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Abstract

Machine learning, when combined with advanced neuroimaging such as three-dimensional
Magnetic Resonance Imaging (MRI), has opened new possibilities for understanding brain
health and disease. Among MRI modalities—structural MRI (sMRI), functional MRI (fMRI),
and Diffusion Tensor Imaging (DTI)—sMRI is most widely applied in machine learning
research, as it provides detailed measures of cortical thickness, gray matter volume, and
subcortical anatomy.

Despite significant progress, existing brain age estimation methods face three persistent
challenges: limited predictive accuracy across diverse age groups, insufficient interpretability
of model predictions, and a lack of fairness in mitigating demographic biases such as age-
related bias. These gaps restrict the utility of brain age as a reliable biomarker in both
research and clinical settings.

This thesis addresses these limitations by developing new approaches for brain age
estimation from sMRI, aiming to improve accuracy, enhance interpretability, and incorporate
fairness. To this end, I compiled several large-scale sMRI datasets and proposed three
models: the Nonlinear Age-Adaptive Ensemble (nl-AAE), the Triamese Vision Transformer
(Triamese-ViT), and the Democratic AI framework (u-DemAI).

The nl-AAE improves predictive accuracy by dynamically weighting multiple base learners
according to age groups, achieving a mean absolute error (MAE) of 3.19 years (r = 0.95). The
Triamese-ViT leverages three orthogonal MRI views and integrates built-in interpretability,
meaning that its attention mechanisms generate explanatory maps directly during the
prediction process. These intrinsic explanations, validated against conventional explainable
AI (XAI) techniques, highlight age-related and ASD-related brain regions consistent with
established clinical findings. The u-DemAI framework extends beyond predictive performance
by incorporating user personalization into the framework, enabling community-driven model
updates and explicitly addressing fairness—particularly reducing age-related bias (ageism)
in predictions.

Taken together, these contributions advance the state of the art in brain age estimation
by combining accuracy, interpretability, and fairness. More broadly, this work demonstrates
how democratic principles can be embedded into machine learning frameworks to promote
equitable, transparent, and socially responsible applications in neuroscience and clinical
practice.
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Chapter 1

Introduction

1.1 Background

The global increase in aging populations poses significant challenges across medical, economic,
and societal spheres. Notably, aging is closely associated with declines in cognitive
functions and heightened prevalence of neurodegenerative disorders, which together represent
considerable burdens for both healthcare systems and affected individuals (Reeve, Simcox,
and Turnbull, 2014; R. Jiang, P. Chazot, et al., 2022). Consequently, accurate understanding
and prediction of brain aging processes have emerged as vital research priorities within life
sciences and biomedicine, holding substantial implications for early disease detection, risk
assessment, and interventions aimed at reducing cognitive decline (Cole and Franke, 2017).

Biological aging is marked by the gradual accumulation of adverse biological changes,
leading to progressive deterioration in physiological functions. Brain aging, in particular, is
associated with structural and functional alterations that impact cognition and mental health.
Studies have shown that age-related changes include reductions in brain volume, particularly
in the prefrontal cortex, hippocampus, and insular cortex—regions essential for memory,
planning, and decision-making (Groves et al., 2012; Storsve et al., 2014; Fjell, Walhovd,
et al., 2009). Concurrently, the degradation of white matter integrity (Raz and Rodrigue,
2006) and the increase in the volume of the ventricular system and intracranial cerebrospinal
fluid further contribute to cognitive decline (Courchesne et al., 2000; Good et al., 2001;
Raz and Rodrigue, 2006). In some cases, neurodegenerative diseases such as Alzheimer’s
are characterized by abnormal amyloid-beta plaques (Sadigh-Eteghad et al., 2015) and tau
protein tangles (Binder et al., 2005), accelerating neuronal degeneration.

In response to the growing incidence of disabling, albeit non-fatal conditions such as
dementia and cognitive deterioration associated with population aging, there is an urgent
need to elucidate the underlying relationships between the mechanisms of brain aging and
the progression of neurodegenerative diseases. Effective methodologies must be developed
for early identification of individuals at heightened risk of age-associated neurological
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deterioration, continuous monitoring of disease progression, and implementation of targeted
therapeutic interventions.

Age-related structural and functional brain changes significantly contribute to the
etiology of various neurological conditions. The divergence between biological brain age
and chronological age offers a potential biomarker for assessing vulnerability to health
complications across different life stages. One prominent approach in brain aging research
is brain age estimation (Figure 1.1), a technique that uses neuroimaging data to predict an
individual’s brain age based on characteristic age-related patterns. The deviation between
predicted brain age and chronological age, commonly referred to as the brain age gap
(BAG), has emerged as a significant biomarker for neurological and psychiatric disorders,
including Alzheimer’s disease (Beheshti, Maikusa, and Matsuda, 2018), psychosis (Chung
et al., 2018), mild cognitive impairment (Gaser et al., 2013), and depression (Han et al.,
2021). An elevated brain age gap typically indicates a higher likelihood of neurodegenerative
disorders and increased mortality, underscoring its diagnostic and prognostic value (Cole
and Franke, 2017; Cole, Ritchie, et al., 2018). In recent decades, advances in data-driven
methodologies—particularly machine learning models applied to magnetic resonance imaging
(MRI) scans—have greatly enhanced brain age estimation. These models commonly employ
supervised regression trained on neuroimaging data from cognitively healthy individuals
to map brain-derived features to chronological age, and then predict brain age in unseen
cases. Deviations from normative trajectories serve as indicators of brain health: a positive
BAG reflects an older-appearing brain and is associated with pathological alterations and
mortality risk, whereas a negative BAG suggests comparatively preserved cognitive function
(Cole and Franke, 2017). Beyond its diagnostic utility, brain age estimation has also shed
light on lifestyle and environmental influences on cognitive aging, demonstrating protective
effects of higher education and physical activity (Steffener et al., 2016), as well as practices
such as meditation, in maintaining cognitive resilience (Luders, Cherbuin, and Gaser, 2016).
Together, these findings establish brain age estimation as a valuable framework for both
disease detection and preventive strategies that promote healthy aging.

Brain age estimation also plays a significant role in medicine research and development,
particularly in clinical trials, which are fundamental to clinical science (Bzdok, Varoquaux,
and Steyerberg, 2021; J. A. Sidey-Gibbons and C. J. Sidey-Gibbons, 2019). Many
pharmaceutical companies worldwide are actively engaged in the development of medications
for age-related diseases. However, the therapeutic effects of these treatments are often not
immediately discernible, making it challenging for clinicians to assess their efficacy in the
short term. Even experienced physicians may find it difficult to determine whether a drug
has yielded the desired effects, as its impact on the aging process may take years to manifest.
This prolonged evaluation period complicates data collection for pharmaceutical companies,
ultimately hindering progress in the development of therapeutics for age-related conditions
(J. A. Sidey-Gibbons and C. J. Sidey-Gibbons, 2019).

Brain age estimation provides an alternative approach to addressing this challenge by
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Figure 1.1: The brain age estimation process. MRIs serve as input to the deep learning
models, which then predict the subjects’ ages based on these images. These predicted ages are
compared with the subjects’ actual chronological ages to calculate key indicators, notably the
brain age gap (predicted age minus chronological age). This brain age gap can be instrumental
in detecting various brain diseases and assessing medicine interventions.

facilitating the continuous monitoring of drug effects through changes in predicted brain age
over time (J. A. Sidey-Gibbons and C. J. Sidey-Gibbons, 2019). It leverages hierarchical
feature representations in an end-to-end manner to capture subtle neuroanatomical changes
(Cole and Franke, 2017). Empirical studies have shown that the discrepancy between
predicted brain age and chronological age is minimal in cognitively healthy individuals (Cole
and Franke, 2017; Luders, Cherbuin, and Gaser, 2016; Cole, Ritchie, et al., 2018). Brain age
estimation enables pharmaceutical companies to conduct real-time follow-ups from the onset
of treatment, allowing for timely assessments of drug efficacy and expediting the collection
of patient data.

It is important to emphasize that the validity of interpreting brain age findings
fundamentally depends on the robustness of the employed brain age estimation framework.
Indeed, a highly precise brain age estimation framework can produce more reliable and
clinically meaningful results. Consequently, developing increasingly accurate frameworks for
estimating brain age is crucial, prompting numerous research groups to pursue enhancements
by leveraging various machine learning approaches. Alongside conventional machine learning
methods utilized in brain age estimation (Beheshti, Ganaie, et al., 2021; Ganaie, Tanveer, and
Beheshti, 2024; Ganaie, Muhammad Tanveer, and Beheshti, 2022), deep learning has recently
emerged as a prevalent methodology within the neuroimaging domain, being extensively
applied to diverse tasks such as segmentation, lesion detection, and classification (Sajedi and
Pardakhti, 2019). A significant advantage of deep learning techniques lies in their inherent
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capability to integrate feature extraction, dimensionality reduction, and predictive modeling
within a unified computational architecture, enabling superior performance compared to
traditional machine learning models—particularly when analyzing highly complex datasets.
Accordingly, deep learning has increasingly become the method of choice in brain imaging
research, and the quantity of deep learning-driven neuroimaging investigations has exhibited
substantial and consistent growth over the past decade (Sajedi and Pardakhti, 2019).

1.2 Scope and Boundaries of the Research

1.2.1 Research Questions and Hypotheses

This research is guided by three main questions:

1. Can novel deep learning models improve the accuracy of brain age estimation from
sMRI compared with existing state-of-the-art approaches?

2. How can model interpretability be enhanced to identify brain regions associated with
normal aging and to analyze differences between individuals with ASD and healthy
controls?

3. Fairness in model prediction refers to ensuring that the model’s predictive performance
remains consistent across different sub-populations, thereby preventing unequal treat-
ment of particular groups. In the context of brain age prediction, fairness is most
directly related to mitigating ageism—that is, avoiding systematic overestimation or
underestimation of brain age for specific chronological age groups. So, can fairness be
incorporated into brain age estimation?

4. Can a democratized AI framework be developed, which enables community involvement
in model optimization while embedding fairness and promoting social values?

Based on these questions, the research advances the following hypotheses:

• Deep learning models with novel architectures will achieve lower prediction errors than
current leading models.

• Built-in interpretability mechanisms in the model will provide reliable insights into
regional brain changes associated with aging and ASD diagnosis.

• By considering fairness in the models, they will reduce performance disparities across
demographic subgroups.

• A democratized AI system can enhance accessibility, fairness, and societal impact by
integrating user participation into the continuous optimization process.
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1.2.2 Research Objectives

The aim of this dissertation is to advance brain age estimation through methodological
innovation, interpretability, fairness, and social applicability. The specific objectives are
as follows:

1. To design and implement novel deep learning models for brain age prediction based on
sMRI, achieving higher accuracy than existing models.

2. To develop a built-in interpretability approach within the model, enabling direct
analysis of brain regions contributing to normal aging and brain differences between
healthy individuals and ASD patients.

3. To evaluate and improve fairness in model predictions, ensuring consistent performance
across demographic factors, such as sex, ethnicity, and age groups. In this dissertation,
we only discussed the age groups.

4. To propose a Democratized AI System that integrates fairness principles and involves
relevant stakeholders in model optimization, thereby promoting social value and
community benefit.

1.2.3 Scope of the Research

This research is focused on brain age estimation using sMRI data. Compared with other aging
biomarkers such as telomere length or physiological measures, brain age estimation poses
unique challenges. First, it relies on high-dimensional neuroimaging data, where complex
spatial patterns must be captured and interpreted, making prediction highly sensitive to
model design and data quality. Second, interpretability remains a central challenge: while
brain age can indicate accelerated or decelerated aging, linking these deviations to specific
neural mechanisms or clinical outcomes requires careful validation. Finally, issues of fairness
and generalizability are particularly salient, as differences in demographic distributions—such
as sex, ethnicity, or age range—may bias model performance. These challenges highlight
both the complexity and the potential of brain age as a biomarker, underscoring the need for
methodological innovation in accuracy, interpretability, and fairness.

The work is limited to sMRI modalities and does not extend to other imaging types such
as functional MRI (fMRI), diffusion tensor imaging (DTI), or Computed Tomography (CT).
Compared with fMRI, which captures transient neural activity, and DTI, which focuses
on white matter connectivity, sMRI provides stable and high-resolution measurements of
brain anatomy, such as cortical thickness, gray matter volume, and subcortical structures,
which are closely linked to age-related changes. Unlike CT, which is widely used in clinical
practice, sMRI is non-invasive and better suited for longitudinal studies in healthy and clinical
populations.

5



Chapter 1. Introduction 1.3. Contribution

The scope covers methodological development, model interpretability, and fairness
evaluation, as well as the conceptual design of a democratized AI framework. While the
models are tested on large-scale research datasets, they are not intended for direct clinical
deployment. Instead, the emphasis lies on advancing technical performance, interpretability,
and fairness in brain age estimation, and on exploring how such models can contribute to
more equitable and socially responsible AI systems.

1.3 Contribution

A central contribution of this dissertation is the development of two novel model algorithms
for brain age estimation: the Nonlinear Age-Adaptive Ensemble model (nl-AAE) (Z. Zhang,
R. Jiang, et al., 2022) and the Explainable Triamese ViT (Z. Zhang, Aggarwal, et al., 2025).
In addition, this work introduces a new perspective on Democratic AI (Z. Zhang and R. Jiang,
2023), which combines democratic participation with fairness in predictions while maintaining
high accuracy.

The nl-AAE model integrates multiple independent predictors within a nonlinear, age-
adaptive ensemble framework. By leveraging the complementary strengths of GoogLeNet,
ResNet, Support Vector Regression (SVR), and a custom-designed Convolutional Neural
Network (CNN), the model adapts dynamically to age-related variations. Its nonlinear
weighting mechanism adjusts contributions from each constituent model based on the
chronological age of the input, thereby capturing distinct aging patterns across the lifespan
and enhancing predictive performance.

The nl-AAE was evaluated using the PAC 2019 competition dataset and benchmarked
against its four constituent models. Experimental results demonstrate that the ensemble
substantially improves predictive accuracy, achieving a mean absolute error (MAE) of 3.19
years and a Spearman correlation of 0.95, outperforming conventional approaches in brain
age estimation. These findings highlight the potential of nl-AAE for applications such as
early detection of Alzheimer’s disease, assessment of traumatic brain injury, schizophrenia
diagnosis, and evaluation of neuroprotective interventions in clinical trials.

Triamese-ViT is a deep learning model designed to achieve both high predictive accuracy
and intrinsic interpretability in brain age estimation and the study of neurological disorders.
The model was trained on a diverse cohort of 1,351 cognitively healthy individuals, aged 6
to 80, by integrating data from the IXI and ABIDE datasets to establish normative brain
aging trajectories.

The architecture processes sMRI scans from three distinct anatomical orientations using
Vision Transformers (ViTs). Features extracted from these perspectives are then combined
through a tri-MLP framework to generate age predictions. This tri-view design, introduced
for the first time in this work, enables the model to capture complementary structural
information from different orientations. Triamese-ViT achieved a mean absolute error (MAE)
of 3.85 years, a Spearman correlation of 0.94, and a correlation of -0.3 between chronological
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age and the brain age gap, surpassing existing state-of-the-art methods in terms of predictive
accuracy, fairness, and interpretability.

Beyond performance, the model offers a built-in interpretability mechanism that generates
three-dimensional attention maps by integrating information from multiple views. These
maps provide direct insight into structural correlates of aging and neurological conditions
without requiring post-hoc explainability methods. Compared with recent approaches
(Tanveer et al., 2023; L. Chen and Luo, 2023), Triamese-ViT demonstrates superior accuracy
and fairness, while also offering enhanced interpretability. In contrast to 3D ViT models such
as that proposed in Singla et al. (2022), Triamese-ViT provides additional advantages:

• Computational efficiency: the multi-view processing strategy reduces complexity
relative to volumetric 3D ViTs;

• Lower memory requirements: the architecture is lightweight and more practical for
large-scale training and deployment;

• Simplified implementation: the model achieves high accuracy while avoiding the heavy
computational burden of full 3D ViTs.

Leveraging its interpretability, Triamese-ViT was applied to investigate normal brain
aging and Autism Spectrum Disorder (ASD). Through attention map analysis, we identified
age-specific structural changes in regions such as the Rolandic Operculum, Cingulum, Tha-
lamus, and Vermis, which are strongly associated with common neurological conditions. In
ASD patients, the model highlighted the Thalamus and Caudate Nucleus, underscoring their
relevance in the disorder’s pathology. These findings were further validated by conventional
occlusion analysis, which confirmed the alignment between built-in interpretability and
established explainable AI techniques.

In summary, the contributions of Triamese-ViT are as follows:

• Proposes a novel tri-view ViT framework for brain age estimation, achieving higher
predictive accuracy and fairness compared to state-of-the-art models;

• Demonstrates improved computational efficiency, reduced memory demand, and
scalability relative to high-accuracy 3D ViT models;

• Provides intrinsic interpretability through attention maps, empirically validated with
occlusion analysis;

• Enables the identification of brain regions associated with normal aging, offering
machine learning–based insights into neurobiological changes;

• Highlights key regions relevant to ASD, demonstrating the model’s potential for clinical
research applications.
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The third contribution of this dissertation is the proposal of u-DemAI, a framework that
operationalizes the concept of Democratic AI by addressing both societal and technological
challenges. Here, democratic AI refers to an implementation in which relevant stakeholders
are directly involved in optimizing AI services, thereby promoting social values and benefiting
user communities. The u-DemAI system enables continual self-improvement through
user interaction and supports model personalization according to individual requirements.
Although it is constructed from a set of basic models that can be locally trained by non-expert
users, its performance rivals or even surpasses advanced expert-driven models. Importantly,
the framework maintains both high predictive accuracy and fairness, where fairness is defined
as consistent predictive performance across demographic subgroups.

