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Abstract1

The escalating global biodiversity crisis requires innovative and scalable solutions to monitor wildlife pop-2

ulations. Recent developments in remote sensing and deep learning offer promising avenues for improving3

the conservation of large mammals, including African elephants. This paper introduces a framework that4

utilizes drone video streams and integrates state-of-the-art object detection (YOLOv11) and tracking5

(BoT-SORT) methods, which are significantly enhanced by a custom post-track re-identification algo-6

rithm, to capture temporal dynamics and track individual elephants over time. The framework facilitates7

automated video analysis and elephant counting, generating key metrics such as individual elephant8

movement speed, group movement patterns, and elephant cluster statistics. By automating aspects of9

data processing and analyses, this approach provides valuable insights that contribute to more efficient10

and data-driven decision-making in wildlife research.11
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1 Introduction16

The escalating global biodiversity crisis requires innovative and scalable solutions to monitor wildlife17

populations to support conservation management (Kissling et al. 2024). The scale of the crisis is illustrated18

by the 2024 Living Planet Index report that showed a 73% average decline in wildlife population size19

for the set of species and populations they measured from 1970 to 2020 (WWF 2024). The IPBES 201920

further noted that major land-based habitats have declined by at least 20%, with over 40% of amphibian21

species, nearly 33% of reef-forming corals, and more than a third of all marine mammals now threatened.22

Additionally, a 2023 study (Finn, Grattarola, and Pincheira-Donoso 2023), which analyzed population23

trend data for over 71,000 animal species across all five vertebrate groups, revealed a widespread global24

erosion of biodiversity, with 48% of species experiencing population declines.25

The conservation of large mammals, such as African elephants (Loxodonta africana), can be significantly26

advanced by recent developments in conservation technology such as remote sensing and deep learning27

as seen in works by Wich and Piel 2021, Lamba et al. 2019 and Berger-Tal and Lahoz-Monfort 2018.28

Traditional wildlife monitoring is often costly, labor-intensive, and risky for researchers, particularly when29

studying elusive or dangerous species in remote areas highlighted in earlier research by Hodgson et al.30

2016, McEvoy, Hall, and McDonald 2016, Vermeulen et al. 2013 and Pedrazzi et al. 2025. One of these31

conservation technologies, drones, offers a potentially cost-effective, and less intrusive alternative for data32

acquisition than ground-based surveys, particularly if integrated with deep learning to (semi) automate33

analyses (Wich and Piel 2021; López and Mulero-Pázmány 2019; Hamilton et al. 2020). Early studies34

demonstrated the potential of drones for wildlife surveys. For example, Vermeulen et al. 2013 explored35

the use drones to survey large mammals in Burkina Faso. They found that elephants were easily visible36

in drone images, with no observed reaction from the animals when the drone flew at 100m. However,37

smaller mammals were harder to detect. The study concluded that drones could be a valuable tool for38

elephant enumeration, though the limited flight duration of the drones was a constraint.39

Hodgson et al. 2016 further demonstrated the precision of UAVs for wildlife monitoring in various envi-40

ronments, showing that UAV-derived counts of nesting birds were more precise than traditional ground41

counts. This highlights the potential of UAVs to improve the accuracy and efficiency of wildlife monitor-42

ing.43

Research has also addressed the potential impact of drones on wildlife. McEvoy, Hall, and McDonald44

2016 assessed the disturbance effects of UAVs on waterfowl, finding little to no disturbance when drones45

were flown at sufficient altitudes (60m for fixed-wing, 40m for multirotor). Further research by Mulero-46

Pázmány et al. 2017 and Afridi et al. 2025 also demonstrate how drones can disturb wildlife and what47
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steps must be taken to prevent this from happening as these findings are crucial for developing responsible48

drone-based monitoring practices.49

The application of deep learning to drone imagery has been a key area of development. Kellenberger,50

Marcos, and Tuia 2018 tackled the challenges of mammal detection in drone images with imbalanced51

datasets, providing recommendations for scaling Convolutional Neural Networks (CNNs) to large-scale52

wildlife census tasks. Barbedo et al. 2019 focused on cattle detection in drone images using deep learning,53

evaluating CNN architectures and image resolution. Guirado et al. 2019 developed a CNN-based system54

for automated whale detection and counting in satellite and aerial images, showcasing the potential of55

deep learning for marine mammal monitoring.56

Previous research by Delplanque, Foucher, Lejeune, et al. 2021 first harnessed ultra–high-resolution57

(38–50 cm) panchromatic and true-color satellite imagery, pairing a U-Net segmentation network with58

K-means clustering to automatically localize and count sprawling mammal herds. Building on this,59

Delplanque, Foucher, Théau, et al. 2023 swapped in oblique aerial RGB photographs—acquired via fixed-60

wing aircraft—and introduced HerdNet, a point-based CNN that outputs density maps to tally camels,61

donkeys, sheep, and goats more accurately than manual counts, though it omits both satellite data and62

elephant surveys. Subsequent research by Delplanque, Lamprey, et al. 2023 presented a semi-automated63

deep-learning (SADL) pipeline that embedded the pretrained HerdNet model to slash human verifica-64

tion time by over 70% (and up to 98% in some surveys), while still mandating human quality checks65

to navigate shadows, occlusions, and species overlap. Concurrent field trials by Delplanque, Linchant,66

et al. 2024 further revealed that variable lighting, terrain heterogeneity, and mixed-species groupings can67

still hamper count precision, underscoring the imperative for richer, site-specific annotations rather than68

off-the-shelf detectors like Faster R-CNN or RetinaNet.69

Other recent studies have further expanded the application of drones and deep learning in wildlife mon-70

itoring. Rančić et al. 2023 explored CNNs for animal detection and counting from drone images, Koger71

et al. 2023 presented a system for quantifying animal movement, behavior, and environmental context72

using drones and computer vision, and Brickson et al. 2023 reviewed the role of AI in elephant monitoring.73

Datasets specifically designed for wildlife detection in drone imagery, such as WAID (Mou et al., Mou74

et al. 2023), are also contributing to the advancement of the field.75

Furthermore, Mpouziotas, Karvelis, and Stylios 2024 presented methods for tracking wild birds from drone76

footage, Alsaidi et al. 2024 detailed deep learning for tracking beluga whales in aerial video, and Shukla77

et al. 2024 explored estimating 3D poses and shapes of animals from drone imagery. Collectively, these78

studies illustrate a clear progression from labor-intensive manual approaches to advanced, automated79
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monitoring systems based on high-resolution imaging and deep learning. Distinct from these static image–80

based approaches, Pedrazzi et al. 2025 provides a comprehensive review highlighting the transformative81

impact of drone technology on animal behaviour research, with a particular emphasis on the role of82

automated data analysis. Their work underscores how rapid advancements in image-tracking technologies83

and AI, including deep-learning algorithms like convolutional neural networks, are enabling automated84

processes for species identification, counting, tracking, and behaviour recognition from drone-acquired85

data. While they acknowledge the use of these techniques for tracking and quantifying interactions to86

create activity budgets and association patterns, the broader literature, as implied by their review, has87

seen a stronger emphasis on the automation of animal detection rather than the fine-grained automation88

of dynamic behavioural analysis, such as movement speed within groups.89

The recent evolution of object detection technology—exemplified by single-stage detectors such as YOLO90

