image of uJ∞ must be disjoint from all the curves in M0,1(XJ , F ; J),

so it follows that imuJ∞ ⊂ D∞,J . Unique continuation [37, §2.3] of J-holomorphic

curves implies that each of the non-constant components of uJ∞ have the same image

as a component of D∞,J . Hence, u
J
∞ covers D∞,J .

Finally, the Gromov topology on M0,0(X,F ; J) realises it as the one point

compactification of M0,0(XJ , F ; J) ∼= C. Whence we obtain that M0,0(X,F ; J)

is homeomorphic to S2.

2.5 The Lefschetz fibrations πJ : XJ → C

The results of Section 2.4.3 allow us to construct Lefschetz fibrations on XJ =

X\D∞,J for all J ∈ J (D′). This section proves the following proposition.
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Proposition 2.5.1. For every J ∈ J (D′), there exists a Lefschetz fibration πJ :

XJ → C which has smooth fibres in the class F , and exactly d nodal fibres of type

(Ej, F − Ej).

This almost immediately follows from §2.4.3, however there are a few smoothness

technicalities to check. The aim is to show that the map

XJ → M0,0(XJ , F ; J) : x 7→ the curve passing through x

is a smooth Lefschetz fibration. Precisely, this map is equal to πJ ◦ ev−1, where

πJ : M0,1(XJ , F ; J) → M0,0(XJ , F ; J) is the universal curve from the previous

section. We abuse notation and denote this composition by πJ also, as we won’t

make further reference to the universal curve. A detailed proof of the following can

be found in Lemma 6.29 of [34]. We recall it here as our subsequent arguments

crucially depend on it.

Lemma 2.5.2. There exists a unique smooth structure on M0,0(XJ , F ; J) such that

the map πJ : XJ → M0,0(XJ , F ; J) is smooth except perhaps at images in XJ of the

nodes of nodal curves in M0,0(XJ , F ; J).

Proof. We construct a smooth atlas onM0,0(XJ , F ; J) making use of the smoothness

and embeddedness properties of the curves in this moduli space. Choose a point

p ∈ XJ that is not the image of a node, and fix an embedded open 2-disc Dp passing

through p that is transverse to the tangent space of the curve up ∈ M0,0(XJ , F ; J)

passing through p. After possibly shrinking Dp, we may assume that nearby curves

in some open neighbourhood U ⊂ M0,0(XJ , F ; J) of up intersect Dp exactly once,

transversely. Therefore, we have a homeomorphism U → Dp. We consider U → Dp

to be a smooth chart by smoothly identifying Dp with the open unit disc in C. We

take the atlas to be the maximal one containing the collection of all such charts, all

of which are smoothly compatible since the foliation M0,0(XJ , F ; J) is smooth. The

claims about smoothness of πJ and uniqueness of the corresponding atlas follow by

construction.
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Remark 2.5.3. As in Lemma 2.4.7, M0,0(XJ , F ; J) equipped with the smooth

structure of Lemma 2.5.2 is diffeomorphic to the complex plane C. Indeed, as

a 2-dimensional topological manifold, there is a unique smooth structure up to

diffeomorphism. However, it is not clear that these smooth structures are compatible

with one another. Indeed, smoothness of gluing maps is a subtle question in general

[55, Remark 2.40] [1, Remark 6.30], and one should be careful when discussing

smooth structures on spaces of stable J-holomorphic curves.

Next, we want to show that πJ is smooth over the nodal points. Firstly, we

note a result sketched in the appendix of [55], which explains how moduli spaces of

square zero spheres that degenerate to a single curve with exactly one transverse

node “look like” Lefschetz singular fibres.

Lemma 2.5.4 (Corollary A.3 of [55]). Each nodal point in XJ admits a complex

coordinate chart in which the leaves of the foliation M0,0(XJ , F ; J) are identified

with the fibres of the map π0 : C2 → C : π0(z1, z2) = z1z2.

Corollary 2.5.5. The map πJ : XJ → M0,0(XJ , F ; J) is a smooth Lefschetz

fibration. The nodal fibres are given exactly by the d nodal curves of type (Ej, F−Ej).

Proof. Let V ⊂ C be an open neighbourhood of 0 ∈ C and choose a local section

s : V → C2 of π0. Note that im s is necessarily disjoint from the unique nodal point

0 ∈ C2. Denote one of the coordinate charts given by Lemma 2.5.4 by ψ : U → C2.

The fact that s is a section and ψ maps curves in M0,0(XJ , F ; J) to fibres of π0

ensures that the composition ϕ := πJ ◦ ψ−1 ◦ s : V → M0,0(XJ , F ; J) is one of the

charts of the atlas constructed in Lemma 2.5.2. Again, as ψ maps curves to fibres,

we have that

πJ = ϕ ◦ π0 ◦ ψ, (2.5.1)

that is, the following diagram commutes:

U C2

M0,0(XJ , F ; J) V

ψ

πJ π0

ϕ

. (2.5.2)
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Since the all the maps on the right-hand-side of (2.5.1) are smooth everywhere, we

must have that πJ is smooth at the node. Moreover, by the commutativity of (2.5.2),

the local charts ψ and ϕ give πJ the structure of a Lefschetz singularity at the node.

The claim about the nodal fibres follows directly from Corollary 2.4.16.

Proof of Proposition 2.5.1. All that remains to do is identify the moduli spaces

M0,0(XJ , F ; J) with C for all J ∈ J (D′). In fact, we consider the subset J ′ ⊂ J (D′)

of almost complex structures that are fixed along TS ⊂ TX|S. Then, similarly to

the proof of Lemma 2.4.11, we can fix a parametrisation v : S2 → X of the S curve

that is J-holomorphic for all J ∈ J ′ and such that v(0) is in the F -component of

D and v(∞) = S ∩ D∞,J . The condition S · F = 1 ensures that the composition

πJ ◦ v is a homeomorphism, and moreover, it is a diffeomorphism by construction of

the smooth structure on M0,0(XJ , F ; J) since the transverse disk Dp can be taken

to be v(S2\{∞}). This completes the proof.

Remark 2.5.6. 1. One can visualise the map πJ : XJ → C as a Riemann sphere

with d + 2 marked points. Indeed, for each J ∈ J (D′), denote that curves of

type (Ej, F − Ej) by uJj . Then we define a marked surface by

(S2, (0,∞, v−1(uJ1 ), . . . , v
−1(uJd ))).

As J varies, the d marked points corresponding to Lefschetz singular fibres

move around, whilst the points 0 and ∞ remain fixed.

2. The domain XJ of πJ depends on J . However, as we shall see later, the

Lagrangian isotopy from L to a matching cycle of πJ occurs away from the

curve uJ∞. Therefore, by excising a suitable tubular neighbourhood of uJ∞,

we can fix a subset of X on which all of the maps πJ are defined (see the

discussion preceding Corollary 4.3.3).
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Chapter 3

Constructing a foliation adapted

to a Lagrangian sphere

In this chapter we apply neck stretching to produce a foliation on T ∗S2 by J-

holomorphic cylinders with exactly two singular leaves. Crucially, we show that the

smooth leaves intersecting the zero section do so along smooth circles. This then

leads to a J-holomorphic Lefschetz fibration on T ∗S2 for which the zero section is a

matching cycle.

First, we recall some further details on the neck stretching setup. We then

construct an almost complex structure JT ∗S2 on T ∗S2 that is suitable for neck

stretching, and satisfies the property that it is anti-invariant under fibre-wise

multiplication by −1, which is the property that powers the intersection along circles

argument.

The intersection theory for punctured J-holomorphic curves is reviewed in

Section 3.2, as well as explaining how this works in the case of Morse-Bott degenerate

asymptotics. This theory is then used in Section 3.3 to prove some basic facts about

the foliations of T ∗S2 by J-holomorphic planes constructed by Hind [23].

The bulk of the chapter takes places in Section 3.4 where we apply intersection

theory to analyse the holomorphic buildings that arise as limits of curves under neck

stretching. Finally, Section 3.5 uses the limit analysis to construct a neck stretching
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3.1. Neck-stretching, holomorphic buildings, and SFT compactness

sequence Jk such that all the curves in M0,0(F ; Jk) that pass through the Weinstein

neighbourhood of L converge to their respective holomorphic buildings as k → ∞.

3.1 Neck-stretching, holomorphic buildings, and

SFT compactness

Recall the neck stretching setup described in Section 1.3.3. Specifically, with

(M,λ) = (T ∗
RL, λcan), a portion of the symplectisation (−ϵ, ϵ)×M ⊂ (R×M, d(er λ))

symplectically embeds into X. Up to rescaling by the Liouville flow, we can assume

that R = 1. We write Y = X\(−ϵ, ϵ) × M as before, and form the stretched

manifolds by inserting longer and longer necks:

Xt := Y ∪M−⊔M+ [−t− ϵ, ϵ]×M.

These manifolds are diffeomorphic to X0 = X via a diffeomorphism that extends

one of the form (−t− ϵ, ϵ) ∼= (−ϵ, ϵ). Since the Lagrangian sphere L is disjoint from

the divisor D′ ⊂ X, a cylindrical almost complex structure defined on the Weinstein

neighbourhood T ∗
≤1L ⊂ X of L, can be extended to an element of1 J (D′). Since

neck stretching only alters almost complex structures in the neck region, we have

that Jt ∈ J (D′) for all t ≥ 0. Therefore, the results of Section 2.4 apply to Jt.

Throughout this chapter we’ll use the rich and technical theory of punctured

J-holomorphic curves and Symplectic Field Theory (SFT). We give an overview of

the main relevant definitions, without getting too bogged down in the details.2 The

notation used here is that of [9], but the reader may also consult references such as

[5, 14, 54] for different perspectives.

1Choose a tubular neighbourhood of D′ disjoint from T ∗
≤1L and define J here, then extend

arbitrarily everywhere else.
2The reader is cautioned that some important (but inconsequential for the narrative presented

here) technical details are ignored here, and they can assume that any time a reference to the

literature is made, the author is glossing over something not strictly relevant to the narrative here.
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

Consider a non-compact symplectic manifold (W,ω) with ends modelled on the

half-symplectisations (−∞, 0] × M or [0,∞) × M of a contact manifold (M,λ).

Given a compatible almost complex structure J that is cylindrical over the ends, we

consider punctured J-holomorphic curves f : Σ̇ → W whose domain is a Riemann

surface of finite type. A remarkable property of these curves is that, if they have

finite energy (which we will not define here, see instead [9, 5]) then each of their

punctures is asymptotic to a Reeb orbit of the contact manifold (M,λ) [28, 27, 40].

Our main examples will be the manifolds and curves that arise from neck stretching.

In particular, X
(0)
+

∼= X\L is a symplectic manifold with a concave cylindrical end

modelled on (−∞, 0]× T ∗
1L, and X

(0)
−

∼= T ∗L is one with a convex end modelled on

[0,∞)×T ∗
1L. The punctured curves in these manifolds will form the components of

a holomorphic building obtained through a compactness theorem described below.

Another important example of a punctured curve is that of a trivial cylinder over a

Reeb orbit:

Example 3.1.1. Given a Reeb orbit γ of period T in a contact manifold (M,λ),

the trivial cylinder over γ is the map uγ : R× S1 → R×M defined by

uγ(s, t) = (Ts, γ(t)).

Any cylindrical almost complex structure J on R ×M realises uγ as a punctured

J-holomorphic curve with exactly one positive and one negative puncture, both

asymptotic to γ.

Recall from Section 1.3.3 the split manifold X∗ and the almost complex structure

J∗ to which the neck stretching sequence Jt converges (on compact subsets). A J∗-

holomorphic building in X∗ is a J∗-holomorphic map F : Σ∗ → X∗ where Σ∗ is

a (potentially disconnected and non-compact) Riemann surface. Each level F (ν) :

Σ(ν) → X(ν) is a finite-energy punctured curve, with each puncture asymptotic to

a Reeb orbit in (M,λ). The set of punctures Γ is partitioned into positive and

negative sets Γ± determined by whether the asymptote corresponding to a puncture

lives in either the convex or concave ideal boundary of X(ν) respectively. Crucially,
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3.1. Neck-stretching, holomorphic buildings, and SFT compactness

the asymptotics in adjoining levels of a J∗-holomorphic building agree. That is, the

ν level connects to the (ν + 1) level, and the set of positive asymptotics of F (ν) is

equal to the set of negative asymptotics of F (ν+1). Amongst other things, this means

we can glue Σ∗ together into a compact Riemann surface Σ̄ and F correspondingly

glues together into a continuous map F̄ : Σ̄ → X, whence we obtain the homology

class [F̄ ] ∈ H2(X) of the building.3

A stable J∗-holomorphic building is one where none of the levels F (ν) restrict to

constant maps on any sphere component with fewer than 3 nodal points or punctures,

and moreover, that no level F (ν) is comprised solely of a union of trivial cylinders

over Reeb orbits. We will produce stable J∗-holomorphic buildings by using the

SFT compactness theorem [5, Theorem 10.3] [9, Theorem 1.1]:

Theorem 3.1.2 (SFT compactness). Given a neck stretching family Jt and a

sequence of Jk-holomorphic curves fk : Σ → Xk with uniformly bounded energy,

there exists a subsequence converging to a stable J∗-holomorphic building F .

The nature of the convergence is technical (see Definition 2.7 of [9] for the

convention used here in full) and we note just a couple of its properties. For each

level ν, up to reparametrisation, there exists a sequence of translations of the maps

fk in the neck region so that they converge to the level F (ν) in the C∞
loc topology.

Additionally, the convergence ensures that of the homology classes:

[fk] → [F̄ ] ∈ H2(X).

In particular, if [fk] = A is independent of k, then [F̄ ] = A.

Remark 3.1.3. The neck stretching setup allows us to think about points in the

Weinstein neighbourhood x ∈ Y− = T ∗
≤1L as either living in X, or in the completion

X
(0)
−

∼= T ∗L. This is useful for phrasing statements like: given a J (0)-holomorphic

curve F (0), that forms part of a J∗-holomorphic building F , passing through x ∈

X
(0)
− , there exists a sequence of closed Jk-holomorphic curves fxk passing through x

that converges to F . This phrasing will be used repeatedly in Chapter 4.
3Sometimes we will drop the bar notation and just write [F ] when no confusion is possible.
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

3.1.1 An almost complex structure adapted to a Lagrangian

sphere

In this section we construct a family of SO(3)-invariant, ωcan-compatible almost

complex structures on T ∗S2 that can be taken to be cylindrical on the complement

of an arbitrarily small neighbourhood of the zero section. The construction is similar

to Lemma 4.12 of [45], however we make it explicit here to ensure the property of

anti-invariance under fibre-wise multiplication by −1.

First we recall a result taken from Seidel’s thesis [42]. Let π : C3 → C be the

map π(z) = z21 +z
2
2 +z

2
3 and denote by E the restriction of π to the real axis R ⊂ C.

Equip E with the restriction of the standard Kähler structure (Ω = ωC3 , i) on C3.

Lemma 3.1.4 ([42, Lemma 18.1]). The restriction of (E,Ω) to (0, 1] is isomorphic

to the trivial symplectic fibre bundle (0, 1] × (T ∗S2, ωcan). An explicit isomorphism

is given by:

Ψ : z = x+ iy 7→ (π(z), |x|−1x,−|x|y).

Here we have employed the usual embedding T ∗S2 = {(q, p) ∈ R3 × R3 | |q| =

1, ⟨q, p⟩ = 0}, and the fact that ωcan =
∑3

i=1 dpi∧dqi. Under this identification, fibre-

wise multiplication by −1 (q, p) 7→ (q,−p) is identified with complex conjugation.

Remark 3.1.5. In fact, Ψ restricts to an exact symplectomorphism Ψs : (Es,−yidxi) →

({s}×T ∗S2, pidqi) on each fibre Es = π−1(s). This is critical for our situation since

cylindrical almost complex structures depend on the Liouville structures present.

Note also that Ψ is equivariant with respect to the diagonal Hamiltonian SO(3)-

action on R3 × R3 = C3.

The almost complex structure induced by the standard one i is not cylindrical

with respect to the contact-type hypersurface T ∗
1S

2, therefore, we explicitly

construct one that is.

Proposition 3.1.6. There exists a compatible almost complex structure JT ∗S2

on T ∗S2 that is anti-invariant under the anti-symplectomorphism φ of fibre-wise
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3.2. Intersection theory of punctured curves

multiplication by −1, that is, φ∗JT ∗S2 = −JT ∗S2. Moreover, JT ∗S2 can be made

cylindrical outside of an arbitrarily small neighbourhood of 0S2.

Proof. Consider the manifold W := ([0, 1] × T ∗S2)\({0} × 0S2). Observe that Ψ

extends to a isomorphism E|[0,1]\{0} → W that is exact on the fibres. Pushing

forward i via Ψs yields a family of almost complex structures Js on T
∗S2, defined

only away from the zero-section in the case of J0. Each of these is anti-invariant

under φ and J0 is cylindrical on (T ∗S2\0S2 , λcan) = (R× T ∗
1S

2, erλcan|T ∗
1 S

2).

Choose a smooth function ρ : R → R that satisfies:

ρ|(−∞, 1
4
] = 1

ρ|[ 3
4
,∞) = 0

ρ′|( 1
4
, 3
4
) < 0.

Then JT ∗S2(q, p) := Jρ(|p|)(q, p) is the desired almost complex structure. By altering

ρ the last claim of the result follows.

3.2 Intersection theory of punctured curves

Intersection theory for punctured J-holomorphic curves was first laid out by Siefring

in [50]. In that paper, Siefring assumes a certain non-degeneracy condition on the

contact form. However, as we explain in this section, some of Siefring’s results

apply more widely (with few alterations) to the so-called Morse-Bott degenerate

case considered in this work. We discuss these degeneracy conditions below in

Section 3.2.1, along with the choices that need to be made to define the intersection

number in the degenerate case.

3.2.1 Asymptotic constraints

When considering punctured J-holomorphic curves in a symplectic manifold (W,ω, J)

with a cylindrical end modelled on a contact manifold (M,λ), there is a non-

degeneracy condition one can ask of a closed Reeb orbit of λ. Specifically, let
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

γ : [0, T ] →M be tangent to the Reeb vector field Rλ so that γ(0) = γ(T ). Consider

the contact plane over γ(0): ξγ(0) = kerλ(γ(0)). The Reeb flow ϕRλ
t preserves kerλ,

and so we can make the following definition: γ is non-degenerate when the restriction

d(ϕRλ
T )(γ(0))|ξγ(0) has no eigenvalue equal to 1. We say that λ is non-degenerate when

all of its closed Reeb orbits are non-degenerate.

A problem with this property is that many natural contact forms possessing

symmetry are degenerate. Instead may consider the Morse-Bott degenerate

condition, the full definition of which can be found in Definition 1.7 of [4]. The

important property for us is that Morse-Bott degenerate Reeb orbits come in families

of orbifolds of orbits sharing the same period T . We consider the especially simple

case of (M,λ) = (T ∗
1S

2, λcan), which has the property that every simple4 Reeb orbit

has the same period, and M ∼= RP3 is smoothly foliated by them. This implies

that the quotient of M by the S1 action of the Reeb flow is a smooth 2-dimensional

manifold (diffeomorphic to S2).