To validate the framework, we conducted a case study on brain age estimation using the
PAC2019 dataset. The u-DemAI achieved strong results with a mean absolute error (MAE)
of 2.67, a standard deviation of absolute error of 2.67, and a Pearson correlation of 0.01
between the brain age gap and chronological age, indicating both high accuracy and fairness.
These findings serve as a proof-of-concept implementation of Democratic AI, demonstrating
the feasibility of engaging non-experts in AI optimization and highlighting the advantages of
this approach over conventional expert-dominated AI services.

1.4 Overview of the Dissertation

The remainder of this dissertation is organized as follows. In the next chapter, a compre-
hensive literature review of brain age estimation is presented, including an introduction to
neuroimaging analysis, the development of AI models in this field, and a discussion of popular
deep learning architectures applied to medical image analysis.

Subsequently, Chapter 3 introduces the Nonlinear Age-Adaptive Ensemble Model (nl-
AAE) in detail. This includes dataset preprocessing, model architecture, and a performance
comparison with state-of-the-art algorithms, followed by a discussion of its implications for
brain aging analysis.

Chapter 4 presents the Explainable Triamese ViT. We describe the preprocessing pipeline,
model structure, and comparative performance evaluation. The chapter further emphasizes
the built-in interpretability mechanism, demonstrating its utility in analyzing normal brain
aging as well as differences between healthy individuals and patients with ASD.

Following this, Chapter 5 introduces the user-centric Democratic AI (u-DemAI) frame-
work. We begin with a conceptual discussion of democratized AI and our proposed definition,
then describe the system’s structure and application to brain age estimation, along with
experimental comparisons against existing methods.

Finally, Chapter 6 concludes the dissertation with a synthesis of the key contributions,
a reflection on the significance and limitations of the work, and a discussion of potential
directions for future research.
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Chapter 2

Literature Review

2.1 Background

Neuroimaging has become a useful tool in the diagnosis and study of neurodegenerative
diseases, offering non-invasive methods to capture both structural and functional changes in
the brain. Among the commonly used imaging modalities, structural Magnetic Resonance
Imaging (sMRI) provides high-resolution anatomical information, such as cortical thickness,
gray matter volume, and hippocampal atrophy, which are widely used as biomarkers
for conditions like Alzheimer’s disease and Parkinson’s disease (Frisoni et al., 2010).
Functional Magnetic Resonance Imaging (fMRI) measures blood-oxygen-level-dependent
(BOLD) signals and is employed to assess alterations in brain activity and connectivity
patterns, offering valuable insights into disrupted neural networks associated with disorders
such as dementia and Huntington’s disease (Greicius et al., 2004). Diffusion Tensor
Imaging (DTI) can capture the microstructural integrity of white matter tracts, making
it particularly relevant for detecting connectivity disruptions in multiple sclerosis and other
neurodegenerative conditions (Pierpaoli et al., 1996). In addition, Computed Tomography
(CT) remains clinically important for its rapid acquisition and ability to detect structural
abnormalities, including ischemic lesions and vascular pathologies that may contribute to
cognitive decline (Jack Jr et al., 2008).

Since sMRI provides stable and high-resolution measurements of brain anatomy and has
more shared public datasets to analyze, it is always a suitable modality to investigate both
normal brain aging and neurodevelopmental conditions such as Autism Spectrum Disorder
(ASD), offering quantitative measures of cortical thickness, surface area, and subcortical
volumes.

In the context of normal aging, longitudinal and cross-sectional sMRI studies consistently
report regionally specific cortical thinning and volumetric decline. For instance, Raz
and Rodrigue (2006) followed 55 healthy adults longitudinally and found pronounced
shrinkage in the prefrontal cortex and hippocampus, regions particularly vulnerable to
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aging. Prefrontal Cortex is responsible for higher-order cognitive functions, such as decision-
making, planning, and social behavior regulation. It plays a crucial role in executive control
and emotional regulation. The hippocampus is central to memory formation and spatial
navigation. Age-related hippocampal atrophy is strongly associated with cognitive decline
and neurodegenerative disorders such as Alzheimer’s disease.

Expanding to a larger cohort, Fjell, Westlye, et al. (2009) analyzed over 880 cross-
sectional scans and observed widespread cortical thinning with advancing age, especially in
association cortices. The association cortices integrate information from multiple sensory
modalities and are responsible for higher cognitive processes such as language, attention,
and abstract reasoning. They link perception with memory and decision-making, allowing
the brain to synthesize complex information. Longitudinal experiments further clarify these
patterns: Storsve et al. (2014) studied 207 adults across a 4-year follow-up and showed that
cortical volume decline is primarily driven by thinning rather than surface area reduction,
with accelerated changes in temporal and occipital regions. Temporal includes processing
centers and regions important for language comprehension and semantic memory. And
Occipital Lobe is the primary center for visual processing, responsible for interpreting visual
stimuli and spatial orientation.

Meta-analyses have confirmed the robustness of these findings: Hedman et al. (2012),
synthesizing 56 longitudinal sMRI studies, concluded that brain atrophy occurs progressively
across the lifespan, with regional trajectories varying by lobe. Together, these studies
establish cortical thinning and subcortical atrophy, as measured by sMRI, as reliable
biomarkers of normal aging.

In ASD research, sMRI has provided insights into both cortical and subcortical alterations.
Early small-sample studies, such as Ecker et al. (2013), analyzed 168 adult males
and reported increased cortical thickness in frontal regions and reduced surface area in
orbitofrontal and posterior cingulate cortices, highlighting distinct developmental pathways
underlying ASD morphology. Frontal Lobe governs voluntary movement, problem-solving,
and personality expression. Its progressive volume decline with age. As for Orbitofrontal
Cortex, it involved in reward processing, impulse control, and social cognition. And
Cingulate Cortex integrates emotional and cognitive information, mediating decision-making
and adaptive behavior. It forms part of the limbic system and is sensitive to both aging and
neurodevelopmental abnormalities.

Larger consortia datasets have since clarified the picture. Haar et al. (2016), using
the Autism Brain Imaging Data Exchange (ABIDE) dataset with over 1,100 participants,
found only limited structural differences—namely, enlarged ventricles and smaller corpus
callosum—while failing to replicate several previously reported findings, underscoring the role
of sample heterogeneity. Corpus Callosum is the largest white matter structure connecting
the two hemispheres of the brain, enabling efficient interhemispheric communication. Its
deterioration with age is linked to slowed information transfer and cognitive decline.
Van Rooij et al. (2018) pooled sMRI data from over 3,000 individuals, identified subtle
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but consistent alterations in cortical thickness and subcortical volumes, with modest effect
sizes that varied with age.

While prior studies have provided valuable insights into normal aging and ASD using
sMRI, most of them relied on region-of-interest (ROI) analyses, voxel-based morphometry
(VBM), or surface-based morphometry (SBM). These approaches often focused on specific
structures or tested group-level differences, which may overlook subtle and distributed brain-
wide patterns. Moreover, many earlier studies were constrained by relatively small sample
sizes or single-site cohorts, limiting the generalizability of their findings. In contrast, the
present work employs a whole-brain deep learning approach applied directly to sMRI,
allowing the model to capture complex, distributed features of brain structure without
predefined assumptions about specific regions. In Chapter 4, the study on the Triamese-
ViT model (Z. Zhang, Aggarwal, et al., 2025) leverages a comparatively large dataset
of 1,349 individuals spanning a wide age range, providing sufficient statistical power to
model normative brain aging trajectories and to identify deviations associated with ASD.
By integrating large-scale sMRI with advanced deep learning methods, this dissertation
contributes a more comprehensive and scalable framework for understanding both normal
aging and brain disease.

Figure 2.1: Figures adapted from Flint Rehab (https://www.flintrehab.com/corpus-callosum-
injury/), accessed 2025. These illustrations highlight major cortical and subcortical
structures relevant to both normal aging and Autism Spectrum Disorder (ASD) analysis.
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2.2 Data Preprocessing

The preprocessing of neuroimaging data represents an essential phase in the development of
accurate brain age estimation frameworks. The choice of preprocessing techniques typically
varies based on the neuroimaging modality utilized. Most prior deep learning studies in brain
age estimation have relied on T1-weighted MRI (T1w-MRI) data, primarily due to its greater
accessibility compared to other imaging modalities, I also used this type of data in my project.
Within T1w-MRI preprocessing, VBM, commonly implemented using statistical parametric
mapping (SPM), has emerged as a prevalent and effective method. VBM is particularly
valued for its ability to detect morphological brain changes and age-related variations at the
voxel level (Beheshti, Sone, et al., 2018; Farokhian, C. Yang, et al., 2017). A key advantage
of VBM-based preprocessing lies in its generation of grey matter (GM) and white matter
(WM) maps, which can subsequently serve as inputs for both three-dimensional voxel-based
and two-dimensional slice-based prediction models. Comprehensive technical descriptions of
the VBM preprocessing pipeline are available in prior research (Farokhian, Beheshti, et al.,
2017).

Alternatively, region-based preprocessing techniques, such as those provided by FreeSurfer,
are also frequently employed for processing T1w-MRI data. These methods facilitate
the extraction of morphological characteristics from cortical and subcortical brain regions,
including surface-based morphometry and measurements of cortical thickness. Beyond T1w-
MRI, studies have also utilized fluorodeoxyglucose positron emission tomography (FDG-
PET) imaging to estimate brain age through deep learning approaches (J. Lee et al.,
2022). FDG-PET offers complementary neuroimaging information related to brain glucose
metabolism.

2.3 Popular Deep Learning Architectures

After pre-processing the data, the next step is to feed the data to the model. In this section,
we will review the popular deep learning architectures used in brain age estimation. We
present the models in order of increasing complexity, beginning with the CNN model, followed
by VGG, ResNet, the Transformer framework, Ensemble Learning, and concluding with other
popular used architectures.

2.3.1 Convolutional Neural Networks

Since 2017, convolutional neural networks (CNNs) have increasingly attracted attention from
researchers in the field of brain age estimation. CNNs have gained popularity primarily due
to their capability to automatically extract relevant features and their superior predictive
performance compared to traditional methods.
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In the context of slice-based CNN methodologies, 2D CNNs are frequently trained using
individual 2D MRI slices. Previous work (P. K. Lam et al., 2020) has addressed certain
limitations inherent to 3D CNNs when applied to brain age prediction, particularly noting the
substantial number of parameters required and the computational complexity involved during
training. Consequently, the authors introduced a hybrid architecture combining a 2D CNN
and a recurrent neural network (RNN) to improve brain age prediction. In their proposed
method, the 2D CNN component extracts essential intra-slice features, while the RNN
captures inter-slice dependencies across sequential sagittal MRI slices. Model parameters
were initialized using the Kaiming initialization strategy, and the training utilized the Adam
optimizer. The primary benefit of this hybrid CNN-RNN approach lies in its significant
reduction in the number of parameters—approximately 1,068,065 compared to 2,018,000
parameters in traditional 3D CNNs—while maintaining improved accuracy. However, the
primary limitation noted in this work was the absence of analysis regarding the association
between predicted brain age and clinical or neurological health outcomes.

Similarly, another slice-based CNN approach was proposed by Amoroso et al. (2019),
which involved segmenting T1-weighted MRI scans into smaller patches. The authors utilized
Pearson correlation coefficients to quantify pairwise similarity among patches, subsequently
employing these similarity metrics to construct a complex network in which patches
represented nodes, and correlation values were treated as weighted connections. Furthermore,
the study employed the Gedeon method to identify brain regions most influential for age
prediction, highlighting the ten most significant age-related features localized predominantly
in the left hemisphere. Nevertheless, the principal limitation of their study was the relatively
small sample size, comprising only 488 subjects, potentially limiting the generalizability of
their findings.

Expanding upon slice-based methods, recent work (Dular, Špiclin, and Alzheimer’s Dis-
ease Neuroimaging Initiative, 2021) compared four CNN architectures specifically designed
for brain age estimation, incorporating techniques such as transfer learning with domain
adaptation and bias correction to improve generalization to unseen MRI data. Of these four
models, the first and fourth were trained using complete, full-resolution 3D T1-weighted MRI
images, while the second model utilized a 2D CNN trained on fifteen extracted axial slices
per subject. The third model, however, trained a 3D CNN on downsampled MRI data. This
variation in input data type and resolution across models potentially influenced the overall
predictive performance and comparability of the proposed CNN architectures.

Voxel-based CNN approaches involve training convolutional neural networks on three-
dimensional volumetric MRI scans. For example, a voxel-based CNN strategy described
in Cole and Franke (2017) employed segmentation of T1-weighted MRI images into GM
and WM using the SPM12 toolbox. Their results indicated that grey matter volume alone
yielded superior predictive performance compared to using WM separately, raw images, or
combinations of GM and WM. Additionally, this study explored the heritability of brain
age predictions based on GM, WM, and their combined usage. However, that study was
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limited by the use of data from only two MRI scanners, restricting broader validation of the
model’s reliability across scanners. In addition, the authors did not examine how predicted
brain age gaps relate to specific neuroanatomical features, nor did they consider the impact
of in-scanner motion artifacts that may affect practical model performance. In contrast,
our Triamese-ViT was trained and tested on datasets acquired from multiple scanners, and
ComBat harmonization was applied to correct for scanner- and site-specific effects while
preserving meaningful biological variability. Furthermore, we combined conventional XAI
methods with the model’s built-in interpretability function to investigate the association
between brain regions and predicted brain age gaps. We also systematically analyzed the
sources of artifacts observed in the interpretability maps to ensure more reliable regional
inference.

Related research by J. Wang et al. (2019) segmented 1.5T MRI data into GM, WM, and
cerebrospinal fluid, selecting GM volumes as inputs for a 3D CNN. Logistic regression and Cox
proportional hazards models were subsequently utilized to explore the association between
predicted brain-age gaps and dementia incidence. Through gradient-weighted activation
mapping, attention maps highlighted alterations in GM intensity around the hippocampus
and amygdala associated with aging. Nevertheless, the primary drawback of their model is
its limited generalizability, as it was incapable of effectively handling images sourced from
diverse datasets. Furthermore, the authors explicitly excluded dementia and stroke patients
from their training set, potentially limiting the practical applicability of the developed CNN
model.

And the research conducted in Bellantuono et al. (2021) introduced a complex graph-
based framework using structural connectivity models to address brain age prediction.
Specifically, T1-weighted MRI images were partitioned into smaller patches, and the
similarity between each pair of patches was quantified using Pearson correlation coefficients.
Subsequently, these patch pairs and their correlation metrics were integrated into a deep
learning model to facilitate prediction. The proposed approach effectively captured age-
related structural connectivity changes across various brain regions while achieving robust
performance with minimal preprocessing—primarily brain extraction and linear image
registration—to manage computational complexity. The authors also applied the Gedeon
method to determine feature importance, identifying twelve key brain regions that were
significantly informative regarding aging, such as the medial frontal gyrus, caudate nucleus,
paracentral lobule, putamen, cingulate gyrus, brainstem, and sub-gyral regions. Nevertheless,
a notable limitation of their work is that the analysis was conducted exclusively on a dataset
comprising Autism Spectrum Disorder subjects, potentially restricting the generalizability of
their findings to other neurological or psychiatric conditions.

Hybrid modeling strategies have also emerged within voxel-based CNN research for brain
age estimation. For instance, the study presented in Pardakhti and Sajedi (2020) proposed
integrating a 3D CNN with support vector regression (SVR) and Gaussian process regression
to enhance predictive accuracy and generalization. The researchers trained their hybrid
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model on healthy participants from the IXI dataset, subsequently validating it using 47
cognitively healthy subjects and 22 Alzheimer’s disease (AD) patients from the ADNI dataset.
Despite demonstrating good generalization potential, the authors did not perform any
regional neuroanatomical analyses to identify specific brain areas associated with Alzheimer’s
pathology.

Finally, Hong et al. (2020), who developed a 3D CNN-based model for predicting
brain age in pediatric populations using routine MRI scans. To enhance the dataset size
for training, they employed data augmentation strategies. Additionally, they investigated
slice-based 2D CNN modeling by converting volumetric MRI data into multiple 2D slices.
However, the predictive performance of the 2D CNN was inferior to that of the 3D CNN,
underscoring the critical importance of spatial correlations among adjacent slices in brain
age estimation. Interestingly, their analysis revealed higher accuracy in predicting brain age
for children younger than two years compared to older children.

Figure 2.2: 3D CNN Architecture for brain age estimation used in Hong et al. (2020). (figure
from Hong et al. (2020))

2.3.2 VGG

Given the increasing popularity of DL techniques, researchers have increasingly employed
pretrained DL architectures to enhance performance in brain age estimation tasks. One
prominent pretrained DL network is VGGNet (T.-W. Huang et al., 2017), characterized
by convolutional layers of fixed dimensions, allowing it to effectively capture fine-grained
details within input images. Additionally, VGGNet progressively doubles the number
of convolutional filters in subsequent convolutional stacks, enabling the network to learn
increasingly complex hierarchical features.

The study presented in Yao et al. (2023) explored the efficacy of a 2D VGGNet
architecture. Specifically, the authors utilized VGGNet to identify and extract 2D slices
with maximal mutual information from 3D volumetric MRI scans, aiming to enhance
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computational efficiency and prediction speed. However, the study exhibited several notable
limitations. Firstly, preprocessing of MRI data was restricted exclusively to channel
normalization, neglecting critical preprocessing steps such as motion artifact correction,
linear registration, and bias-field correction, potentially compromising the accuracy of results.
Additionally, the authors did not provide a comparative performance assessment of VGGNet
against alternative pretrained deep learning architectures.

In contrast to slice-based approaches, voxel-based VGGNet models have received greater
attention in studies. A study utilizing voxel-based VGGNet models was presented in Dinsdale
et al. (2021), employing a 3D VGGNet trained on T1-weighted images from the UK Biobank
dataset. The authors investigated correlations between estimated brain age differences and
an extensive set of 8,787 non-imaging variables, including lifestyle, physiological and medical
history, and self-reported mental health conditions. Their results revealed modest correlations
between brain age differences and various image-derived phenotypes (IDPs) across multiple
imaging modalities. Additionally, the study explored the utility of attention mechanisms
applied to both linearly and nonlinearly registered MRI scans, identifying subtle cortical
changes primarily visible in linear registrations. A notable drawback of their approach,
however, was the reliance on IDPs—which compress voxel-level information—to explore
relationships between brain age differences and other imaging modalities, potentially limiting
sensitivity compared to analyses performed directly on T1-weighted 3D images.

