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SUPPLEMENTAL INFORMATION

Optomechanical coupling

The optomechanical coupling term g describes how the textural (order parameter) part of the trapping potential for
magnons, Eq. (M17) in Methods, changes shape as the free surface of the superfluid is moving. Below we explain the
different contributions to the textural free energy that compete and in combination create this effect. This allows for
qualitative understanding of the coupling mechanisms. A quantitative description using a three-dimensional numerical
simulation of the system is beyond the scope of the present Article.

In the superfluid B phase studied here, the superfluid state is described by an order parameter Aαi = ∆ e−iϕ Rαi,
where ∆ is the superfluid gap, superflow arises as the gradient of the phase ϕ, and Rαi is a three-dimensional rotation
matrix that can be parametrised as Rαi(n̂, θ). Here the rotation angle is fixed to θ ≈ 104◦ and the rotation axis n̂
is a unit vector field in space. The spatial variation of the order parameter relevant to the present work is entirely
contained in n̂. The spatial distribution of n̂ results from the minimisation of the free energy of the order parameter
configuration. Below we use the notation of Ref. 1 for these contributions.

Bulk time crystal

The leading order free energy terms governing the texture in bulk fluid are the dipole-field term

FDH = −a

∫
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the dipole-velocity term

FDV = −λDV
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the field-velocity term

FHV = −λHVH
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the first-order field-velocity term

FHV1 = −λHV1H
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and the gradient energy term
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The definitions and theoretical evaluation of the positive-valued pressure- and temperature-dependent parameters a,
λDV, λHV, λHV1, λG1, and λG2 can be found in Ref. 1. The vector fields that appear above are the magnetic field
H = |H|, the superfluid and normal fluid flow fields vs and vn, and the orbital anisotropy axis of the Cooper pairs

l̂ = H
|H| · Rαi(n̂, θ). Note that the trapping potential in Eq. (M17) in Methods is given in terms of the tipping angle

of the l̂ field, measured from the magnetic field direction.
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In our typical experimental conditions (T ≈ 0.15Tc, H ≳ 200G) the dipole-velocity term (2) is always a couple
of orders of magnitude smaller than the field-velocity term (3) and can be neglected. Similarly, we can neglect the
first-order field-velocity term (4) since we are working with a non-rotating sample (i.e. ∇ × vn = 0). Let us now
estimate the magnitude of the remaining terms under these conditions.

Starting with the dipole-field term we have energy density −FDH/V ∼ aH2 ≈ 3 · 10−9 erg/cm3 when n̂ ∥ H. This
assumption is satisfied near the cylinder axis, that is, where the time crystals are located in the absence of a flow field
because of the cylindrical symmetry. The energy density due to the field-velocity term is −FHV/V ∼ λHVH

2|vs|2 ≈
|vs|2 · 8 · 10−8 erg/(cm·s2) for l̂ ∥ vs. The terms are comparable, FHV ∼ FFDH

, for realistic velocities |vs| ∼ 1mm/s.
Finally, we can estimate the magnitude of the gradient term by noting that changes in the order parameter distribution
occur typically across the magnetic healing length ξH. Thus, FG ∼ (λG1 + λG2)/ξ

2
H ≈ 10−9 erg/cm3.

From the above considerations we see that the relevant terms, the dipole-field term (1), the field-velocity term (3),
and the gradient energy term (5), are comparable and therefore, all relevant. We should therefore expect that the
optomechanical coupling g between the moving surface and the bulk time crystal carries contributions from both
static tilt of the free surface via the gradient term (5) and from the field-velocity term (3), which is absent for static
tilt of the free surface.

Surface time crystal

Let us now estimate the order of magnitude of the relevant free energy terms near the free surface. The presence
of a free surface gives rise to the surface-field term

FSH = −dSHH
2
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the first-order surface-field-velocity term

FSHV1 = −λSHV1H
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the surface-gradient term

FSG = λSG
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and the surface-dipole term

FSD =
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]
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Similarly to the bulk energy terms, the equations above serve as the definitions for dSH, λSHV1, λSG, b4, and b2. Here
ŝ is a unit vector oriented perpendicular to the surface and pointing towards the fluid.