Associated to any Reeb orbit γ is a differential operator called an asymptotic

operator Aγ. Somewhat counter intuitively, knowing the precise definition will not

be that useful for what follows.5 The reader may consult [54, §3] for the precise

definition along with justifications for the statements we make here. What is more

useful for us is a basic understanding of the spectrum σ(Aγ): it is a discrete set

composed exclusively of real eigenvalues. In dimension 4 (as we consider here) this

property furnishes the definition of a certain winding number function defined on

σ(Aγ) — see Equation (3.2.2).

The non-degeneracy condition of γ can now be characterised via its asymptotic

operator as: 0 /∈ σ(Aγ). On the other hand, the Morse-Bott degenerate operators

we handle here satisfy dimker(Aγ) = 2, which leads to problems in defining the

4A simple Reeb orbit is one with minimal period.
5However, we note that in a unitary trivialisation of the bundle γ∗ξ, one can always write

Aγ = −J0∂t − S(t),

where S(t) is a loop of symmetric matrices and J0 is the standard complex structure on Cn.
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3.2. Intersection theory of punctured curves

intersection number and virtual dimensions of moduli spaces of curves. The root of

the problem is that the conventional definition of the Conley-Zehnder index µCZ via

the spectral flow [10] is undefined. This is resolved by perturbing the asymptotic

operators by a small number ϵ ∈ R\{0} to make them non-degenerate and then

computing the Conley-Zehnder index of the perturbed operator. The sign of ϵ

corresponds6 to whether the orbit is considered as constrained or unconstrained in

the moduli problem. That is, whether or not we consider families of curves whose

asymptotic orbits are allowed to move freely.

To make this correspondence precise, let Σ̇ = Σ\Γ be a punctured Riemann

surface, where Γ = Γ+ ∪ Γ− is the finite set of punctures partitioned into positive

and negative subsets. Suppose that (W,ω) has convex and concave ends modelled

on (M+, λ+) and (M−, λ−) respectively, and let f : Σ̇ → W be a punctured curve

asymptotic to a Reeb orbit γ at z ∈ Γ. Fix ϵ ∈ R\{0} so that

[−|ϵ|, |ϵ|] ∩ σ(Aγ)\{0} = ∅, (3.2.1)

then γ is constrained if the signs of the puncture z and ϵ agree, otherwise, it is

unconstrained. We shall write γ + ϵ to denote the orbit subject to the perturbation

ϵ, which corresponds to the asymptotic operator Aγ + ϵ.

Remark 3.2.1. In the sequel we will always assume (without always saying so) that ϵ

(or often δ) has been chosen small enough so that Equation (3.2.1) holds for a fixed

finite collection of asymptotic operators. These collections arise in situations when

one considers curves with multiple punctures, or, more generally, a finite collection

of punctured curves. When considering the asymptotic operators associated to the

orbits of a punctured curve, we will often write Az to denote the operator associated

to the asymptotic orbit of the puncture z ∈ Γ. Furthermore, when it is clear from

the context, we sometimes just write A.

6The relationship between the sign of the perturbation and the geometric idea of whether an

orbit is constrained or not is explained in §3.2 of [52]. Specifically, the reader is directed to the

discussion of the splitting TuB = W 1,p,δ
Λ (u∗TW ) ⊕ VΓ ⊕ XΓ, and the proof of Proposition 3.7

therein.

63



Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

Before proceeding further, we remark on some differences in approaches to

defining the Conley-Zehnder index in the literature.

Remark 3.2.2. As already described, one can define an index in the Morse-Bott

degenerate case by making a choice cz ∈ R\{0} for each asymptotic operator Az

and compute the index µCZ of the perturbed non-degenerate operator Az+cz, as in

Equation (3.5) of [52]; or, one can compute the Robbin-Salamon index µRS [41] of

the linearised Reeb flow as done in [4]. It turns out that the latter can be realised

as a special case of the former. Indeed, as in [4, §5], denote the linearised Reeb flow

by Ψ± and let A± be the asymptotic operator with parallel transport Ψ±. Then

µτCZ(A± ± δ) = µRS(Ψ
±′
)

= µRS(Ψ
±)∓ 1

2
dimker(Ψ± − I)

= µRS(Ψ
±)∓ 1

2
dimker(A±),

where Ψ±′
is the perturbed parallel transport defined in §5.2.3 of [4]. Note that the

left-hand side of the first line is what appears in the index formulas of [52], and the

last line appears in the index formula of ∂̄1 of [4, §5].

In the sequel, we shall often use the notation µRS(γ) to represent the Robbin-

Salamon index of the linearised Reeb flow around the Reeb orbit γ. That is,

µRS(γ) = µRS(Ψ
±).

3.2.2 Definitions and key results

Now let g : Σ̇′ → W be another J-holomorphic curve. In defining the intersection

number between f and g, it is important to be precise about the orbit constraints

one considers. Here, we will usually consider the case where every orbit of f and

g is unconstrained, although, we will also consider the opposite case, where every

orbit is constrained. To keep the notation light, we will denote these numbers as

iU(f, g) and iC(f, g) respectively. At times where it is clear from the context which

intersection number we are handling, we shall sometimes refer to them both as the

Siefring intersection number, due to Siefring’s original work [50].
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3.2. Intersection theory of punctured curves

The numbers iU(f, g) and iC(f, g) are generalisations of the usual intersection

product for closed curves. See [56, §4] for a concise account of the non-degenerate

case, and [52, §4.1] for the corresponding Morse-Bott statements that we use here.

Moreover, there is a further generalisation: that of the intersection number of two

holomorphic buildings. The mantra that we shall justify in this section is that

the intersection theory of buildings arising in the splitting (or neck stretching)

construction behaves almost exactly like that of closed curves.

Before stating the main definitions, we recall some terminology. We adopt the

conventions of Wendl, which differ slightly from Siefring’s; see Remark 4.7 of [56] for

a note on the differences. Given a Reeb orbit γ let τ denote a unitary trivialisation

of the contact bundle γ∗ξ → S1 over it.7 As is customary, whenever a trivialisation

over a multiple cover is required, we use the pullback of τ under the covering map

S1 → S1 : θ 7→ kθ and denote this by τ k (although sometimes we abuse notation

and just use τ). Similarly, we write γk for the pullback of γ under the k-fold covering

map, and we say that γk is a k-fold cover of γ.

The reader may consult Sections 3 and 4 of the excellent book [56], or the original

paper [26] for full details on the following statements about asymptotic winding

numbers. See also Section 3.1.3 of [50] for a summary of the situation. Relative

to τ , there is a well-defined winding number function windτA : σ(A) → Z. The

extremal winding numbers ατ± are defined as follows:8

ατ+(A) = min{windτA(λ) | λ ∈ (0,+∞) ∩ σ(A)}

ατ−(A) = max{windτA(λ) | λ ∈ (−∞, 0) ∩ σ(A)}.
(3.2.2)

We will also write ατ±(γ) to mean ατ±(Aγ). Now suppose that γ is a simple Reeb

orbit, then we define the numbers

Ωτ
±(γ

k + ϵ, γm + ϵ′) = kmmin

{
∓ατ∓(γk + ϵ)

k
,
∓ατ∓(γm + ϵ′)

m

}
.

This definition is extended to all pairs of Reeb orbits by asserting that

Ωτ
±(γ + ϵ, γ′ + ϵ′) = 0

7Occasionally we will also use Φ instead of τ .
8Observe that these definitions are sound, no matter the degeneracy of A.
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

if γ and γ′ are not covers of the same simple orbit.

The final ingredients needed to state the main definitions are the relative

intersection number f •τ g of two punctured curves, and the relative first Chern

number cτ1(E) associated to a complex bundle E → Σ̇ over a punctured curve. The

former is defined to be the usual algebraic count of intersections between f and the

push-off of g in the direction determined by τ near infinity, and the latter is defined

via algebraic counts of zeros of sections of E that are non-zero and constant near

infinity. For precise definitions see Sections 4.2 and 3.4 of [56] respectively. For a

punctured curve f : Σ̇ → W we’ll often use the shorthand cτ1(f) := cτ1(f
∗TW ).

Definition 3.2.3. 1. Let f : Σ̇ → W and g : Σ̇′ → W be punctured holomorphic

curves in an almost complex manifold with cylindrical ends W , then for any

δ > 0 sufficiently small, their constrained and unconstrained intersection

numbers are defined as9

iC(f, g) := f •τ g −
∑

(z,w)∈Γ±×(Γ′)±

Ωτ
±(γz ± δ, γw ± δ),

iU(f, g) := f •τ g −
∑

(z,w)∈Γ±×(Γ′)±

Ωτ
±(γz ∓ δ, γw ∓ δ).

2. Let F = (F (0), . . . , F (N)) and G = (G(0), . . . , G(N)) be holomorphic buildings

in a split manifold, then we define their intersection number to be

i(F,G) :=
N∑
i=0

F (i) •τ G(i).

3. The normal Chern number of a curve f is defined as

cN(f) = cτ1(f)− χ(Σ̇)±
∑
z∈Γ±

ατ∓(γz ∓ δ).

9In this equation and in those that follow, the notation ± indicates that the sum appears twice,

once with a plus sign, and again with a minus sign. For example,∑
(z,w)∈Γ±×(Γ′)±

Ωτ
±(γz ± δ, γw ± δ) =

∑
(z,w)∈Γ+×(Γ′)+

Ωτ
+(γz + δ, γw + δ)

+
∑

(z,w)∈Γ−×(Γ′)−

Ωτ
−(γz − δ, γw − δ).
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3.2. Intersection theory of punctured curves

These definitions are sound since the dependence on the trivialisation τ cancels

in each of the equations. In particular see Appendix C.5 of [56] for the justification

of this claim for intersections of buildings.

We now state some key results that will be crucial in our analysis of holomorphic

buildings arising from the neck stretching process. First, the adjunction inequality,

which is an immediate corollary of the adjunction formula given in [52, §4].

Theorem 3.2.4 (Adjunction inequality.). Let f : Σ̇ → W be a punctured curve in

a manifold with cylindrical ends. Then,

iU(f, f) ≥ cN(f).

Next, we have a statement of continuity of the intersection products with respect

to the topology of the moduli spaces of holomorphic buildings. This can be derived

from Lemma 5.7 of [50].

Theorem 3.2.5. If fk and gk are sequences of closed curves in (Xk, Jk) converging

to holomorphic buildings F and G respectively under neck stretching, then i(F,G) =

fk · gk for k large.

Finally, the following statement is our justification of the mantra that holomor-

phic buildings in split manifolds behave like closed holomorphic curves. The proof

is given in Section 3.2.3. No novel techniques are involved, so it is only included for

completeness.

Proposition 3.2.6. In the Morse-Bott setting considered here (that is, where the

asymptotic operators associated to punctures of curves satisfy dimkerA = 2), the

following holds:

1. The intersection product for holomorphic buildings is additive over the levels

with respect to iU(·, ·): for F = (F (0), . . . , F (N)) and G = (G(0), . . . , G(N)) we

have

i(F,G) =
N∑
i=0

iU(F
(i), G(i)).
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

2. The unconstrained intersection number iU(·, ·) is linear with respect to multiple

covers. That is, if f is a d-fold cover of f ′, then iU(f, g) = d(iU(f
′, g)).

3.2.3 Proof of Proposition 3.2.6

We prove Part 1, and Part 2 will be picked up along the way as a corollary of our

techniques. The key is to understand how a common orbit γ of the buildings F and

G contributes to the sum
∑N

i=0 iU(F
(i), G(i)) as both a positive orbit for (F (i), G(i))

and a negative one for (F (i+1), G(i+1)). Such an orbit is called a breaking orbit, and

the corresponding pair punctures (z, w) are called a breaking pair.

Now,

i(F,G)−
N∑
i=0

iU(F
(i), G(i)) =

∑
(z,w)

breaking pairs

Br(γz + δ, γw + δ),

where

Br(γz + ϵ, γw + ϵ) := Ωτ
+(γz − ϵ, γw − ϵ) + Ωτ

−(γz + ϵ, γw + ϵ).

is the breaking contribution of the breaking pair (z, w). Henceforth we suppress

the ϵ notation in Br(γ + ϵ, γ′ + ϵ) since it is independent of the number ϵ > 0

chosen, provided that it is small enough. It suffices to show that Br(γ, γ′) = 0 for

all unconstrained orbits γ and γ′ in Morse-Bott degenerate families.

Given an asymptotic operator A = Aγ : Γ(γ∗ξ) → Γ(γ∗ξ) of a Reeb orbit γ,

denote its k-fold cover by Ak = Aγk . Consider the map

ker(A) → ker(Ak) : f 7→ fk,

sending a section f ∈ ker(A) to its pullback fk under the k-fold covering map

S1 → S1 : θ 7→ kθ. The next lemma shows that it is an linear isomorphism.

Lemma 3.2.7. Suppose that A is the asymptotic operator of a hermitian line

bundle10 E → S1. Then the map ker(A) → ker(Ak) : f 7→ fk is a linear

isomorphism.

10Which is always the case for us, since we deal only with 4-dimensional manifolds.
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Proof. The map is well-defined since, if f is an eigenfunction of A with eigenvalue

λ, then fk is one of A
k with eigenvalue kλ. Injectivity is easily seen, and surjectivity

follows from the fact that the covering multiplicity of an eigenfunction g of Ak is

given by [50, Lemma 3.2]

cov(g) = gcd(wind(τ k ◦ g), k),

and that the winding function is constant on eigenspaces [26, Lemma 3.4]. Explicitly,

take a non-zero f ∈ ker(A), then fk ∈ ker(Ak) is non-trivial, so

wind(τ k ◦ g) = wind(τ k ◦ fk) = kwind(τ ◦ f),

and thus cov(g) = k.

Lemma 3.2.8. Suppose that γ is a simple Morse-Bott degenerate Reeb orbit. Then,

for all integers k,m > 0, we have that Br(γk, γm) = 0.

Proof. Recall the definition

Ωτ
±(γ

k + ϵ, γm + ϵ′) = kmmin

{
∓ατ∓(γk + ϵ)

k
,
∓ατ∓(γm + ϵ′)

m

}
.

Thus,

Br(γk, γm) = min{mατ+(γk + ϵ), kατ+(γ
m + ϵ)} −max{mατ−(γk − ϵ), kατ−(γ

m − ϵ)},

and the result then follows from the claim that there exists an integer l such that,

for all k > 0, ατ+(γ
k + ϵ) = kl = ατ−(γ

k − ϵ). Indeed, from this it follows that all the

terms involved in the min/max functions above are equal to kml.

To prove the claim, recall that windτA : σ(A) → Z is monotone increasing and

attains each value in Z exactly twice (accounting for multiplicities of eigenvalues).

Therefore, since dimker(Ak) = 2, and δ > 0 is chosen such that δ < |λ| for each non-

zero eigenvalue λ ∈ σ(Ak), it is clear from the definitions that (compare Figure 3.1)

ατ+(A
k + δ) = windτAk(0) = ατ−(A

k − δ).
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0

σ(Ak + δ)

σ(Ak)

σ(Ak − δ)

Figure 3.1: The effect of perturbing on the spectrum of an asymptotic operator A.

The bullets represent elements of the spectrum.

The previous lemma ensures that any non-zero f ∈ ker(Ak) is a k-fold cover of a

non-zero element of ker(A), and so, windτAk(0) = kwindτA(0). Setting l = windτA(0)

completes the proof.

Remark 3.2.9. Note that we can extract a proof of Part 2 of Proposition 3.2.6 from

the proof of the claim above through the observation that it shows that11

ατ±(A
k ± δ) = kατ±(A± δ).

Indeed, this is because windτA(0) = ατ±(A± δ). Therefore, both components f •τ g

and Ωτ
±(γ

k, γl) scale linearly with the covering number. More precisely, (df) •τ g =

d(f •τ g) and Ωτ
±(γ

dk, γdl) = dΩτ
±(γ

k, γl). Hence, iU(df, g) = diU(f, g).

3.2.4 Positivity of intersections for curves with degenerate

asymptotics

Siefring’s paper [50] essentially shows that we have positivity of intersections for

punctured curves with Morse-Bott degenerate asymptotics.

Theorem 3.2.10 (Positivity of intersections of punctured curves). Suppose that

f, g are punctured curves such that f−1(im g) does not contain a non-empty open

11Note the distinction to the non-degenerate case, where this is only an inequality in general,

cf. [56, Proposition C.2]. See also [52, §4.2] for a discussion on covering relations in the degenerate

case, in particular Proposition 4.6 therein, of which this result is a special case.
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3.2. Intersection theory of punctured curves

set. Then i∗(f, g) ≥ 0, where the notation i∗ indicates either the constrained or

unconstrained intersection number. Moreover, equality occurs if, and only if, f and

g are disjoint and remain so after homotopy.

We sketch the proof, which essentially depends on two facts. The first is local

positivity of intersections, which is the same story as the case of closed curves,

covered in detail in [37], for example. The second is the asymptotic representation

for a J-holomorphic half-cylinder. This topic has been covered extensively in the

literature, for example [28, 56] cover the non-degenerate case, and [27, 4, 5] cover

the Morse-Bott degenerate case.

Despite the non-degeneracy assertion made in [50], only minor modifications are

required to prove Theorem 3.2.10. The technical results on winding numbers that

power the relevant positivity of intersections results are isolated in Section 3.1.4 of

[50]. These in turn depend on two key ingredients: the asymptotic representative

of the difference between two J-holomorphic half-cylinders (Theorem 3.6 of [50]12);

and the properties of the winding function13 windτA (Lemma 3.1 of [50]), which is a

summary of the properties proved in Lemmata 3.4–3.7 of [26]. The latter of these

is valid irrespective of whether A is degenerate or not, and the former, as Siefring

remarks in Section 2.2 of [49], only depends on the exponential decay of a half-

cylinder. Therefore, one can apply the decay results of14 [27] and [4, §3.3] (see also

[5, Appendix A], or [40]) to conclude that Theorem 3.6 of [50] holds for punctured

J-holomorphic curves with Morse-Bott asymptotics.

To apply the results in [50], one must be careful about exactly what is meant by

the Conley-Zehnder index that appears there.15 The properties of ατ±, ensure that

ατ±(A∓ δ) = ατ±(A),

12Which is stated and proved as Theorem 2.2 in [49].
13Denoted by w(λ, [Φ]) in [50].
14Note that in [27] the manifold of unparametrised Reeb orbits is assumed to be a circle. The

proof for more general manifolds of orbits (including our case of interest, the 2-sphere) can be

found in either [4, §3.3], or [5, Appendix A], or [40].
15Denoted by µΦ in [50].
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provided that δ > 0 is sufficiently small. Therefore, if one interprets the definition

of µτCZ given in [50] literally,16 then the constructions therein17 give the constrained

intersection number iC(·, ·). Therefore, positivity of intersections holds for iC . A

special case of Proposition 4.11 of [52] is the inequality

iU(u, v) ≥ iC(u, v),

which implies positivity of intersections for iU too.

3.3 J-holomorphic planes in T ∗S2

Hind proved18 that, for any cylindrical almost complex structure J on T ∗S2, there

are two transverse foliations M± by finite-energy J-holomorphic planes. They are

distinguished by the sign of the intersection with the zero-section 0S2 ⊂ T ∗S2:

P± ∈ M± ⇒ P± · 0S2 = ±1.