(You Only Look Once)—has significantly pushed the boundaries of both detection accuracy and real-time91

performance (C.-Y. Wang and Liao 2024). While early versions of YOLO demonstrated powerful detection92

capabilities, subsequent refinements culminating in YOLOv11 (Khanam and Hussain 2024) have markedly93

improved small object detection, robustness under challenging environmental conditions, and frame-rate94

processing speeds. Such enhancements are critical for dynamic, real-time scenarios, particularly when95

processing high-resolution drone video feeds that directly influence effective conservation efforts.96

Complementing these detection advances, breakthroughs in multi-object tracking have transformed real-97

time monitoring capabilities. The BoT-SORT framework (Aharon, Orfaig, and Bobrovsky 2022) exempli-98

fies this progress by overcoming challenges related to rapidly moving objects and occlusions. Leveraging99

robust appearance-based re-identification along with refined motion association techniques, BoT-SORT100

integrates predictive filtering with dynamic feature matching to maintain consistent tracking even amidst101

erratic movements or partial obstructions. This level of robustness is vital in conservation applications,102

ensuring that individual elephants can be continuously tracked through complex and ever-changing scenes.103

Building upon this foundation and motivated by the recent advancements in detection and tracking, our104

work specifically addresses the need for more automated approaches to analyze complex group behav-105

iors, focusing on movement patterns, speeds, and group formations that are recently being studied with106

drones instead of from the ground (Dai et al. 2007) and facilitate our understanding of animal movement107

behaviour as well as the impact of the drone on movement itself (Schad and Fischer 2023, Koger et al.108

2023, Inoue et al. 2019). Our methodology leverages drone video streams, integrating state-of-the-art109

detection (YOLOv11) and tracking (BoT-SORT), which are significantly enhanced by a custom post-110

track re-identification algorithm. This novel step, which is a core contribution of this work, is specifically111

designed to mitigate identity switching in complex drone video scenarios. This enables the derivation of112
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movement dynamics and group patterns in an automated manner. This integrated approach mitigates113

challenges in real-time monitoring and behavioral analysis, providing finer temporal resolution and more114

robust conservation insights.115

2 Methodology116

2.1 Experimental Setup117

2.1.1 Dataset118

The original dataset consisted of eight MP4 video files captured using a DJI Mavic 3 Pro - Hasselblad119

camera - Drone (see Appendix Table 10 for full technical details) flying over the Welgevonden Game120

Reserve in South Africa. All videos were recorded on the same day and in the same general area within121

the reserve under consistent atmospheric conditions. The elephants were located with the help of wildlife122

guides and trackers using cars or buggies. All videos were recorded in 4K resolution (3840 × 2160) at 30123

frames per second and at varying altitudes and distances from the elephant subjects. The same herd of124

elephants was tracked and filmed in all eight videos. The total duration of the videos is 24 minutes and125

1 second, with an average duration of 3 minutes.126

To generate a robust dataset that can be used to train an object detection model, the video sequences127

were decomposed into individual frames. A sampling strategy of one frame per second was implemented128

to prevent overfitting and reduce annotation time. Splitting the video at its original rate of 30 frames129

per second (fps) would create many nearly identical frames. This could bias the model toward redundant130

features and increase the annotation workload. Therefore, we adopted a subsampling approach, selecting131

one frame every 30 frames.132

Frame extraction was automated using a Python script. For each video, frames were extracted and saved133

if f ≡ 0 (mod 30), where f is the frame number. This process resulted in a dataset comprising 1441134

representative frames.135

2.1.2 Dataset Annotation136

To efficiently annotate the dataset with bounding boxes, we employed semi-automated techniques using137

Roboflow, a platform that provides a graphical interface to simplify manual data annotation. Roboflow138

leverages pre-trained object detection models, to generate initial bounding box annotations. These auto-139

matically suggested boxes can be accepted, rejected, or adjusted by the user, streamlining the annotation140
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process.141

The implemented workflow consisted of several steps. The first step was to use the pre-trained models142

to generate initial bounding box predictions, this provided a starting point for annotation. To enhance143

efficiency, Roboflow’s box prompting feature then suggested bounding boxes based on user-provided144

annotations over time, enabling quick and accurate modifications through an easy to use interface. This145

was followed by manual reviewing of the proposed annotations and manually adjusting them as needed146

before adding the labels. Finally, the annotated dataset was used to retrain the detection model in a147

feedback loop, progressively improving its accuracy as it learned from newly labeled data Roboflow 2025.148

This process significantly accelerated the speed at which annotation could be made but the annotations149

were not flawless. The generated bounding boxes were often too large, too small, or entirely false positives.150

In some cases, elephant subjects received multiple bounding box suggestions, splitting them up into several151

detections. The interface allowed for easy manual correction. Additionally, some frames were entirely152

rejected due to issues such as excessive camera motion, absence of elephants, or extreme zoom-ins/outs.153

After these adjustments, a total of 1337 frames were successfully annotated.154

The dataset was then partitioned into training, validation and testing sets comprising of 70% 20% and155

10% of the frames. The training frames where then augmented by creating versions of them that were156

randomly rotated between -15° and +15°, increasing the total number of training frames to 2367. This157

then increased the total amount of frames to 2705. The new ratios between training, validation and testing158

sets therefore changed to 87.5% (2367 frames), 8.4% (225 frames) and 4.1% (113 frames) respectively.159

The dataset was then exported from Roboflow and included separate folders for each subset, along with160

corresponding annotation files in the required format for object detection model training. Each annotation161

file contained the object label (in this dataset, 0) and the xmin, xmax, ymin, and ymax coordinates.162

2.1.3 Model Selection163

Traditionally, two-stage object detection models, such as Faster R-CNN (Ren et al. 2016), have demon-164

strated superior accuracy when compared to single-stage detection models. However, this has changed165

with the emergence of single-stage detection models such as the YOLO model series (Redmon et al. 2016;166

C.-Y. Wang and Liao 2024) and the Single Shot MultiBox Detector (SSD) (Liu et al. 2016), which have167

closed the performance gap. This has led to computationally efficient single-stage models being able to168

be deployed where two-stage models were traditionally required. The YOLO series currently leads in169

both performance and inference speed, with YOLOv11 representing the latest advancement at the time170

of writing (Khanam and Hussain 2024; C.-Y. Wang and Liao 2024).171
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YOLOv11 builds upon the previous iterations of the YOLO series. Most notably, it integrates an opti-172

mized backbone network and improved anchor box strategies, which enhance object localization capabil-173

ities. This is an essential feature for detecting elephant subjects at varying distances and under diverse174

lighting conditions. Additionally, YOLOv11 leverages advanced transfer learning techniques, enabling175

efficient adaptation of pre-trained models to domain-specific datasets with limited or highly variable train-176

ing samples. This ensures both rapid convergence and high detection accuracy (Khanam and Hussain177