The research by H. Jiang et al. (2020) employed a voxel-based VGGNet model after
segmenting T1-weighted MRI data into seven cortical regions using the CorticalParcellation-
Yeo2011 atlas. Individual 3D VGGNet models trained separately on these cortical networks
demonstrated the lowest mean absolute errors in age estimation for the frontoparietal,
dorsal attention, and default mode networks. Additionally, the authors examined the
relationship between grey matter volumes and brain aging using Pearson correlation analysis.
Nonetheless, this approach was limited by considering only seven broad cortical networks,
thereby neglecting finer-scale age-related effects observable within subcortical structures and
smaller cortical subnetworks.

A noteworthy alternative approach was proposed by Peng et al. (2021), who introduced
a simplified, fully-connected convolutional network (SFCN) architecture inspired by the
VGGNet design. Their lightweight model incorporated regularization methods, such as
dropout, voxel shifting, and mirroring, to enhance predictive accuracy. However, the
improved performance came at the expense of significantly increased training durations,
exceeding 50 hours using two dedicated NVIDIA P100 GPUs. Moreover, this study did not
explore potential associations between predicted brain age discrepancies and specific health
outcomes or neurological conditions.

Last, X. Feng et al. (2020) utilized a five-layer 3D VGGNet architecture to analyze a
large-scale, heterogeneous MRI dataset. In their analysis, the authors performed regional
brain assessments and identified a negative correlation between cortical thickness measures
in frontal regions and estimated brain age differences. Additionally, the predicted brain age
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differences were correlated with cognitive performance using the Benton Face Recognition
Test (BFRT), a neuropsychological measure assessing baseline visual memory. While
their study provided valuable insights through quantitative and region-specific analyses,
limitations included the exclusive reliance on the BFRT to associate age deviation with
cognitive impairment, rather than linking it explicitly to disease-specific cognitive decline.
Furthermore, the dataset had limited representation from older adults and entirely excluded
participants younger than 18, thereby potentially restricting generalizability.

Figure 2.3: 3D VGGNet Architecture for brain age estimation used in X. Feng et al. (2020).
(figure from X. Feng et al. (2020))

2.3.3 ResNet

ResNet is a specialized convolutional neural network architecture characterized by its
hierarchical composition of residual blocks, which effectively mitigates training difficulties
associated with vanishing gradient problems. This architecture utilizes skip connections that
facilitate smoother gradient flow, enabling the successful training of deeper networks.

W. Shi et al. (2020) investigated fetal brain age estimation by implementing a
convolutional neural network utilizing the ResNet architecture trained on T2-weighted MRI
images. Additionally, attention maps were derived from the final layer of the CNN model,
enabling identification of brain regions associated with predicted age discrepancies. Their
results demonstrated significant correlations between predicted age differences and specific
fetal abnormalities, including reduced head circumference and structural malformations.

The study in Fisch et al. (2021) introduced a simplified two-layer 3D CNN based
on a ResNet architecture, requiring minimal preprocessing (brain extraction and image
cropping) of T1-weighted MRI images. Transfer learning techniques were utilized to
extract robust features, with the model trained on the GNC dataset and subsequently
validated on the BiDirect, FOR2107/MACS, and IXI datasets to assess its generalization
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capabilities. However, since this research focused solely on the developed 3D CNN
model, it lacked comparative analyses against other established pretrained deep learning
networks. Additionally, the relationship between the predicted age differences and specific
neuroanatomical brain regions was not examined.

The seminal study conducted by Jónsson et al. (2019) proposed a multimodal 3D ResNet
architecture for brain age estimation, leveraging inputs from T1-weighted MRI, GM, WM,
and Jacobian maps. Additionally, sex and MRI scanner information were incorporated
into the final layers to enhance predictive accuracy. To avoid random initialization of the
CNN parameters, the authors initially trained an ensemble model on the Icelandic dataset,
subsequently fine-tuning it using transfer learning on the IXI dataset. The performance of the
trained model was further validated on the UK Biobank dataset, with final predictions derived
through majority voting across multiple trained networks. The authors also conducted a
genome-wide association analysis, identifying significant relationships between the estimated
brain age difference and two genetic variants, rs1452628-T and rs2435204. Furthermore,
a negative correlation between the predicted age difference and neuropsychological test
performance was observed. Nevertheless, the primary limitation of this approach is the
substantial computational complexity resulting from the use of multiple 3D CNN models as
an ensemble.

Subsequently, Kolbeinsson et al. (2020) adopted a voxel-based methodology to quantify
the contributions of specific brain regions—namely, the left amygdala, right hippocampus, left
cerebellum, left insular cortex, left crus, and vermis—to brain aging. The authors employed
permutation-based feature importance analysis to investigate associations between predicted
brain age differences and clinical conditions such as hypertension, multiple sclerosis, systolic
and diastolic blood pressure, and diabetes types I and II.

Another recent voxel-based study by (Ning, Duffy, et al., 2021) applied ResNet-based
deep learning for identifying genetic correlates of brain aging. Employing a genome-wide
association study approach, the research identified four genomic loci containing single
nucleotide polymorphisms significantly linked to variations in predicted brain age. Despite
this contribution, the investigation narrowly focused on genetic determinants, overlooking
other critical influences such as lifestyle behaviors and health conditions known to accelerate
brain aging. For instance, habits such as heavy smoking or excessive alcohol consumption
significantly influence brain aging processes (Ning, L. Zhao, et al., 2020). Similarly, disorders
like diabetes and schizophrenia have been associated with accelerated brain aging (Franke,
Gaser, et al., 2013; Schnack et al., 2016), whereas physical exercise has demonstrated
protective effects against age-related neural deterioration (A. F. Kramer, Erickson, and
Colcombe, 2006; Larson et al., 2006).
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Figure 2.4: ResNet Architecture for brain age estimation used in W. Shi et al. (2020). (figure
from W. Shi et al. (2020))

2.3.4 Transformer Frameworks

Although CNNs have been extensively utilized across various applications, they rely primarily
on convolutional operations that extract features from small, localized neighborhoods,
limiting their ability to represent global contextual relationships within the data (Y. Hu,
H. Wang, and B. Li, 2022). Recently, Transformer-based architectures have emerged,
capable of effectively modeling long-range dependencies within input sequences. Transformers
have demonstrated remarkable performance, particularly in natural language processing and
computer vision tasks, owing largely to their self-attention mechanism.

Inspired by these advantages, researchers introduced the Global–Local Transformer (GLT)
(He, Grant, and Ou, 2021), a framework specifically designed to integrate both local and
global feature information for brain age estimation tasks. The GLT framework seeks to
unify detailed local context with broader global dependencies. Nonetheless, as highlighted
by Y. Hu, H. Wang, and B. Li (2022), the global–local feature representations captured by
GLT may represent only a subset of deeper local–local contextual information. To address
this limitation and further enhance the representational power and generalization capabilities,
Y. Hu, H. Wang, and B. Li (2022) proposed combining a pyramid-structured architecture
with squeeze-and-excitation modules and self-attention mechanisms, thereby capturing both
fine-grained local patterns and richer local–local interactions.

Building upon these developments, Cai, Yue Gao, and Liu (2022) adopted a multimodal
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graph transformer approach to leverage comprehensive global and local multimodal features
for more accurate brain age estimation. Their method incorporated cross-modal interactions,
hierarchical multimodal feature fusion, and geometric learning-based feature aggregation,
leading to improved estimation performance and more precise predictions of brain age.
Turning to volumetric image models, Roibu (2023) examined 3D Swin Transformers alongside
3D CNNs on large, multi-map MRI representations, reporting that transformer backbones
capture distributed age-related structure and that ensembling across maps improves accuracy
and robustness.

Siegel et al. (2025) conducted a large-scale comparison on tens of thousands of
UK Biobank T1w scans, adapting simple ViT and Swin Transformer backbones and
benchmarking them against a strong ResNet baseline. The results suggested broadly
comparable accuracy under matched training, with indications that transformer performance
benefits disproportionately from further data scaling.

H. Zhao, Cai, and Liu (2024) proposes a multi-modal deep learning framework that learns
modality-specific features from T2-weighted structural MRI and diffusion MRI in two parallel
streams, then fuses them with a transformer module. The model targets chronological age
estimation across the lifespan and also supports preterm and term classification, showing
that attention-based fusion improves age prediction over single-modality baselines.

Wood, Townend, et al. (2024) trains five brain-age predictors on large routine clinical MRI
covering T1-weighted, T2-weighted, T2-FLAIR, diffusion-weighted, and GRE T2* sequences,
achieving strong accuracy. Crucially, the work demonstrates transfer learning to new sites,
orientations, and sequences with limited fine-tuning data.

And Alp et al. (2024) presents a ViT-based pipeline tailored to 3D brain MRI for
Alzheimer’s disease classification, comparing transformer variants against CNN/LSTM-style
baselines and detailing practical training choices that make ViTs competitive on routine
structural MRI. Results show that transformer encoders can capture discriminative 3D
patterns for neurodegenerative disease, with reproducible implementation details valuable
for adapting to other 3D MRI tasks.

A two-stage ViT pretraining strategy was proposed for 3D neuroimaging (Cox et al.,
2024): stage-1 learns anatomy-centric features on large unlabeled healthy-brain MRIs, and
stage-2 refines spatial/context encoding—yielding a general 3D backbone. Evaluated on
BraTS and ATLAS-v2, the pretrained model delivers sizable gains over fully supervised
baselines and demonstrates strong sample efficiency, positioning it as a transferable
representation for other MRI tasks beyond segmentation (such as brain-age).

Beyond adult cohorts, transformer modules have also been leveraged for neonatal brain-
age estimation by integrating T2-sMRI and DTI, where the self-attention block serves as
the fusion mechanism and yields precise age prediction together with development-related
classification (H. Zhao, Cai, and Liu, 2024).
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Figure 2.5: Global–Local Transformer Architecture in He, Grant, and Ou (2021). (figure
from He, Grant, and Ou (2021))

2.3.5 Ensemble Learning

Ensemble learning integrates predictions from multiple neural network models to enhance
robustness and predictive accuracy, albeit typically at the expense of increased computational
complexity during training. Recently, ensemble deep learning approaches have gained
traction among researchers seeking improved predictive performance in brain age estimation
tasks.

Firstly, Hwang et al. (2021) developed an ensemble CNN model for estimating brain age
using routine clinical T2-weighted spin-echo MRI scans. However, this work exhibited some
notable shortcomings (Wood, Kafiabadi, et al., 2022). First, it computed final predictions by
averaging across all slices without weighting, potentially reducing overall performance since
not every slice contributes equally to predictive accuracy. Second, treating individual slices
independently disregards potential nonlinear dependencies among spatially adjacent slices.

And Ballester et al. (2021) presented a slice-level brain age estimation approach
combining convolutional neural networks (CNNs) and linear regression. Rather than
processing complete volumetric brain images, this method utilized individual slices, allowing
identification of specific brain regions contributing significantly to brain age prediction errors.
Furthermore, the authors investigated how prediction accuracy was influenced by various
factors, including slice orientation, position, participant age, sex, and MRI acquisition
site. Their analysis demonstrated that certain MRI slices disproportionately impacted
predictive errors. The authors also showed that employing stratified sampling for training and
testing datasets effectively mitigated site-related biases and minimized sex-related prediction
discrepancies. Notably, the overall accuracy of the predictions was sensitive to the selection
of specific MRI slices.
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Moreover, there are broader limitations inherent in many brain age estimation models
that have not been explicitly designed for routine clinical MRI settings. Primarily, these
models often rely on high-quality, isotropic or near-isotropic, volumetric T1-weighted
MRI scans, which are infrequently acquired in standard clinical practice. Additionally,
existing models typically rely on strictly standardized imaging protocols and selective
participant criteria, contrasting significantly with the diverse and heterogeneous imaging data
routinely encountered in hospitals, which involve multiple scanner manufacturers, varying
protocols, and diverse patient populations. Lastly, many advanced brain age models require
computationally demanding preprocessing steps such as spatial normalization, skull stripping,
and bias field correction, further limiting their practical applicability in routine clinical
contexts.

The initial contribution in this category was presented by Hofmann et al. (2022), a
multilevel ensemble deep learning approach was proposed to improve model interpretability in
neuroimaging contexts. The authors found that ensemble models consistently outperformed
their individual component models, with notable contributions from voxels surrounding the
ventricles, the meningeal boundary regions, and cortical sulcal structures, the latter being
especially significant for older adults.

Additionally, Poloni, Ferrari, Alzheimer’s Disease Neuroimaging Initiative, et al. (2022)
introduced two CNN-based models specifically designed to estimate hippocampal age from
T1-weighted MRI scans. By applying extensive data augmentation, the authors increased the
effective training dataset size, enabling robust model training. The study further investigated
associations between prediction errors and clinical conditions, comparing cognitively normal
individuals with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) subjects.
Statistical analyses revealed negative correlations between estimated age discrepancies and
clinically derived measures. Importantly, the proposed model provided efficient inference,
requiring only approximately 0.12 seconds per sample and maintaining an overall processing
time under seven minutes.

Another notable example of voxel-based ensemble deep learning was presented by Levakov
et al. (2020), who proposed combining predictions from multiple 3D CNN models trained on
a substantial cohort of 10,176 participants for chronological age prediction. Their ensemble
achieved a mean absolute error (MAE) of 3.07 years when evaluated on previously unseen
data. Additionally, the authors identified cerebrospinal fluid cavities as biomarkers associated
with brain atrophy and aging. By aggregating multiple explanation maps into a population-
level visualization, the study highlighted ventricles and cisterns as key regions linked to early
aging processes. Despite these strengths, the study’s reliance on cross-sectional data rather
than longitudinal data limited its ability to model individual trajectories of brain aging,
focusing instead solely on between-subject variability.

In Kuo et al. (2021), the authors empirically examined how different combinations of
input features affect the predictive accuracy of conventional machine learning frameworks for
brain age estimation. Their study demonstrated that integrating multiple input features with

22



Chapter 2. Literature Review 2.3. Popular Deep Learning Architectures

task-specific objective functions through an ensemble deep learning architecture significantly
improved prediction accuracy.

Similarly, Couvy-Duchesne, Faouzi, et al. (2020) employed an ensemble comprising seven
distinct classifiers, each trained on voxel-based GM and WM, along with vertex-level surface
area metrics. Their results indicated that optimal predictive performance could be attained
by combining the classifiers’ predictions through linear regression-based weighting strategies.
Furthermore, the integration of predictions using a random forest algorithm further enhanced
model accuracy. However, a common limitation associated with such ensemble methodologies
is their increased computational overhead arising from the simultaneous training of multiple
independent neural networks.

Sun et al. (2023) trained multiple lightweight 3D CNNs on T1-weighted MRI and com-
bined their predictions through bagging and weighted averaging, showing that the ensemble
reduced variance and improved generalizability across sites in the UK Biobank. Similarly,
X. Li et al. (2024) proposed a hybrid ensemble integrating CNNs with transformer-based
backbones; tested on over 4,000 subjects, their results demonstrated lower mean absolute
error (MAE) compared to any single constituent model, highlighting the complementary
strengths of convolutional and attention-based architectures.

In Zeineldin et al. (2024), authors introduces TransXAI, a hybrid CNN–Transformer
framework for multi-modal brain-tumor segmentation that emphasizes interpretability.
Beyond competitive segmentation accuracy, the method provides surgeon-readable post-hoc
heatmaps without modifying the trained network or sacrificing performance.

Beyond conventional averaging, more sophisticated fusion strategies have also emerged.
Yang Gao et al. (2024) introduced a stacking framework where base models included CNNs,
graph neural networks, and regression trees trained on multimodal MRI features, with a meta-
learner combining outputs into final age predictions. This approach yielded not only higher
accuracy but also improved fairness across sex and age subgroups, addressing a common
limitation of earlier ensemble approaches.

2.3.6 Others

In addition to the previously discussed deep learning models, several researchers have explored
alternative advanced approaches for brain age estimation. Here, we highlight representative
contributions.

Lin et al. (2021) introduced a hybrid framework employing a pretrained 2D AlexNet
model (Iandola et al., 2016) for feature extraction from GM images derived from T1-
weighted MRI scans. They subsequently applied principal component analysis for feature
dimensionality reduction and utilized a relevance vector machine with a polynomial kernel
for the final classification step. Their experimental results on Alzheimer’s disease datasets
showed notable predictive age deviations, with an average discrepancy of 3.13 years
in patients with mild cognitive impairment and 6.08 years in patients diagnosed with
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Figure 2.6: Multi-Modal Ensemble Learning in Hofmann et al. (2022). (figure from Hofmann
et al. (2022))

AD. Despite the promising outcomes, the study had certain limitations. Notably, the
authors exclusively evaluated performance using the pretrained AlexNet architecture, a
model typically characterized as a black-box approach that lacks inherent interpretability.
Additionally, comparative performance analyses involving other established pretrained CNN
models were not conducted, limiting broader conclusions regarding the effectiveness of their
AlexNet-based method.

A further innovative contribution was presented by Lombardi et al. (2021), who developed
an explainable deep learning model focused explicitly on morphological feature extraction
for brain aging. The authors explored two prominent explainability techniques—SHapley
Additive exPlanations (SHAP) (Lundberg, 2017) and Local Interpretable Model-agnostic
Explanations (LIME) (Ribeiro, Singh, and Guestrin, 2018)—to identify reliable morpho-
logical biomarkers of aging. Their experiments indicated that SHAP provided superior
interpretability for elucidating age-related morphological changes. Nonetheless, to more
effectively leverage three-dimensional MRI data at the voxel level, alternative explainability
methods such as CNN-derived saliency maps or layer-wise relevance propagation (LRP) could
potentially offer improved visualization of aging-related regions within the brain. Although
a correlation analysis between extracted morphological features and chronological age was
performed, the authors acknowledged that further quantitative investigations are required to
precisely determine the brain regions most critical to predicting biological age.