16This is exactly Definition 3.9 of [26]. In particular, in our situation where the Morse-Bott

manifold is the whole contact manifold, and so dimkerA = 2, we have that the parity p(γk) (of

the perturbed operator A ± ϵ) is 1. Moreover, comparing the notation of Siefring and Wendl, we

have, for an integer k ∈ Z\{0},

αΦ(γk) = ±αΦ
∓(γ

|k|) = ±αΦ
∓(γ

|k| ± ϵ),

where the leftmost sign agrees with the distinction of γ as a positive or negative orbit. It then

follows that

µΦ(γk) = 2αΦ(γk) + p(γk) = ±(2αΦ
∓(γ

|k|)± 1) = ±µΦ
CZ(γ

|k| ± ϵ),

where the final equality follows from equation (2.3) of [52].
17To directly compare the notation that appears in [50] with that used here, one can work

through the definitions to show that

mzmw max

{
αΦ(γmz

z )

|mz|
,
αΦ(γmw

w )

|mw|

}
= −ΩΦ

±(γ
|mz|
z , γ|mw|

w ).

The numbers on the left hand side are used to define the intersection in [50], and those on the

right are used to define the constrained intersection in [52].
18The paper [23] combined with results on automatic transversality.
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As remarked by Evans [15, §6.4], two planes P± ∈ M± of opposite parity

intersect positively exactly once if, and only if, they have distinct asymptotic

orbits. Otherwise, they are disjoint. However, the Siefring intersection “sees” this

intersection, even for planes with a common orbit:

Lemma 3.3.1. 1. The unconstrained intersection of two planes of opposite parity

is equal to 1: iU(P+, P−) = 1.

2. Let P±, Q± ∈ M± be two planes of the same parity. Then iU(P±, Q±) = 0.

Proof. 1. As the Siefring intersection is homotopy invariant, we can perturb the

plane P+ to one nearby, say P ′
+ in its moduli space, guaranteeing that P ′

+ and

P− have distinct orbits. Then iU(P
′
+, P−) = P ′

+ · P− = 1, as already noted.

2. As above, we can homotope one of the planes so that it has distinct asymptotic

to the other, ensuring that the asymptotic contribution to the intersection

product is zero and thus iU(P±, Q±) = P± · Q± = 0, where the last equality

follows since planes of the same parity form a foliation.

Proposition 3.3.2. Let u : Σ̇ → T ∗S2 be a punctured J-holomorphic curve. Then

exactly one of the following is true:

1. u is a cover of a plane in M±; or,

2. u intersects both types of plane positively. More precisely, iU(u, P±) > 0.

Proof. Assume the first scenario is false, that is, u is not a cover of any P± ∈ M±.

Then, Theorem 3.2.10 implies that iU(u, P±) ≥ 0. Note that this inequality must

be strict since M± is a foliation, and so u intersects one of the planes P± in at least

one point.

Corollary 3.3.3. Any unconstrained intersection of punctured J-holomorphic

curves in T ∗S2 is non-negative.
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

3.4 Analysis of holomorphic limit buildings

3.4.1 Consequences of neck stretching about a Lagrangian

sphere

The following result can be found in essential form in [23, p.315]. See also an

expanded proof in [15, Lemma 7.5]. It is a simple consequence of a curve in a

symplectisation having positive dλ-energy and the topology of RP3. We recall the

argument here as we will need a modified version of it later.

Lemma 3.4.1. Suppose that G = (G(0), . . . , G(N)) : Σ∗ → X∗ is a genus 0

holomorphic building such that Σ
(0)
+ is connected and G

(0)
+ has only simple punctures.

Then N = 0, that is, G has no non-trivial symplectisation levels.

Proof. Let g = (a, u) : Σ̇ → R × T ∗
1L be a connected component of the

symplectisation level G(N) — the one connected to the top level G
(0)
+ . The maximum

principle implies that g has at least one positive puncture. On the other hand, since

the genus19 of G is 0 and G
(0)
+ is connected, g has at most, and therefore exactly,

one positive puncture γ. Moreover, it must have at least one negative puncture, as

otherwise Σ̇ would be the complex plane and thus g would represent a contraction

of a simple Reeb orbit, which represents the non-trivial element in π1(RP3) ∼= Z2.

Next we consider the Edλ-energy of g, defined in [5, §5.3] as20

Edλ(g) =

∫
Σ̇

u∗dλ.

By Lemmata 5.4 and 5.16 of [5] we have that this energy is non-negative and equal

to the difference between the sum of the periods of the positive punctures and the

sum of those of the negative ones. Thus, since γ is simple and all simple Reeb orbits

in (T ∗
1S

2, λcan) have the same period, there is at most one negative puncture, and

therefore, exactly one. Whence we obtain Edλ(g) = 0. Theorem 6.11 of [26] then

19The genus of a holomorphic building G : Σ∗ → X∗ is the genus of the surface Σ̄ obtained by

gluing Σ∗ together along its punctures. We will always deal with genus 0 buildings.
20In the notation of that paper we have ω = dλ.
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3.4. Analysis of holomorphic limit buildings

implies that g is a reparametrisation of a trivial cylinder. Repeating this argument

shows that every symplectisation level is composed solely of trivial cylinders, a

situation which is ruled out by the stability condition. Hence the result is proved.

The index formula of a punctured curve will be crucial in the proofs of this

section. The index21 of a curve is the expected dimension of the moduli space it

lives in, and thus it is often also called the virtual dimension. Let u : Σ̇ → W be a

punctured J-holomorphic curve with k± positive/negative punctures mapping into

a symplectic manifold with cylindrical ends W . The index of u is given by22

ind(u) = 2cτ1(u)− χ(Σ̇)±
k±∑
i=1

µτCZ(Azi ∓ δ).

In the notation of [4] and [23], this becomes23

ind(u) = 2cτ1(u)− χ(Σ̇)±
k±∑
i=1

(
µRS(γ

±
i )±

1

2
dim(γ+i )

)
,

where dim(γ) is the dimension of the moduli space of unparametrised Reeb orbits

that γ lives in. In our situation, we deal only with genus zero curves with asymptotics

that live in 2-dimensional families. Fixing τ to be the trivialisation that appears in

Lemma 7 of [23], then we have µRS(γ
±
i ) = 2 cov(γ±i ), so the index formula reduces

to:

ind(u) = 2

(
k+ + k− − 1 + cτ1(u)±

k±∑
i=1

cov(γ±i )

)
. (3.4.1)

We primarily deal with the cases where one of k± is zero, which simplifies the

formula further. In particular, in the case where u maps into the top level X
(0)
+ ,

we have k+ = 0 and so, combined with the fact that cov(γ) ≥ 1, we obtain the

21The name index comes from the fact that it is equal to the Fredholm index of a certain operator

derived from the Cauchy-Riemann equation (see [4] for example).
22Observe that this is the unconstrained index. Moreover, in the case that u is a closed curve,

it reduces to the index formula given in Equation (2.4.3).
23See Remark 3.2.2.
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inequality:24

ind(u) ≤ 2(cτ1(u)− 1). (3.4.2)

Lemma 3.4.2. Let F = (F (0), . . . , F (N)) be a holomorphic building. Then the

relative first Chern numbers of every level except the top one vanish. In particular,

the relative first Chern number of the top level equals the first Chern number of the

homology class [F̄ ]:

cτ1(F
(0)
+ ) = c1([F̄ ]). (3.4.3)

Proof. The chosen trivialisation τ extends to a global trivialisation of TX(i) and

TX
(0)
− for the symplectisation levels X(i) = R×T ∗

1S
2 and bottom level X

(0)
− = T ∗S2.

Indeed, for the symplectisation levels we have the global splitting

T (R× T ∗
1S

2) = ⟨Z,R⟩ ⊕ ξ,

where Z and R are the Liouville and Reeb vector fields respectively. For X
(0)
− =

T ∗S2 the extension is facilitated by the global splitting of T (T ∗S2) into vertical and

horizontal Lagrangian planes [23, Lemma 7]. Therefore, we have cτ1(u) = 0 for any

punctured curve mapping into X(i) or X
(0)
− . Combining this with the fact25 that,

for a holomorphic building F = (F (0), . . . , F (N)), we have

N∑
i=0

cτ1(F
(i)) = c1([F̄ ]),

we obtain the result.

Remark 3.4.3. Compare the above discussion with Section 6.3 of [15], where Evans

gives a proof using complex geometry and the compactification of T ∗S2 to the

projective quadric surface.

We now turn to recording a genericity result. This will be achieved by perturbing

the almost complex structure J
(0)
+ on the top levelX

(0)
+

∼= X\L in a suitable open set.

24We caution the reader that this inequality is only valid with respect to the fixed trivialisation

τ .
25This is a consequence of gluing the levels F (i) back together to obtain the cycle [F̄ ] in X.
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This set must be chosen carefully though, as an arbitrary perturbation would either

destroy the c1 ≤ 0 curves in the divisor D′ ⊂ X, or the cylindrical nature of J
(0)
+ in

the neck region (−∞, ϵ)× T ∗
1L. Let V be the open set X

(0)
+ \ ((−∞, ϵ]× T ∗

1L ∪D′).

We are then free to perturb J
(0)
+ in the set V to make it generic. This means that

any J
(0)
+ -holomorphic curve u mapping an injective point into V is Fredholm regular,

and thus ind(u) ≥ 0.

Lemma 3.4.4. Let J
(0)
+ be as above and u : Σ̇ → X

(0)
+ be a somewhere injective

J
(0)
+ -holomorphic curve that is either closed and not contained in D′ or has at least

one (negative) puncture. Then u intersects V ⊆ X
(0)
+ and is thus Fredholm regular.

Proof. First we deal with the closed case. Since the cylindrical part (−∞, ϵ)× T ∗
1L

of X
(0)
+ is an exact symplectic manifold, it contains no non-constant closed J-

holomorphic curves. Therefore, u must pass through V .

For the punctured case, a similar argument works. Suppose that the result is

false. Then the image of u is contained entirely in (−∞, ϵ)×T ∗
1L, which is an exact,

cylindrical symplectic manifold with positive and negative boundary. However, u

has no positive punctures, which contradicts the maximum principle. Therefore, u

must intersect V .

Corollary 3.4.5. Let u be a closed or punctured J-holomorphic curve in X
(0)
+ that

is not contained in the divisor D′. Then,

cτ1(u) ≥ 1. (3.4.4)

Proof. If u is not simple, then by Theorems 2.35 and 6.34 of [54], we may pass to its

underlying simple curve ũ. Lemma 3.4.4 ensures that ũ is Fredholm regular, and so

ind(ũ) ≥ 0.

The inequality (3.4.2) then implies that cτ1(ũ) ≥ 1, so the result follows by linearity

of cτ1 with respect to covers.
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3.4.2 Analysis of buildings: limits of c1 = 1 curves

In this section we consider sequences of closed curves in a homology class E ∈ H2(X)

satisfying E2 = −1 (which is equivalent to c1(E) = 1 for embedded genus zero

curves, by the adjunction formula). Recall that in homology, L = Ei − Ej for some

1 ≤ i ̸= j ≤ d. Since the indices i and j won’t play a role in what follows, we do

away with them and define26

E+ = Ej,

E− = Ei,
and

G+ = F − E+,

G− = F − E−.
(3.4.5)

The main result of this section, proved in Propositions 3.4.10 and 3.4.16, is:

Proposition 3.4.6. Let E ∈ H2(X) satisfy c1(E) = 1 and suppose we have a

sequence ek ∈ M0,0(X,E; Jk) of embedded J-holomorphic curves converging to a

limit building F under neck stretching about L. Then F = (F
(0)
+ , F

(0)
− ) has no

symplectisation levels, and moreover F
(0)
− is non-empty if, and only if, E · L =

E · (E− − E+) ̸= 0, in which case F
(0)
− consists of a union of planes of the same

parity in the moduli spaces M± in T ∗S2. The parity of the planes coincides with

the sign of the intersection E · L.

Furthermore, in the case E ∈ {E±,G±}, the buildings FE± arising from limits

of curves in the classes E± have identical top levels. The analogous result holds for

G±. We write these relationships as

(FE+)
(0)
+ = (FE−)

(0)
+ and (FG+)

(0)
+ = (FG−)

(0)
+ .

On the other hand, the four planes (FE±)
(0)
− , (FG±)

(0)
− in T ∗S2 are pairwise distinct.

Remark 3.4.7. 1. In the case F
(0)
− = ∅ in the above result, this means that F

(0)
+

is actually a closed holomorphic curve in X
(0)
+ .

26This notation is chosen so that E± · L = ±1. Although, note that G± · L = ∓1, which might

seem confusing, however the author believes that the other definition of G± = F − E∓ required to

achieve G± · L = ±1 is worse.
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2. In a later section, we will show that the two pairs of planes (FE±)
(0)
− ∪ (FG±)

(0)
−

are the nodal fibres of a Lefschetz fibration on T ∗S2 such that L = 0S2 is a

matching cycle.

Lemma 3.4.8. Suppose that F = (F (0), . . . , F (N)) is the limiting building of a

sequence of curves in the moduli spaces M0,0(X,E; Jk), where E ∈ H2(X;Z)

satisfies c1(E) = 1. Then F
(0)
+ has connected domain, i.e., it consists of exactly

one component, and each of its punctures is simple.

Proof. If F
(0)
+ had more than one component then at least one would satisfy cτ1 ≤ 0,

since ∑
components f

of F
(0)
+

cτ1(f) = cτ1(F
(0)
+ ) = c1([F̄ ]) = c1(E) = 1,

by Lemma 3.4.2. However, this is impossible by Corollary 3.4.5. Therefore, F
(0)
+

consists of exactly one component which satisfies cτ1(F
(0)
+ ) = 1. Since F

(0)
+ is

Fredholm regular by Lemma 3.4.4, we must have ind(F
(0)
+ ) = 0 by (3.4.2). This

implies that k− −
∑k−

i=1 cov(γ
−
i ) = 0, which implies that the punctures of F

(0)
+ are

simple.

Hence, by Lemma 3.4.1, F = (F
(0)
+ , F

(0)
− ) is a holomorphic building with only a

top and bottom level. Therefore, by Theorem 3.2.5 and Proposition 3.2.6 we have

iU(F
(0)
+ , F

(0)
+ ) + iU(F

(0)
− , F

(0)
− ) = i(F, F ) = E2 = −1. (3.4.6)

The adjunction formula implies that iU(F
(0)
+ , F

(0)
+ ) ≥ cN(F

(0)
+ ), and so we obtain the

inequality

iU(F
(0)
− , F

(0)
− ) ≤ −1− cN(F

(0)
+ ). (3.4.7)

Lemma 3.4.9. The normal Chern number cN(F
(0)
+ ) = −1, and thus

iU(F
(0)
− , F

(0)
− ) ≤ 0. (3.4.8)

Proof. By definition,

cN(u) = cτ1(u
∗TW )− χ(Σ̇)±

∑
z∈Γ±

ατ∓(γz ∓ δ).
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We have the formulas [52, §3.2]

2ατ±(γ + ϵ) = µτCZ(γ + ϵ)± p(γ + ϵ),

µτCZ(γ ∓ δ) = 2 cov(γ)± 1,

where p(γ + ϵ) := ατ+(γ + ϵ)− ατ−(γ + ϵ) is called the parity. From these we obtain

ατ∓(γ ∓ δ) = cov(γ).

Therefore, for a curve with only simple asymptotics,

cN(u) = cτ1(u
∗TW )− (2− k+ − k−)± k± = cτ1(u

∗TW ) + 2(k+ − 1). (3.4.9)

In particular, for u = F
(0)
+ we have k+ = 0 and cτ1(F

(0)
+ ) = 1, resulting in cN(F

(0)
+ ) =

−1. The inequality (3.4.8) then follows from (3.4.7).

Proposition 3.4.10. Let F = (F
(0)
+ , F

(0)
− ) be the limit building of a sequence of

curves in the moduli spaces M0,0(X,E; Jk), where E ∈ H2(X;Z) satisfies c1(E) = 1

and E · L = ι. Then F
(0)
+ is a sphere with exactly |ι| punctures and

F
(0)
− consists of exactly

ι P+ planes, if ι ≥ 0, or

|ι| P− planes, if ι < 0.

Corollary 3.4.11. Suppose that the sequence in the above proposition is given by

the unique curves in M0,0(X,En; Jk). Then F
(0)
− is empty and F

(0)
+ is a smooth

closed curve in X
(0)
+ .

Remark 3.4.12. We paraphrase this result by saying that the En curve disjoins from

L under neck stretching.

Corollary 3.4.13. Suppose that E is one of the classes in Equation (3.4.5). Then

F
(0)
− consists of exactly one plane in the moduli spaces M± of planes in T ∗S2 defined

in Section 3.3. The sign of the plane F
(0)
− is the same as that of E · L.

Remark 3.4.14. It is important (albeit obvious) to note that the planes in T ∗S2

arising as limits of curves in the classes E± and G± have opposite parity. That is,

one is in M+ and the other in M−.
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Proof of Proposition 3.4.10. The genus g of F is 0, and so each component of F
(0)
−

is a genus 0 punctured curve. Moreover, as F
(0)
+ has only 1 component, the topology

of F
(0)
− must be a union of discs — anything else would increase g. Due to the

classification of simple J-holomorphic planes of T ∗S2 (Proposition 3.3.2), we deduce

that F
(0)
− is a union of P± planes. We write this as27 F

(0)
− = m+P+ + m−P− :=⊔

m+
P+ ⊔

⊔
m−

P−, for some integers m± ≥ 0. The results of Lemma 3.3.1 and

additivity of the Siefring intersection over disjoint unions [50, Proposition 4.3(3)]

then imply that

iU(F
(0)
− , F

(0)
− ) = 2m+m− ≥ 0.

Combining this with Lemma 3.4.9 yields that iU(F
(0)
− , F

(0)
− ) = 0, and thus at least

one of m± is zero. The equation

m+ −m− = F
(0)
− · L = E · L = ι

then completes the proof.

Remark 3.4.15. Observe that, through repeated applications of the SFT compact-

ness theorem, we can produce a single neck-stretching sequence Jk → J∞ such that,

for every E ∈ {En, E+, E−,G+,G−}, the curves in the moduli spaces M0,0(E; Jk)

converge to J∗-holomorphic buildings as k → ∞. Indeed, fix a particular class E

and sequences Jk → J∞ and uk ∈ M0,0(E; Jk). The compactness theorem produces

a subsequence k such that uk converges. We can then apply SFT compactness to a

sequence vk ∈ M0,0(E
′; Jk) for some E ′ ̸= E to obtain another subsequence, and so

on and so forth.

This idea can be generalised to include sequences of curves in classes other than

the exceptional ones used above, provided that the sequences of curves are somehow

fixed. For example, we could make a point constraint. When dealing with the classes

27Note that the ⊔ notation only means that the domain of F
(0)
− is a disjoint union of Riemann

surfaces, its image need not be a disjoint union of planes. Moreover, the use of the plus sign in the

equation F
(0)
− = m+P+ + m−P− is meant to reflect the fact that the unconstrained intersection

product is additive over unions.
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E above there was no need to do this since the moduli spaces M0,0(E; J) are just

single points.

We shall use this principle repeatedly in the sequel, although we will not always

make reference to it to save cluttering the narrative. Suffice to say that if we need to

compare two J∗-holomorphic buildings arising from sequences in the classes α, β ∈

H2(X), then this will be implicitly done with respect to a single neck-stretching

sequence for which both the corresponding sequences of curves converge.

We now turn to deriving relations between the limits of curves with homology

classes in {E+, E−,G+,G−}.