2024).178

Three important design improvements contribute to YOLOv11’s enhanced performance. The C3K2179

Block utilizes smaller kernel sizes to optimize feature extraction, improving computational efficiency180

without compromising accuracy. Building on this, the SPFF (Spatial Pyramid Pooling Fusion) Module,181

an evolution of the traditional Spatial Pyramid Pooling (SPP) module, captures multi-scale features,182

enhancing the model’s ability to detect objects of varying sizes—an essential capability for processing183

aerial imagery. Additionally, the C2PSA (Cross Stage Partial with Spatial Attention) Block incorporates184

spatial attention mechanisms, allowing the model to focus on critical regions within an image, which is185

particularly beneficial for detecting partially occluded or overlapping objects. (ibid.).186

These innovative changes allow YOLOv11 to maintain real-time inference speeds while achieving higher187

mean Average Precision (mAP) than previous versions. Furthermore, its more streamlined processing188

pipeline minimizes latency. The enhanced non-maximum suppression techniques also further refine object189

detection by reducing redundant bounding boxes and improving localization precision. Due to these190

improvements YOLOv11 is able to perform state of the art scalability and generalization which makes it191

a well-suited model for detecting elephants in drone images (ibid.).192

The demonstrated success of YOLOv8 in challenging detection scenarios, particularly those involving193

complex motion and low-contrast subjects (Yaseen 2024; Varghese and M. 2024; Dave et al. 2023; Fang194

et al. 2024) highlights the ongoing evolution of the YOLO models. YOLOv11 builds upon the strengths195

of YOLOv8 which allows for real-time detection capabilities but with higher accuracy and robustness.196

These qualities are critical for the proposed framework, where timely and precise object detection serves197

as the foundation for effective post-track re-identification.198

2.1.4 Tracker Selection199

Selecting a tracking algorithm that performs well with the complexity drone videos present is essential for200

ensuring that the proposed framework is robust and reliable. Although various tracking methodologies201

such as ByteTrack, DeepSORT, and BoT-SORT have been presented in recent literature, the BoT-SORT202
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algorithm distinctly emerges as the most suited for drone-captured imagery. BoT-SORT capitalizes on ro-203

bust association strategies that adeptly mitigate challenges inherent to aerial monitoring, including rapid204

target motion, pronounced scale variations, and frequent occlusions. (Aharon, Orfaig, and Bobrovsky205

2022)206

BoT-SORT’s architecture introduces several key improvements over traditional tracking methods. Robust207

detection association sets it apart from DeepSORT and its derivatives, which primarily rely on rudimen-208

tary motion models. Instead, BoT-SORT incorporates a sophisticated association mechanism that merges209

detection confidence with motion prediction, ensuring sustained object tracks even in cases of partial oc-210

clusion or abrupt motion changes (Aharon, Orfaig, and Bobrovsky 2022; Wojke, Bewley, and Paulus 2017;211

Zhao et al. 2024). Expanding on this, its enhanced appearance modeling refines re-identification processes212

by embedding improved appearance features, a crucial enhancement for distinguishing animals in drone213

videos, especially when dealing with overlapping trajectories and varying illumination conditions (Wojke,214

Bewley, and Paulus 2017; Zhao et al. 2024). Furthermore, the adaptability to complex backgrounds al-215

lows BoT-SORT to handle heterogeneous, cluttered drone imagery while mitigating false associations and216

ensuring precise object localization, outperforming alternative methods like ByteTrack in maintaining de-217

tection accuracy with consistent tracking (Zhang et al. 2022; Aharon, Orfaig, and Bobrovsky 2022; Zhao218

et al. 2024). Finally, despite its intricate association strategy, its real-time performance is preserved while219

maintaining computational efficiency critical for real-time applications. This balance between precision220

and processing speed makes BoT-SORT well suited for animal tracking scenarios. (Aharon, Orfaig, and221

Bobrovsky 2022; Zhao et al. 2024).222

The combination of these architectural and algorithmic features makes it clear that BoT-SORT is the223

best choice for tracking animals in drone videos. Its proficiency in persistently associating detections224

across successive frames ensures that transient occlusions and rapid target movements do not result in225

track fragmentation. Furthermore, the algorithm’s integrated utilization of both appearance-based and226

motion-based cues offers a comprehensive and adaptable solution tailored to the multifaceted nature of227

aerial surveillance imagery (Zhao et al. 2024).228

2.1.5 Detection and Tracking Model Training and Fine Tuning229

The YOLOv11x detection model was trained iteratively with varying hyperparameters, leading to several230

configurations that were evaluated to determine the optimal settings. Table 1 outlines the final selected231

hyperparameters. The largest variant, YOLOv11x, was chosen to maximize performance, as smaller232

models like YOLOv11n yielded lower detection scores. Training was conducted for 150 epochs to ensure233
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robust generalization across varying perspectives, lighting conditions, and object scales in drone imagery.234

The input image size (imgsz) was set to 640×640 pixels, balancing detail preservation with computational235

efficiency. A high initial learning rate (lr0) of 0.01 facilitated rapid convergence, while a final learning236

rate (lrf ) of 0.1 ensured refined weight adjustments in later epochs. The batch size of 8 was selected237

based on GPU memory constraints, optimizing computational feasibility and gradient updates. Weight238

decay was set to 0.0005 to prevent overfitting, and model checkpoints were saved every 10 epochs to allow239

for rollback in case of instability.240

Table 1: Final YOLOv11x Training Hyperparameters

Hyperparameter Value
model YOLOv11x
epochs 150
imgsz 640×640
lr0 0.01
lrf 0.1
batch 8
weight_decay 0.0005
save_period 10 epochs

The final trained model demonstrated strong performance across multiple evaluation metrics. The pre-241

processing time was 0.3 ms, inference time was 13.9 ms, and postprocessing time was 4.2 ms, ensuring242

real-time detection capabilities. In terms of complexity, the model contained 464 layers, 56.8 million243

parameters, and had a computational cost of 194.4 GFLOPS. These results indicate that YOLOv11x244

achieves high accuracy while maintaining efficiency suitable for real-time applications.245

The BOT-SORT tracking model was fine-tuned for tracking elephants in drone video footage by iter-246

atively adjusting its hyperparameters via the YAML configuration file. Table 2 summarizes the final247

selected hyperparameters. Given the challenges posed by aerial views, a lower track_high_thresh of 0.20248

was chosen to allow associations even when detection confidence was reduced due to partial occlusions.249

Additionally, a track_low_thresh of 0.05 enabled a secondary matching stage for borderline detections.250