Tak et al. (2024) introduces BrainIAC, a self-supervised foundation model trained with
contrastive learning on about 32,000 unlabeled brain MRIs drawn from a curated pool of
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35 datasets (total 48,519 scans). As a generic 3D vision encoder for MRI, BrainIAC is
adapted to multiple downstream tasks—including brain-age prediction—and consistently
outperforms scratch training and prior pretrained baselines, particularly in low-data and
out-of-distribution settings.

Caro et al. (2023) presents BrainLM, a foundation model trained with masked-prediction
on 6,700 hours of fMRI recordings to learn temporo-spatial dynamics of brain activity.
The model supports fine-tuning and zero-shot use, accurately predicting clinical variables
(including age), forecasting future brain states, and generalizing to external cohorts not seen
in training.

When considering 3D-based approaches, the diversity of advanced models reported
in the literature is extensive. Wood, Kafiabadi, et al. (2022) introduced a voxel-
based DenseNet model tailored specifically for estimating brain age from routine clinical
head MRI examinations. The utilization of routine clinical imaging data ensured diverse
representation across scanner types and acquisition protocols, reflecting realistic clinical
conditions. Nevertheless, the authors highlighted two critical limitations: first, the model
was exclusively trained on radiologically normal images, and thus its performance on brains
exhibiting significant pathologies remains unknown; second, although interpretability was
attributed generally to brain parenchyma, the study lacked a systematic analysis identifying
specific neuroanatomical features driving model predictions.

Mouches, Wilms, Rajashekar, Sonke Langner, et al. (2021) presented a novel deterministic
autoencoder framework that simultaneously achieved brain age estimation and the generation
of age-specific brain templates. These age-conditioned templates illustrated age-related mor-
phological changes such as ventricular enlargement and increased sulcal width. Expanding
upon this work, the same authors (Mouches, Wilms, Rajashekar, Sönke Langner, et al.,
2022) later proposed an autoencoder-based multimodal model combining structural MRI and
angiographic imaging data. They employed saliency maps to elucidate contributions from
cortical, subcortical, and arterial structures, concluding that integrating arterial information
with brain tissue significantly enhanced predictive accuracy. Notably, structures including the
lateral sulcus, fourth ventricle, and medial temporal regions emerged as critical morphological
markers for age estimation.

The study conducted by He, Yanfang Feng, et al. (2022) introduced an innovative
regression framework based on deep relational learning. This model learned nonlinear
relationships between pairs of brain images through simultaneous relational regression and
feature extraction tasks. EfficientNet was utilized for feature extraction, while transformer-
based architectures modeled inter-image relationships. Evaluations encompassed various
experimental conditions, such as estimating brain age from different image pairs, known-age
reference comparisons, and identical-image pair analyses. Achieving a notably low MAE
of 2.38, the authors argued that their deep relational learning model delivered superior
generalization performance compared to contemporary state-of-the-art brain age estimation
methods.
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One noteworthy study by Popescu et al. (2021) employed a U-Net architecture utilizing
voxel-wise MRI data to enable local predictions of brain age. This approach allowed
the researchers to analyze structural distinctions between mild cognitive impairment and
Alzheimer’s disease patients. Additionally, the reliability of the local brain age predictions
across scanners and within scanner variations was assessed. Results indicated that certain
subcortical regions, including the accumbens, putamen, pallidum, hippocampus, and
amygdala, were notably discriminative, exhibiting significant local predicted age differences
as measured by Cohen’s d values. However, a major drawback of this method was its
dependence on a healthy reference population specific to each MRI site; variability due to
scanner differences could result in local predicted age distributions deviating significantly
from zero, complicating interpretability.

Varatharajah et al. (2018) leveraged transfer learning via a pretrained 3D Inception-V1
(Couvy-Duchesne, Strike, et al., 2020) model as a feature extractor, combined with regression
and categorical (bucketed) classification tasks to estimate brain age.

Finally, J. Lee et al. (2022) adopted a modified 3D-DenseNet architecture optimized with
Adam and trained using MAE loss, focusing specifically on normal aging and dementia. The
authors provided age- and modality-specific interpretability maps using occlusion sensitivity
analysis, which masks selected brain regions to quantify their impact on prediction accuracy.
Their findings indicated that posterior regions, particularly around the posterior cingulate
cortex, predominantly influenced age predictions in younger age groups (30–40 and 40–50
years). Conversely, in older groups (50–60 and 70–80 years), inferior frontal, orbitofrontal,
and olfactory cortex regions played a more significant role. Additionally, their analysis
demonstrated greater sensitivity of metabolic data over structural MRI for predicting brain
age. However, the scope of their evaluation was limited to neurodegenerative conditions,
neglecting chronic systemic or vascular diseases known to exhibit distinct brain-aging
patterns.

2.4 Explainable Artificial Intelligence (XAI)

The rapid adoption of deep learning in medical imaging has raised concerns about the ’black-
box’ nature of predictive models, making interpretability an essential component for both
scientific understanding and clinical translation. Explainable Artificial Intelligence (XAI)
aims to bridge this gap by providing tools that help understand the decision-making process
of complex models. In neuroimaging, XAI has been particularly important in tasks such as
disease classification and brain age estimation, where identifying relevant brain regions is as
crucial as obtaining accurate predictions.

Among post-hoc explanation methods, two widely used model-agnostic approaches are
SHAP and LIME. SHAP (SHapley Additive exPlanations) is based on cooperative game
theory and attributes the contribution of each feature to the model output based on Shapley
values (Lundberg, 2017). In brain imaging, SHAP has been applied to highlight the relative
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Figure 2.7: U-Net for estimating local brain age in Popescu et al. (2021). (figure from
Popescu et al. (2021))

importance of different structural or functional features, thereby quantifying how specific
regions influence predicted brain age or disease status. LIME (Local Interpretable Model-
agnostic Explanations) approximates a complex model locally with a simpler, interpretable
surrogate (such as a linear regression), providing insight into the features that most strongly
influence a given prediction (Ribeiro, Singh, and Guestrin, 2016b).

For CNN applied to MRI, gradient-based saliency methods are always employed. Grad-
CAM (Gradient-weighted Class Activation Mapping) visualizes class-discriminative regions
by computing gradients of the output with respect to feature maps, producing heatmaps
that indicate spatial importance (Selvaraju et al., 2017). This method has been adapted
to regression tasks such as brain age estimation, where heatmaps can highlight cortical and
subcortical regions most influential in predicting age.

Occlusion analysis represents a perturbation-based strategy: input images are systemati-
cally masked in localized regions, and the corresponding changes in prediction are measured
(Zeiler and Fergus, 2014). This method directly quantifies the contribution of brain regions
to prediction accuracy and has been widely used in neuroimaging to validate findings from
gradient-based XAI methods. For example, occlusion has been employed in brain age
studies to confirm the influence of cortical thinning or subcortical volume loss highlighted by
attention-based models.

Together, these XAI methods provide complementary perspectives on model interpretabil-
ity. In the context of this dissertation, occlusion analysis is employed both as a baseline and
as a validation for the built-in interpretability mechanisms developed in the Triamese-ViT
framework, ensuring that explanations are robust, biologically meaningful, and aligned with
neuroscientific evidence.
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2.5 Fairness and Bias in Brain Age Estimation

Despite recent advances in brain age estimation, concerns remain regarding fairness and
potential biases in model performance across demographic groups. Many existing models
have been trained on datasets with demographic imbalances, most notably with respect
to sex, race, and age distribution. This imbalance often leads to systematic deviations in
prediction accuracy: for example, models trained predominantly on young or middle-aged
adults tend to overestimate the brain age of elderly individuals, while models biased toward
one sex may yield lower accuracy for the underrepresented group (Beheshti, Nugent, et al.,
2019). Similar issues have been observed in racially unbalanced datasets, where differences in
brain morphology across ancestry groups may be conflated with aging effects, raising concerns
about the generalizability of brain age models in diverse populations (Cole and Franke, 2017;
Bashyam et al., 2020).

A number of studies have highlighted these limitations. Bashyam et al. (2020), using a
large international dataset of more than 16,000 individuals across multiple sites, showed that
prediction errors vary systematically by age and sex, with higher mean absolute errors in
elderly cohorts and underrepresented demographic subgroups. Dibaji et al. (2023) further
demonstrated sex-specific biases in brain age models, where separate models trained on male
and female samples yielded different regional patterns of importance, suggesting that pooled
models may mask group-specific trajectories. Importantly, these findings point to the fact
that a single global model may not adequately capture heterogeneous aging processes across
subgroups.

Critical evaluations also emphasize that fairness in brain age estimation is not limited to
prediction error but extends to downstream interpretation. For instance, biased estimates
of BAG can distort associations with clinical outcomes, leading to spurious links between
accelerated aging and disease prevalence in certain populations (Beheshti, Nugent, et al.,
2019). Moreover, demographic biases can undermine the use of brain age as a biomarker in
clinical trials, where fair performance across sexes, ethnicities, and age ranges is essential for
reliable stratification.

In conclusion, fairness and bias remain critical challenges in brain age research. Models
trained on unbalanced datasets risk propagating demographic disparities, thereby limiting
their reliability in cross-cohort and clinical applications. To address these challenges, we
indeed require technical innovation. To respond to this issue, we introduce u-DemAI, which
is a framework that has great performance on brain age estimation, not only on its high
prediction accuracy, but also the fairness, which has consistent predictive performance across
different age groups.

2.6 Discussion

The literature on brain age estimation demonstrates steady progress from early CNNs to
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Table 2.1: Summary of representative models for brain age estimation, their advantages and
disadvantages.

Model Data Advantages Disadvantages
3D
CNN (Cole
and Franke,
2017)

T1w
Only used GM segmentation
and achieved high accuracy.

Did not analyze the relation-
ship between BAG and specific
regions. Did not consider bias
in prediction.

VGGNet (Dins-
dale et al.,
2021)

T1w

Investigated correlations be-
tween BAG and non-imaging
variables, including lifestyle,
physiological and medical his-
tory, and self-reported mental
health conditions.

Analyzed correlations with
image-derived phenotypes,
but they compress voxel-
level information, limiting
sensitivity compared to direct
analyses on T1w images. Did
not consider bias in prediction.

ResNet (Fisch
et al., 2021)

T1w Trained on large datasets.

Did not examine the relation-
ship between BAG and specific
neuroanatomical regions. Did
not consider bias in prediction.

Vision Trans-
former (Cai,
Yue Gao, and
Liu, 2022)

DTI+T1w

Leveraged multimodal data
and analyzed the relationship
between BAG and specific
neuroanatomical brain regions.

Relied on occlusion sensitivity
analysis, requiring additional
processing steps. Did not
consider bias in prediction.

Ensemble
Model (Yang
Gao et al.,
2024)

T1w
Considered fairness across sex
and age subgroups in predic-
tion.

Treat each constituent model
with fixed or simple weighting
schemes. Did not examine the
relationship between BAG and
specific neuroanatomical brain
regions.
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more advanced architectures such as ResNet and ViTs, as well as ensemble learning strategies.
Table 2.1 provides a summary of representative models in this field.

Classical CNN-based models, including VGG and ResNet, have shown strong capability in
extracting local features from sMRI and achieving reasonable prediction accuracy. However,
they are limited in capturing global structural relationships, which are critical for modeling
distributed patterns of brain aging. ViT-based approaches address this limitation by
employing self-attention mechanisms to integrate information across the whole brain, thereby
improving the modeling of global dependencies. Nevertheless, the application of attention
mechanisms to XAI remains underexplored, and their value for interpretability has not been
firmly established. Ensemble learning methods, in contrast, improve prediction stability and
accuracy by combining diverse models.

While recent deep learning models have achieved impressive predictive accuracy, they
often exhibit limited generalizability across populations and age ranges. Many approaches
rely on fixed or simplistic schemes that fail to capture the nonlinear and heterogeneous
nature of brain aging. In reality, age-related structural changes in the brain follow distinct
trajectories across developmental and late-life stages, and the same model parameters may
not adequately represent these differences. Consequently, models optimized on specific
age groups tend to overfit to the dominant demographic in the training data, leading to
reduced performance when applied to underrepresented cohorts such as very young or elderly
individuals.

Furthermore, although these methods enhance accuracy, they frequently overlook issues
of bias and fairness. Predictive performance remains sensitive to demographic imbal-
ances—particularly in sex, ethnicity, and age distribution—which can result in systematic
overestimation or underestimation of brain age in certain subgroups. These biases limit the
clinical applicability of such models, as consistent and equitable performance across diverse
populations is essential for reliable biomarker development. Addressing these limitations
requires adaptive modeling strategies that explicitly account for demographic variability and
employ fairness-aware optimization to ensure robust generalization across age groups and
populations.

In response to these limitations, the present work introduces three new approaches. First,
the nonlinear Age-Adaptive Ensemble (nl-AAE) advances traditional ensemble methods by
dynamically adjusting the weights of constituent models according to the chronological age
of the subject. This adaptive design enables the ensemble to capture age-specific structural
patterns and yields higher predictive accuracy than both individual models and conventional
ensembles. Second, the Triamese-ViT leverages the strengths of transformer architectures
while addressing the challenge of interpretability. By extracting complementary features
from three orthogonal orientations of sMRI and integrating them into a unified prediction,
Triamese-ViT achieves high accuracy with built-in interpretability. Crucially, its attention-
based explanations have been validated against traditional XAI methods such as occlusion
analysis, ensuring that the interpretability is both intrinsic and reliable. This built-in
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mechanism has also been applied to investigate the relationship between BAG and specific
brain regions, providing novel insights into normal aging and ASD diagnosis. Finally, the
u-DemAI framework explicitly addresses fairness and bias, dimensions often overlooked in
prior models. By reducing bias in accuracy across age ranges and enabling a democratic self-
updating process in which users contribute to model refinement, u-DemAI promotes both
fair performance and broader accessibility.

2.7 Conclusion

In this chapter, we reviewed previous research on brain age estimation. We first introduced
the background of neuroimaging analysis, followed by a discussion of popular deep learning
models applied to brain age prediction, the role of XAI in this field, and work examining
fairness and bias. We then highlighted the limitations of existing approaches and outlined
how our proposed methods aim to address these challenges. The following three chapters
present the details of our contributions: the nl-AAE, the Explainable Triamese-ViT, and
the u-DemAI framework. For each model, we describe the architecture, report experimental
results, and provide an analysis of its implications.
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Chapter 3

Nonlinear Age-Adaptive Ensemble
Learning

3.1 Introduction

Recent advancements in deep learning have transformed brain age estimation by enabling
models to extract complex features from neuroimaging data with high accuracy. Deep
learning approaches have outperformed traditional methods in detecting subtle structural
changes in the brain and identifying deviations from normative aging trajectories. Building on
these developments, this chapter introduces a novel framework, the Nonlinear Age-Adaptive
Ensemble Learning model (nl-AAE), designed specifically for brain age estimation.

The key innovation of nl-AAE lies in its nonlinear age-adaptive ensemble mechanism,
which integrates multiple independent models into a unified predictor. Unlike conventional
ensembles that assign fixed or static weights, nl-AAE dynamically adjusts the contributions
of its constituent models according to the chronological age of the input. This enables the
ensemble to capture age-specific structural patterns and to model brain characteristics across
the lifespan with greater accuracy. In this work, four independent models were considered:
GoogLeNet, ResNet, Support Vector Regression (SVR), and a custom-designed CNN. The
nonlinear weighting strategy allows the ensemble to adapt flexibly to age-related variability
and to leverage the complementary strengths of each model.

We evaluate nl-AAE using the PAC 2019 competition dataset and benchmark its
performance against its constituent models and other SOTA models. The results demonstrate
that nl-AAE delivers superior predictive accuracy, highlighting its potential as a powerful
tool for assessing brain health in clinical trials of neuroprotective therapies, identifying
individuals at risk of accelerated cognitive decline, and offering insights into the downstream
consequences of aging-related diseases. Its enhanced accuracy compared to existing
approaches also underscores its relevance for applications such as Alzheimer’s disease
detection, traumatic brain injury assessment, schizophrenia diagnosis, and pharmaceutical
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evaluation.
The remainder of this chapter is organized as follows. We first introduce the dataset

used in our experiments. Next, we describe the independent models employed in nl-AAE,
including their structure and hyperparameters. We then present the design and mechanism
of the nl-AAE framework, followed by the experimental results, their analysis and discussion.
Finally, we conclude the chapter by synthesizing insights, evaluating performance, identifying
limitations, and suggesting directions for future improvement.

3.2 Preliminary

3.2.1 Dataset

The dataset utilized in this study is derived from (Cole and Franke, 2017) and consists of
2,641 healthy individuals’ structural MRI (sMRI) scans, along with demographic attributes
such as age and gender. The age range of the participants spans from 16 to 90 years, with a
mean age of 35.8 years and a standard deviation of 16.2 years.

Among the participants, 53% are female and 47% are male. The mean age of female
participants is 37 years, with a standard deviation of 17.2 years, whereas the mean age of
male participants is 34.6 years, with a standard deviation of 14.9 years. The age distribution
of the dataset is depicted in Figure 3.1.

It is worth noting that the dataset presents an imbalanced age distribution, with a
relatively lower representation of older individuals and a higher proportion of younger
participants. Additional details regarding the dataset and its composition are provided in
(Cole and Franke, 2017). Such imbalance can negatively affect prediction accuracy, as models
trained on over-represented younger samples tend to generalize less effectively to older age
groups. Our proposed nl-AAE framework addresses this issue through its age-adaptive design:
instead of training a single ensemble across the entire age range, nl-AAE constructs separate
ensemble models for different age groups and assigns group-specific weights to the base
learners. This strategy allows the model to better capture age-specific structural patterns
and reduces the degradation in predictive accuracy caused by the under-representation of
older individuals. Consequently, nl-AAE achieves more consistent performance across age
ranges, as reflected by the reduced error disparity between younger and older groups in our
results.