Proposition 3.4.16. The holomorphic limit buildings FE+ = ((FE+)
(0)
+ , (FE+)

(0)
− ),

FE− = ((FE−)
(0)
+ , (FE−)

(0)
− ), FG+ = ((FG+)

(0)
+ , (FG+)

(0)
− ), and FG− = ((FG−)

(0)
+ , (FG−)

(0)
− )

satisfy

(FE+)
(0)
+ = (FE−)

(0)
+ and (FG+)

(0)
+ = (FG−)

(0)
+ .

Proof. Corollary 3.4.13 and Proposition 3.2.6 imply that

0 = E−·E+ = iU((FE−)
(0)
+ , (FE+)

(0)
+ )+iU((FE−)

(0)
− , (FE+)

(0)
− ) = iU((FE−)

(0)
+ , (FE+)

(0)
+ )+1.

Therefore, by positivity of intersections and the fact that

cτ1((FE−)
(0)
+ ) = cτ1((FE+)

(0)
+ ) = 1,

we must have that (FE−)
(0)
+ is a reparametrisation of (FE+)

(0)
+ , that is, (FE−)

(0)
+ =

(FE+)
(0)
+ . Similarly, (FG−)

(0)
+ = (FG+)

(0)
+ .

Recall the so-called Morse-Bott contribution to the intersection number [52, §4]:

i±MB(γ + ϵ, γ′ + ϵ′) := Ωτ
±(γ, γ

′)− Ωτ
±(γ + ϵ, γ′ + ϵ′).

A simple calculation shows that this integer is non-negative and that it satisfies

iU(u, v) = iC(u, v) +
∑

(z,w)∈Γ±×(Γ′)±

i±MB(γz ∓ δ, γw ∓ δ).
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Lemma 3.4.17. Let γ and γ′ denote the asymptotic orbits of (FE+)
(0)
+ and (FG+)

(0)
+

respectively. Then γ′ ̸= γ, that is, they are geometrically distinct orbits.

Proof. Plugging (u, v) = ((FE+)
(0)
+ , (FG+)

(0)
+ ) into the above formula yields

iU((FE+)
(0)
+ , (FG+)

(0)
+ ) = iC((FE+)

(0)
+ , (FG+)

(0)
+ ) + i−MB(γ + δ, γ′ + δ).

Recall that each fibration πJ has two distinguished J-holomorphic sections, one of

class S, and the other S ′ = H −E0 −
∑d

j=1 Ej, and that E+ intersects S ′ and not S,

and vice versa for G+. It is then trivial that (FE+)
(0)
+ and (FG+)

(0)
+ are geometrically

distinct, and so positivity of intersections gives iC((FE+)
(0)
+ , (FG+)

(0)
+ ) ≥ 0 and thus

iU((FE+)
(0)
+ , (FG+)

(0)
+ ) ≥ i−MB(γ + δ, γ′ + δ).

Observe that [E+] · [G+] = 1, and, since (FE+)
(0)
− and (FG+)

(0)
− are planes of opposite

parity in T ∗S2, iU((FE+)
(0)
− , (FG+)

(0)
− ) = 1. The additivity of the unconstrained

intersection product then implies that

iU((FE+)
(0)
+ , (FG+)

(0)
+ ) = 0,

Combining this with the above inequality, we obtain i−MB(γ+δ, γ
′+δ) = 0. Therefore,

the result follows from the next lemma.

Lemma 3.4.18. For a Morse-Bott degenerate asymptote γ satisfying dimkerAγ = 2,

we have

i±MB(γ
k ∓ δ, γl ∓ δ) = min{l, k} > 0.

Proof. This is a simple consequence of the definitions and the properties of

asymptotic operators satisfying dimkerA = 2. Indeed,

i±MB(γ
k ∓ δ, γl ∓ δ) = Ωτ

±(γ
k, γl)− Ωτ

±(γ
k ∓ δ, γl ∓ δ)

= min{∓lατ∓(γk),∓kατ∓(γl)} −min{∓lατ∓(γk ∓ δ),∓kατ∓(γl ∓ δ)}.

Moreover, by the properties of the extremal winding numbers ατ±, we have (c.f. the

proof of Lemma 3.2.8 and Remark 3.2.9)

ατ
k

± (γk) = kwindτAγ
(0)± 1 and ατ

k

± (γk ± δ) = kwindτAγ
(0).

Thus the result follows.
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

Since γ′ ̸= γ, and there is a unique M± plane asymptotic to each orbit, we

obtain the following:

Corollary 3.4.19. The planes {(FE+)
(0)
− , (FG+)

(0)
− , (FE−)

(0)
− , (FG−)

(0)
− } are pairwise

geometrically distinct. Specifically, the planes with common parity (FE+)
(0)
− , (FG−)

(0)
− ∈

M+ and (FG+)
(0)
− , (FE−)

(0)
− ∈ M− are distinct.

3.4.3 Controlling the asymptotic orbits

The aim of this section is to show that the almost complex structure on X that

undergoes neck stretching can be chosen so that the top level of the limiting building

of the sequence of G+ curves, (FG+)
(0)
+ , has asymptotic Reeb orbit γ′ equal to the

image of the asymptote γ of (FE+)
(0)
+ under fibre-wise multiplication by −1. This

is the property that will power our argument that the J
(0)
− -holomorphic cylinders in

T ∗S2 (obtained via neck stretching in Section 3.4.4) that intersect the zero section

do so along circles.

As mentioned in Section 3.1.1, fibre-wise multiplication by −1 in T ∗S2 corre-

sponds to complex conjugation under the SO(3)-equivariant isomorphism T ∗S2 ∼=

(z21 + z22 + z23 = 1). We say these asymptotes are conjugate and write this as

γ′ = γ. We first make an explicit construction to force the top level curves (FE+)
(0)
+

and (FG+)
(0)
+ to have conjugate asymptotics. Recall the almost-Kähler structure

(T ∗S2, ωcan, JT ∗S2), where JT ∗S2 is any of the compatible, cylindrical almost complex

structures constructed in Section 3.1.1, and that the natural SO(3) action by

rotations is by exact almost-Kähler isometries. Note in particular that Section 3.1.1

allows us to produce a compatible almost complex structure that is cylindrical

outside of an arbitrarily small neighbourhood of the zero section. We’ll use this

property to alter J
(0)
+ in the neck region of X

(0)
+ .

Denote by M the unit cotangent bundle T ∗
1S

2. Since both conjugation and the

Hamiltonian SO(3) action preserve the length function |p| on T ∗S2, they restrict

to R-equivariant maps on the symplectisation R×M . Moreover, the SO(3) action

is by exact symplectomorphisms, so it descends to give an action on the quotient
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M/S1 of the unit cotangent bundle by the Reeb flow. Recall that M/S1 ∼= S2 and,

under this identification, the action of SO(3) is the usual one by rotations.

We introduce some notation for convenience: as X
(0)
+ is a manifold with the

cylindrical end (−∞, ϵ)×M , it makes sense to define the subsets, for all r0 < ϵ,

X≤r0 := (−∞, r0]×M, and,

X≥r0 := X
(0)
+ \(−∞, r0)×M.

Since (FE+)
(0)
+ and (FG+)

(0)
+ are asymptotic to the distinct Reeb orbits γ, γ′ ∈M/S1,

there exists a number r1 ≪ 0 and an open neighbourhood (which is a lift via the

composition X≤r1 → M → M/S1 of a neighbourhood of γ ∈ M/S1) U ⊂ X≤r1 of

the half cylinder

CE+ := im(FE+)
(0)
+ ∩X≤r1

such that im(FG+)
(0)
+ is disjoint from U . We are now ready to state and prove the

main result of this section.

Lemma 3.4.20. There exists a compatible almost complex structure J on X
(0)
+ and

a number r2 < r1 that satisfy the following:

1. J agrees with J
(0)
+ on the complement of [r2, r1]×M , i.e. on X≥r1 ∪X≤r2, and

on the neighbourhood U of CE+. In particular, J is cylindrical on X≤r2.

2. there exists a J-holomorphic plane asymptotic to γ̄ in the same relative

homology class as (FG+)
(0)
+ .

Proof. The half-cylinder CE+ is asymptotic to γ, whilst CG+ := im(FG+)
(0)
+ ∩X≤r1 is

asymptotic to γ′ ̸= γ. The asymptotic convergence of CE+ and CG+ implies that their

projections to the manifold of Reeb orbitsM/S1 yield disjoint closed neighbourhoods

Nγ and Nγ′ of γ, γ
′ ∈ M/S1. Choose a path γt ∈ M/S1 disjoint from Nγ such that

γ0 = γ′ and γ1 = γ̄ and pick a corresponding 1-parameter subgroup Rt ∈ SO(3) such

that Rt(γ
′) = γt. Note that the asymptotic convergence of CE+ and CG+ ensures

that r1 ≪ 0 can be chosen large enough to ensure that Rt(Nγ′) is disjoint from Nγ

for all t ∈ [0, 1].
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Now choose r2 < r1 and a diffeomorphism ψ : [r2, r1] → [0, 1] such that ψ′ ≡ −1

near the ends. Consider the diffeomorphism

R : X≤r1 → X≤r1 : R(r, x) =

(r, Rψ(r)(x)), if r ∈ [r2, r1],

(r, R1(x)), if r < r2,

and define the symplectic half-cylinder C ′
G+ := R(CG+). Note that C ′

G+ is disjoint

from the neighbourhood U of CE+ . We glue C ′
G+ to im(FG+)

(0)
+ ∩ X≥r1 to obtain a

symplectic plane PG+ asymptotic to γ̄. Linear interpolation from R to the identity

map yields a (relative) homology between im(FG+)
(0)
+ and PG+ .

Since C ′
G+ is disjoint from U , we may choose a compatible almost complex

structure J on [r2, r1]×M that makes C ′
G+ holomorphic, and agrees with J

(0)
+ on U .

Moreover, it can be chosen to agree with J
(0)
+ on {r1}×M ∪{r2}×M since R0 = id

and R1 is holomorphic with respect to J
(0)
+ . Extending J by J

(0)
+ on the complement

of [r2, r1]×M completes the construction.

Since (X
(0)
+ , ω+) is symplectomorphic to (X\L, ω), we can push forward our new

almost complex structure J to X\L and perform neck stretching to this new J .

What this amounts to is stretching the neck around the contact-type hypersurface

T ∗
er2S

2 ⊂ X. To make this completely precise, we need to extend J over L. However,

this is easily achieved by altering the bump function used in the construction of

JT ∗S2 in Section 3.1.1. The result is a new compatible almost complex structure

on X that is adapted to the hypersurface T ∗
er2S

2, is equal to our original almost

complex structure on the set X≥r1 , and, under stretching the neck, converges to the

almost complex structure of Lemma 3.4.20 onX
(0)
+ . To avoid cluttering the notation,

we shall continue to refer to the new split almost complex structure obtained on

X∗ = (X(0), . . . , X(N)) as J∗, as we will no longer make reference to the old one.

Remark 3.4.21. Note that the new stretched almost complex structure obtained on

X
(0)
− = T ∗L may be different to the original one, since we have increased the portion

of the neck R×T ∗
1S

2 ∼= T ∗L\L on which J
(0)
− is cylindrical. This amounts to pushing

forward the old J
(0)
− by the Liouville flow for some negative time.
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Ultimately, though, this is of no importance, since the results of Section 3.3 are

valid for whatever cylindrical almost complex structure we choose on T ∗S2.

Since we’ve changed our neck stretching sequence Jk, morally we need to

redo the limit analysis of the previous section. Indeed, recall the open set V =

X
(0)
+ \ (((−∞, ϵ]× T ∗

1L) ∪D′) from Section 3.4.1 in which we perturbed to ensure

genericity. The almost complex structure J
(0)
+ constructed here satisfies a form of

symmetry, which perturbing would destroy. Therefore, a priori, J
(0)
+ -holomorphic

curves don’t satisfy the Fredholm regularity result of Lemma 3.4.4.

Note that we can perturb J
(0)
+ on the complement of the images of (FE+)

(0)
+

and PG+ in V . Moreover, since a punctured J
(0)
+ -holomorphic curve in X

(0)
+ either

passes through this complement, or has identical image to one of (FE+)
(0)
+ or PG+ ,

we can apply Lemma 3.4.4 to every punctured curve in X
(0)
+ except (FE+)

(0)
+ and

PG+ . Thus, if we can show that (FE+)
(0)
+ and PG+ are Fredholm regular, then we can

apply Lemma 3.4.4 exactly as in Section 3.4.2.

As a result, a convergent sequence of curves ek ∈ M0,0(E+; Jk) converges to

(FE+)
(0)
+ in the top level, and similarly, for curves in M0,0(G+; Jk), we obtain that

they converge to the constructed plane PG+ .

Lemma 3.4.22. The J
(0)
+ -holomorphic planes (FE+)

(0)
+ and PG+ are Fredholm

regular.

Proof. The case of (FE+)
(0)
+ is trivial since J

(0)
+ was unchanged in a neighbourhood

of this curve. For PG+ we apply automatic transversality [52, Theorem 1]. Since

PG+ is embedded, the automatic transversality condition is:

ind(PG+) > cN(PG+).

We compute that ind(PG+) = 0, which follows from Equation (3.4.1), Lemma 3.4.2,

and that PG+ has a single simply covered asymptote. On the other hand,

cN(PG+) = −1

follows as in Lemma 3.4.9.
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Proposition 3.4.23. Let Jk be a neck stretching sequence converging to J∗, and

ek ∈ M0,0(E+; Jk) a corresponding sequence converging to a J∗-holomorphic building

F = (F (0), . . . , F (N)). Then the top level F
(0)
+ consists only of the plane (FE+)

(0)
+

obtained in Proposition 3.4.16, there are no symplectisation levels, and the bottom

level consists of exactly one plane in M+.

Similarly, a convergent sequence gk ∈ M0,0(G+; Jk) converges to a building G =

(G(0), . . . , G(N)) whose top level G
(0)
+ consists only on the plane PG+ constructed in

Lemma 3.4.20. As above, the bottom level then consists of exactly one plane in M−.

In particular, F
(0)
+ and G

(0)
+ have conjugate asymptotes.

Proof. Since J
(0)
+ is unchanged in a neighbourhood of (FE+)

(0)
+ , there is nothing to

check for the claimed convergence ek → F . We prove that G
(0)
+ = PG+ . Note that

PG+ can be completed into a J∗-holomorphic buildingG′ by adding in the uniqueM−

plane in T ∗S2 with asymptotic orbit γ̄. Then, both G and G′ are J∗-holomorphic

buildings of the same homology class: [Ḡ] = G+ = [Ḡ′]. Thus, they must intersect

somewhere, since (G+)2 = −1. If G
(0)
+ is geometrically distinct from (G′)

(0)
+ = PG+ ,

then positivity of intersections would force there to be a negative intersection in

the bottom level, contradicting Corollary 3.3.3. Hence, G
(0)
+ = PG+ and the result

follows.

We have constructed two J∗-holomorphic buildings F and G in the homology

classes E+ and G+, whose asymptotic orbits are conjugate. To free up the notation,

we shall continue to denote these buildings by FE+ and FG+ respectively. Similarly

we obtain the J∗-holomorphic buildings FE− and FG− , which satisfy

(FE−)
(0)
+ = (FE+)

(0)
+ and (FG−)

(0)
+ = (FG+)

(0)
+ ,

by Proposition 3.4.16, and thus they have the same pair of conjugate asymptotes

{γ, γ̄}.

Corollary 3.4.24. The unique point of intersection of the planes (FE±)
(0)
− ∈ M±

and (FG±)
(0)
− ∈ M∓ lies on the zero section.
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Proof. Conjugation sends M+ planes to M− and vice versa. Therefore, since there

is a unique M± plane asymptotic to each simple Reeb orbit and the asymptotics of

(FE±)
(0)
− and (FG±)

(0)
− are conjugate, we have that

(FE±)
(0)
− = (FG±)

(0)
− .

Moreover, the zero section is the fixed locus of conjugation, so, since each plane

intersects the zero section, the claim follows.

Remark 3.4.25. This result partially justifies the claim made in Remark 3.4.7 that

the bottom levels of the buildings FE± ∪ FG± form the nodal fibres of a Lefschetz

fibration on T ∗L such that L is a matching cycle.

3.4.4 Analysis of buildings: limits of c1 = 2 curves

In this section we prove (Proposition 3.4.30) that limits of curves in the class of a

fibre H − S ∈ H2(X) have bottom level (if non-empty) either a smooth cylinder, or

one of the pairs of nodal planes (FE±)
(0)
− + (FG±)

(0)
− . First, we need a basic result on

unconstrained intersections of trivial cylinders in symplectisations.28

Lemma 3.4.26. Let γ be a simply covered Morse-Bott degenerate Reeb orbit living

in a positive dimensional orbifold N of unparametrised orbits of a contact manifold

M . Then the unconstrained self intersection of the corresponding trivial cylinder

uγ : R× S1 → R×M is zero:

iU(uγ, uγ) = 0.

Proof. Since dim(N) > 0, we can homotope uγ to uγ̃ for some γ̃ ̸= γ in the same

family N . Since iU is homotopy invariant, we obtain the result, as uγ and uγ̃ are

disjoint and asymptotic to distinct orbits.
28Compare with the non-degenerate case where

uγ ∗ uγ =

−1, if γ is odd

0, if γ is even.
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Remark 3.4.27. In our situation, all simple Reeb orbits live in the same manifold

N ∼= S2 of unparametrised orbits, and so the above result combined with

Proposition 3.2.6(2) yields, for any integers k, l > 0 and simple orbits γ and γ′,

iU(uγk , u(γ′)l) = 0.

From this and positivity of intersections (Theorem 3.2.10), we deduce that any curve

in a symplectisation level intersects a trivial cylinder non-negatively.

Let F = (F (0), . . . , F (N)) denote a J∗-holomorphic building arising as the limit

of a sequence of fibre curves. If the bottom level F
(0)
− is non-empty, the following

lemma shows that its top-level F
(0)
+ has to be the disjoint union of the limits that

arose in Proposition 3.4.23.

Lemma 3.4.28. Let F = (F (0), . . . , F (N)) be the limit of a sequence of curves in

the class [F̄ ] = H − S ∈ H2(X) of a fibre. Suppose that F
(0)
− ̸= ∅. Then F

(0)
+

is the disjoint union of the planes (FE+)
(0)
+ and (FG+)

(0)
+ , where FE+ and FG+ are

the holomorphic buildings that arose in section 3.4.3. That is, F
(0)
+ = (FE+)

(0)
+ +

(FG+)
(0)
+ = (FE+)

(0)
+ ⊔ (FG+)

(0)
+ is the disjoint union of two planes with conjugate

asymptotics {γ, γ̄}.

Proof. Since F
(0)
− ̸= ∅, we can use Proposition 3.3.2 to analyse how F

(0)
− intersects

the planes inM±. Note that F
(0)
− cannot possibly be composed exclusively of (covers

of) planes in only one of the families M+ or M−, as otherwise the intersection of

F
(0)
− with L would be non-zero, contradicting [F̄ ] ·L = 0. Thus, F

(0)
− intersects both

(FE+)
(0)
− ∈ M+ and (FG+)

(0)
− ∈ M− positively. That is

iU(F
(0)
− , (FE+)

(0)
− ) > 0 and iU(F

(0)
− , (FG+)

(0)
− ) > 0.