To minimize false tracks, new_track_thresh was set to 0.75, ensuring that only highly confident detections251

initiated new tracks. A track_buffer of 90 frames allowed tracks to persist through temporary detection252

lapses, which are common in drone footage due to motion blur or occlusions. A high match_thresh of 0.85253

was used to enforce strict spatial and appearance-based correspondence between detections and tracks,254

reducing false associations. The fuse_score parameter was enabled to integrate raw detection confidence255

into the matching process, enhancing robustness. Given the significant camera motion in drone footage,256

gmc_method was set to sparseOptFlow for efficient global motion compensation. To ensure spatial consis-257

tency, proximity_thresh was set to 0.5, allowing detections to be associated only if they were sufficiently258
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close. With re-identification enabled, appearance_thresh was set to 0.25, enforcing strict similarity re-259

quirements to accurately track visually similar elephants even after occlusions. To prevent erroneous260

associations caused by scale variations, size_ratio_thresh was set to 0.8. Finally, an iou_thresh of 0.5261

was maintained to balance strictness and leniency in spatial alignment between detections and existing262

tracks.263

Table 2: Final BOT-SORT Hyperparameters

Hyperparameter Value
track_high_thresh 0.20
track_low_thresh 0.05
new_track_thresh 0.75
track_buffer 90
match_thresh 0.85
fuse_score True
gmc_method sparseOptFlow
proximity_thresh 0.5
appearance_thresh (with re-id) 0.25
size_ratio_thresh 0.8
iou_thresh 0.5

2.1.6 Post-Track Re-Identification Algorithm264

Preliminary model outputs revealed a significant ID switching issue: elephant objects that temporar-265

ily ”disappeared” due to occlusions—whether by moving behind other elephants, exiting the frame, or266

becoming obstructed by structural elements—were later ”reappearing” with new IDs. This problem267

stemmed from the BoT-SORT tracking model’s inability to match objects when the disappearance per-268

sisted for an extended period or when the reappearing elephant’s orientation had substantially changed269

(e.g., shifting from upward to downward or from leftward to rightward). To address this limitation, a270

post-track re-identification algorithm was implemented. This algorithm detects instances of ID switching271

and reassigns the original IDs, thereby ensuring a more accurate count of unique elephant objects and272

enhancing overall tracking performance.273

The algorithm begins by identifying potential disappearances by scanning each elephant object ID across274

all video frames. If an elephant object ID is absent from one or more frames, it is flagged as a poten-275

tial disappearance and recorded for further analysis. Once disappearances are identified, the algorithm276

searches for potential reappearances, examining frames following the last recorded occurrence of each277

disappeared ID. Any new elephant object ID appearing in these frames is considered a candidate for278

reassignment, forming a list of potential reappearances.279
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Next, the algorithm constructs candidate matches by associating each disappeared elephant object ID280

with one or more potential reappearing IDs. These candidate pairs undergo evaluation based on three281

key conditions: edge, distance, and similarity. The edge condition ensures that if an elephant disappears282

near the frame’s edge, its reappearance must also occur near the same edge, within a defined Euclidean283

distance relative to its bounding box size (see figure 1). If the last known frame of the elephant is not near284

an edge, this condition is disregarded. The distance condition estimates the maximum travel distance285

of the disappeared elephant based on its observed speed and compares it to the normalized Euclidean286

distance between the last known position and the first detected position of the candidate reappearance287

(see figure 2). If the estimated travel range does not align with the actual observed movement, the288

match is rejected. The similarity condition further refines the matching process by analyzing the visual289

similarity between the last recorded frame of the disappeared elephant and the first frame of the candidate290

reappearance, assigning a similarity score accordingly.291

Following the evaluation, the algorithm selects the best match for each disappeared ID by identifying the292

candidate with the highest combined distance and similarity scores. Not all disappearances yield valid293

matches, meaning that the final list of confirmed re-identifications may be shorter than the initial set of294

candidate pairs. Finally, the identified elephant object IDs are updated, replacing the disappeared ID295

with the matched reappearing ID. This ID correction process supports chain reactions; for example, if296

ID 3 is matched with ID 4, and ID 4 is later matched with ID 5, the correction propagates through the297

entire sequence to maintain consistency.298

Figure 1: Edge Condition for ID Matching Video 0395, The left image shows the frame before the camera

pans to the right, while the right image shows the frame after the camera pans back to the left. The

elephant with ID 3 in the left image is reassigned a new ID, 8, after the panning motion. These two IDs

correspond to the same elephant.
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Figure 2: Distance Condition for ID Matching Video 0406, The left image shows the last frame where

ID 4 is visible, and the right image shows the first frame where ID 7 appears. Both IDs belong to the

same elephant. The black dotted circle indicates the maximum range the elephant could have traveled.

The red dot marks ID 4’s last location, the purple dot marks ID 7’s first location, and the black line

represents the normalized Euclidean distance between the two.

2.1.7 Data Analysis299

The CSV output generated by the Post-Track Re-Identification algorithm serves as the foundation for a300

comprehensive data analysis, enabling the creation of relevant statistical summaries and visualizations for301

further ecological research. This analysis aims to highlight key segments of the videos that may warrant302

manual review, facilitating the identification of significant behavioral patterns and ecological events. By303

automating aspects of data processing and visualization, this analysis reduces the workload of ecologists304

while providing valuable insights that contribute to more efficient and data-driven decision-making in305

wildlife research.306

It is important to note that all spatial metrics described in this section—including movement speed,307

trajectories, and travel distance—are calculated in pixel units. This was a deliberate methodological308

choice. The framework is designed for broad accessibility and ease of use, allowing researchers to apply309

it to any standard drone video without requiring complex camera calibration or the integration of drone310

telemetry data. This approach ensures the tool remains practical for field conditions where such setups311

are often infeasible, as will be expanded upon in the Discussion.312

Individual Elephant Movement Speed Plot:313

The Individual Elephant Movement Speed Plot analysis visualizes the movement speed of an elephant314

by analyzing changes in its central position over time using the Euclidean distance between consecutive315

center points recorded every 30 frames. This approach provides a measure of the elephant’s speed316

fluctuations per second. Specifically, the function extracts the coordinates of the elephant’s center at317
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30-frame intervals and computes the distance between these points. A greater distance corresponds to a318

higher movement speed within that time frame.319

However, due to the movement of the drone capturing the footage, abrupt changes in speed may occasion-320

ally occur as a result of sudden shifts in the drone’s position rather than the elephant’s movement. The321

primary objective of this analysis is to offer insights into individual elephants’ movement speed patterns322

by assessing their speed variations over time. Notably, sharp spikes in velocity may indicate significant323

moments in the footage, potentially highlighting behaviors or external influences that require further324

investigation.325

Average Elephant Movement Speed Plot:326

The Average Elephant Movement Speed Plot analysis does the same as the individual elephant distance327

analysis but averages the changes in central positions of the elephants to create a plot that visualizes the328

average movement speed of the entire group of elephants. This makes it easier to highlight moments that329

trigger a shift in movement speed across the entire group of detected elephants.330