We selected the PAC 2019 dataset for several reasons. First, it is one of the largest publicly
available datasets specifically curated for the task of brain age estimation, including over
2,600 T1w sMRI scans with chronological age labels spanning from 16 to 90 years. This wide
age range makes it particularly suitable for developing and evaluating age-adaptive models.
Second, the dataset has been extensively used in previous benchmark studies (Cole and
Franke, 2017; Couvy-Duchesne, Faouzi, et al., 2020; Soch, 2020), enabling direct comparison
of our results with existing approaches. Third, the data were preprocessed in a standardized
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manner, which ensures consistency across participants and facilitates reproducibility.

Figure 3.1: a presents the Age distribution of the dataset and b presents the sex distribution
of the dataset.

3.2.2 Data Features

In this study, we utilize two distinct types of input data for our models: Gray Matter and
White Matter Maps and Surface-Based Processing of Gray Matter.

The Gray Matter and White Matter Maps were provided by the Predictive Analysis
Challenge (PAC) organization. Preprocessing of sMRI data involved nonlinear registration
using the MNI152 space, which is a standard reference space widely used in neuroimaging
to align and compare different brain scans across individuals and studies. The images were
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subsequently segmented into different tissue types by a neuroimaging analysis software called
SPM12 (Penny et al., 2011). Each tissue type was represented as a separate map, which was
further smoothed with a 4-mm kernel. For additional details on this preprocessing method,
refer to (Cole and Franke, 2017). These processed maps serve as input data for the self-defined
CNN, ResNet, and GoogLeNet models used in our project.

For Surface-Based Processing of Gray Matter, we extracted vertex-wise measurements
of cortical thickness and surface area from sMRIs using FreeSurfer 6.0 (Fischl, 2012).
Additionally, vertex-wise features for the thickness and surface area of seven subcortical
nuclei were extracted following the ENIGMA-shape protocol (Gutman, Madsen, et al., 2013;
Gutman, Yalin Wang, et al., 2012). This preprocessing yielded approximately 650,000 gray
matter measurements per individual. The method employed was previously validated by
Baptiste Couvy-Duchesne et al. (Couvy-Duchesne, Strike, et al., 2020), who demonstrated
that these processed features exhibit a strong correlation with age. So here we only used this
dataset for the input of SVR. Because SVR is the only classical machine learning approach we
used in this experiment. And classical machine learning approaches require explicit feature
representations, and vertex-wise measures of cortical thickness and surface area provide
biologically meaningful and strongly age-related predictors. In contrast, deep learning models
such as CNNs, GoogLeNet, and ResNet are capable of automatically learning hierarchical
representations directly from raw sMRI data, thereby obviating the need for hand-crafted
surface-based features. By restricting the FreeSurfer-derived features to SVR, we ensure that
each model operates on data in a manner consistent with its methodological strengths: SVR
benefits from morphometric inputs, whereas deep neural networks exploit the full spatial
richness of sMRI.

3.2.3 Basic Independent Models

The advancements in deep neural networks (Z. Jiang, P. L. Chazot, et al., 2019; Chiang
et al., 2020; Mehboob et al., 2022) have significantly contributed to the development of
medical biometrics (R. Jiang, Crookes, et al., 2022), particularly in health diagnostics and
the understanding of neural function (R. Jiang and Crookes, 2019) and dysfunction (Z. Jiang,
Yunpeng Wang, et al., 2022) in the human brain. In this study, we leverage deep learning
techniques in combination with ensemble learning approaches to improve the accuracy of
brain age estimation.

Before detailing the architecture of our ensemble model, we first introduce the funda-
mental components of our proposed framework. The choice of CNN, GoogLeNet, ResNet,
and SVR as base learners was guided by their demonstrated utility in prior brain age
studies. Shallow 3D CNN architectures have been widely applied to T1-weighted sMRI
for capturing local structural patterns of gray and white matter (Cole and Franke, 2017).
GoogLeNet introduces multi-scale feature extraction through its inception modules and
has been successfully adapted to brain age prediction tasks (Couvy-Duchesne, Faouzi,
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et al., 2020). ResNet incorporates residual connections that alleviate the vanishing-gradient
problem and enable deeper architectures, which have shown competitive performance in
neuroimaging-based age estimation (Fisch et al., 2021). Finally, SVR is a classical machine
learning method that has consistently been used as a benchmark in brain age estimation
(Couvy-Duchesne, Faouzi, et al., 2020), relying on explicitly defined morphometric features
that exhibit strong correlations with chronological age. By combining these models, we
integrate complementary strengths: CNNs, GoogLeNet, and ResNet automatically learn
hierarchical representations directly from volumetric sMRI, while SVR leverages features
with established biological relevance. This diversity provides a robust foundation for the
ensemble framework.

Besides, the architecture and hyperparameters of our basic independent models were
selected a priori based on prior studies of brain age estimation (Cole and Franke, 2017;
Couvy-Duchesne, Faouzi, et al., 2020; Fisch et al., 2021), and these configurations achieved
optimal performance in their experiments.

3.2.3.1 Convolutional Neural Networks (CNN)

The convolutional neural network (CNN) was implemented in Keras with TensorFlow as the
backend. The architecture comprises seven sequential convolutional blocks, a design whose
effectiveness for brain age estimation has been previously demonstrated by Couvy-Duchesne,
Faouzi, et al. (2020). The seven sequential blocks includes:

• The first five blocks each include a 3D convolutional layer (3×3×3), followed by Batch
Normalization, an RELU activation function, and a Max Pooling layer.

• The sixth block contains a dropout layer.

• The seventh block includes a fully connected layer.

The input to the model is a 3D volumetric image of size 121 × 145 × 121 pixels, which is
progressively reduced by the convolutional layers to 128 feature maps of size 4× 5× 4. The
final fully connected layer further reduces these feature maps to generate the predicted age.

The model is trained on two-channel input data, formed by concatenating gray matter
and white matter maps. The training process utilizes the Mean Absolute Error (MAE) as
the loss function and Adam optimizer with the following hyperparameters:

• Learning rate: 0.001

• Weight decay: 10−4

• β1 = 0.9, β2 = 0.999
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3.2.3.2 GoogLeNet (Inception V1)

The GoogLeNet (Inception V1) architecture, previously utilized for brain age estimation
(Couvy-Duchesne, Faouzi, et al., 2020), is employed in this study. The model consists of:

• A stem network comprising an input layer, a convolutional filter, a max-pooling layer,
two additional convolutional filters, another max-pooling layer, and an output layer.

• Two inception modules, followed by a max-pooling layer.

• Five additional inception modules, two of which are connected to an auxiliary regression
head.

• Another max-pooling layer, followed by two more inception modules.

• An average pooling layer, a dropout layer, and a fully connected layer.

To adapt GoogLeNet for regression tasks, the softmax layer was replaced with a fully
connected output layer. The convolutional filters in this model consist of an input layer,
a convolutional layer, batch normalization, a ReLU activation, and an output layer.

The auxiliary regression heads, designed to mitigate the vanishing gradient problem, are
composed of:

• An input layer, followed by an average pooling layer, a convolutional filter, and a fully
connected layer.

• A ReLU activation layer, a dropout layer, and another fully connected layer leading to
the output.

The input data for this model consists of 3D maps of gray matter density with dimensions
121× 145× 121 pixels, while the output represents the predicted age. The model is trained
using the MAE loss function and Adam optimizer with the following settings:

• Learning rate: 0.001

• Batch size: 8

3.2.3.3 ResNet

The ResNet model structure was always used in the previous brain research, for example,
L. Hu et al. (2023) collected 658 T1-weighted MRI scans from children aged 0–3 years
and trained a deep ResNet-style residual network to predict brain age in this very
early developmental window, achieving a high correlation (0.91) between predicted and
chronological age. Their model is specialized for infants and toddlers and focuses on raw
MRI input with minimal preprocessing. However, this approach has limitations when scaled
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to lifespan brain age estimation: it is optimized for a narrow age range and thus may not
generalize across older populations; it does not explicitly adapt for age-group heterogeneity;
it lacks integrated fairness control (for example, adjusting biases across age brackets).

The ResNet structure we used here is based on (Fisch et al., 2021), it got great
performance in their research:

• Five residual blocks, each followed by a max pooling layer with a 3× 3× 3 kernel size
and a stride of 2× 2× 2.

• A fully connected block for final prediction.

Each residual block consists of a 3D convolutional layer with a stride of 1× 1× 1 and a
kernel size of 3× 3× 3, followed by batch renormalization and an ELU activation function.
Additionally, the input signal to the residual block is directly added to the output of a later
layer within the block, forming the characteristic residual connection.

The fully connected block is a Multilayer Perceptron (MLP) with:

• An input layer with 128× 4× 5× 4 = 10, 240 neurons.

• A hidden layer (FC1) with 256 neurons, using an RELU activation function.

• A dropout layer with a keep rate of 0.8, following the hidden layer.

• A final output layer (FC2) that performs linear regression on the hidden layer features.

The model is trained using 3D maps of gray matter density as input and Mean Absolute
Error (MAE) as the loss function. The training process is optimized using Adam optimizer
with the following hyperparameters:

• Learning rate: 0.001

• Weight decay: 10−4

• β1 = 0.9, β2 = 0.999

3.2.3.4 Support Vector Regression (SVR)

Although deep neural networks have recently dominated brain age estimation, SVR remains
an important and complementary component in our ensemble. First, SVR relies on
explicit morphometric features, such as cortical thickness and surface area extracted by
FreeSurfer, which have strong biological validity and established associations with aging
(Couvy-Duchesne, Strike, et al., 2020). This contrasts with deep learning models, which
learn hierarchical features from volumetric data but may obscure direct neuroanatomical
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interpretations. Second, classical machine learning approaches such as SVR are less data-
hungry and generally more robust in scenarios with limited sample sizes or imbalanced
data distributions, which are common challenges in neuroimaging studies. Third, SVR has
historically been used as a benchmark in brain age estimation research (Franke, Ziegler, et al.,
2010), for example, J. Li, L. C. W. Lam, and Lu (2024) used SVR to train a brain age model
on T1-MRI and further used mutual information analysis to explain the relationship between
regional morphological features and estimated brain age. While his explanatory analysis was
insightful, his predictive model was relatively limited, and his training objectives did not
account for age bias and fairness across subgroups. Therefore, including it in our research is
valuable for comparison with prior work. By integrating SVR with deep learning models, the
ensemble benefits from both biologically grounded, handcrafted features and automatically
learned representations, thereby enhancing robustness and interpretability across diverse age
groups.

In this study, we employ SVR with a radial basis function (RBF) kernel to address the
brain age estimation task. The input data consists of Surface-Based Processing of Gray
Matter, containing approximately 650,000 gray matter measurements per individual, while
the output represents the predicted age.

The SVR model is implemented using the Scikit-Learn package in Python. To ensure
high predictive accuracy, the model is trained for over 300 epochs.

Table 3.1: Summary of independent models used in nl-AAE.

Model Input Type Hyperparameters

CNN sMRI Learning rate = 0.001, batch size 8 weight decay = 10−4,
optimizer = Adam (β1 = 0.9, β2 = 0.999), dropout rate
= 0.2, epochs=300

GoogLeNet sMRI Learning rate = 0.001, batch size 8, optimizer = Adam
(β1 = 0.9, β2 = 0.999), dropout rate = 0.2, epochs=300

ResNet sMRI Learning rate = 0.001, batch size 8, weight decay = 10−4,
optimizer = Adam (β1 = 0.9, β2 = 0.999), dropout rate
= 0.2, epochs= 300

SVR
Surface-based
features

Kernel = RBF, hyperparameters (C, γ, ϵ) tuned via cross-
validated grid search
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3.3 Age-Adaptive Ensemble Model

3.3.1 Fundamentals of Ensemble Learning

Ensemble learning enhances predictive performance by constructing and integrating multiple
individual models, often referred to as multi-classifier systems or committee-based learning.
The general framework of ensemble learning involves generating a set of individual learners
and subsequently combining their outputs using a specific fusion strategy. Empirical
studies have demonstrated that ensemble learning generally achieves superior generalization
performance compared to individual models (Kuncheva and Whitaker, 2003; Sollich and
Krogh, 1995).

There are six widely recognized types of ensemble learning models: Bayes Optimal
Classifier, Boosting, Bootstrap Aggregating (Bagging), Bayesian Model Averaging (BMA),
Bayesian Model Combination (BMC), and Stacking.

The Bayes Optimal Classifier is based on Bayesian decision theory and constructs an
ensemble of all possible hypotheses within the hypothesis space (Friedman, Geiger, and
Goldszmidt, 1997). It remains a widely used supervised learning approach, particularly for
classification tasks.

AdaBoost is an algorithm designed to enhance weak learners into strong classifiers (Y.
Freund and Schapire, 1997). It begins by training a base learner on the original training
set and subsequently adjusts the sample distribution based on the learner’s performance.
Misclassified samples receive higher weights in subsequent iterations, ensuring that later
models focus more on difficult cases. This iterative process continues until the number of
base learners reaches a predefined threshold.

Bagging is a well-established parallel ensemble learning technique based on bootstrap
sampling (Breiman, 1996a). Given a dataset of size m, multiple subsets are created
using sampling with replacement. For an ensemble with T base learners, T subsets are
generated, and each subset is used to train an individual model. The final prediction is
obtained by aggregating the outputs of all base learners, typically through majority voting
or averaging. Random Forest is one of the most widely recognized implementations of the
Bagging approach.

Bayesian Model Averaging (BMA), Bayesian Model Combination (BMC), and Stacking
represent different model integration strategies. BMA (Fraley et al., 2007) employs a weighted
averaging strategy, where the weight of each model is determined by its posterior probability.
BMC (Monteith et al., 2011) refines BMA by sampling not from individual models but from
the space of possible ensembles, leading to improved model selection. Stacking involves
training primary learners on the initial dataset and then constructing a secondary learner
using the outputs of the primary learners as input features, while maintaining the original
labels (Breiman, 1996b). Typically, logistic regression is used as the secondary learner.
Stacking is considered more robust than BMA and BMC, as it is less sensitive to model
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approximation errors.

3.3.2 Nonlinear age-adaptive ensemble model

Figure 3.2: The architecture of nl-AAE. The nl-AAE model is a nonlinear age-adaptive
ensemble that integrates GoogLeNet, ResNet, SVR, and a custom CNN to enhance brain
age estimation. It dynamically adjusts model weights based on the average predictions by its
constituent models, allowing it to adapt to age variations and capture brain aging patterns
across different age groups for improved accuracy.

Extensive experimentation revealed that the performance of all models is significantly
influenced by the true age of the samples (see Section EXPERIMENTAL RESULTS).
This finding suggests that certain models are more effective at predicting brain age in younger
individuals, while others perform better for older subjects. To enhance overall prediction
accuracy, we developed a novel Nonlinear Age-Adaptive Ensemble Model (nl-AAE). The
proposed framework is illustrated in Figure 3.2.

Initially, we employed four independent models as base learners: Support Vector
Regression (SVR), ResNet, GoogLeNet, and a custom CNN model. Each model was used to
generate brain age predictions, which were then recorded and utilized as input features for
the ensemble model.

Subsequently, we divided the dataset into multiple age-specific groups. Within each group,
a separate ensemble model was constructed, integrating the predictions from the independent
models. This approach allows for age-specific adaptation, ensuring that the most suitable
models contribute more significantly to the final prediction within each age range.

M =
∑

ωiHi (3.1)

Here, M represents the prediction output of the ensemble model for a given age group.
The termHi denotes the prediction result of the i-th independent model within this age group,
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while ωi represents the weight assigned to the i-th independent model, with the constraint
that the sum of all weights satisfies

∑
ωi = 1.

To determine the optimal weights for the independent models, we use least squares method
here. Specifically, we define a loss function within each age group, which is formulated as
follows:

J(ω) =
1

2
(Hω − Y )T (Hω − Y ) (3.2)

H is an m × n dimensional matrix, where m represents the number of samples, and n
denotes the number of independent models. The weight vector ω is an n × 1 dimensional
column vector, represented as ω = (ω1, ω2, . . . , ωn)

T , where ωi corresponds to the weight of
the i-th independent model. Similarly, Y is an m× 1 dimensional column vector, expressed
as Y = (y1, y2, . . . , yn), where yi denotes the real age of the i-th sample.

In this study, we evaluate two optimization methods for minimizing the loss function. The
gradient descent algorithm iteratively updates the weights by following the steepest descent
direction, formulated as follows:

ω = ω − αHT (Hω − Y ) (3.3)

where α represents the learning rate.
The Ordinary Least Squares (OLS) method can also be utilized to achieve this objective.

It is formulated as follows:

ω = (HTH)−1HTY (3.4)

It is important to note that both methods yield identical results in our experimental
evaluations.

For each age group, we determine a set of optimal weights for the independent models,
enabling the ensemble model to adaptively integrate the predictions from base models across
different age groups. Formally, the age-adaptive model is expressed as:

F (x) =
∑
A∈age

ωAH(x, pA) (3.5)

Here, age denotes the set of distinct age ranges, x represents the input data, ωA

corresponds to the value of ω at age A, and pA denotes the parameters of the independent
models at age A.

The process of predicting the brain age of a given sample proceeds as follows. First, each
independent model generates a brain age prediction, which is recorded as (H1, H2, . . . , Hn).
Once all predictions are obtained, we compute their mean value, denoted as Have, by
averaging all predicted ages.