Now let 𭟋 = (𭟋(0)
+ ,𭟋(0)

− ) denote either of the buildings FE+ or FG+ . A priori,

the building F may have non-trivial symplectisation levels, so to make sense of the

intersection number of the buildings i(F,𭟋) we may need to extend 𭟋 by trivial

symplectisation levels.29 With this understood, Theorem 3.2.5, Proposition 3.2.6,

29See Appendix C.5 of [56] for a full discussion of why this operation is well defined.
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iU(F
(0)
− ,𭟋(0)

− ) > 0 and [F̄ ] · [𭟋̄] = 0 imply that

iU(F
(0)
+ ,𭟋(0)

+ ) +
N∑
i=1

iU(F
(i),𭟋(i)) < 0.

Furthermore, Remark 3.4.27 implies that, for each 1 ≤ i ≤ N , iU(F
(i),𭟋(i)) ≥ 0,

and thus iU(F
(0)
+ ,𭟋(0)

+ ) < 0. Therefore, by positivity of intersections, at least one

component of F
(0)
+ covers 𭟋(0)

+ .

Summarising, we have proved that some components of F
(0)
+ cover both (FE+)

(0)
+

and (FG+)
(0)
+ , and so there exist positive integers m,n > 0 such that

F
(0)
+ = m(FE+)

(0)
+ + n(FG+)

(0)
+ + (other terms).

However, this already exhausts the total ω+-area. Indeed, by Corollary 2.11 of [9],

we have that

ω([F̄ ]) =

∫
Σ

(0)
+

(F
(0)
+ )∗ω+

≥ m

∫
C
((FE+)

(0)
+ )∗ω+ + n

∫
C
((FG+)

(0)
+ )∗ω+

= mω([E+]) + nω([F̄ ]− [E+])

= nω([F̄ ]) + (m− n)ω([E+])

= mω([F̄ ]) + (n−m)(ω([F̄ ])− ω([E+])).

Recall that Lemma 2.2.1 states that ω([F̄ ]) ≥ ω([E+]) = l, and so, in either of the

cases n ≥ m, or m ≥ n, we obtain

ω([F̄ ]) ≥ mω([E+]) + nω([F̄ ]− [E+]) ≥ ω([F̄ ]),

and thus n = m = 1. Moreover, this implies that there can be no other terms in

the expression for F
(0)
+ . That is, F

(0)
+ = (FE+)

(0)
+ + (FG+)

(0)
+ , and so the result is

proved.

Lemma 3.4.29. Let F = (F (0), . . . , F (N)) be the limit of a sequence of curves in

the class of a fibre [F̄ ] = H − S ∈ H2(X) such that F
(0)
− ̸= ∅. Then N = 0, that is,

F = (F
(0)
+ , F

(0)
− ) consists only of a top and bottom level.
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

Proof. Lemma 3.4.28 shows that F
(0)
+ = (FE+)

(0)
+ + (FG+)

(0)
+ and so any non-trivial

component f of F (N) (the level adjacent to the top level F
(0)
+ ) must have exactly two

positive punctures. Indeed, if it only had one, then the argument of Lemma 3.4.1

would imply that it is a trivial cylinder, and thus F (N) would be a union of trivial

cylinders, which is ruled out by the stability condition. Therefore, f has exactly two

positive punctures: γ and γ̄ of (FE+)
(0)
+ and (FG+)

(0)
+ .

Since F
(0)
+ = (FE+)

(0)
+ + (FG+)

(0)
+ , we have that iU(F

(0)
+ , (FE+)

(0)
+ ) = −1, and

so, to balance the equation i(F, E+) = [F̄ ] · [E+] = 0, there must be a positive

intersection between F and FE+ in a different level. The previous paragraph implies

that this positive intersection is eaten up by the non-trivial level F (N), which then

forces F
(0)
− to take on an illegal form. Indeed, extend FE+ by trivial intermediate

levels, then, as (FE+)(N) and f are geometrically distinct, their intersection number

is bounded below by the Morse-Bott contributions from their asymptotic orbits,

which are computed in Lemma 3.4.18:

iU(f, (FE+)(N)) ≥ i+MB(γ, γ) = 1.

Combining this with Remark 3.4.27, which says that any further intersections

appearing in intermediate levels are non-negative, we obtain that

0 = i(F, E+) ≥ iU(F
(0)
+ , (FE+)

(0)
+ ) + iU(f, (FE+)(N)) + iU(F

(0)
− , (FE+)

(0)
− )

≥ iU(F
(0)
+ , (FE+)

(0)
+ ) + 1 + iU(F

(0)
− , (FE+)

(0)
− )

= iU(F
(0)
− , (FE+)

(0)
− ),

and therefore iU(F
(0)
− , (FE+)

(0)
− ) = 0. Since F

(0)
− ̸= ∅, Lemma 3.3.1 implies that F

(0)
−

must consist of covers of J-holomorphic planes of the same parity as (FE+)
(0)
− , which

contradicts [F̄ ] · L = 0. Hence, there are no non-trivial symplectisation levels, and

so the result is proved.

The following is the main result of the analysis of c1 = 2 buildings.
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3.5. Constructing the foliation

Proposition 3.4.30. Let F be a limiting building of a sequence of curves in the

class [F̄ ] = H − S ∈ H2(X) of a fibre such that F
(0)
− ̸= ∅. Then F = (F

(0)
+ , F

(0)
− )

where F
(0)
+ = (FE+)

(0)
+ + (FG+)

(0)
+ and F

(0)
− is either

1. one of the pairs of nodal curves (FE+)
(0)
− +(FG+)

(0)
− or (FE−)

(0)
− +(FG−)

(0)
− , with

FE+ , FG+ , FE− , FG− as in section 3.4.3; or,

2. a smooth cylinder with the same asymptotes {γ, γ̄} as (FE+)
(0)
+ + (FG+)

(0)
+ .

Proof. The previous results show that F is a building with only a top and bottom

level, and that F
(0)
+ = (FE+)

(0)
+ +(FG+)

(0)
+ . This tells us that the positive asymptotics

of F
(0)
− are exactly γ and γ̄ of (FE+)

(0)
+ and (FG+)

(0)
+ . Thus, F

(0)
− is a connected genus

0 holomorphic curve with exactly two positive punctures. Therefore, either it is a

smooth cylinder, or it has nodes forming a chain of closed spheres connecting two

planes. However, there are no closed holomorphic spheres in T ∗L since this is an

exact symplectic manifold, and so there can be at most one node.

Observe that a nodal pair P1 + P2 of J-holomorphic planes satisfying (P1 +

P2) · L = 0 and having asymptotic orbits {γ, γ̄} must be exactly one of the pairs

(FE+)
(0)
− + (FG+)

(0)
− or (FE−)

(0)
− + (FG−)

(0)
− . Therefore, either we are in case (1),

or F
(0)
− passes through a point in T ∗L not contained in the images of the curves

(FE+)
(0)
− , (FG+)

(0)
− , (FE−)

(0)
− , or (FG−)

(0)
− , and is thus a smooth cylinder.

3.5 Constructing the foliation

In this section we use the limit analysis of section 3.4 to construct a JT ∗S2-

holomorphic foliation of T ∗S2 by cylinders. The process also picks out a particular

neck stretching sequence of almost complex structures Jk such that all the curves of

interest converge. First, suppose that we have a neck stretching sequence Jk, and

a countable collection of sequences (fmk ) of Jk-holomorphic curves with uniformly

bounded energy. One then applies a diagonal argument, a countable generalisation

of that discussed in Remark 3.4.15, using the SFT compactness theorem to extract a

93



Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

subsequence Jk such that, for all m, the sequences (fmk ) converge to J∗-holomorphic

buildings as k → ∞.

We apply this process to the following sequences. Recall the −1-classes {Ej |

1 ≤ j ≤ d} defined in Lemma 2.2.1, where classes of the form Ei − Ej support

the Lagrangian spheres in Bd,p,q. The critical points of the Lefschetz fibrations

πJk : XJk → C correspond exactly to the unique intersection points of Ej · (F − Ej).

This allows us to partition the set of critical points into so-called relevant and

irrelevant sets determined by whether the intersection Ej · L is non-zero or not.

That is, the relevant critical points correspond to the classes {E+, E−} as defined

in (3.4.5), and the irrelevant ones correspond to the remaining Ej classes. Recall

also the class En, which represents (the underlying simple curve of) a component of

the exotic curve uJ∞ (see Corollary 2.4.16). Even though curves in this class do not

correspond to Lefschetz critical points, we shall also call them irrelevant. With this

in mind, for each 1 ≤ j ≤ d, take the unique sequences of Jk-holomorphic −1-curves

ejk ∈ M0,0(Ej; Jk),

gjk ∈ M0,0(F − Ej; Jk),

εk ∈ M0,0(En; Jk),

along with a countable number of sequences of fibre curves

fmk ∈ M0,0(F ; Jk)

determined by point constraints for some fixed dense set {xm ∈ Y−} in the Weinstein

neighbourhood Y− of L. We extract a subsequence Jk for which all these sequences

converge to the J∗-holomorphic buildings Fm.

Note that Proposition 3.4.10 implies that, for sufficiently large k, the images

of the irrelevant curves stay bounded away from L. Moreover, a further diagonal

argument ensures that the convergence of all curves is monotonic, which will be

useful in Section 4.1.

To upgrade the dense set {(Fm)
(0)
− } of JT ∗S2-holomorphic curves in T ∗S2 to a
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3.5. Constructing the foliation

foliation we apply a bubbling argument, which is inspired by [29, §6].30 The idea is

choose x ∈ T ∗S2 and to take a subsequence of (xm) converging to x and analyse the

corresponding limits of the curves (Fm)
(0)
− under SFT compactness. However, this

time the SFT compactness theorem is that relating to manifolds with cylindrical

ends [5, Theorem 10.2]. To that end, denote the moduli space31 of J
(0)
− -holomorphic

cylinders with fixed positive asymptotes {γ, γ̄} by Mcyl. We first compute the self-

intersection of a cylinder in Mcyl:

Lemma 3.5.1. The JT ∗S2-holomorphic cylinders in Mcyl have zero constrained self-

intersection. In other words, for a building in the class [F̄ ] = H − S arising from

Proposition 3.4.30 we have

iU(F
(0)
− , F

(0)
− ) = 2 and iC(F

(0)
− , F

(0)
− ) = 0.

Proof. Since F
(0)
+ = (FE+)

(0)
+ + (FG+)

(0)
+ and

iU((FE+)
(0)
+ , (FE+)

(0)
+ ) = −1 = iU((FG+)

(0)
+ , (FG+)

(0)
+ ),

we have that

0 = [F̄ ]2

= iU((FE+)
(0)
+ , (FE+)

(0)
+ ) + iU((FG+)

(0)
+ , (FG+)

(0)
+ ) + iU(F

(0)
− , F

(0)
− )

= iU(F
(0)
− , F

(0)
− )− 2,

and so, iU(F
(0)
− , F

(0)
− ) = 2. Then, since

iU(F
(0)
− , F

(0)
− ) = iC(F

(0)
− , F

(0)
− ) + i+MB(γ, γ) + i+MB(γ̄, γ̄) = iC(F

(0)
− , F

(0)
− ) + 2,

we obtain the result.

30The argument of [29, §6] is much more complicated than what is required for our situation.
31More precisely, this is the moduli space of genus 0 curves with exactly two positive asymptotes

that represent the homology class

(0, 1, 1) ∈ H2(T
∗S2, γ ⊔ γ̄) ∼= H2(T

∗S2)⊕H1(γ ⊔ γ̄) ∼= ⟨0S2 , γ, γ̄⟩ ∼= Z3.
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

Applying the SFT compactness theorem to sequences of curves in Mcyl yields

holomorphic buildings of height k−|1|k+, as in Section 8 of [5]. Since T ∗S2 is a

manifold with no negative cylindrical ends, we have that k− = 0, so the resultant

buildings have a main level F (0) : Σ(0) → T ∗S2 and k+ upper levels F (ν) : Σ(ν) →

R× T ∗
1S

2.

Lemma 3.5.2. A holomorphic building with non-empty main level in the SFT

compactification of Mcyl has no non-trivial upper levels, and so, is given by a curve

in T ∗S2. Moreover, this curve must be exactly one of those in Proposition 3.4.30.

Proof. Denote the building by F = (F (0), . . . , F (k+)). Its upper-most level F (k+) :

Σ(k+) → R × T ∗
1S

2 is a J (k+)-holomorphic curve in a symplectisation with positive

asymptotes given by {γ, γ̄}. If F (k+) is not the union of trivial cylinders uγ ⊔ uγ̄,

then it must intersect them positively:

iU(F
(k+), uγ ⊔ uγ̄) ≥ i+MB(γ, γ) + i+MB(γ̄, γ̄) = 2.

Let P γ
± ∈ M± denote the unique JT ∗S2-holomorphic plane asymptotic to γ. Since F

is the limit of cylinders in Mcyl, we have that (extending P γ
± + P γ̄

∓ by trivial upper

levels)

2 = i(F, P γ
± + P γ̄

∓) ≥ iU(F
(0), P γ

± + P γ̄
∓) + iU(F

(k+), uγ ⊔ uγ̄),

which implies that

iU(F
(0), P γ

± + P γ̄
∓) ≤ 0.

In light of Corollary 3.3.3 and Proposition 3.3.2, this yields

iU(F
(0), P γ

±) = 0 = iU(F
(0), P γ̄

±),

which is only possible if F (0) is simultaneously a cover of all four planes P γ
±, P

γ̄
±.

However, since these planes are distinct, this is impossible.

We have shown that F has no non-trivial upper levels, and so F (0) is a

curve in T ∗S2 with exactly two asymptotes {γ, γ̄}. Therefore, we can apply

Proposition 3.4.30 to complete the proof.
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3.5. Constructing the foliation

We write Mcyl to denote the subset of the SFT compactification of Mcyl

consisting of buildings with non-empty main level. This is a topological surface

homeomorphic to the complex plane C. Moreover, just as in Section 2.5, Mcyl can

be equipped with a smooth structure (indeed the unique one) that makes the natural

map

πT ∗S2 : T ∗S2 → Mcyl : x 7→ the curve passing through x

into a Lefschetz fibration with exactly two critical points corresponding to the

intersection points of the two pairs of planes P γ
± + P γ̄

∓.

The next goal is to prove that L is fibred by circles in the foliation Mcyl, and

thus the image of L under πT ∗S2 is a smooth path.

Proposition 3.5.3. Let u : (C×, j) → T ∗S2 be a smooth, properly embedded32 JT ∗S2-

holomorphic cylinder with conjugate asymptotic Reeb orbits {γ, γ̄}, as in scenario

(2) of Proposition 3.4.30, that intersects the zero section L ⊂ T ∗L. Then this

intersection is along a circle contained in L.

Proof. The construction of the almost complex structure JT ∗S2 ensures that it is

anti-invariant under the action of conjugation on T ∗L. That is,

JT ∗S2 = −JT ∗S2 .

Composing with conjugation gives a (−j, JT ∗S2)-holomorphic cylinder ū. We aim to

show that iC(u, ū) = 0. To this end, since Mcyl
∼= C, we can choose a homotopy

from u to one of the nodal cylinders P γ
++P

γ̄
−, where P

γ
+ = (FE+)

(0)
− and P γ̄

− = (FE+)
(0)
−

are the M± planes asymptotic to γ and γ̄ respectively. Then, as conjugation sends

this pair of planes to itself, we can use the homotopy invariance, additivity, and

32All of the curves in Mcyl are properly embedded. Properness follows from their asymptotic

behaviour, and embeddedness follows from the adjunction formula [52, §4.1].
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Chapter 3. Constructing a foliation adapted to a Lagrangian sphere

symmetry of iC to compute:

iC(u, ū) = iC(P
γ
+ + P γ̄

−, P
γ
+ + P γ̄

−)

= iC(P
γ
+ + P γ̄

−, P
γ
+ + P γ̄

−)

= iC(P
γ
+, P

γ
+) + 2iC(P

γ
+, P

γ̄
−) + iC(P

γ̄
−, P

γ̄
−)

= −1 + 2− 1 = 0.

However, since the zero section L is the fixed locus of conjugation, there is

necessarily an intersection between u and ū. In view of the above, we deduce that u

and ū have the same image — they are geometrically indistinct. This implies that

conjugation restricts to a j-anti-holomorphic involution of (C×, j) with non-empty

fixed locus. Moreover, it’s compact since u is proper. The fixed locus of such an

involution is diffeomorphic to a circle, as is proved in the next lemma. As u is an

embedding, this completes the proof.

The following result is surely well known, and we include the proof only for

completeness.

Lemma 3.5.4. The fixed locus of an anti-holomorphic involution ι of (C×, j) is

either empty, or non-empty and diffeomorphic to S1, or two copies of R.

Proof. The action of the diffeomorphism group of C× is transitive on complex

structures, so we can assume that j = i is the standard complex structure. Identify

(C×, i) with (CP1\{0,∞}, i), so that we have an anti-holomorphic involution ι of

CP1 that preserves the set {0,∞}. Then z 7→ ι(z̄) is holomorphic, and preserves

{0,∞}, so it must be of the form

ι(z̄) =

αz, if ι(0) = 0,

α/z, if ι(∞) = ∞,

for some α ∈ C×. In the first case ι(z) = αz̄, if there is a fixed point z0 ∈ C×, then

we have that α = z0/z̄0, and

fix(ι|C×) = {rz0 | r ∈ R\{0}} ∼= R ⊔ R.
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On the other hand, if ι(z) = α/z̄ has a non-zero fixed point z ∈ C×, then

α = zz̄ = |z|2

must be a positive real number, and

fix(ι|C×) = (|z|2 = α) ∼= S1.

The next result is the pay-off for the work of this section.

Corollary 3.5.5. The zero section L ⊂ T ∗S2 is a matching cycle of the Lefschetz

fibration πT ∗S2.

Proof. Since L is fibred by circles, it lives submersively over its projection by πT ∗S2 ,

which is a smooth embedded path p : [−1, 1] → Mcyl joining the two critical

values of πT ∗S2 . Denote the symplectic parallel transport of this fibration by ϕt.

By Lemma 1.17 of [18] L is the trace under ϕt of its intersection with the fibre over

p(0), that is,

L =
⋃

t∈[−1,1]

ϕt
(
L ∩ π−1

T ∗S2(p(0))
)
.

Since the critical points of πT ∗S2 lie on L, we conclude that it is indeed a matching

cycle.
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Chapter 4

Isotopy to a matching cycle

In this chapter we use the neck stretching analysis of Chapter 3 to show that a

matching cycle Σk of of πJk converges to the matching cycle of πT ∗S2 . In turn, this

yields a Lagrangian isotopy from L to Σk for sufficiently large k.

Before discussing convergence of matching cycles, we need to understand how to

construct a sequence of matching paths for πJk that converges (in some sense) to

the matching path of Corollary 3.5.5. This is the subject of Section 4.1. Once this

is done, Section 4.2 shows that the convergence of the matching cycles essentially

follows from smooth dependence of ODEs on their defining vector field and initial

condition. Finally, Section 4.3 completes the proof that every Lagrangian sphere

L ⊂ Bd,p,q ⊂ X is Lagrangian isotopic to a matching cycle of a fixed Lefschetz

fibration πref .

4.1 Convergence of matching paths

Let x ∈ T ∗S2 and recall from Section 3.5 that there is a unique sequence of curves

fxk ∈ M0,0(X,F ; Jk) that converge to a JT ∗S2-holomorphic building passing through

x. In this chapter, we’ll primarily be interested in the convergence to the bottom

levels in the Weinstein neighbourhood Y− of L.