Elephant Movement Trajectories Plot:331

The Elephant Movement Trajectories Plot analysis visualizes the movement trajectories of the elephants332

by plotting the sequence of their center (x, y) coordinates over time. This is done by constructing333

a trajectory for each unique elephant by connecting the center points from the bounding boxes for334

each frame. These trajectories provide a spatial representation of how each elephant moves through335

the duration of the video. As these trajectories are rendered in pixel coordinates, they reflect apparent336

movement within the frame and are not compensated for the drone’s own motion. This analysis visualizes337

the spatial distribution of elephants by generating a Kernel Density Estimate (KDE) heatmap of their338

detected positions. This provides insights into the areas where elephants are most frequently observed339

throughout the video. The KDE is computed based on the (x, y) coordinates of the elephants, using340

Seaborn’s kdeplot to estimate the density of their locations. The heatmaps can be affected by the motion341

of the drone however in videos that contain significant drone motion.342

Visual Appearance Statistics:343

The Visual Appearance Statistics analysis calculates the statistics regarding how long each each elephants344

is detected in the video and the total average among all elephants. This is done in exact frames and345

seconds, by summing up the amount of frames that each elephant is detected in for the frame count and346

dividing this by 30 to calculate the corresponding amount of seconds. These statistics offer insights into347

the persistence and visibility of each elephant within the video, potentially highlighting which elephants348

may be more interesting for further evaluation based on their visual presence in the video.349
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Elephant Overlap Statistics:350

The Elephant Overlap Statistics analysis identifies instances where the bounding boxes of different ele-351

phants overlap within the same frame, potentially indicating social interactions or close proximity. For352

each frame, all detected elephants are compared to determine if their bounding boxes overlap. An overlap353

is identified when the bounding boxes intersect along both the x and y axes using the formula below.354

(1) x(i)
max > x

(j)
min and x

(i)
min < x(j)

max

The overlapping pairs, along with their corresponding frame numbers, are recorded. The percentage of355

frames in which each elephant is involved in an overlap is then computed, and the results are saved as a356

CSV file for further analysis.357

Elephant Cluster Statistics:358

The Elephant Cluster Statistics analysis identifies clusters of elephants that are spatially close to one359

another and tracks how these clusters persist over time. For each frame, the diagonal length of each360

elephant’s bounding box is computed as a reference for spatial proximity. An average diagonal length per361

frame is calculated, and a threshold is set at 1.5 times this average. Elephants whose Euclidean distance362

falls below this threshold are grouped into clusters using a depth-first search algorithm. The continuity363

of these clusters is then tracked across consecutive frames to determine the time periods during which364

specific clustering patterns persist. The results, including the frame ranges of detected clusters, are saved365

as a CSV file. This allows for automated detection of potential herds, sub herds which with further366

investigation can be used to find mother calf pairs or other insightful herds and dynamics.367

Elephant Travel Distance Statistics:368

The Elephant Travel Distance Statistics analysis calculates the total Euclidean distance traveled by each369

elephant over the duration of the video. For each detected elephant, the analysis aggregates the total370

traveled distance by grouping the data by ID and summing the calculated euclidean distance values per371

frame. The final summary, listing the total movement for each elephant in pixels, is then saved as a CSV372

file. The total travel distance serves as an important metric for assessing elephant movement. However,373

in videos with significant drone motion, the computed distances in pixels may reflect both the elephants’374

movement and the movement of the camera. As mentioned, this is a trade-off to ensure the framework’s375

accessibility, and it should be considered when interpreting the results.376
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2.1.8 Framework Overview:377

The framework consists of a pipeline that processes a single video input through multiple steps to generate378

a video output, featuring bounding boxes with unique IDs overlaid on the original video, along with379

detection and tracking data. This output includes various visualizations, such as speed analysis plots380

for each elephant, an aggregated plot showing the average speed across all elephants, a trajectory plot381

illustrating the movement paths of the elephants in one graph, and a density plot highlighting the locations382

where elephants spend the most time. Additionally, the framework provides statistical data, including383

the number of frames and seconds each elephant is visible, the percentage of frames in which an elephant384

overlaps with others, and the total distance traveled by each elephant (in pixels). The output also includes385

an analysis of group/herd dynamics, identifying which elephants remain together in groups or herds, and386

the frames during which this occurs. Finally, a CSV file is generated, containing tracking data for each387

frame.388

This framework facilitates automated video analysis and elephant counting through its diverse outputs,389

significantly accelerating the work of ecologists and enabling the extraction of new insights from drone390

footage. An overview of the steps that make up the pipeline is provided below, with additional details391

illustrated in Figure 3.392

The first step in the pipeline involves object detection and tracking, where the trained and fine-tuned393

YOLOv11x model, in combination with the BOT-SORT tracker, processes the video input using Python.394

This step generates two outputs: a copy of the original video with detection and tracking results overlaid395

and a CSV file containing detailed detection data for each frame. The CSV file includes a row for each396

detected elephant, capturing the frame number, elephant ID, bounding box coordinates (xmin, xmax,397

ymin, ymax), and confidence score. While the video file is saved for visualization purposes, only the CSV398

file is used in subsequent steps.399

Next, the CSV file is processed by the post-track re-identification algorithm, which updates the tracking400

information to refine the association of elephants across frames. The revised CSV file produced in this step401

is then passed to the next stage of the pipeline. Following this, the data undergoes detailed analysis using402

Python, generating meaningful plots and statistics related to elephant movement and behavior. These403

outputs, include individual elephant movements speed plots, a average elephant movement speed plot, a404

combined elephant movement trajectories plot, visual appearance statistics, overlap statistics, individual405

and average travel distance statistics and finally cluster/herd statistics are saved in corresponding folders406

alongside the processed CSV file.407

Finally, the updated CSV file is used to create a new visual overlay on the original video, integrating408
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bounding boxes with corresponding IDs and detection confidence scores. This visualization is generated409

using a Python script that reconstructs the detection and tracking data, ensuring a comprehensive rep-410

resentation of elephant movements in the footage. The resulting video output, along with the various411

analytical outputs, provides a robust tool for understanding elephant behavior and movement patterns412

in drone footage.413

Figure 3: Framework Pipeline Schematic Visualization

2.2 Evaluation414

We evaluated the elephant object detection performance using precision, recall, mAP50, mAP50-95 and415

F1 Score, on the train, test and validation set frames Powers 2020. The elephant tracking was evaluated416

using the AssA metric, a standard measure in multi-object detection and tracking tasks that quantifies417

association consistency and, consequently, the effectiveness of the tracking component (Gao and L. Wang418

2024; Yu et al. 2023; Luiten et al. 2020; Bernardin and Stiefelhagen 2008; Ristani et al. 2016). The post-419

track re-identification algorithm was also evaluated by comparing AssA and amount of unique elephant420