Next, we determine the age group to which Have belongs. For each age group Gi ∈
(G1, G2, . . . , Gn), there exists an ensemble model Mi ∈ (M1,M2, . . . ,Mn) that adaptively
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integrates the predictions from the base models. Specifically, if Have ∈ Gi, then we select Mi

as the final ensemble model, which is then used to predict the brain age of the sample.
In summary, the ensemble weights are not fixed across the entire lifespan but are learned

separately for different age ranges in nl-AAE. Specifically, the training data are divided into
different tiny age groups, and for each group, least squares is applied to estimate the optimal
weights of the base learners. This yields a distinct weight vector ωA for every age group A,
reflecting which base models are most informative within that range.

At prediction, each base learner produces an initial prediction, and their mean value Have

is used to determine the most likely age group of the sample. The ensemble then applies
the corresponding group-specific weight vector ωA to combine the base model predictions. In
this way, the contribution of each base model adapts dynamically with age.

Figure 3.2 illustrates the estimation process of our ensemble model, and Algorithm 1
provides the pseudocode of our method.

The nl-AAE divides the dataset into age-specific groups and trains ensemble models
separately within these groups, which helps address the imbalance between younger and older
participants. This strategy is not entirely new, but an adaptation of general class imbalance
techniques, where dividing data into balanced subsets and training specialized classifiers has
been shown to improve performance on underrepresented groups (T. G. Dietterich, 2000;
Krawczyk, 2016). In our setting, the approach mitigates the overrepresentation of younger
participants by ensuring that each age bracket has a dedicated ensemble model, thereby
improving predictive robustness across the entire lifespan.

Algorithm 1 List of Pseudocode on Our Brain Age Estimation

1: Begin
2: Input brain sMRI as x
3: H1 = ResNet(x)
4: H2 = GoogLeNet(x)
5: H3 = CNN(x)
6: H4 = SV R(x)
7: Have = mean(H1 +H2 +H3 +H4)
8: for i = 1 to n do
9: if Have ∈ Gi then
10: Age-adaptive ensemble model = Mi

11: end if
12: end for
13: Final result = Age-adaptive ensemble M(x)
14: Output Final result
15: End
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3.4 Experimental Results

3.4.1 Experimental Results

Table 3.3: The Details of MAE for Each Model in 5-Fold Cross-Validation

ResNet
6-layer
CNN

GoogLe
Net

SVR MeanE
Median

E
OE

nl-AAE
-2

nl-AAE
-6

nl-AAE
-c

Min 3.87 4.02 3.75 4.84 3.46 3.59 3.40 3.28 3.21 2.98

Max 4.11 4.54 4.00 5.34 3.71 3.92 3.69 3.65 3.55 3.35

Mean 3.99 4.33 3.88 5.15 3.57 3.72 3.52 3.42 3.39 3.19

Std 0.08 0.22 0.11 0.21 0.10 0.13 0.13 0.12 0.11 0.12

The evaluation follows a 5-fold cross-validation strategy, where the final results are
reported as the mean of the Mean Absolute Error (MAE) and Spearman correlation coefficient
between the predicted and actual ages.

The changes of nl-AAE’s training loss for the last training are shown in Figure 3.3.

Figure 3.3: Changes of nl-AAE’s training loss for the last training.

The detailed MAE results for each model in the 5-fold cross-validation are presented in
Table 3.3. In the table:

• Min represents the minimum MAE.
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• Max denotes the maximum MAE.

• Mean corresponds to the average MAE across five folds.

• Std refers to the standard deviation of the MAE, which quantifies the dispersion of the
model’s results.

• OE is a single linearly approximated ensemble model applied across all age groups,
effectively testing the performance of the ensemble model without age adaptation.

• MedianE is an ensemble model applied across all age groups, which combines the
outputs of the base learners by taking the median of their predictions.

• MeanE is an ensemble model applied across all age groups, which takes the prediction
of base learners together using the mean of their predictions.

• nl-AAE-2 is a nonlinear age-adaptive ensemble model trained separately on two broad
age groups (below 40 and 40+ years) and then integrated to improve prediction
accuracy.

• nl-AAE-6 is a nonlinear age-adaptive ensemble model that divides the dataset into six
distinct age ranges (10–20, 20–30, 30–40, 40–50, 50–60, and 60–90 years) for group-
specific training and ensemble integration.

• nl-AAE-c is our continuous age-adaptive ensemble model that employs finer-grained
grouping (year-wise from 17–30, five-year intervals from 30–60, and broader bins above
60), achieving the best overall predictive performance.

Table 3.3 indicates that the 6-layer CNN exhibits the highest standard deviation (0.22),
followed by SVR with 0.21. In contrast, ResNet has the lowest standard deviation (0.08),
indicating that its predictions are more stable compared to other models. The standard
deviation values for other models are as follows: OE and MedianE (0.13), nl-AAE-2 and nl-
AAE-c (0.12), GoogLeNet and nl-AAE-6 (0.11), and MeanE (0.10). These findings suggest
that the 6-layer CNN produces the most variable predictions, while ResNet provides the most
consistent and stable predictions.

The test results are summarized in Figure 3.4 and Table 3.5. In Table 3.3, we first present
the results of four independent models: SVR, 6-layer self-built CNN, ResNet, and GoogLeNet.
The mean absolute errors (MAE) in years are 5.15, 4.33, 3.99, and 3.88, respectively, while
the Spearman correlation coefficients between predicted and actual ages are 0.83, 0.89, 0.88,
and 0.89, respectively.

Furthermore, we evaluate ensemble models by aggregating the predictions of the base
learners using median and mean-based strategies. The results indicate that the median-
based ensemble model yields a higher mean error than the mean-based ensemble model. A
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potential explanation for this outcome is that the median-based ensemble only selects a single
model’s output at a time, disregarding the contributions of other models that do not produce
the median value.

Figure 3.4: Performance of each individual model.

3.4.2 Analysis of the Nonlinear Age-Adaptive Model

Following the preliminary evaluations, we further investigate the effectiveness of the
nonlinear age-adaptive ensemble model.

Initially, we employed a single linearly approximated ensemble model applied across all
age groups, effectively testing the performance of the ensemble model without age adaptation.
Compared to naive fusion strategies, this approach resulted in a marginal performance
improvement, achieving a Mean Absolute Error (MAE) of 3.52 years and a Spearman
correlation of 0.91 (OE in Table 3.5).

In the second experiment, we divided the prediction results from the four independent
models into two age groups:

• Group 1: Samples aged 40 years and above.

• Group 2: Samples aged below 40 years.
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Table 3.5: Results of All the Models

Model
Evaluation Metrics

Average
MAE (years)

Spearman
correlation

Single
Model

SVM (Couvy-Duchesne, Faouzi,
et al., 2020)

5.15 0.83

6-layer CNN (Couvy-Duchesne,
Faouzi, et al., 2020)

4.33 0.89

ResNet (Fisch et al., 2021) 3.99 0.88

GoogLeNet (Couvy-Duchesne,
Faouzi, et al., 2020)

3.88 0.89

MedianE (Couvy-Duchesne, Faouzi,
et al., 2020)

3.72 0.90

MeanE (Couvy-Duchesne, Faouzi,
et al., 2020)

3.57 0.91

Ensemble
Method

OE (Cole and Franke, 2017) 3.52 0.91

Our nl-AAE-2 3.45 0.89

Our nl-AAE-6 3.39 0.95

Our nl-AAE-c 3.19 0.95

Other
Researchers’
Methods

Seven algorithms combined
ensemble model (Couvy-Duchesne,
Faouzi, et al., 2020)

3.33 –

Ensemble of shallow machine
learning methods (Da Costa,
Dafflon, and Pinaya, 2020)

3.75 –

Distributional Transformation
(Soch, 2020)

4.58 0.93
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We retained the same four base models (GoogLeNet, ResNet, SVR, and CNN) and, for
each age group, used their prediction outputs as input features to train a separate secondary
learner. By establishing two ensemble models for different age groups and integrating them
into a nonlinear ensemble model, we achieved a lower MAE of 3.45 years; however, the
Spearman correlation decreased to 0.89 (nl-AAE-2 in Table 3.5).

Next, we refined the division further by categorizing samples into six age groups based
on actual age:

• 10–20 years, 20–30 years, 30–40 years, 40–50 years, 50–60 years, and 60–90 years.

Using this classification, we applied the same methodology to construct the nonlinear
ensemble model (nl-AAE-6). This configuration resulted in an average MAE of 3.39 years
and an improved Spearman correlation of 0.95 (Table 3.5).

Finally, we implemented a more granular division by treating each individual age as a
separate group where possible. Due to the limited sample size, we adopted a simplified
grouping strategy:

• For samples aged 17 to 30 years, each age was treated as a separate group.

• For samples aged 30 to 60 years, we grouped every five years (e.g., 30–35, 35–40, etc.).

• For samples aged 60 to 70 years, and 70 to 90 years, data were grouped accordingly.

We refer to this finely partitioned model as the “continuous” (or year-wise) model, denoted
as nl-AAE-c in Table 3.5. This age-adaptive model yielded the best overall performance,
achieving a MAE of 3.19 years and maintaining a Spearman correlation of 0.95.

We compare our proposed model with prior research that has also been evaluated on the
PAC 2019 dataset.

(Couvy-Duchesne, Faouzi, et al., 2020) developed an ensemble model combining seven
different algorithms, achieving a Mean Absolute Error (MAE) of 3.33 years, demonstrating
strong predictive performance. Similarly, (Da Costa, Dafflon, and Pinaya, 2020) constructed
an ensemble of shallow machine learning methods, including Support Vector Regression
(SVR) and Decision Tree-based regressors, which resulted in a MAE of 3.75 years. (Soch,
2020) proposed Distributional Transformation (DT), a method that maps predicted values
to the variable’s distribution within the training data to enhance decoding accuracy. Their
approach achieved a MAE of 4.58 years and a Spearman correlation of 0.93 between predicted
and actual age.

These prior research findings provide valuable insights. Building on this foundation, we
developed the Age-Adaptive Ensemble (AAE) method, which achieves a great improvement
compared to existing models.

The brain age gap is defined as the difference between the predicted age and the
chronological age. Figure 3.5 illustrates the brain age gap as a function of chronological age

48



Chapter 3. Nonlinear Age-Adaptive Ensemble Learning 3.4. Experimental Results

Figure 3.5: The brain age gap and age as functions of the chronological age using 7 different
machine-learning methods, the horizontal black line represents 0 brain age gap.

for seven different machine learning methods. The slope of each line in Figure 3.5 quantifies
the impact of age on the model’s predictive accuracy. Notably:

• The AAE model exhibits the least sensitivity to aging effects, maintaining high
prediction accuracy across different age groups.

• Conversely, SVR demonstrates the highest sensitivity, with predictive accuracy deteri-
orating more significantly with increasing age.

From the above experiments, we derive the following key insights:

1. Deep neural networks outperform traditional SVM models in brain age prediction.

2. All ensemble models achieve lower errors compared to individual discrete models,
highlighting the advantage of model integration.

3. Age-adaptive ensemble models surpass non-adaptive ensemble models, demonstrating
the benefits of dynamic model adaptation.

4. Finer age-based divisions lead to lower prediction errors, as evidenced by the superior
performance of the nl-AAE-c model.
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3.4.3 Investigation on Age-Sensitivity per Models

Figure 3.6: Age-sensitivity of models.

Age sensitivity describes how the Mean Absolute Error (MAE) of each model varies across
different age groups. In this section, we analyze the age sensitivity of the models developed
in our study.

Figure 3.6 presents the results, indicating that all models exhibit higher predictive
accuracy for younger individuals but struggle with older populations, as evidenced by the
increasing MAE with age. Among the independent models:

• GoogLeNet and ResNet demonstrate greater age sensitivity, with a significant rise in
MAE for samples aged 20 to 30 years.

• SVR, in contrast, exhibits relatively stable performance across different age groups.

• GoogLeNet performs best for middle-aged individuals, while all models display
substantial MAE increases for samples aged 70 years and older.

The nonlinear age-adaptive ensemble model exhibits a similar age-sensitivity trend but
with greater stability compared to the independent models. However, a clear pattern emerges:
as sample age increases, MAE progressively rises, leading to deteriorating model performance.
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The worst performance is observed for individuals aged 50 to 60 years, where the MAE
exceeds 5.

From a machine learning perspective, this decline in performance can be attributed to
the limited availability of older samples, resulting in insufficient model training for those
age groups. From a medical standpoint, we hypothesize that as individuals age, the
variability in brain structures across different individuals increases, making age prediction
more challenging. In contrast, younger individuals exhibit less variability, leading to higher
predictive accuracy.

3.4.4 Learning the Model Weights

Figure 3.7: Individual models’ weights changing in nl-AAE-c.

3.4.5 Analysis of Model Weights in the nl-AAE Framework

Figure 3.7 illustrates the variation in the weights assigned to each independent model within
the nl-AAE across different age groups. This analysis provides insights into the relative
importance of each model in contributing to the ensemble’s predictions at different ages.

The SVR model maintains relatively consistent weights for samples aged 25 to 70
years. However, for younger individuals aged 10 to 25 years, SVR demonstrates poor
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predictive performance, suggesting that SVR is not well-suited for age estimation in younger
populations.

The CNN model plays a crucial role in predictions for individuals aged 20 to 50 years. It
receives higher weights when predicting younger samples, but its contribution to the ensemble
diminishes for older individuals, indicating its limited effectiveness in elderly age groups.

The GoogLeNet model becomes increasingly important in the elderly age groups. While
its influence remains moderate for individuals aged 20 to 40 years, its predictions significantly
impact the ensemble results in older age groups, particularly for middle-aged individuals.
This suggests that GoogLeNet is highly effective for middle-aged and elderly populations.

The ResNet model maintains high weights for samples aged 10 to 35 years, highlighting
its strong suitability for younger age groups. In contrast, its contribution decreases for
middle-aged and elderly individuals (35–70 years), where it exhibits average performance.
However, for individuals over 70 years old, ResNet demonstrates notably strong performance,
suggesting that it is particularly well-suited for age estimation in elderly populations.

This weight analysis underscores the importance of an age-adaptive ensemble framework,
as different models excel in different age ranges. Leveraging this diversity allows the nl-AAE
model to enhance overall prediction accuracy across the lifespan.

3.5 Discussion

Our research provides several important medical insights regarding brain aging and neurode-
generation.

We observed that the performance of constituent models declines with increasing age,
suggesting that younger individuals exhibit greater structural similarity in brain anatomy.
Additionally, as age increases, the risk of neurodegenerative diseases also rises, leading to
greater variability in brain structure and a corresponding decline in prediction accuracy.
However, these findings may be influenced by biological factors, sample size limitations,
or model constraints, and future studies should explore more robust validation methods to
substantiate these observations.

Based on our experimental results, we propose that brain aging progresses through four
distinct stages:

• 0–30 years: Significant neurodevelopmental changes occur, shaping cognitive function.

• 30–50 years: Brain structure remains relatively stable, with minor functional decline.

• 50–70 years: Noticeable cognitive decline and increased susceptibility to neurodegener-
ation.

• 70–80 years: The brain undergoes substantial atrophy and functional deterioration.
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These transitions are determined by changes in model prediction performance, as shown in
Figure 3.5.

Research findings support this classification. Studies presented at the Academy of Medical
Sciences (Oxford, UK) indicate that brain maturation continues into the 30s, aligning with
our findings that cognitive capacity peaks before this age. After 30 years, working memory
capacity begins to decline (Guo et al., 2016). Between 30 and 50 years, brain structure
remains relatively stable, but after 50 years, a significant decline becomes evident. A study
published in the British Medical Journal (BMJ) (Grodstein, 2012) found that cognitive
reasoning skills declined by 3.6% over 10 years among individuals initially tested at ages
45–49. Additionally, research by Peter Jones (Guo et al., 2016) indicates that overall brain
volume begins to shrink in the 30s or 40s, with the rate of shrinkage accelerating between
ages 60–70, a finding corroborated by our experimental results.

Given the sensitivity of brain age prediction models to neural changes, we believe that
our approach can serve as a valuable tool for monitoring the efficacy of medical treatments
targeting neurodegenerative disorders and aging-related conditions. Future applications may
include:

• Evaluating the effectiveness of pharmaceutical interventions in clinical trials.

• Assessing the impact of lifestyle modifications on brain health.

• Supporting early diagnosis and progression tracking of neurodegenerative diseases.

Compared to our nl-AAE, traditional ensemble strategies such as stacking combine
multiple base learners but assign fixed or globally optimized weights across the entire dataset.
In stacking, a meta-learner is trained on the predictions of base models, and the learned
weights are applied uniformly to all test samples regardless of their age distribution.

By contrast, the proposed nl-AAE framework introduces an age-adaptive mechanism that
learns separate weight vectors for different age ranges. During inference, the ensemble selects
the appropriate set of weights according to the estimated age group of the input, allowing
the contribution of each base model to vary dynamically across the lifespan. This design is
particularly important for brain age estimation, where model performance is known to vary
substantially between younger and older cohorts. As a result, nl-AAE not only outperforms
conventional stacking in overall accuracy, but also reduces age-related biases by tailoring
model integration to the structural characteristics of each age group.

While nl-AAE demonstrates strong predictive accuracy in research settings, several
limitations constrain its direct application to real-time clinical diagnosis. First, the framework
integrates multiple deep networks and a classical model, which increases computational
cost and inference time compared to single-model solutions. Second, the method relies on
extensive preprocessing pipelines, such as nonlinear registration, tissue segmentation, and
surface-based feature extraction, many of which are intensive and not practical in real clinical
workflows.
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In our study, model performance was primarily evaluated using widely adopted metrics
in the brain age estimation literature, including mean absolute error (MAE) and Pearson
correlation. These measures allow direct comparison with prior work, ensuring consistency
and reproducibility across studies. However, we acknowledge that statistical significance
testing of performance differences (e.g., paired hypothesis testing between models) would
provide a stronger validation of the observed improvements. Incorporating such analyses
represents an important direction for future work, as it would allow us to confirm whether
the differences between models are not only numerically but also statistically meaningful.