Before we can talk about convergence of matching cycles of the fibrations πJk :
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XJk → M0,0(XJk , F ; Jk) to the zero section matching cycle of πT ∗S2 : T ∗S2 →

Mcyl, we need to make sense of what it means for matching paths in the bases

M0,0(XJk , F ; Jk) to converge to the matching path of Corollary 3.5.5. The global

charts of M0,0(XJk , F ; Jk) constructed in Section 2.5 are not fit for this purpose,

since the neck stretching analysis of Section 3.1 shows that, as k → ∞, the subset

ML(Jk) ⊂ M0,0(XJk , F ; Jk) of curves that pass through Y− shrinks to a point. We

construct a new chart of M0,0(XJk , F ; Jk) with image contained in ML(Jk) using

one of the JT ∗S2-holomorphic M+ planes in T ∗S2. Choose a simple Reeb orbit γ0

that is neither γ nor γ̄. Fix the unique plane P γ0
+ ∈ M+ asymptotic to γ0 along

with a parametrisation u : C → T ∗S2 of it.

Lemma 4.1.1. The plane P γ0
+ intersects each curve in Mcyl exactly once, trans-

versely. In particular, for each C ∈ Mcyl,

iU(P
γ0
+ , C) = iC(P

γ0
+ , C) = 1.

Therefore, the composition πT ∗S2 ◦ u : C → Mcyl is a global chart.

Proof. The intersection claim follows easily from homotopy invariance of iC and the

fact that γ0 ̸= γ, γ̄ (see Section 3.3)

iC(P
γ0
+ , C) = iC(P

γ0
+ , P γ

+ + P γ̄
−) = iC(P

γ0
+ , P γ̄

−) = 1.

By positivity of intersections, there is exactly one positive, transverse intersection

as claimed. The fact that this provides a global chart follows by definition of the

smooth structure on Mcyl.

Remark 4.1.2. Since PSL(2,C) acts transitively on the configuration space of 3

points on CP1, we can reparametrise u to ensure that the two critical values of

πT ∗S2 correspond to the points ±1.

Recall that the neck stretching setup gives, for each k, an almost complex

embedding ιk : (T
∗
≤ekS

2, JT ∗S2) → (X, Jk) with image the Weinstein neighbourhood

Y− = T ∗
≤1L of L. This allows us to embed larger and larger portions of the plane

101



Chapter 4. Isotopy to a matching cycle

P γ0
+ as the neck gets longer. The idea is that, eventually, the curves in ML(Jk) get

close enough to their limiting bottom level curves in Mcyl so that the transverse

intersection property of the previous lemma holds for them too.

Lemma 4.1.3. There exists an integer K > 0 such that for all k ≥ K every curve

in ML(Jk) intersects P
γ0
+ exactly once transversely. Therefore, the parametrisation

u of P γ0
+ facilitates a chart of the moduli spaces M0,0(XJk , F ; Jk) for all k ≥ K.

Moreover, K can be chosen large enough so that there are only the two relevant

critical values of the maps πJk contained in the image of this chart. That is, the two

that correspond to the nodal curves P γ
± + P γ̄

∓.

Proof. Fix x ∈ Y−, then there is a unique sequence fxk ∈ ML(Jk) of fibre curves that

pass through x. We first prove that the result holds for this sequence. That is, that

there exists Kx > 0 such that, for all k ≥ Kx, f
x
k transversely intersects P γ0

+ exactly

once. Recall from Section 3.5 that the sequence Jk was chosen to ensure that each

of the sequences fxk converges1 to a J-holomorphic building F x : Σ∗ → X∗, where

the bottom level (F x)
(0)
− is the element of Mcyl passing through x. The nature of

the convergence fxk → F x implies that, for any ϵ > 0, there exists Kx,ϵ such that

(up to reparametrisation) fxk is ϵ-close to (F x)
(0)
− in the C1

loc topology.

Now, (F x)
(0)
− and P γ0

+ intersect exactly once, but since they are non-compact, we

need to be slightly careful before claiming that all nearby curves satisfy the same

property. Fortunately, they are non-compact in a very controlled way, due to the

asymptotic convergence to the Reeb orbits. The convergence fxk → F x guarantees,2

for all sufficiently large k, that the curves fxk are bounded away from the cylindrical

end of P γ0
+ . Therefore, the only intersections between fxk and P γ0

+ can occur in a

compact set. Thus, by standard differential topology, any such map transversely

1Note that some of the sequences fx
k necessarily contain nodal curves, since there are two nodal

curves in Mcyl. We have not defined exactly what it means for such a sequence (consisting of

potentially non-smooth Jk-holomorphic curves) to converge to a holomorphic building. However,

since we are only interested in the convergence away from the nodes, we will not go into the details.
2See Definition 2.7(d) of [9].
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intersects P γ0
+ in exactly the same number of points as (F x)

(0)
− — that is, exactly

once. Therefore, we deduce that there exists ϵx > 0, and Kx = Kx,ϵx > 0, such that,

for all k ≥ Kx, f
x
k is ϵx-close to (F x)

(0)
− and bounded away from the cylindrical end

of P γ0
+ , from which it follows that fxk intersects P γ0

+ exactly once, transversely.

We turn to showing that the result continues to hold as stated. This is a

consequence of the local description of the moduli spaces ML(Jk) and compactness

of the Weinstein neighbourhood Y−. First, we show that if the transverse intersection

property holds for a curve fxKx
∈ ML(JKx), then it holds for all nearby curves

f ∈ ML(JKx). This is achieved by finding a tubular neighbourhood Nx of fxKx
such

that the intersection P γ0
+ ∩Nx is connected and C1-close to a fibre of Nx. The claim

then follows from standard differential topology.

If the curve fxKx
is nodal, then the tubular neighbourhood Nx is constructed via

the gluing map. The nodal points of curves in ML(Jk) converge to the nodal points

of the curves in Mcyl, and since P γ0
+ intersects the curves in Mcyl away from the

nodes, we can increase Kx so that either fxKx
is no longer nodal, or the node is

bounded away from P γ0
+ . Note that, away from nodal points the gluing map is a

diffeomorphism, and this is where the unique transverse intersection fxKx
∩P γ0

+ occurs.

By varying the gluing parameter, we obtain arbitrarily small tubular neighbourhoods

Nx of fxKx
.

On the other hand, if fxKx
is smooth we use the local description of the moduli

space of smooth curves M0,0(X,F ; JKx) to express nearby curves as sections of the

(trivial) normal bundle νfxKx
. Thus, we obtain the tubular neighbourhood Nx. In

both the smooth and the nodal cases, fxKx
is bounded away from the cylindrical part

of P γ0
+ , so we can choose the tubular neighbourhood Nx small enough so that the

intersection Nx ∩ P γ0
+ is connected. In both the smooth and the nodal cases, this

implies that the intersection property continues to hold for all sufficiently nearby

curves f ∈ ML(JKx). In particular, there exists a number δx > 0 such that, for all

f ∈ ML(JKx) satisfying
3 d(f, fxKx

) < δx, f intersects P γ0
+ exactly once transversely.

3This metric refers to any that induces the manifold topology on ML(JKx).
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In summary, so far we have proved that, for all x ∈ Y−, there exists Kx > 0 and

δx > 0 such that, for all y ∈ Y−, and f
y
Kx

∈ ML(JKx) satisfying d(f yKx
, fxKx

) < δx,

we have that f yKx
intersects P γ0

+ exactly once, transversely. Furthermore, since the

convergence f yk → F y is C1-monotonic, we can upgrade the statement to hold for

all k ≥ Kx. Specifically, for all k ≥ Kx and y ∈ Y− such that d(f yKx
, fxKx

) < δx, we

have that f yk intersects P γ0
+ as desired. We now harness compactness to turn this

into a global statement.

For a given x ∈ Y−, the curves near fxKx
form a local foliation around x.

Therefore, we have that

Ux :=
⋃

f∈ML(JKx )
d(f,fxKx

)<δx

im f ∩ Y−

is a neighbourhood of x. Thus, we obtain a cover of Y−. Since it’s compact, we can

pass to a finite subcover Ux1 , . . . , Uxk and define

K := max{Kx1 , . . . , Kxk} <∞.

Then, as any point x ∈ Y− is necessarily contained in some Uxi , we have that

d(fxKxi
, fxiKxi

) < δxi , which implies that fxk intersects P γ0
+ exactly once, transversely,

for all k ≥ K ≥ Kxi . As any curve f ∈ ML(Jk) is equal to f
x
k for some x ∈ Y−, this

completes the proof.

The claim about the critical values follows from the discussion on choosing the

sequence Jk in Section 3.5.

As a result, for sufficiently large k, we can choose a sequence of matching paths

pk : [−1, 1] → M0,0(XJk , F ; Jk) joining the two relevant critical points, such that, in

the coordinates of the charts given by Lemma 4.1.3, pk converges to the matching

path p : [−1, 1] → C of the Lefschetz fibration πT ∗S2 associated to L. Our next

goal is to show that we can choose k large enough so that the matching cycle of πJk

associated to pk is Lagrangian isotopic to L.
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4.2 Convergence of the parallel transport

4.2.1 The parallel transport of πT ∗S2 : T ∗S2 → Mcyl

The problem of symplectic parallel transport involves lifting a vector field defined

over a compact path in the base to a horizontal vector field in the total space and

integrating it. This amounts to solving an ODE over a compact family of fibres of

the Lefschetz fibration πT ∗S2 . However, since these fibres are non-compact, we need

to justify why solutions to this ODE exist for all time.

More precisely, fix an embedded path γ : [0, 1] → Mcyl whose image avoids the

critical values of πT ∗S2 . Taking symplectic orthogonal complements of the tangent

spaces to the regular fibres of πT ∗S2 yields a field of horizontal planes H ⊂ TT ∗S2,

such that the restriction dπT ∗S2|H : H → TMcyl is an isomorphism. Therefore,

there exists a unique horizontal lift X̃ of the vector field X = d
dt
p. This defines an

ODE on the space π−1
T ∗S2(im γ).

Lemma 4.2.1. The symplectic parallel transport of the Lefschetz fibration πT ∗S2 :

T ∗S2 → Mcyl is well-defined.

Proof. The curves in the moduli space Mcyl are finite energy JT ∗S2-holomorphic

curves and so, by the results of Hofer, Wysocki, and Zehnder [27, Theorem 1.3],

Bourgeois [4, §3.3], and Mora-Donato [40, Proposition 1.2], they satisfy exponential

convergence to their asymptotic Reeb cylinders. The fixed path γ : [0, 1] → Mcyl

yields a compact family [0, 1] ∼= κ ⊂ Mcyl of such curves, and so, there exists a

compact Liouville subdomain of T ∗S2 outside of which, all the curves in κ satisfy

the exponential convergence estimates.

Fix the standard Riemannian metric on T ∗S2 coming from the embedding

T ∗S2 = {(p, q) ∈ R3 × R3 | |q| = 1, ⟨p, q⟩ = 0},

and consider the Hamiltonian H : T ∗S2 → R : H(p, q) = 1
2
|p|2. The ωcan-

orthogonal complement of the tangent space of a Reeb cylinder is a contact plane,

which is contained in ker dH. Therefore, the exponential convergence of the curves
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implies that the horizontal spaces converge exponentially to the contact planes. In

particular, the horizontal lift X̃ satisfies

|LX̃H| < Ce−ds,

where C > 0 and d > 0 are constants, and s ∈ [s0,∞) is the Liouville coordinate

on T ∗S2. An integral curve α of X̃ escapes to infinity if, and only if, |H(α)| → ∞.

Therefore, the above estimate shows that this is impossible, as we are integrating

over the compact set [0, 1].

4.2.2 The parallel transport of πJk : XJk → C

Recall from Lemma 4.1.3 that, for large enough k, we can identify the bases of the

Lefschetz fibrations πJk |Y− and πT ∗S2|Y− with a bounded disc D ⊂ C.

Lemma 4.2.2. Let γk : [0, 1] → D be a sequence of embedded paths converging C1 to

γ : [0, 1] → D. Suppose that each path avoids the critical locus of the corresponding

Lefschetz fibration, then the parallel transport ϕγk of πJk |Y− over γk is C0-close to

that of πT ∗S2|Y− over γ.

Proof. Since we are dealing with compact families of curves, so one can show that

the fibres of πJk |Y− living over γk converge uniformly to those of πT ∗S2|Y− over γ. It

follows that the ODE defining the parallel transport ϕγ of πT ∗S2 can be arbitrarily

well approximated by that defining ϕγk by increasing k. Therefore, by smooth

dependence of ODEs on the initial condition and the vector field that defines it (see

[12, Appendix B] for example) we obtain the result.

Lemma 4.2.3. Let γk : [−1, 1] → D be a sequence of matching paths converging to

the matching path γ : [−1, 1] → D corresponding to the zero section matching cycle

of πT ∗S2. Then, for sufficiently large k, the matching cycle Σk of πJk |Y− associated

to γk is C0-close to the zero section L.

Proof. Since the critical points of πJk |Y− converge to those of πT ∗S2|Y− , smooth

dependence of ODEs implies that we have C0 convergence of the vanishing thimbles
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associated to the paths γ−k := γk|[−1,0] and γ
+
k := γk|[0,1] in a small neighbourhood

of the critical points. Therefore, we can apply Lemma 4.2.2 to the restrictions

γ−k |[−1+ϵ,0] and γ
+
k |[0,1−ϵ] for some small ϵ > 0 to deduce that the vanishing thimbles

of πJk over the paths γ
±
k can be made C0-close to those of πT ∗S2 over γ± by increasing

k.

Choose k large enough so that the vanishing thimbles are very close to those

of πT ∗S2 and in particular, are contained in the Weinstein neighbourhood Y−. To

form the matching cycle a deformation of the symplectic structure on Y− is made

to account for the fact that the vanishing cycles over γk(0) may not agree (see [47,

Lemma 15.3]). A Moser-type argument ([47, Lemma 7.1]) is then used to map

the resulting sphere back to the original symplectic structure. Since the vanishing

thimbles themselves are C0-close, the deformation (and resulting Moser isotopy) can

be made so that the matching sphere Σk remains C0-close to L. This completes the

proof.

4.3 Constructing the isotopy

Theorem 4.3.1. There exists k sufficiently large such that L is Lagrangian isotopic

to a matching cycle of πJk .

Proof. Lemma 4.2.3 shows that the relevant matching cycle Σk is a Lagrangian

sphere contained in a neighbourhood of L that is symplectomorphic to

(T ∗
≤eRk

S2, e−Rkωcan) for some positive number Rk > 0. Therefore, we can apply

Hind’s theorem [24, Theorem 18] on uniqueness of Lagrangian spheres in T ∗S2 to

obtain a Lagrangian isotopy from Σk to L. If necessary, by re-scaling by the Liouville

flow, we can ensure that the isotopy is supported in T ∗
≤eRk

S2. Finally, since this

neighbourhood of L symplectically embeds into X, we obtain the isotopy in X as

desired.

In summary, we have found a Lefschetz fibration πJk : XJk → C and a Lagrangian

isotopy supported in a small neighbourhood of L taking L to a matching cycle Σk.
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S

F

S ′

Figure 4.1: The neighbourhood N of the fibre component of D′ in which we fix

the almost complex structures to be equal to the usual product complex structure

coming from S2 × S2.

The next task is to “undo the neck stretch” and find another Lagrangian isotopy

taking Σk to a matching cycle of some fixed Lefschetz fibration with respect to which

we will do the remaining computations.

We use the fact that the space J (D′) of compatible almost complex structures for

which each component of the divisor D′ ⊂ X is J-holomorphic is connected. In fact,

we restrict ourselves even further to the subset of J (D′) of almost complex structures

that are fixed in a neighbourhood of the F -component ofD′. In more detail, consider

a neighbourhoodN of this component of the form shown in Figure 4.1. Remark A.1.4

ensures that we can choose4 Jref ∈ J (D′) so that it agrees with the product almost

complex structure coming from S2 × S2 in N . Let U := X\N and denote the

subset of J (D′) of almost complex structures that agree with Jref in N = X\U by

J (U, Jref). That is,

J (U, Jref) := {J ∈ J (D′) | J |X\U = J |N = Jref |N = Jref |X\U}.

This space is connected, which follows from Sévennec’s argument (see [2, Proposi-

tion 1.1.6] for example). Observe that, for a suitable choice of neighbourhood N ,

all the stretched almost complex structures Jk are contained in J (U, Jref).

The idea is to use connectedness of J (U, Jref) to choose a path Jt of almost

complex structures from J0 = Jk to J1 = Jref . Applying the results of Section 2.4

yields a path of Lefschetz fibrations πt = πJt : XJt → C from π0 = πJk to π1 = πJref .

This path of fibrations induces a path in the configuration space C(C, d) of d points

in C corresponding to the positions of the critical values of πt (see Remark 2.5.6(1)).

4In fact, in Section 5.3 we shall explicitly construct a specific Jref .
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We note two features of this path. Firstly, recall that the point at infinity in the

bases M0,0(XJt , F ; Jt)
∼= C corresponds to the exotic stable curve uJt∞. Therefore,

the points must remain in a bounded subset by the fact that Lefschetz critical fibres

never intersect uJt∞. Secondly, since the almost complex structures Jt are fixed on

N and N is foliated by smooth Jt-holomorphic F -curves the points also remain

bounded away from 0 ∈ C. As a result, this path in C(C, d) is really a path in

C(A, d) where A ∼= [0, 1] × S1 is a compact annulus. Now, choose an isotopy of

matching paths γt : [−1, 1] → A for πt such that γ0 = γk is the matching path

for Σk from Lemma 4.2.3. Forming the corresponding matching cycles Lt yields a

Lagrangian isotopy from L0 = Σk to the matching cycle of πref over γ1. This isotopy

is disjoint from open neighbourhoods of uJt∞ and the F -component of the divisor

D′ ⊂ X. However, a priori it may pass through the sections S and S ′. This is a

problem since we want the Lagrangian isotopy to be supported in a subset of X that

is symplectomorphic to a subset of Bd,p,q. The point of the next result is to avoid

this behaviour by explicitly altering the Lefschetz fibrations πt.

The curves in M0,0(X,F ; J) form singular foliations Ft on X. The singular

leaves are exactly the singular Lefschetz fibres of πt, and one exotic leaf given by

uJt∞. In small tubular neighbourhoods of the Jt-holomorphic sections S and S ′, these

foliations are smooth with leaves given by symplectic 2-discs. We denote these by

Dt.

Lemma 4.3.2. There exists an isotopy Ds,t of foliations such that D0,t = Dt and

D1,t are foliations by symplectic 2-discs intersecting the sections S and S ′ positively

and symplectically orthogonally. The isotopy can be chosen so that it is invariant

in s outside of an arbitrarily small neighbourhood of each section. As a result, we

obtain singular foliations Fs,t of X such that, excluding a single exotic leaf, Fs,t

forms a symplectic Lefschetz fibration5 on X.