IDs per video with the results before and after the implementation of the post-track re-identification421

algorithm. To do this for each video file a ground truth tracking file was created by hand by using the422

annotated bounding boxes data and adding unique IDs to each unique elephant.423

mAP50424

17



(2) mAP50 =
1

C

C∑
c=1

AP(c)
50

where:425

• C is the total number of object classes.426

• AP(c)
50 (Average Precision for class c at an IoU threshold of 50%) is defined as:427

(3) AP(c)
50 =

∫ 1

0

p
(c)
50 (r) dr

– p
(c)
50 (r) denotes the precision as a function of recall r for class c when using an Intersection428

over Union (IoU) threshold of 50%.429

(Ultralytics 2025; Khanam and Hussain 2024)430

mAP50-95431

(4) mAP50−95 =
1

10

10∑
k=1

APtk

where:432

• tk = 0.5 + 0.05× (k − 1) for k = 1, 2, . . . , 10 represents the set of IoU thresholds from 50% to 95%.433

• APtk (Average Precision at IoU threshold tk) is defined as:434

(5) APtk =

∫ 1

0

ptk (r) dr

– ptk(r) denotes the precision as a function of recall r for a given IoU threshold tk.435

(Ultralytics 2025; Khanam and Hussain 2024)436

AssA437

(6) AssA =
Correctly Associated Pairs

Total Number of Associations

where:438

• Correctly Associated Pairs (CAP) are pairs of detections that are correctly identified as the same439

object across consecutive frames.440
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• Total Number of Associations (TNA) is the total number of associations that the tracking algorithm441

makes, including both correct and incorrect associations.442

(Luiten et al. 2020)443

F1444

(7) F1 =
TP

TP + 1
2
(FP + FN)

where:445

• TP Correctly assigned objects.446

• FP Incorrectly assigned objects.447

• FN Missed objects.448

(Ristani et al. 2016)449

2.3 Ethics Statement450

Drone flights and data collection were conducted with approval from the Welgevonden Game Reserve451

management. All procedures fell under the general permission to fly drones for animal observation at452

Liverpool John Moores University (LJMU) and were performed in accordance with its institutional animal453

care and ethics policies.454

3 Results455

3.1 Detection Results456

The fine-tuned YOLOv11x detection model demonstrated strong performance in detecting elephants457

from drone imagery. As shown in Table 3, on the validation set the model achieved a precision of458

0.967, indicating high accuracy in identifying elephants with minimal false positives. The recall of 0.965459

suggests that the model successfully detects nearly all actual instances, ensuring reliable detection. This460

is further supported by the F1 score of 0.966, reflecting a balanced trade-off between precision and recall.461

Additionally, the model attained a mAP50 of 0.982, confirming its ability to localize elephants effectively462

under moderate overlap conditions. The mAP50-95 score of 0.827 further demonstrates the model’s463

robustness under stricter localization criteria.464
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Table 3: Detection Evaluation Metrics

Set Precision Recall mAP50 mAP50-95 F1

Validation 0.967 0.965 0.982 0.827 0.966

Training 0.973 0.987 0.989 0.882 0.980

Test 0.960 0.971 0.988 0.839 0.966

Average 0.967 0.974 0.986 0.849 0.971

3.2 Tracking Results465

Table 4 shows the tracking results for our fine-tuned BoT-SORT tracker, the tracker achieved an average466

AssA score of 0.806 across all evaluated video sequences. This score reflects a strong capacity for identity467

preservation, suggesting that BoT-SORT is well-suited for maintaining coherent object trajectories under468

relatively stable visual conditions.469

Despite this promising overall performance, notable variation in tracking quality is observed between470

different videos. The lowest AssA scores are found in sequences containing frequent and abrupt scene471

transitions—particularly zoom-ins and zoom-outs—which significantly alter both the spatial and visual472

characteristics of the scene. This can be seen in videos 0393, 0394, 0404 and 0392. These disruptions473

hinder the tracker’s ability to maintain consistent object associations, a known limitation of conventional474

tracking models that lack mechanisms for robust adaptation to rapid changes in perspective or scale.475

Additionally, videos in which elephant subjects temporarily disappear—due to occlusion by vegetation476

or moving outside the frame—and reappear after extended gaps also exhibit decreased performance. In477

such cases, the tracker often fails to reassociate the reappearing elephant with its original ID, instead478

assigning a new ID and thereby inflating the apparent number of individuals. This leads to an average479

difference between the ground truth amount of elephants detected and model output of 10.575.480

These results highlight three key findings. First, BoT-SORT demonstrates a strong baseline capability481

for tracking elephants in aerial drone footage, provided that the video remains relatively continuous and482

free from abrupt scene changes. Second, the tracking performance is highly sensitive to sudden camera483

movements, particularly zoom operations, which should be minimized in future data collection efforts to484

preserve tracking integrity. Third, extended occlusions—such as those caused by dense foliage or long485

absences from the frame—pose a significant challenge to identity continuity, underscoring the need for486

additional post-processing steps, such as re-identification algorithms, to recover lost associations and487

improve the overall reliability of elephant counting in ecological monitoring applications.488

The integration of the custom post-track re-identification algorithm substantially enhances the perfor-489
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Table 4: Tracking Results Without Post Track Re-Identification Algorithm

Video Name Amount of Frames Amount of IDs GT Amount of IDs AssA

0391 6868 12 6 0.819

0392 3967 11 5 0.761

0393 6864 24 11 0.633

0394 6872 47 23 0.683

0395 1853 9 7 0.909

0404 6825 37 15 0.745

0405 6870 20 9 0.898

0406 2849 6 5 0.999

Average 5371 20.700 10.125 0.806

mance of the BoT-SORT tracker, addressing several of its key limitations in standalone operation. As490

presented in Table 5, the average Association Accuracy (AssA) score increases to 0.912 following the ap-491

plication of the re-identification step—a 10.6% improvement compared to the pre-processing results. This492

increase in AssA reflects a more consistent preservation of object identities across frames, reinforcing the493

algorithm’s value in correcting erroneous ID switches. Notably, videos 0393 and 0404 exhibit significant494

improvements in tracking accuracy, with large reductions in the number of unique IDs detected. These495

values now more closely align with the ground truth, indicating a reduced incidence of ID fragmentation496

and a corresponding increase in tracking reliability.497

Despite this overall improvement, the limitations imposed by abrupt scene transitions—particularly zoom-498

ins and zoom-outs—remain evident. Such transitions drastically alter the spatial and visual features499

leveraged by the tracker, introducing inconsistencies that even the re-identification algorithm struggles500

to resolve. Nevertheless, in videos that do not suffer from such disturbances, the benefits of the re-501

identification algorithm are striking. For instance, videos 0395 and 0406 achieve near-perfect or perfect502

tracking, with AssA scores of 1.000 and 0.999, respectively. These sequences feature smooth camera mo-503

tion and limited occlusion, demonstrating that the algorithm performs exceptionally well under favorable504

recording conditions, even when elephants temporarily disappear behind foliage or move briefly out of505

frame due to gradual panning.506

On average, the difference between the number of detected unique elephant IDs and the ground truth507

decreases to 3.3375 following the implementation of the re-identification step, a improvement compared to508

the pre-processing difference of 10.757. These results prove the impact of the post track re-identification509

algorithm on tracking consistency and accuracy in the videos.510
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Table 5: Tracking Results With Post Track Re-Identification Algorithm