3.6 Conclusion

In this chapter, we proposed the nl-AAE framework for brain age estimation. By integrating
CNN, GoogLeNet, ResNet, and SVR within a nonlinear, age-adaptive ensemble, the model
dynamically adjusts the contribution of its constituent learners according to the age of the
subject. This design enables nl-AAE to capture age-specific structural patterns and to
mitigate performance degradation caused by the imbalanced age distribution in the dataset.
Experimental results on the PAC 2019 dataset demonstrate that nl-AAE achieves superior
predictive accuracy compared with both individual base models and conventional ensemble
methods, while offering more stable performance across age groups.

Despite these advantages, nl-AAE has limitations for real-world application. First,
the framework integrates multiple deep networks and a classical model, which increases
computational cost and inference time compared with single-model solutions. Second, the
method relies on extensive preprocessing pipelines, many of which are computationally
intensive and less practical for deployment in real clinical workflows.

Future work may focus on incorporating more advanced deep learning architectures as
base models. For instance, while our current design employed Inception V1, more recent
variants could further enhance predictive performance. In addition, extending the ensemble to
multimodal inputs or harmonizing pipelines to reduce preprocessing demands could improve
both generalizability and clinical feasibility.

Having established nl-AAE as a high-accuracy ensemble approach, the next chapter
introduces the Explainable Triamese ViT framework. Unlike nl-AAE, Triamese-ViT is
specifically designed with built-in interpretability and a tri-view model structure, enabling
not only accurate brain age estimation but also direct analysis of the normal aging and ASD.
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Explainable Triamese ViT

4.1 Introduction

Brain age, estimated from neuroimaging data, has emerged as a powerful biomarker for
quantifying brain health and predicting the onset of various pathologies. While deep learning
models, particularly those based on CNNs, have demonstrated considerable success in this
domain, their clinical translation is often hampered by significant challenges: the inherent
black box nature of their decision-making processes. The lack of clear interpretability limits
the trust and utility of these models in clinical settings, where understanding why a prediction
is made is as crucial as the prediction itself.

In contrast, ViTs offer a compelling alternative by segmenting images into patches and
employing self-attention mechanisms to capture intricate spatial relationships across these
patches (Dosovitskiy et al., 2020). This approach enhances feature extraction capabilities and
provides interpretability through attention maps, which highlight the regions most influential
in the model’s decision-making process (Khan et al., 2022). Previous ViTs are primarily
designed for 2D images (Tanveer et al., 2023; Al-Hammuri et al., 2023; He, Grant, and Ou,
2021), they may not fully exploit the three-dimensional nature of MRI data, potentially
leading to the loss of crucial depth-related information in brain age prediction.

As for 3D ViT, Pantelaios et al. (2024) combines a 3D CNN with a ViT. The architecture
uses a dual-branch system: the CNN branch is designed to capture local, fine-grained features
and spatial hierarchies from the MRI scans, while the ViT branch is used to model long-range
dependencies and global contextual relationships across the entire brain volume. The features
extracted from both branches are then fused to make a final, integrated prediction of brain
age. Their results prove that this architecture was effective at predicting age in individual
brain lobes.

The Swin Transformer (J. Kim, M. Kim, and Park, 2024) is an advanced hierarchical
Vision Transformer, was adapted for 3D medical imaging. Unlike the standard ViT which
has high computational complexity with high-resolution images, the Swin Transformer uses
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a shifted window mechanism for self-attention. This allows it to compute self-attention
locally within non-overlapping windows that are shifted between layers, capturing features
at various scales more efficiently. Their pre-trained model outperformed existing supervised
and self-supervised methods on several tasks, including brain age prediction, Alzheimer’s
classification, and Parkinson’s classification.

Model interpretability is a critical aspect of brain age estimation, as it enables
the identification of key brain regions associated with aging, thereby facilitating both
neuroscientific research and clinical diagnosis. Explainability in machine learning models
generally falls into two categories: post-hoc explainability and inherently interpretable
models. Post-hoc methods aim to provide explanations for black-box model predictions,
either at an individual-instance level or globally across datasets, with feature attribution
being the most commonly used technique. These approaches assess feature importance using
perturbation-based methods (Ribeiro, Singh, and Guestrin, 2016a; Lundberg, 2017) or input
gradients (Srinivas and Fleuret, 2019; Selvaraju et al., 2017). Despite their widespread use
in computer vision, perturbation-based methods often produce unreliable attributions due
to their underlying assumptions regarding feature removal (Bhalla, Srinivas, and Lakkaraju,
2024).

Conversely, inherently interpretable models are designed to be transparent in their
structure or parameterization, offering a more direct and accurate understanding of their
decision-making process compared to post-hoc techniques. Examples of such models include
linear regression, decision trees, generalized linear models (GLMs), generalized additive
models (GAMs)(Hastie, 2017), joint additive models (JAMs)(J. Chen et al., 2018), prototype-
and concept-based models (C. Chen et al., 2019), and weight-input aligned models (Böhle,
Fritz, and Schiele, 2022). However, while these models provide superior interpretability,
they often exhibit lower predictive performance compared to deep learning-based black-box
models, creating a trade-off between transparency and accuracy.

To address these limitations, this chapter introduces a novel architecture, the Explainable
Triamese ViT, designed for accurate and interpretable brain age estimation. Moving beyond
conventional 3D networks, Triamese-ViT leverages the power of ViTs by decomposing 3D
MRI scans into three orthogonal 2D views. This approach not only mitigates the prohibitive
computational cost associated with volumetric analysis but also captures a rich, multi-faceted
representation of brain anatomy. By integrating features from these distinct perspectives,
the model develops a comprehensive understanding of complex brain structures, enhancing
predictive performance.

A key innovation of this work lies in the model’s inherent explainability. The attention
mechanisms from the Transformer architecture are harnessed to generate detailed, 3D-like
attention maps, offering unprecedented insight into the specific brain regions that drive age
prediction. This chapter details the systematic evaluation of Triamese-ViT, demonstrating
its superior accuracy and fairness compared to a suite of state-of-the-art algorithms.
Furthermore, it validates the model’s interpretability through occlusion sensitivity analyses.
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Finally, the clinical utility of Triamese-ViT is explored through two primary applications.
First, the model is employed to map the neuroanatomical changes associated with the normal
aging process across the human lifespan. Second, it is applied to a cohort of individuals
with Autism Spectrum Disorder (ASD) to identify the key neural signatures associated with
the condition. These analyses are further stratified by gender to investigate sex-specific
differences in both healthy aging and ASD pathology, underscoring the model’s potential as
a versatile tool for advancing neuroimaging research.

4.2 Method

4.2.1 Data and Code Availability

In this study, we utilized MRI scans from the IXI1 and ABIDE2 datasets. Specifically, we
compiled a dataset of healthy individuals to train the model and examine normal brain aging,
as well as a dataset of individuals with Autism Spectrum Disorder (ASD) to identify key brain
regions associated with ASD detection. All MRI scans were T1-weighted.

The dataset of healthy participants comprises 1351 scans from individuals aged 6 to 80
years, with a mean age of 30.5 years and a standard deviation of 19.95 years. This cohort
includes 872 males and 479 females. Given that previous studies have suggested that gender
does not have a significant impact on brain age estimation (Couvy-Duchesne, Faouzi, et al.,
2020), gender-specific analyses were not conducted in this study.

The age distribution across different subgroups within the healthy population is presented
in Table 4.1.

Age 0s 10s 20s 30s 40s 50s 60s 70s
Samples 142 420 257 138 112 104 120 58

Table 4.1: Healthy participants’ dataset age distribution.

For the healthy cohort, the dataset was stratified into eight age groups: 0s, 10s, 20s, 30s,
40s, 50s, 60s, and 70s. Within each age group, 70% of the samples were assigned to the
training set, 15% to the validation set, and 15% to the test set, ensuring a balanced and
representative distribution across all subsets.

For the ASD cohort, the dataset comprises 280 samples, with participants ranging in age
from 6 to 62 years (mean = 18.8 years, standard deviation = 13.78 years). The detailed age
distribution is provided in Table 4.2. For these two datasets, we didn’t stratify them by age
groups when training like nl-AAE.

1https://brain-development.org/ixi-dataset/
2https://fcon_1000.projects.nitrc.org/indi/abide/
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It is important to note that the ASD dataset in this study was not used for model training
or validation but exclusively for interpretability analysis with the pretrained Triamese-ViT
model. Consequently, stratification was not required.

Age 0s 10s 20s 30s 40s 50s 60s
Samples 82 112 48 6 12 18 2

Table 4.2: ASD participants’ dataset age distribution.

To ensure compatibility and mitigate the potential impact of protocol variability
across different datasets, we applied a standardized preprocessing pipeline using FSL
5.10 (Jenkinson et al., 2012), a comprehensive library of analysis tools for FMRI, MRI,
and DTI brain imaging data. This preprocessing procedure consisted of several steps: brain
extraction (Smith, 2002), bias field correction, nonlinear registration to the MNI standard
space, and voxel-wise intensity normalization within the brain region by subtracting the mean
and dividing by the standard deviation. Additionally, ComBat statistical harmonization was
employed to adjust for scanner- and site-specific effects while preserving biological variability.

Following preprocessing, all MRI scans were resampled to a voxel resolution of 91×109×91
with an isotropic spatial resolution of 2 mm.

To assess the effectiveness of harmonization, we visualized the voxel intensity distributions
from two different imaging sites in our dataset—Trinity College Dublin and Georgetown
University—before and after applying ComBat harmonization (Figure 4.1).

Prior to harmonization, substantial differences in intensity distributions were observed
between datasets, reflecting scanner- and site-specific variability. However, after applying
ComBat harmonization, the intensity distributions became well-aligned, indicating that
the method successfully mitigates unwanted scanner-induced variability while preserving
biologically relevant variations. These results highlight the effectiveness of ComBat in
standardizing multi-site neuroimaging data, ensuring greater consistency across datasets.

The code used in this study has been made publicly available on GitHub3.

4.2.2 Proposed Triamese-ViT

In this section, we present our novel architecture named Triamese-ViT. Our approach is
inspired by (R. Jiang, Ho, et al., 2017), which highlights that different views of a 3D
image contain unique and independent information that can be leveraged in machine learning
models. As illustrated in Figure 4.2, the structure of Triamese-ViT is based on the Vision
Transformer (ViT) (Dosovitskiy et al., 2020). Triamese-ViT processes 3D MRIs, denoted
as M ∈ RH×W×C , where H, W, and C represent the height, width, and the slice number,
respectively. The MRI M is then reshaped into three distinct viewpoints, represented as

3https://github.com/zhangz59/Triamese-ViT
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Figure 4.1: The effect of harmonization, we visualized the voxel intensity distributions
from two different sites within our dataset—Trinity College Dublin and Georgetown
University—before and after applying ComBat harmonization.
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Figure 4.2: The architecture of Triamese-ViT. This model processes brain MRI images from
three distinct perspectives utilizing the Vision Transformer (ViT) to extract unique features.
These features are then integrated within a Tri Multi-Layer Perceptron (MLP) framework to
generate age predictions. And built-in interpretability function generates 3D-like images to
explain different brain regions influence during prediction.

M → (Mx,My,Mz), with Mx ∈ RH×W (C channels), My ∈ RH×C (W channels), and Mz ∈
RW×C (H channels).

Focusing initially on Mx, the MRI is divided into a sequence of flattened 2D squares,
denoted as Mx,s ∈ RN×(S2·C), where the side length of the square is S, and the number of
squares is N = H×W

S2 .
In the transformer encoder layers, the vectors processed are of dimension D. Thus, Mx

needs to be mapped to D dimensions using a trainable linear projection. The process is
formulated as follows:

tx,0 = Concat(Mx,class;M
1
x,sE;M2

x,sE; . . . ;MN
x,sE) + Epos (4.1)

In Equation 4.1, Mx,class is a learnable token (or class token) added to ViT, akin to the
method used in Devlin et al., 2018. This class token, Mx,class, is eventually output from the
Transformer Encoder as t0x,L, representing the image representation P (Equation 4.7). Here,

E ∈ R(S2·C)×D is the linear projection matrix, Concat denotes token concatenation, and
Epos ∈ R(N+1)×D is the positional encoding added to each token embedding. tx,0 represents
the input sequence to the 0-th (first) Transformer encoder layer. The same preprocessing
steps are applied to My and Mz, resulting in ty,0 and tz,0.

The transformed matrices tx,0, ty,0, and tz,0 ∈ R(N+1)×D are fed into the transformer
encoder. Each encoder consists of multiple layers, where each layer sequentially processes
the input through Layer Normalization (LN), Multi-Head Attention (MSA), another
Layer Normalization, and a Multi-Layer Perceptron (MLP). The MSA performs parallel
attention calculations across multiple heads, allowing for diverse representation and richer
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understanding of the input data.

[Q,K, V ] = FC(tx,0) (4.2)

Here, Q ∈ R(N+1)×d, K ∈ R(N+1)×d, and V ∈ R(N+1)×d represent the Query, Key, and
Value matrices, respectively. Assuming the MSA has n heads and D = n × d, each head
independently processes the input:

headi = softmax

(
QiK

T
i√
d

)
Vi (4.3)

MSA(zx,0) = Concat(head1, head2, . . . , headn) (4.4)

Let tx,0 be the input to the first layer of the Transformer Encoder. The feedforward
calculations in the encoder are given by:

t
′

x,l = MSA(LN(tx,l−1)) + tx,l−1 (4.5)

tx,l = MLP(LN(t
′

x,l)) + t
′

x,l (4.6)

where l ∈ [1, 2, . . . , L]. The outputs from each Transformer Encoder are then passed to an
MLP head, consisting of a hidden layer and an output layer, to generate the final prediction
for each view. The prediction from the first view, Mx, is denoted as Px. By applying the
same procedure to My and Mz, we obtain two additional predictions, Py and Pz.

In the final stage, these three view-based predictions (Px, Py, and Pz) are fed into the MLP,
which integrates the information from all three views to produce the final comprehensive
prediction:

PTri = MLP(Px, Py, Pz) (4.7)

Here, PTri denotes the final prediction.
The pseudocode of Triamese-ViT is shown in Algorithm 2.
The decision to adopt an axis-wise Vision Transformer (ViT) instead of a full 3D ViT for

brain age estimation is motivated by several key advantages:

• Lower Computational Cost: Triamese-ViT avoids the high computational burden of
processing entire 3D volumes by decomposing them into three orthogonal 2D views.
This approach significantly reduces computational complexity, as each view is treated
as a 2D input to a standard ViT, which scales linearly with input size. Consequently,
Triamese-ViT enables faster training and requires substantially less GPU memory
compared to full 3D ViTs, making it more suitable for large-scale 3D medical imaging
datasets.
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Algorithm 2 Tri-View Transformer-based Prediction Algorithm

1: Input: 3D image I
2: Output: Predicted result y
3: Extract views Ix, Iy, Iz from I

▷ Process viewpoint Ix
4: Flatten Ix into 2D slices {x1, x2, . . . , xn}
5: Map each xi into patch embeddings {px1 , px2 , . . . , pxn}

▷ Repeat the same process for Iy and Iz
6: Flatten Iy into 2D slices {y1, y2, . . . , yn}
7: Map each yi into patch embeddings {py1, p

y
2, . . . , p

y
n}

8: Flatten Iz into 2D slices {z1, z2, . . . , zn}
9: Map each zi into patch embeddings {pz1, pz2, . . . , pzn}

▷ Feed the processed matrices into the Transformer Encoder
10: for all view v in {x, y, z} do
11: for i = 1 to L do
12: for all patch embedding pvi do
13: pvi ← MultiHeadSelfAttention(pvi )
14: pvi ← FeedForward(pvi )
15: end for
16: end for
17: end for

▷ Integrate the predictions from all three views
18: Concatenate final outputs {ox, oy, oz}
19: Predict y using MLP on concatenated output
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• Model Simplicity and Implementation: By leveraging the well-established 2D Vision
Transformer framework, Triamese-ViT maintains a straightforward implementation
that requires minimal adaptation. This simplifies model design, debugging, and
fine-tuning while enabling the integration of pre-trained weights and existing tools
developed for 2D ViTs. In contrast, 3D ViTs necessitate extensive architectural
modifications, including 3D tokenization and positional encoding, which introduce
additional computational and technical complexities.

• Higher Predictive Accuracy: Empirical evaluations indicate that Triamese-ViT out-
performs 3D ViTs in predictive accuracy. This improvement arises from its ability to
integrate multiple 2D views, effectively capturing diverse and complementary spatial
features from different anatomical perspectives. By enhancing spatial representation
learning, Triamese-ViT improves the robustness and precision of brain age estimation.

Compared to other multi-view or pseudo-3D ViT architectures, our proposed Triamese-
ViT differs in several important aspects. First, existing multi-view ViT methods typically
extract 2D slices or patches and perform feature fusion at the slice level, which may overlook
complementary spatial information across orientations. In contrast, Triamese-ViT processes
three orthogonal views of the entire 3D brain volume (Mx,My,Mz) through independent ViT
branches, ensuring that global and orientation-specific features are preserved.

Secondly, unlike most existing architectures, Triamese-ViT incorporates a built-in
interpretability mechanism: attention maps generated from each view can be directly
integrated into 3D-like maps, providing biologically meaningful explanations. This makes
Triamese-ViT not only accurate and efficient but also inherently interpretable, which is
critical for brain age estimation and related neuroimaging applications.

4.3 Results

4.3.1 Comparison With State-of-the-Art Algorithms for Brain
Age Estimation

The changes of Triamese-ViT’s training loss are shown in Figure 4.3.
We employed Triamese-ViT to estimate brain age using MRI scans from a cohort of 1,351

healthy individuals aged 6 to 80 years. The dataset was partitioned into 70% for training, 15%
for validation, and 15% for testing, ensuring a rigorous evaluation of the model’s performance.