Proof. Put S1 = S and S2 = S ′. Note that near a section Si, the fibrations

5That is, Lefschetz fibrations whose fibres are only symplectic submanifolds, and not necessarily

J-holomorphic.
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πt are foliations Dt of symplectic 2-discs whose leaves intersect Si transversely

and positively. Therefore, we can use a variation of an argument of Gompf [21,

Lemma 2.3] to construct an isotopy of foliations Ds,t such that: (1) the point of

intersection of a leaf and Si is invariant in s; and (2) outside of a small neighbourhood

of Si, the leaves are also invariant in s. Furthermore, the leaves of D1,t intersect Si

symplectically orthogonally. Consequently, we can glue the symplectic discs in Ds,t

to the leaves of Ft to obtain new foliations Fs,t. By construction, these are constant

in s in a complement of small neighbourhoods of the sections Si, which implies that

(except for the one exotic fibre corresponding to the uJt∞ curve) their leaves form

Lefschetz fibrations, since the existence of a Lefschetz chart at a critical point is a

local condition. This completes the proof.

Let Xt denote X with the exotic leaf of F1,t excised. Write π1,t : Xt → C

for the corresponding Lefschetz fibration. Define the reference Lefschetz fibration

by πref := π1,1, and observe that it does not depend on the Lagrangian sphere

L. In addition to the tubular neighbourhood N defined earlier, choose a tubular

neighbourhood foliated by leaves of F1,1 of the exotic leaf, then define X̊ ⊂ U ⊂ X

to be the excision of this as well as the sections S and S ′. The restriction πref |X̊ is

a Lefschetz fibration over the compact annulus.

Corollary 4.3.3. There exists a Lagrangian isotopy from L to a matching cycle of

πref that is supported in X̊.

Proof. Theorem 4.3.1 shows that it suffices to find such an isotopy from the matching

cycle Σk to one of πref . Observe that Σk is still a matching cycle for the deformed

fibration π1,0 since none of the structure changes near Σk throughout the isotopy

Fs,t. Therefore, we can construct the Lagrangian isotopy using the matching paths

γt defined earlier, except this time we form the matching cycles with respect to the

maps π1,t. To see that this has support as claimed, note that the orthogonality

condition ensures that the parallel transport maps of π1,t preserve the sections Si.

Therefore, they preserve their complements too. Since Σk lives in this complement,
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the claim follows from this and the discussion preceding Lemma 4.3.2.
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Chapter 5

Mapping class groups of surfaces

and symplectomorphisms

In this chapter we harness the theory of mapping class groups of surfaces to improve

Corollary 4.3.3 to the main result Theorem 1.2.2. Corollary 4.3.3 tells us that any

Lagrangian sphere L ⊂ Bd,p,q is Lagrangian isotopic to a matching cycle of the

Lefschetz fibration πref . To convert this into an isotopy statement phrased in terms

of Dehn twists, we need to understand their relation to (isotopy classes of) matching

paths. This will be facilitated by the fact that the natural action of the mapping

class group of the d-punctured annulus A×d := [0, 1]×S1\{d points} is transitive on

matching paths, and so, it will suffice to understand particularly simple matching

paths.

5.1 The mapping class group of the punctured

annulus

The mapping class group of a surface is a classical object with plenty of rich theory.

Farb and Margalit’s book [20] — in particular, Sections 1–4 — contains everything

we will use here. We recall the main definition.
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× × ×
γ1 γ2

Figure 5.1: The punctured annulus and the matching paths γi.

Definition 5.1.1. Let S be an oriented surface (possibly with boundary and

punctures). The mapping class group of S, Mod(S), is defined to be the group

of connected components of the group of orientation preserving diffeomorphisms1 of

S that fix the boundary point wise. That is,

Mod(S) := π0(Diff
+(S, ∂S)).

Recall from Section 4.3, the restriction of the Lefschetz fibration πref to X̊ has

base a d-punctured annulus A. Therefore, we seek to understand the mapping class

group Mod(A). In Appendix A.2 we compute a presentation of Mod(A):

Example 5.1.2 (Appendix A.2). The mapping class group of the punctured annulus

is isomorphic to the direct product of the annular braid group with a copy of Z. This

is finitely generated, and each generator is one of three types: the Dehn twist T

about the central boundary, the so-called central twist τ , and half-twists σi around

the straight line paths γi joining the adjacent i and (i+ 1)th punctures. Explicitly,

1In fact, as Section 1.4.2 of [20] explains, we are free to consider homeomorphisms or

diffeomorphisms interchangeably.

113



Chapter 5. Mapping class groups of surfaces and symplectomorphisms

×

τ

×

T

× ×

σi

Figure 5.2: Local characterisations of each generator of Mod(A). In each case,

dotted lines map to dashed.

the presentation is:

Mod(A) =

〈
τ, σ1, . . . , σn−1

∣∣∣∣∣∣∣∣∣∣∣∣

(τσ1)
2 = (σ1τ)

2,

τσi = σiτ ∀i > 1,

σiσi+1σi = σi+1σiσi+1,

σiσj = σjσi ∀|i− j| > 1

〉
× ⟨T ⟩.

The behaviour of each generator is characterised by the diagrams in Figure 5.2.

Since any Lagrangian sphere L ⊂ Bd,p,q is Lagrangian isotopic to a matching

cycle Σγ fibred over the matching path γ, the following basic fact will be crucial in

proving Theorem 1.2.2.

Fact. The mapping class group Mod(A) acts transitively on the set of isotopy classes

of matching paths P .

Remark 5.1.3. In fact, this is true if A is replaced by any punctured oriented surface,

as can be proved by a cut-and-paste argument appealing to the classification of

surfaces, as the author learned from the MathOverflow answer [35].

Therefore, for some mapping class ρ ∈ Mod(A), ρ(γ) is isotopic to the so-

called standard matching path γ1 (see Figure 5.1). It follows that the matching

cycle Σγ is Lagrangian isotopic to Σρ(γ1). So to prove Theorem 1.2.2, we seek to

a correspondence between symplectomorphisms of Bd,p,q and mapping classes in

Mod(A).
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That the half-twists σi correspond to generalised Dehn twists about the

Lagrangian spheres Σγi is well known (and proved in [47, 16h]). The Dehn twist

T ∈ Mod(A) acts trivially on any class [γ] ∈ P since no matching path has an end

point lying on the central boundary component. So, our task is to understand to

what symplectomorphism the central twist τ corresponds. More precisely, is there

a symplectomorphism ϕ of Bd,p,q such that ϕ(Σγ1) is Lagrangian isotopic to Στ(γ1)?

5.2 Some symplectomorphisms of Bd,p,q

The aim of this section is to prove the following result.

Proposition 5.2.1. There exists a compactly-supported symplectomorphism τp,q of

Bd,p,q arising from the symplectic monodromy of the 1
p2
(1, pq − 1) singularity. The

central twist τ ∈ Mod(A) corresponds to τp,q, that is, τp,q(Σγ1) is Lagrangian isotopic

to Στ(γ1). Moreover, no iterate Στk(γ1), for k ̸= 0, is Lagrangian isotopic to Σγ1.

As a corollary of this, we find that τp,q has infinite order in the symplectic

mapping class group π0(Sympc(Bd,p,q)).

We adapt Seidel’s approach [45, §4.c] to the symplectic monodromy to suit our

situation. We work in C3 with coordinates z = (z1, z2, z3). Let ψ be a cut-off

function2 satisfying

ψ(t2) =

1, if t ≤ 1
3

0, if t ≥ 2
3
.

and define

M̃w := {(z1, z2, z3) ∈ C3 | |z| ≤ 1, z1z2 = zdp3 + ψ(|z|2)w}

Note that, for some ϵ > 0 sufficiently small, the manifolds M̃w with 0 < |w| ≤ ϵ are

smooth symplectic manifolds diffeomorphic to the Milnor fibre (z1z2 = zdp3 )∩ (|z| ≤

1) of the Adp−1 singularity (see Lemmata 4.9 and 4.10 of [45]). The M̃w are invariant

2The purpose of which is to ensure that the symplectic parallel transport maps used in the

definition of monodromy are well defined.
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under the 1
p
(1,−1, q) action on C3, and so (being a subgroup of the unitary group

U(3)) we can take the quotient to obtain symplectic manifolds Mw diffeomorphic to

Bd,p,q.

The Milnor fibration associated to the singular point 0 ∈ M0 is defined to be

restriction of the projection C3 × S1 → S1:

π :M :=
⋃
|w|=ϵ

Mw × {w} → S1,

Pulling back the standard symplectic form ωC3 to M yields a closed 2-form Ω whose

restriction to each fibre is symplectic. Therefore, we can define the symplectic

parallel transport of this fibration. Write ω = Ω|Mϵ .

Definition 5.2.2. Winding once (anticlockwise) around the base S1 yields the

symplectic monodromy map f ∈ Aut(Mϵ, ∂Mϵ, ω).

Lemma 5.2.3. In the case d = 1, the monodromy, which we now denote by τp,q,

of Bp,q induces the central twist τ ∈ Mod(A) in the mapping class group of the

punctured annulus A. More precisely, let γ and γ′ = τ(γ) be the dotted and

dashed (respectively) vanishing paths in Figure 5.2(τ). Form the associated vanishing

thimbles Dγ and Dγ′. Then τp,q(Dγ) is Lagrangian isotopic to Dγ′ = Dτ(γ).

Proof. Consider the map ϖ : M → C : ϖ(z, w) = zp3 . We have the following

diagram of maps:

M S1

C

ϖ

π

Restricting ϖ to each fibreMw of π yields a Lefschetz fibration ϖw := ϖ|Mw (except

on the exotic fibre ϖ−1
w (0)). The core idea of this proof is thinking about how the

unique Lefschetz critical value xw ∈ C× of ϖw winds around the origin as we go

around the base S1 of π.

For t ∈ [0, 1] choose a smooth family γt of vanishing paths such that γ0 = γ,

γ1 = γ′ = τ(γ0), γt(1) = xw, and γt restricted to an interval of the form [0, b] for
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b < 1 agrees with γ0|[0,b]. Let X̃ be the horizontal lift (with respect to π and Ω) of

the vector field X(t) = 2πie2πit and consider its flow µt. Note that µt maps Mw to

Me2πitw and µ1|Mϵ = τp,q by definition. Form the vanishing thimbles Dγt ⊂ Me2πitw

and consider the Lagrangian isotopy

Lt := µ−t(Dγt),

which is contained in (Mϵ, ω). Moreover, L0 = Dγ0 and L1 = µ−1(Dγ1) =

τ−1
p,q (Dτ(γ0)). Therefore, it follows that τp,q(Dγ) ≃ Dγ′ , as desired.

Remark 5.2.4. Consider the circle action σt with weights (1, dpq − 1, q) on C3:

σt(z1, z2, z3) = (e2πitz1, e
2πi(dpq−1)tz2, e

2πiqtz3).

In the quotient C3/1
p
(1,−1, q) this descends to a circle action that factors through

σt/p. The restriction of σt/p to ∂Mw gives the boundary ∂Mw the structure of a

Seifert fibration. Consider the Hamiltonian H ∈ C∞(Mw,R):

H(z) = π(|z1|2 + (dpq − 1)|z2|2 + q|z3|2).

Its time −1 flow ϕH−1 is a representative of the boundary Dehn twist onMw (induced

by the Seifert structure on ∂Mw). Since the Milnor fibration π : M → S1 is

equivariant with respect to the circle actions (σt/p, e
2πdqi) on M and e2πdqi on S1,

one can apply an argument of Seidel [45, Lemma 4.16] (with σt/p in place of σt and

β = dq) to show that

[ϕH−1] = [f ]dq

in the symplectic mapping class group of (Mϵ, ω).

We can view the Bp,q monodromy explicitly inside Bd,p,q as follows. Consider the

singular manifold

Ñ = {(z1, z2, z3) ∈ C3 | z1z2 = zp3

d∏
i=2

(zp3 − ai)},
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and its quotient N = Ñ/1
p
(1,−1, q). This is a partial smoothing of the 1

dp2
(1, dpq−1)

singularity. The unique singular point 0 ∈ N is of type 1
p2
(1, pq − 1). Similarly to

above, we form the manifolds

Ñt := {(z1, z2, z3) ∈ C3 | |z| ≤ 1, z1z2 = (zp3 − ψ(|z|2)e2πita1)
d∏
i=2

(zp3 − ψ(|z|2)ai)}

where 0 < a1 < . . . < ad are sufficiently small real numbers, along with their

quotientsNt = Ñt/
1
p
(1,−1, q). The familyNt is a smoothing of the singular manifold

N with a unique 1
p2
(1, pq−1) singularity. Therefore the monodromy of Nt is the Bp,q

monodromy. Observe that, Nt
∼= Bd,p,q. As in the proof of Lemma 5.2.3, projecting

to zp3 yields a Lefschetz fibration (up to the p-covered fibre over 0) ϖt : Nt → C,

and the same proof shows that the monodromy of Nt induces the central twist

τ ∈ Mod(A). Since we primarily work with N0, we abuse notation and continue to

write ϖ : N0 → C for ϖ0 : N0 → C.

Recall the matching path γ1 shown in Figure 5.1.

Lemma 5.2.5. The Bp,q symplectic monodromy τp,q acts non-trivially on π2(Bd,p,q).

Moreover, it acts with order p on the matching cycle Σγ1.

Proof. The quotient map c̃ : Ñ0 → N0 is the (degree p) universal cover ofN0
∼= Bd,p,q.

Consider the Lefschetz fibration fibration ϖ̃ : Ñ0 → C : ϖ̃(z1, z2, z3) = z3 and the

canonical p-to-1 branched cover c : C → C : c(x) = xp. Observe that the diagram

Ñ0 N0

C C

c̃

ϖ̃ ϖ

c

(5.2.1)

commutes and realises the Lefschetz fibration ϖ̃ : Ñ0 → C as the pullback under c

of ϖ : N0 → C. Combined with the fact that c̃ respects the symplectic structures,

this implies that c̃ commutes with the parallel transport of ϖ̃ and ϖ. In particular,

given a matching path γ of ϖ and a lift γ̃ via c to a matching path for ϖ̃, the

matching cycle Σγ̃ ⊂ Ñ0 will be a lift of Σγ ⊂ N0 with respect to c̃.

Since c̃ is the universal cover, it induces isomorphisms on homotopy groups

πi(Ñ0) ∼= πi(N0) for all i > 1. Moreover, as Ñ0 is simply connected, the Hurewicz
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× ×

×

×

×

×

γ̃

γ̃p c−→ × ×

Figure 5.3: The dashed path γ̃ is a lift of the matching path τ(γ1). The dotted

path γ̃p is a lift of the path τ p(γ1). The example drawn here is d = 2 and p = 3.

theorem implies that π2(Ñ0) ∼= H2(Ñ0;Z) ∼= Zdp−1. Therefore, the calculation of

(τp,q)∗[Σγ1 ] = [Στ(γ1)] ∈ π2(N0) reduces to computing the homology class of Σγ̃,

where γ̃ lifts τ(γ1).

To this end, we fix a basis of H2(Ñ0;Z) to be the collection of matching cycles

corresponding to the following matching paths: the p − 1 arcs, µj : [0, 1] → C :

µj(s) = p
√
a1e

2πi(j+s)/p, for 0 ≤ j < p−1; and the (d−1)p paths µj,k : [0, 1] → C, for

0 ≤ j < p and 1 ≤ k < d, where µ0,k is the straight path between the points p
√
ak

and p
√
ak+1, and µj,k = e2πij/pµ0,k. The illustration in Figure 5.4 should dispel any

confusion.

We have that Σγ̃ is isotopic to the Dehn twist τΣµ0
(Σµ0,1) of Σµ0,1 about Σµ0 , so

we can use the Picard-Lefschetz formula to calculate the homology class:

[τΣµ0
(Σµ0,1)] = [Σµ0,1 ] + ([Σµ0 ] · [Σµ0,1 ])[Σµ0 ] = [Σµ0,1 ] + [Σµ0 ].

This proves that (τp,q)∗ acts non-trivially on H2(Ñ0;Z) ∼= π2(Bd,p,q).

To show that (τ pp,q)∗[Σγ1 ] = [Σγ1 ] it suffices to check that [Σγ̃p ] = [Σµ0,1 ], where

γ̃p is the lift of τ
p(γ1) drawn in Figure 5.3. Denote by µ the matching path obtained

by successively half-twisting µ0 along µi for i > 0 (see Figure 5.4(b) for an example
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(a)

× ×
µ0,1

×

×
µ1,1

×

× µ2,1

µ0

µ1

(b)

× ×

×

×

×

×

µ

σµ(µ0,1)

Figure 5.4: (a) The matching paths corresponding to the chosen basis of H2(Ñ0;Z).

(b) An A3-configuration of matching paths: µ0,1 (dashed), µ = σµ1(µ0) (dotted),

and µ2,1 (dashed); along with the matching path γ̃p = σµ(µ0,1) (dash dot). The case

drawn here has d = 2, and p = 3.

with d = 2, and p = 3):

µ := σµp−2σµp−3 · · · σµ1(µ0).

Then, γ̃p is isotopic to σ2
µ(µ0,1), which implies that the matching cycle Σγ̃p is

Lagrangian isotopic to the Dehn twisted sphere τ 2Σµ
(Σµ0,1), which is smoothly isotopic

to Σµ0,1 . This implies that [Σγ̃p ] = [Σµ0,1 ], which completes the proof.

The previous lemma shows that τ pp,q(Σγ1) ≃ Στp(γ1) is homotopic to Σγ1 . However,

they are not Lagrangian isotopic as we now show.

Proposition 5.2.6. The matching cycle τ pp,q(Σγ1) ≃ Στp(γ1) is not Lagrangian

isotopic to Σγ1.

Proof. Suppose that the result is false. Then, denoting L = Σγ1 and L′ = Στp(γ1),

there exists a Hamiltonian isotopy ϕHt ∈ Ham(N0, ω) satisfying

ϕH1 (L) = L′.
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5.2. Some symplectomorphisms of Bd,p,q

Then H lifts to the Hamiltonian H̃ := H ◦ c̃ : Ñ0 → R, whose flow ϕH̃t covers that

of H:

c̃ ◦ ϕH̃t = ϕHt .

Therefore, by choosing the lift L̃ := Σµ0,1 of L we must have that L̃′ := ϕH̃1 (L̃) is a

lift of L′. Moreover, by the diagram in Equation (5.2.1), ϖ̃(L̃′) is (the image of) a

lift of the matching path τ p(γ1). For topological reasons, this lift is exactly γ̃p as

shown in Figure 5.3.

Picking up where we left off in the proof of Lemma 5.2.5, we deduce that L̃′

is Lagrangian isotopic to τ 2Σµ
(Σµ0,1). As noted, this is smoothly isotopic to L̃ =

Σµ0,1 , but a famous result of Seidel [44] shows that it is not Lagrangian isotopic.

Indeed, an A3-configuration of Lagrangian spheres one can use to apply this result

is given by the collection of matching cycles corresponding to the matching paths

µ0,1, µ = σµp−2σµp−3 · · · σµ1(µ0), and µp−1,1. Applying Seidel’s theorem shows that

the Lagrangian Floer cohomology HF (L̃′,Σµp−1,1) is non-zero,3 so L̃′ cannot be

Hamiltonian isotoped to L̃ since HF (L̃,Σµp−1,1) = 0. This yields a contradiction,

and hence our initial assumption that L = Σγ1 and L′ = Στp(γ1) were Lagrangian

isotopic is false.

Corollary 5.2.7. The Bp,q monodromy has infinite order in the symplectic mapping

class group of Bd,p,q.

Proof. A basic extension of the above proof shows that Lk := Στkp(γ1) is not

Lagrangian isotopic to L0 = Σγ1 for all k ̸= 0. Since Lk ≃ τ kpp,q(L0) this proves

the result.