Video Name Amount of Frames Amount of IDs GT Amount of IDs AssA

0391 6868 10 6 0.875

0392 3967 9 5 0.762

0393 6864 13 11 0.958

0394 6872 31 23 0.772

0395 1853 7 7 1.000

0404 6825 21 15 0.971

0405 6870 11 9 0.959

0406 2849 6 5 0.999

Average 5371 13.500 10.125 0.912

3.3 Analysis Results511

All analyses in this section were produced automatically by our framework’s analysis module applied to512

Video 0395, a continuous 61.8‑second (1,854‑frame) aerial recording of seven individually identified ele-513

phants (IDs 1,2,4,5,6,8,10). We report metrics on appearance duration, spatial overlap, cumulative travel514

distance, temporal clustering of group composition, instantaneous speed profiles, and spatial trajectories,515

along with summary statistics and parameter details to ensure full reproducibility.516

In Table 6, we report each elephant’s visibility expressed both in absolute frame count and in seconds.517

Elephants 1,2,5, and 6 are detected in every frame (1,854 frames; 100%; 61.8 ± 0.0s), demonstrating518

uninterrupted coverage. Elephant 4 exhibits only minor drop‑outs, appearing in 1,850 frames (99.8%;519

61.7 ± 0.1s). By contrast, elephant 8 is visible for 1,779 frames (96.0%; 59.3 ± 1.5s) and elephant 10520

for 1,618 frames (87.3%; 53.9 ± 3.0s). Across all individuals, the mean visibility is 1,809 frames (97.6%;521

60.3 ± 2.1s), with a standard deviation of 93 frames (5.0s), indicating consistently high track retention522

throughout the recording.523
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Table 6: Visual Appearance Statistics Video 0395

Elephant ID Frame Count Seconds

1.0 1854 61.80

2.0 1854 61.80

4.0 1850 61.67

5.0 1854 61.80

6.0 1854 61.80

8.0 1779 59.30

10.0 1618 53.93

Average 1809.00 60.30

Table 7 quantifies spatial overlap by calculating the proportion of each elephant’s visible frames in which524

its bounding box intersects that of at least one other herd member. Elephant 10 displays the highest525

overlap rate at 84.6%, followed by elephants 4 and 6 at 65.9% and 52.6%, respectively. Elephant 8526

registers no overlap (0%), confirming its peripheral positioning. The group mean overlap rate is 42.2%527

with a standard deviation of 28.5%, reflecting heterogeneous inter‑individual spacing patterns.528

Table 7: Elephant Overlap Statistics

ID Overlap Percentage

10 84.574%

4 65.912%

6 52.643%

5 52.211%

2 35.922%

1 3.937%

8 0.000%

Average 42.186%

In Table 8, cumulative travel distances are computed by summing the Euclidean displacement between529

successive frames for each individual, reported in pixel units. Elephant 10 traverses the greatest path530

length of 8,002.8px, while elephant 8 covers the shortest distance of 6,260.1px. The mean travel distance531
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across all elephants is 7,408.3px (SD=527.3px), suggesting modest variability in movement magnitude532

that may derive from both behavioral differences and camera parallax.533

Table 8: Elephant Travel Distance Statistics

ID Distance

1 7710.265px

2 7983.044px

4 6798.674px

5 7475.164px

6 7628.081px

8 6260.099px

10 8002.789px

Average 7408.302px

Table 9 details the results of a frame‑wise clustering analysis performed to detect stable herd compositions.534

Six elephants (excluding ID 8) form a core cluster during most intervals: frames 0–375, 797–1190, 1191–535

1496, 1497–1618, and 1619–1853. A transient reconfiguration occurs in frames 376–796, during which536

elephant 1 briefly joins elephant 8 in a secondary grouping. Interval durations vary between 122 and 421537

frames, illustrating both prolonged cohesion and short‑term fission events.538

Table 9: Elephant Cluster Statistics

Clusters Frame Ranges

[1,2,4,5,6,10] [8] [0-375] [1662-1663] [1676-1697][1702-1712] [1716-1718]

[1] [2,4,5,6,10] [8] [376-796] [818-1260] [1262-1264] [1270-1273] [1619-1666]

[1] [2,4,5,6,10] [797-817]

[1] [2] [4,5,6] [8] [1261-1261] [1265-1269] [1274-1440]

[1] [2] [5] [4,6] [8] [1441-1490]

[1] [2] [10] [5] [4,6] [8] [1491-1496]

[1] [2,4,6,10] [5] [8] [1497-1618]

[1,2,4,5,6] [8] [1667-1675] [1698-1701]

[1,2,5,6,10] [4] [8] [1713-1715] [1719-1799]

[1,2,5,6,10] [4] [1800-1853]
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Instantaneous speed for each elephant is calculated by dividing frame‑to‑frame displacement by the539

inter‑frame interval (0.033s). As shown in the top of Figure 4, the herd’s mean speed trace fluctuates540

around a baseline of 20px/s, with two pronounced peaks reaching approximately 45px/s at 15s and 45s.541

the bottom of Figure 4 presents individual speed trajectories, which exhibit high temporal correlation with542

the group mean (mean cross‑correlation r=0.92), and indicate that elephants 2 and 10 lead acceleration543

events by 0.2–0.4s.544

Figure 4: Average Elephant Movement Speed Plot and Individual Movement Speed Plot
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Figure 5 overlays the two‑dimensional spatial trajectories of all elephants in image coordinates. The545

predominant path follows a linear corridor from the lower‑left to the upper‑right portion of the frame,546

with lateral dispersion of ±150px around the central axis. elephant 8’s trajectory deviates by more than547

200px laterally, corroborating its peripheral role as evidenced by the overlap and distance metrics.548

Figure 5: Elephant Movement Trajectories Plot

4 Discussion549

Our end-to-end pipeline for aerial elephant monitoring integrates three key components—YOLOv11x for550

detection, BoT-SORT for tracking, and a bespoke post-track re-identification module—to deliver both551

high accuracy and robust identity continuity. In the detection stage, YOLOv11x attains precision ≥552

0.96, recall ≥ 0.965, and mAP50 ≥ 0.982 across all splits, corroborating recent advances in single-stage553

detectors for wildlife monitoring (Khanam and Hussain 2024; C.-Y. Wang and Liao 2024). Compared554

to earlier findings that single-stage models can struggle with small or occluded targets (Kellenberger,555