The surface-field term (6) orients l̂ perpendicular to the surface. Its magnitude under the test conditions is
−FSH/A ≈ 9 · 10−9 erg/cm2.
For velocity vs along the surface (setting vn = 0), such as near r = z = 0 for the flow induced by the surface

wave mode we are exciting, the first-order surface-field-velocity term (7) works to orient l̂ along the surface but
perpendicular to the flow. The prefactor obtains a non-zero value due to broken particle-hole symmetry and is given
by1

λSHV1 =
4mgH1∆

2ξ2GL

h
, (10)
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We get an estimate λSHV1 ≈ 5 · 10−13 erg/(G·cm2· cm/s), which results in −FSHV1/A ≈ 1 · 10−10 erg/(cm2 · cm/s).
The surface-gradient term (8) acts to minimize the gradients along the surface. We can estimate its magnitude by

using a similar substitution as for the bulk gradient term (5), i.e. ∂R/∂r ∼ 1/ξH. This results in FSG ∼ λSG/ξH ≈
2 · 10−10 erg/cm2.
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Finally, let us estimate the surface-dipole term. According to Ref. 1 we have b2(P = 0) ∼ 17gD∆
2ξGL and

b2(P = 0) ∼ 5gD∆
2ξGL, which result in a net-negative term −FSD/A ∼ 12gD∆

2ξGL ≈ 1 · 10−10 erg/cm2.
From the above considerations we see that for realistic velocities very close to the free surface, vs ≲ 1 cm/s, the

surface-field term (6) is approximately two orders of magnitude larger than the other surface terms, suggesting that
the local texture is fixed by the surface orientation and not e.g. by the first-order surface-field-velocity term (7). That
is, the optomechanical coupling g for the surface time crystal should only consist of a static part that is the same
regardless of whether the surface tilt is applied statically or dynamically.

Effect of magnons

The time crystal frequency is seen changing in the experiments. This results from the magnons’ contrtibution to
the textural free energy via the spin-orbit interaction

FSO =

∫
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2

)
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]
, (12)

where the wave function is related to the magnon number as |Ψ| ∼ N
1/2
m . The term (12) orients l̂ along the spin

vector, i.e. along H. Under our typical experimental conditions, FSO/(V · Nm) ∼ 1 · 10−22 erg/cm3. This term
becomes comparable to the bulk energy terms for Nm ≳ 1012, corresponding to the end of the signal where the
fitted parameter values stop changing. The time crystal phenomenology that results from this changing frequency is
discussed in references 2,3, the self trapping effect resulting from Eq. (12) in references 4–6, the decay mechanisms
that lead to the change in the magnon number in references 7,8, and spectral details of magnons in the trapping
potential in references 9,10.
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SUPPLEMENTARY FIGURES
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Supplementary Figure 1. Simplified schematic of the experimental setup. The sample is located inside a cryogenic
container centered in the middle of four support pillars at 90 cm radius. The cryogenic container is isolated against vibrations
from the environment by air springs located on top of the support pillars. The liquid surface is located approximately 165 cm
below the air springs. We apply periodic drive on one of the air springs to drive the sample container nearly horizontally.
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Supplementary Figure 2. Calibration of the excitation amplitude To reduce noise in determination of the mechanical
excitation amplitude, we estimate the functional dependence of the real excitation amplitude, measured by the geophone voltage
Vgp, on the nominal excitation amplitude Anom. The calibration function is displayed in the legend.



6

0 0.5 1
Scaled drive amplitude A

exc

0

5

10

15

20
T

, 
K

Magnons
Fork

0 0.5 1
Scaled drive amplitude A

exc

0

1

2

3

m
ax

2
, d

eg
2

a b

Supplementary Figure 3. Tilt angle calibration. a Applied surface wave excitation leads to additional heating of the
sample, measured both via relaxation rate of the bulk time crystal (red points), as well as via the thermometer fork (blue
points). The observed temperature between the two location separated by 14 cm is a proxy for dissipated power. b The
measured temperature difference is converted to tilt angle using Eq. (M5) in Methods (magenta points) and fitted with a single
parameter linear fit resulting in θ2max[deg

2] ≈ 2.6182Aexc (black dashed line).
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