Remark 5.2.8. This is not a surprising result; it parallels the story of weighted

homogeneous hypersurface singularities. What would be interesting is investigating

whether it is truly a symplectic phenomenon or not. That is, is the monodromy of

infinite order in the smooth mapping class group?

3Note how in Figure 5.4 the matching path σµ(µ0,1) intersects µp−1,1, whereas µ0,1 doesn’t.
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Chapter 5. Mapping class groups of surfaces and symplectomorphisms

Note that in the case (d, p, q) = (n+1, 1, 1) — which is the An du Val singularity

— this is truly a symplectic phenomenon by Brieskorn’s simultaneous resolution [6].

On the other hand, recent work of Konno, Lin, Mukherjee, and Muñoz-Echániz [32]

shows that the monodromy diffeomorphism of the Milnor fibration for every weighted

homogeneous hypersurface singularity excluding the ADE singularities has infinite

order in the smooth mapping class group. Their theorem does not apply to the

Bd,p,q case since b+(Bd,p,q) = 0 and π1(Bd,p,q) ̸= 1.

5.3 Proof of the main theorem

Consider the subgroup G of the symplectic mapping class group π0(Sympc(Bd,p,q))

generated by the d − 1 Dehn twists about the standard spheres Li = Σγi and the

1
p2
(1, pq−1) symplectic monodromy τp,q. We now state the main theorem in its most

precise form:

Theorem 5.3.1. For every Lagrangian sphere L ⊂ Bd,p,q there exists ϕ ∈ G such

that L is Lagrangian isotopic to ϕ(L1).

We’ll do this by combining the main result of Chapter 4 with a proof that the

Lefschetz fibration ϖ : N0 → C in the previous section compactifies in a suitable

sense to πref . We show that we can choose the reference almost complex structure

Jref on X = Xd,p,q so that the fibres of the map πJref : X → C are compactifications

of those of ϖ : N0 → C.4 The upshot of this is that all the results proved in

Section 5.2 transfer immediately to πref .

Lemma 5.3.2. There exists a symplectic embedding ι : N0 ↪→ X = Xd,p,q and an

almost complex structure Jref ∈ J (D′) on X such that the fibres of ϖ : N0 → C

compactify to Jref-holomorphic fibres of the map πJref : X → C.

Proof. The existence of this embedding will follow from showing that N0 has an

almost toric structure with base diagram isomorphic to that shown in Figure 1.1.

4Recall that πref is the deformation of πJref
under the Gompf argument of Lemma 4.3.2.
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(r, p) × ×

(a): N0

× ×

(b): N̄0

Figure 5.5: A fundamental domain derived from the Hamiltonian system H : N0 →

R2. Here r is the unique integer 0 < r < p such that rq ≡ 1 mod p. Cuts made are

shown in dash dot.

Indeed, the compactification X was constructed using only the almost toric base

diagram. After this, we then investigate how the almost complex structure J on N0,

inherited from its embedding in C3, and the fibres of ϖ behave with respect to the

Hamiltonian H : N0 → R used in the symplectic cut construction.

As in Lemma 7.2 of [17], the Hamiltonian system H = (|z3|2, 12(|z1|
2 − |z2|2))

on N0 has a fundamental domain whose image under action coordinates is that

shown in Figure 5.5(a). In particular, the y-coordinate is the Hamiltonian H(z) =

1
2
(|z1|2 − |z2|2) which generates the circle action t · (z1, z2, z3) = (eitz1, e

−itz2, z3).

After applying a SL2(Z) transformation to make the toric boundary vertical and

rotating the branch cut 180◦ clockwise, one obtains exactly the fundamental domain

of Figure 1.1. Under this correspondence, the vertical cuts made in Figure 2.8(b)

(which correspond to the J-holomorphic sections of the Lefschetz fibrations πJ :

X → C) translate to horizontal cuts in the above fundamental domain. This means

that the symplectic cut construction is done with respect to the Hamiltonian H.

Recall that a fibre ϖ−1(w) is given by the equation

z1z2 =
d∏
i=1

(w − ψ(|z|2)ai),

which is preserved by the Hamiltonian flow ϕHt . Therefore, the intersection of a
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Chapter 5. Mapping class groups of surfaces and symplectomorphisms

fibre with a regular level H−1(r) is given by an orbit of ϕHt . This implies that, after

taking the symplectic cuts, the fibres of ϖ become symplectic spheres in X.

As for the almost complex structure, note that in the region where the cut is

made, N0 is a complex submanifold of C3/1
p
(1,−1, q). Indeed, N0∩ (2

3
≤ |z|2 ≤ 1) =

M0 ∩ (2
3
≤ |z|2 ≤ 1) and M0 is holomorphic. Therefore, as the circle action ϕHt is

a subgroup of the U(3) action, this implies that J is invariant under ϕHt and thus

descends to give an almost complex structure J̄ on the cut manifold N̄0 shown in

Figure 5.5(b). To produce an almost complex structure on X we need to make a

cut corresponding to the horizontal cut shown in Figure 2.8(a). However, a priori,

the symplectic sphere introduced by this cut may not be J̄-holomorphic. Therefore,

we define Jref as follows. Fix a closed subset of N̄0 containing all of the focus-focus

critical points of the form indicated by the vertical dashed line in Figure 5.5(b),

and define Jref to be J̄ here. Then, in a neighbourhood of the vertical cut passing

through the branch cut define Jref to be that coming from the standard product

complex structure in S2 × S2 (compare Section 4.3 and Figure 4.1). Finally, on the

remaining region pick Jref arbitrarily so that it makes the horizontal toric boundary

Jref-holomorphic (which is possible by Lemma A.1.3).5

The final claim that the fibres of ϖ compactify to fibres of πJref is equivalent

to saying that the compactified spheres live in the homology class F = H − S (in

the basis computed in Lemma 2.2.1). Let A ∈ H2(X) be the homology class of the

compactified fibres. The claim follows from the fact that A · Ei = 0, A · Ej = 0,

A · F = 0, and A · S = 1.

Corollary 5.3.3. The symplectic embedding ι : N0 → X induces a commutative

5Of course, one also needs to handle resolving the singularities introduced by the horizontal

cuts, as in Lemma 2.1.3. However, this can be done so that the resulting resolution loci are Jref -

holomorphic without affecting the property that the fibres of ϖ : N0 → C away from the exotic

fibre over 0 compactify to Jref -holomorphic spheres in X.
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square

N0 X

C C

ι

ϖ πJref .

Furthermore, this induces a bijection of sets of isotopy classes of matching paths of

ϖ and πJref .

Proof. The existence of the commutative square is essentially just a rephrasing of

Lemma 5.3.2. Notice that the restriction πJref |X\ im ι consists only of regular fibres

by the choice of closed set on which Jref agrees with the almost complex structure

J̄ coming from symplectic cutting N0. This induces the claimed bijection of isotopy

classes of matching paths, which, said another way, means that every matching cycle

of πJref is Lagrangian isotopic to a matching cycle of ϖ.

Proof of Theorem 5.3.1. The symplectic completion of N0 is symplectomorphic to

Bd,p,q. Therefore, by applying the negative Liouville flow, we can assume that

L ⊂ N0 and thus, after compactifying, L ⊂ X. Therefore, by Corollary 4.3.3, L is

Lagrangian isotopic to a matching cycle of πref in X̊. The results of Section 5.2

and Corollary 5.3.3 imply that this matching cycle is Lagrangian isotopic to a

composition of Dehn twists and the Bp,q symplectic monodromy applied to the

matching cycle L0 = Σγ1 . Finally, since the isotopy is supported in X̊, we can find

a contact-type hypersurface M in X\D′ such that the isotopy is contained in the

interior XM ⊂ X\D′ of M and so that the completion of XM is symplectomorphic

to Bd,p,q. See Figure 5.6 for an example. Thereby we view the isotopy as taking

place in Bd,p,q.
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× ×

Figure 5.6: The dashed curve represents the image of the contact-type hypersurface

M ⊂ X\D′ chosen to ensure that the completion of the interior is symplectomorphic

to Bd,p,q. We can ensure that the Lagrangian isotopy is contained in the interior of

this hypersurface by altering the curve so that it doesn’t touch any of the boundary

edges except the leftmost one.
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Appendix A

Constructions used in the text

A.1 Almost complex structures on symplectic

divisors

We construct the almost complex structures necessary for the arguments of

Section 2.4. Let (M,ω) be a closed symplectic 4-manifold and S ⊂M a symplectic

divisor. In particular, throughout the whole of this section, we will assume the

following:

• the components Si of S are closed, embedded symplectic submanifolds;

• intersecting components Si and Sj do so symplectically orthogonally;1 and,

• there are no triple intersections, i.e. for distinct components Si, Sj, Sk, we have

Si ∩ Sj ∩ Sk = ∅.

We will construct a compatible almost complex structure on M that realises each

component of S as a J-holomorphic submanifold. The idea is to first construct J

at the points of intersection, then extend in neighbourhoods of each component,

1This condition is not strictly necessary, but it makes the proofs simpler and it is satisfied in

the situation we handle in this paper.
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and finally to the whole of M . All the arguments presented here are variations on

standard material, see for example [38, Chapters 2–3] and [8, Part III].

First consider the simplest situation where S = S1 ∪ S2 is composed of

two symplectic surfaces that intersect symplectically orthogonally exactly once.

Note that, by the symplectic neighbourhood theorem [38, Theorem 3.4.10], a

neighbourhood of S1 inM is isomorphic to a neighbourhood of the zero section in the

symplectic normal bundle νS1 of S1. Thus, we may choose a symplectic trivialisation

of νS1 in a neighbourhood of the unique intersection point {x} = S1 ∩ S2. In other

words, we have an embedding ϕ : U → M of a neighbourhood U of 0 ∈ (R4, ω0),

where ω0 =

 0 I

−I 0

 is the standard symplectic form, such that ϕ(R2×{0}) ⊂ S1.

Furthermore, the symplectic orthogonality condition between S1 and S2 ensures

that dϕ(0)({0}×R2) = TxS2. The next step is to adjust the map ϕ to a symplectic

embedding that maps the symplectic planes R2 × {0} and {0} × R2 into S1 and

S2 respectively, thus symplectically identifying the intersection S1 ∩ S2 with the

standard intersection of coordinate planes in R4. This is achieved by the following

result.

Lemma A.1.1. Let W ⊂ (R2n, ω0) = (Cn, ω0) be an embedded symplectic

submanifold of the standard symplectic vector space that intersects the coordinate

plane Ck×{0} exactly once symplectically orthogonally at 0 ∈ Cn. Then there exists

a symplectomorphism of a neighbourhood of 0 ∈ Cn that maps the planes Ck × {0}

and {0} × Cn−k onto Ck × {0} and W respectively.

Proof. Choose a symplectic embedding i : B2(n−k) ⊂ Cn−k → C of a ball

parametrising W and satisfying i(0) = 0. In the following, we will denote the planes

Ck×{0} and {0}×Cn−k by Cz1 and Cz2 respectively. The symplectic neighbourhood

theorem allows us to view a neighbourhood of the image of i as i∗νW . Note that the

normal fibre ν0W over 0 is exactly Cz1 . Moreover, the symplectic form ω0 defines

a connection H ⊂ Ti∗νW on i∗νW by taking the ω0 complement of the vertical

distribution. This implies that the symplectic form ω0 splits over i
∗νW into vertical
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and horizontal components: ω0 = ω′ ⊕ ω′′. Let ⟨Xj, Yj⟩ be the standard symplectic

basis of T0Cz1 = Cz1 = (T0W )ω and extend this to a symplectic frame of i∗νW via

parallel transport. Using complex coordinates z1 = (x1 + iy1, . . . , xk + iyk), define a

map φ : B2n ⊂ Cn = Cz1 × Cz2 → i∗νW by

φ(z1, z2) =

(
k∑
j=1

xjXj(z2) + yjYj(z2), z2

)
.

Note that φ is a bundle isomorphism Ck×B2(n−k) ∼= i∗νW . Moreover, since ∇Xj =

0 and ∇Yj = 0, φ pulls back the connection H on i∗νW to the canonical one

TB2(n−k) ⊂ TCk⊕TB2(n−k) on Ck×B2(n−k). Consequently, φ respects the splitting

of i∗νW induced by H, satisfies φ∗ω′ = ωCk , and φ∗ω′′ = ωB2(n−k) , which yields

φ∗ω0 = φ∗(ω′ ⊕ ω′′) = ωCk ⊕ ωB2(n−k) = ω0.

Hence, φ is the required symplectomorphism.

Corollary A.1.2. Let x be an intersection point of a symplectic divisor S ⊂ (M,ω),

then there exists an integrable compatible almost complex structure on a neighbour-

hood of x that preserves each of the pieces of the divisor that intersect at x.

Proof. The assumptions on the divisor S ensure that intersections between compo-

nents are isolated and satisfy the assumptions of the local result of Lemma A.1.1.

Therefore, we can push forward the standard complex structure i on C2 via a

chart given by Lemma A.1.1. Since i preserves the coordinate planes, the result

follows.

We are now a position to choose a compatible almost complex structure J in

a neighbourhood of all the intersection points of the divisor S ⊂ (M,ω). Then

next step is to extend this to each of the components Si ⊂ S so that each Si is

J-holomorphic.

Lemma A.1.3. Let W ⊂ (M,ω) be an embedded symplectic submanifold.2 Then,

by the symplectic neighbourhood theorem, W has a neighbourhood symplectomorphic

2Here, W and M may be of any dimensions.
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to its symplectic normal bundle (νW, ω). Let H ⊂ TνW be the canonical symplectic

connection induced by ω, and suppose that we are given a compatible almost complex

structure that splits J = JH ⊕JV according to the connection H, and is defined over

an open neighbourhood U ⊂ νW of an open set of W . Then, for any open subset

U ′ ⊂ U ′ ⊂ U , there exists a compatible almost complex structure J ′ ∈ J (TνW, ω)

that agrees with J on U ′ and preserves the splitting TνW = H ⊕ V . In particular,

W is a J ′-holomorphic submanifold.

Proof. The non-degeneracy of the symplectic form ω splits the bundle TνW into

horizontal and vertical components (H,ωH) and (V, ωV ), that is,

(TνW,ω) = (H,ωH)⊕ (V, ωV ).

The hypothesis on J says that it decomposes into two compatible almost complex

structures JH ∈ J (H|U , ωH) and JV ∈ J (V |U , ωV ). Therefore, to extend J to

all of νW , it suffices to extend both JH and JV . This follows from the non-

emptiness and contractibility of the space of compatible almost complex structures

on any symplectic vector bundle, see [38, Proposition 2.6.4] for example. The non-

emptiness and contractibility of J (H,ωH) and J (V, ωV ), ensure that we can find

global sections J ′
H ∈ J (H,ωH) and J

′
V ∈ J (V, ωV ) that agree with JH and JV over

U ′. Finally, since J ′ := J ′
H ⊕ J ′

V preserves the horizontal bundle H, and, for any

point x ∈ W , H(x,0) = TxW , we have that W is a J ′-holomorphic submanifold. This

completes the proof.

Remark A.1.4. Suppose that the normal bundle (νW, ω) above is trivial, i.e. iso-

morphic to (W × R2m, ωW ⊕ ωR2m). Then the horizontal distribution is simply

W×{x} ⊂ W×R2m. Therefore, the extended almost complex structure J ′ preserves

those subspaces, making the canonical sections sx : W →W ×R2m : sx(w) = (w, x)

J ′-holomorphic.

Returning to the situation of Section 2.4, since a neighbourhood of the F -

component of the divisor D is symplectomorphic to a neighbourhood of a horizontal

sphere in S2 × S2, we can choose J near the points of intersection with the sections
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to be that coming from the corresponding intersections of horizontal and vertical

spheres in S2 × S2. Hence, the above implies that we can choose J near the F -

component of the divisor D so that nearby curves in M0,0(F ; J) all intersect the

sections ω-orthogonally.

Corollary A.1.5. Given a symplectic divisor S in a symplectic 4-manifold (M,ω),

there exists a compatible almost complex structure J ∈ J (M,ω) that realises each

component Si of S as a J-holomorphic curve.

Proof. Corollary A.1.2 and Lemma A.1.3 yield a compatible almost complex

structure J ′ defined in a neighbourhood of S such that each component Si is J
′-

holomorphic. Indeed, the set U ′ in the statement of Lemma A.1.3 can be chosen

to be a shrunken neighbourhood of that given by Corollary A.1.2. Therefore,

all that remains to do is extend J ′ to all of M , which again follows from [38,

Proposition 2.6.4].

A.2 The mapping class group of the punctured

annulus

The following argument is based on Adrien Brochier’s MathOverflow answer [7].

Let S be a topological surface, and let C(S, n) denote the configuration space of

n points on S. Denote the 2-disc by D and recall that the braid group Brn on n

strands is defined to be the fundamental group of C(D,n). Similarly, denoting the

compact annulus by A, the annular braid group on n strands Brn(A) is defined to

be π1(C(A, n)).

Lemma A.2.1. The annular braid group has the following presentation:

Brn(A) =

〈
τ, σ1, . . . , σn−1

∣∣∣∣∣∣∣∣∣∣∣∣

(τσ1)
2 = (σ1τ)

2,

τσi = σiτ ∀i > 1,

σiσi+1σi = σi+1σiσi+1,

σiσj = σjσi ∀|i− j| > 1

〉
. (A.2.1)
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Proof. Recall the Artin presentation of Brn+1:

Brn+1 =

〈
σ0, . . . , σn−1

∣∣∣∣∣∣ σiσi+1σi = σi+1σiσi+1,

σiσj = σjσi ∀|i− j| > 1

〉
. (A.2.2)

By “filling in” the central hole of A with a punctured disc, we construct an

injective homomorphism i : Brn(A) → Brn+1 sending each annular braid to

the corresponding planar one which fixes the 0th strand.3 Consider the map

ϕ : Brn+1 → Σn+1 = Sym{0, . . . , n} sending each braid to its permutation of the

punctures. The image of i is ϕ−1(Stab(0)), which has generators ⟨σ2
0, σ1, . . . , σn−1⟩.

Setting τ = σ2
0, we obtain the claimed generating set for Brn(A). The relation

(τσ1)
2 = (σ1τ)

2 follows from the braid relation σ0σ1σ0 = σ1σ0σ1.

Denote the mapping class group of a surface S as Mod(S), interpreted as in [20,

§2]. As with Mod(D×n), where D×n is the n-punctured disc D×n = D\{n points},

Mod(A×n) is closely related to its braid group Brn(A).

Proposition A.2.2. Let Tα denote the isotopy class of the Dehn twist about a simple

closed curve α near the central boundary of A×n. Then

Mod(A×n) ∼= Brn(A)× ⟨Tα⟩ = Brn(A)× Z. (A.2.3)

Proof. The result follows from the Birman exact sequence [20, Theorem 9.1]:

1 −→ π1(C(A, n)) = Brn(A) −→ Mod(A×n) −→ Mod(A) −→ 1. (A.2.4)

We may apply this theorem since the identity component of Homeo+(A, ∂A) is

contractible [13, Theorem 1(D)], and so in particular, π1(Homeo+(A, ∂A)) = 1.

Since Mod(A) = ⟨Tα⟩ = Z is free, this sequence splits and we obtain the result.

3The strand associated with the central puncture in D.
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