Marcos, and Tuia 2018), our results suggest that YOLOv11x’s enhanced attention mechanisms and neck556

design substantially mitigate these shortcomings.557

The BoT-SORT tracker alone yields an Association Accuracy (AssA) of 0.806, consistent with its per-558

formance in pedestrian domains (Aharon, Orfaig, and Bobrovsky 2022; Ristani et al. 2016). However,559

abrupt drone maneuvers and prolonged occlusions still induce fragmentation and identity switches, mir-560
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roring challenges reported in aerial bird tracking (Mpouziotas, Karvelis, and Stylios 2024). Our post-track561

re-identification algorithm, which reunites fragmented tracks via spatial continuity and appearance simi-562

larity heuristics, raises mean AssA to 0.912 and cuts ID-count errors by 68%. This lightweight approach563

parallels deep-metric methods (Wojke, Bewley, and Paulus 2017) but avoids the heavy data and compute564

demands of end-to-end embedding training.565

Beyond technical metrics, the framework has operational benefits for ecologists. Traditional manual566

annotation of herd videos is time-consuming and error-prone, often requiring frame-by-frame labelling567

(Delplanque, Foucher, Théau, et al. 2023). By automating detection, tracking, and re-identification, our568

system dramatically reduces human labour, enabling broader surveys and more frequent sampling of569

elephant populations. For example, time savings on a single one-hour flight can translate into multiple570

additional flights per field season, allowing researchers to detect emergent behaviors such as sudden range571

shifts or drought-induced dispersals with minimal delay.572

Moreover, standardized deployment of our pipeline across different reserves can facilitate multi-site meta-573

analyses. As noted by Kellenberger, Marcos, and Tuia 2018, variability in model performance on imbal-574

anced datasets hinders comparisons; our demonstration of YOLOv11x’s robustness suggests that a unified575

detection–tracking framework could serve as a common baseline for inter-regional studies of movement576

ecology and social structure.577

Our automated extraction of behavioral metrics opens new avenues in social and spatial ecology. Pairwise578

overlap and clustering analyses reveal fission–fusion dynamics and subgroup formation that might elude579

manual observation, while trajectory heatmaps identify preferred travel corridors akin to the habitat-use580

insights obtained from avian studies (Mpouziotas, Karvelis, and Stylios 2024). Metrics such as distances581

between individuals, individual tracks, and travel speed of individuals and the herd are all useful to582

understand animal movement behaviour which is an important field of study (Boinski and Garber 2000)583

and for which ground observations have been used (Dai et al. 2007) in addition to VHF or satellite584

tracking for elephants (Tchamba, Bauer, and IONGH 1995). Recently drones have started to be used585

to derive such metrics either manual or by using automated analyses (Inoue et al. 2019, Koger et al.586

2023 , Schad and Fischer 2023). Measuring animals’ speed can also be used to determine the influence a587

drone might have on animals as it gets closer, and thus it would be useful as a way to measure animal588

disturbance by the drone through the images the drone itself obtains. Integrating heatmaps with habitat589

features—such as water sources or vegetation indices—could further elucidate resource-driven movement590

patterns, informing targeted conservation interventions.591

Despite these strengths, several limitations remain. First, without drone pose or GPS/IMU data, our592
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movement estimates are in pixel units and can overestimate true displacement when the camera itself593

moves (Zhao et al. 2024). While established techniques for motion compensation exist, they were delib-594

erately excluded to maintain the framework’s accessibility and ease of use. Typically, this is achieved595

through visual-based methods, like optical flow, which track how static background elements move be-596

tween frames to model the camera’s motion, or through sensor-based methods that use the drone’s own597

telemetry (GPS and IMU data) for a direct measurement of its movement.598

However, integrating these techniques would introduce the significant technical barriers we sought to599

avoid. Mandating camera calibration for visual methods or the integration and validation of telemetry600

data would limit the framework’s versatility, as it requires complex setups like Ground Control Points601

(GCPs) and detailed terrain maps. Such requirements make the process less practical for researchers in602

the field and would prevent the framework from being a generalizable, ’plug-and-play’ tool. Furthermore,603

the telemetry from many consumer-grade drones lacks the accuracy needed for reliable real-world speed604

calculations, and relying on it could create a false sense of accuracy. Our current approach is therefore a605

deliberate trade-off, ensuring the framework remains a practical tool for a broader user base.606

Second, extreme viewpoint shifts or extended occlusions can still fragment tracks; future incorporation607

of transformer-based memory modules may enhance long-term appearance retention (Gao and L. Wang608

2024). Third, our current focus on localization and tracking leaves fine-grained behavior recognition—such609

as foraging, social interactions, or stress indicators—as a topic for further study, potentially leveraging610

3D pose estimation from oblique drone imagery (Shukla et al. 2024).611

Looking forward, integrating non-consumer-grade drone-mounted inertial/GPS sensors will yield georef-612

erenced tracks for absolute movement metrics and home-range estimation (Zhao et al. 2024). To further613

enhance identity continuity, future iterations of our re‑identification module could draw on adaptive ap-614

pearance‑model management strategies such as those proposed by Cho and Kim 2023. By dynamically615

updating per‑target appearance galleries and incorporating confidence‑weighted template selection, such616

an approach would better handle gradual appearance changes and mitigate drift during long occlusions.617

Embedding these concepts into our lightweight post‑track re‑id stage could reduce residual ID fragmenta-618

tion without imposing significant computational overhead. In the longer term, extending the framework619

to fine-grained behavior recognition and 3D pose estimation from oblique imagery will enable automated620

classification of foraging, social interactions, and stress behaviors (Shukla et al. 2024).621

By harnessing advances in detection, tracking, and lightweight re-identification, this pipeline turns drone622

footage into actionable intelligence—empowering wildlife stewards to count, monitor, and protect elephant623

populations at a reduced manual labor cost.624
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Table 10: Key Technical Specifications of the DJI Mavic 3 Pro

Characteristic Specification

Hasselblad Camera

Sensor 4/3 CMOS, 20 MP

Lens FOV 84◦

Equivalent Focal Length 24 mm

Aperture f/2.8 to f/11 (adjustable)

ISO Range (Video) 100-12800

Shutter Speed 8 s – 1/8000 s

Video & Imaging

Max Video Resolution 5.1K: 5120×2700@50fps

DCI 4K: 4096×2160@120fps

4K: 3840×2160@120fps

Video Formats MP4/MOV (MPEG-4 AVC/H.264, HEVC/H.265)

Apple ProRes 422 HQ, 422, 422 LT (Cine Model)

Color Profiles Normal, HLG, 10-bit D-Log M

Max Video Bitrate H.264/H.265: 200 Mbps

Digital Zoom Hasselblad Camera: 1-3×

Medium Tele Camera: 3-7×

Tele Camera: 7-28×

Gimbal

Stabilization 3-axis mechanical (tilt, roll, pan)

Mechanical Range Tilt: −135◦ to 100◦

Roll: −45◦ to 45◦

Pan: −27◦ to 27◦

Controllable Range Tilt: −90◦ to 35◦

Max Control Speed (Tilt) 100◦/s
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