Model performance was assessed using four key metrics: Mean Absolute Error (MAE), the
Spearman correlation coefficient between predicted and chronological age (r), the absolute
value of the Spearman correlation coefficient between chronological age and the Brain
Age Gap (BAG) (|rp|), and the coefficient of determination (R2). The MAE, r, and R2

evaluate the model’s predictive accuracy and the degree of correlation between predicted and
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Figure 4.3: Changes of Triamese-ViT’s training loss.

chronological ages, whereas |rp| quantifies potential age bias, with a higher |rp| indicating
greater bias.

To validate the effectiveness of Triamese-ViT, we compared its performance against
state-of-the-art algorithms for brain age estimation. Table 4.3 provides a comprehensive
comparison of the Triamese-ViT model with ten other models, encompassing both classical
and state-of-the-art (SOTA) approaches in brain age estimation. The comparison includes
four established 3D CNN-based models: a 5-layer CNN, ResNet, VGG16, and VGG19.
Additionally, our model was benchmarked against six other SOTA methodologies:

• The Two-Stage-Age-Network, which employs a two-stage cascade architecture where
the first-stage network estimates a preliminary brain age, and the second-stage network
refines this estimate based on the discretized output of the first-stage network.

• The Global-Local Transformer, which utilizes 2D brain slices for age prediction.

• EfficientNet, recognized for its ensemble architecture.

• The Multiple Instance Neuroimage Transformer, a 3D ViT model.

• ITSVR, an improved twin support vector regression method.

• 3D-TDR, a tensor-distribution-regression model built upon 3D convolutional neural
networks.
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Algorithm MAE r |rp| R2 Memory
Training
Time

ResNet (Cole and Franke, 2017) 4.11 0.84 0.33 0.70 958 MB 3978s
VGG19 (T.-W. Huang et al., 2017) 4.09 0.7 0.49 0.68 2.27 GB 6889s
VGG16 (T.-W. Huang et al., 2017) 5.32 0.6 0.41 0.64 2.18 GB 6453s
5-layer CNN (Couvy-Duchesne, Faouzi,
et al., 2020)

4.55 0.79 0.47 0.71 2.46 MB 1232s

Global-Local Transformer (He, Grant,
and Ou, 2021)

4.68 0.77 0.32 0.73 617 MB 3014s

Two-Stage-Age-Network (Cheng et al.,
2021)

3.93 0.91 0.38 0.81 1.52 GB 5162s

Efficient Net (Poloni, Ferrari,
Alzheimer’s Disease Neuroimaging
Initiative, et al., 2022)

4.55 0.88 0.4 0.77 72 MB 1296s

Multiple Instance Neuroimage Trans-
former (Singla et al., 2022)

3.90 0.9 0.36 0.77 4.62 GB 10750s

ITSVR (Ganaie, Tanveer, and Be-
heshti, 2024)

4.21 0.75 0.35 0.71 3.57 GB 7741s

3D-TDR (L. Chen and Luo, 2023) 3.97 0.85 0.42 0.80 2.15 GB 6026s
Our Triamese-ViT 3.85 0.94 0.3 0.81 3.99 GB 8596s

Table 4.3: The details of tested algorithms’ performance. Since the input of Global-Local
Transformer should be a 2D image, we extract 2D slices around the center of the 3D brain
volumes in the axial as input, which is the same process method as (He, Grant, and Ou,
2021). Other algorithms’ input are 3D MRIs with dimensions (91,109,91). Our Triamese-ViT
has consistently achieved the best among all measures.

As shown in Table 4.3, the Triamese-ViT model achieves the best performance in terms of
Mean Absolute Error (MAE), recording a value of 3.85. The Multiple Instance Neuroimage
Transformer follows closely with an MAE of 3.90, while the Two-Stage-Age-Network reports
an MAE of 3.93. In contrast, the highest MAE, indicating the lowest accuracy, is observed
in VGG16 at 5.32.

Regarding the Spearman correlation between predicted and chronological ages (r), the
Triamese-ViT model outperforms all competitors, achieving a correlation coefficient of 0.94.
The Two-Stage-Age-Network follows with a correlation of 0.91, and the Multiple Instance
Neuroimage Transformer reports a correlation of 0.90. VGG16 demonstrates the weakest
performance, with a correlation of only 0.60.

In terms of the absolute value of the Spearman correlation between the Brain Age Gap
(BAG) and chronological age (|rp|), which quantifies the model’s fairness, the Triamese-ViT
model achieves the most favorable outcome with a correlation of -0.3, indicating reduced age
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bias. Conversely, VGG19 exhibits significant age bias with a correlation of 0.49. ResNet and
the Global-Local Transformer also demonstrate lower age bias, with correlations of 0.33 and
0.32, respectively.

For the coefficient of determination (R2) between predicted and chronological ages, both
the Triamese-ViT and the Two-Stage-Age-Network exhibit strong performance, achieving
R2 = 0.81, followed by 3D-TDR with R2 = 0.80. EfficientNet and the Multiple Instance
Neuroimage Transformer also perform well, each achieving R2 = 0.77. In contrast, VGG16
demonstrates the lowest performance with R2 = 0.64.

In terms of memory consumption, the 5-layer CNN exhibits the lowest memory
requirement, utilizing only 2.46 MB due to its lightweight architecture. EfficientNet
follows, requiring 72 MB, as it operates on only a single MRI slice, significantly reducing
computational demands.

In contrast, the 3D ViT has the highest memory requirement, consuming 4.62 GB due to
the complexity of processing full 3D volumes. While Triamese-ViT also requires a substantial
memory allocation of 3.99 GB, its consumption remains notably lower than that of the 3D
ViT, making it a more resource-efficient alternative for large-scale brain age estimation.

To provide a fair comparison of computational efficiency, we report the training times
of all baseline models under identical experimental settings. All models were trained for
200 epochs on the same hardware environment consisting of three NVIDIA Tesla V100
GPUs. Under these settings, the lightweight 5-layer CNN required the shortest training
time (approximately 1232 seconds), followed by EfficientNet (1296 seconds) due to its single-
slice 2D input. The Global-Local Transformer and ResNet exhibited moderate training times
of 3014 seconds and 3978 seconds, respectively, reflecting their balance of convolutional and
attention-based operations. VGG16 and VGG19 were more computationally demanding,
with training times of 6453 seconds and 6889 seconds, respectively. Two-Stage-Age-Network
and 3D-TDR also required substantial resources, taking 5162 seconds and 6026 seconds.
ITSVR showed relatively higher computational cost (7741 seconds) due to its large memory
footprint. The Multiple Instance Neuroimage Transformer was the most computationally
expensive baseline, requiring 10750 seconds. By comparison, our proposed Triamese-ViT
achieved a measured training time of 8,596 seconds, which, although longer than standard
3D CNNs, is significantly lower than that of a full 3D ViT.

This comparative analysis highlights the superior performance of the Triamese-ViT model
in brain age estimation, emphasizing its advantages in both accuracy and fairness over other
leading models in the field.

4.3.2 Ablation Study

In this part of our study, we perform ablation experiments to investigate and justify the
architectural design choices of Triamese-ViT. Specifically, we examine the impact of the
number of layers in the Tri-MLP module. Keeping all other parameters constant, we
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systematically vary the number of MLP layers and assess their effect on model performance.
The results, illustrated in Figure 4.4, reveal a distinct trend in Mean Absolute Error

(MAE) as a function of the number of MLP layers in Triamese-ViT. Initially, as the number
of layers increases from 4 to 6, the MAE rises, followed by a decline after 6 layers, reaching its
minimum at 9 layers. Beyond this point, the MAE increases again at 10 layers. This pattern
suggests that an optimal number of MLP layers exists to balance model complexity and
predictive accuracy. The observed fluctuations in MAE across different layer configurations
highlight the intricate interplay between model depth and performance, underscoring the
necessity for precise architectural tuning.

Figure 4.4: The impact of the number of MLP layers in Triamese-ViT.

Next, we examined the backbone architecture of Triamese-ViT. To assess the impact
of different backbone models, we replaced the original ViT with alternative architectures,
including ResNet, a 5-layer CNN, and VGG19. These models were integrated with the Tri-
MLP to evaluate their influence on overall performance. The results of this experiment are
presented in Table 4.5.

Our findings indicate that the original ViT backbone is the most effective for the Triamese
framework. The 5-layer CNN also demonstrates considerable adaptability, achieving an MAE
of 4.00, a Spearman correlation coefficient (r) of 0.85, ∥rp∥ of 0.45, and an R2 value of 0.72.
In contrast, ResNet and VGG19 exhibit significantly poorer performance within the Triamese
structure, both yielding MAEs exceeding 10—suboptimal results for brain age estimation.
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These findings underscore the importance of selecting an appropriate backbone model to
optimize the performance of the Triamese framework.

We further explored alternative fusion strategies for integrating the outputs from the three
ViT branches in our Triamese-ViT model. Specifically, we compared our original MLP-based
fusion layer against two alternative fusion mechanisms: convolutional attention (utilizing the
Convolutional Block Attention Module—CBAM) and self-attention. In all cases, a four-layer
MLP was applied after the fusion step to generate the final predictions.

Our experimental results indicate that the CBAM-based fusion strategy achieved
promising performance, yielding a Mean Absolute Error (MAE) of 4.23, a Pearson correlation
coefficient (r) of 0.81, a ∥rp∥ of 0.35, and an R2 of 0.78, suggesting good accuracy and fairness.
In contrast, the self-attention fusion approach demonstrated inferior performance, with an
MAE of 6.57, r of 0.52, ∥rp∥ of 0.41, and an R2 of 0.64.

Despite the insights gained from these comparative analyses, both alternative fusion
methods underperformed relative to our original MLP-based fusion layer in Triamese-ViT.
These results substantiate our methodological choice of MLP-based fusion, reinforcing its
robustness and effectiveness in multi-view brain age estimation.

We then investigated the contribution of individual components within Triamese-ViT,
specifically analyzing the performance of each of the three Vision Transformers (ViTs)
aligned along different MRI axes. These are defined as V iTx (dimensions: 91 × 109 × 91),
V iTy (dimensions: 91 × 91 × 109), and V iTz (dimensions: 109 × 91 × 91). Evaluating the
predictive performance of these orientation-specific ViTs provides insight into the efficacy of
the combined Triamese-MLP structure.

Additionally, we introduced and tested a variant model, Triamesemap, which, like
Triamese-ViT, utilizes three ViTs processing different viewpoints. However, unlike the
standard Triamese-ViT, each ViT in Triamesemap outputs a feature map from the
Transformer Encoder rather than directly producing a prediction from the MLP Head. The
Triamese MLP in this variant model then concatenates the feature maps from the three ViTs
and generates the final prediction.

A comparative performance analysis of these models—including each individual orientation-
specific ViT and the Triamesemap variant—is detailed in Table 4.5. The results suggest
that the integration of the Triamese MLP substantially enhances performance. Among the
individual ViTs, V iTx achieves the second-best MAE of 4.42, while V iTz exhibits the highest
MAE of 5.29, indicating the weakest performance. In terms of Spearman correlation (r), V iTy

attains the highest value of 0.92, closely followed by the full Triamese-ViT model. Notably,
Triamesemap reports the lowest correlation value of 0.61, suggesting a weaker relationship
between predicted and chronological age.

Regarding model fairness, as measured by the absolute value of the Spearman correlation
between the Brain Age Gap (BAG) and chronological age (|rp|), Triamesemap exhibits the
lowest correlation, indicating a substantial reduction in age bias. For R2, V iTy achieves the
highest value of 0.79, whereas Triamesemap records the lowest performance with an R2 of

68



Chapter 4. Explainable Triamese ViT 4.3. Results

0.65.
When we divided sMRI into a sequence of flattened 2D squares, we set the side length of

the square S as 7 in our model, since after experiments, we found a smaller patch size would
increase sensitivity but lead to overly detailed attention maps, and a larger patch size would
encompass too many regions within a single patch, reducing the granularity of the attention
maps and potentially obscuring meaningful brain structure information.

All ablation experiments were conducted under identical computational settings to ensure
fair comparison. Specifically, all models were trained for 200 epochs on three NVIDIA V100
GPUs. The training times of the ablation variants were shown in Table 4.5.

Overall, the results presented in Table 4.5 provide strong evidence supporting the
effectiveness of the Triamese-ViT model in improving both accuracy and fairness in brain
age estimation, thereby validating its design.

Algorithm MAE r |rp| R2 Training
Time

VGG-Backbone 10.31 0.30 0.31 0.29 6921s

ResNet-Backbone 10.36 0.45 0.25 0.37 5372s

CNN-Backbone 4 0.85 0.45 0.72 4469s

CBAM-fusion layer 4.23 0.81 0.35 0.78 9458s

self-attention-fusion layer 6.57 0.52 0.41 0.64 10564s

V iTx 4.42 0.78 0.33 0.71 3172s

V iTy 4.99 0.92 0.29 0.79 2988s

V iTz 5.29 0.73 0.37 0.7 3070s

V iTmap 5.04 0.61 0.55 0.65 9153s

Our Triamese-ViT 3.85 0.94 0.3 0.81 8596s

Table 4.5: The details of the backbone-changed, fusion-layer changed models and unique
structures. V iTx, V iTy, and V iTz are focusing on the individual contributions of the three
Vision Transformers (ViTs) oriented along different axes of the MRIs in Triamese-ViT.
V iTmap also utilizes three ViTs on different viewpoints but each ViT in Triamesemap outputs
a feature map from the Transformer Encoder, rather than a direct prediction from the MLP
Head. Then the MLP in this variant takes as input the concatenated feature maps from the
three ViTs to make the final prediction.
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Figure 4.5: Illustration of the framework for occlusion analysis. In this work, occlusion
analysis systematically obscures regions in brain MRI images using a 7×7×7 voxel mask to
assess their impact on model predictions. By measuring changes in Mean Absolute Error
(MAE) as the mask moves across the brain, a saliency map is generated, highlighting critical
regions for age estimation. This image is adapted from J. Lee et al. (2022).

4.3.3 Explainable Results for Brain Age Estimation

Deep learning models often function as black boxes, where complex architectures and
numerous parameters obscure the decision-making process. In this section, we aim to
elucidate the predictive strategy of the Triamese-ViT model and enhance its interpretability
using two distinct methods.

The first approach leverages 3D-like attention maps generated by Triamese-ViT, a built-
in feature of the model. Given that the input consists of 3D MRI scans processed by three
separate ViTs from different viewpoints (as illustrated in Figure 4.2), we obtain three distinct
2D attention maps corresponding to these perspectives. These 2D maps are subsequently
expanded into 3D and averaged to generate a composite 3D attention map, providing insights
into the spatial distribution of model focus across the brain.

The second method employs a well-established explainable artificial intelligence (XAI)
technique known as Occlusion Sensitivity Analysis, as illustrated in Figure 4.5. This
technique systematically occludes different regions of the input data to assess their influence
on the model’s predictions. In our case, specific regions of brain MRI scans are obscured
using a cube-shaped occlusion mask of size 7×7×7 voxels, where the enclosed voxels are set
to zero. The mask is systematically moved throughout the entire brain volume, ensuring no
overlap between successive positions. As the occlusion mask traverses the brain, variations in
the model’s predictions are observed. These changes, quantified in terms of Mean Absolute
Error (MAE), compare prediction accuracy with and without occlusion. The magnitude
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of MAE variation indicates the relative importance of different brain regions, with larger
changes signifying greater relevance to the model’s decision-making. The aggregation of
these variations forms a saliency map, effectively highlighting the regions that the model
predominantly relies on for brain age estimation.

Figure 4.6: Comparison between the Triamese-ViT’s attention map and occlusion analysis for
healthy people. Figure 4.6.a presents the results from built-in interpretation compared to the
original brain, while Figure 4.6.b shows the outcomes of the occlusion analysis. Together,
these sections identify the specific brain regions that the Triamese-ViT model finds most
crucial for age prediction.

Although attention-based visualization and occlusion-based saliency maps both aim to
provide insights into the regions influencing the model’s predictions, they differ in nature and
methodology.

The attention maps are generated within the Transformer’s self-attention mechanism.
They represent how the model allocates weights across image patches during prediction,
effectively highlighting regions the model attends to. These maps provide an internal view
of the decision-making process, but they do not directly quantify the causal effect of each
region on the output.

In contrast, occlusion sensitivity analysis is an external perturbation method. By
systematically masking regions of the input MRI and observing the resulting change in
prediction error, this method estimates the causal importance of each region. Regions where
occlusion leads to a larger performance drop are considered more influential.

Together, these two approaches offer complementary perspectives: attention-based maps
reveal the model’s focus during learning, while occlusion analysis provides causal validation
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of regional contributions. Their convergence strengthens the reliability of our interpretability
findings.

Figure 4.6 presents the results of our interpretability analyses. Specifically, Figure 4.6.a
compares the built-in attention-based interpretation with the original brain structure, while
Figure 4.6.b illustrates the outcomes of the Occlusion Sensitivity Analysis. The detailed
quantitative results of these two methods are provided in Table A.1.

As observed in Figures 4.6.a and 4.6.b, the most prominent regions, indicated by the
brightest areas, are centrally located, suggesting a potential focus on deep brain structures
for age estimation. The symmetry of these highlighted regions across both hemispheres aligns
with the mirrored organization of many brain processes and structures.

Table A.1 further underscores the consistency between the two explainable AI (XAI)
methods. For the attention maps, regions with attention values exceeding 3 are considered
significant, while for Occlusion Sensitivity Analysis, regions with values above 4 are deemed
critical. Both methods consistently identify the Rolandic Operculum, Cingulum, and
Thalamus as key regions for brain age prediction. Additionally, the attention maps emphasize
the significance of the Vermis, whereas Occlusion Sensitivity Analysis highlights the Insula,
Caudate Nucleus, Putamen, and Heschl’s gyrus as important regions in the estimation
process.

Figure 4.7: This figure is from He, Grant, and Ou, 2021. It shows the interpretability results
from the Global-Local Transformer on brain age estimation.

To demonstrate the superior interpretability of Triamese-ViT, we compared its explana-
tion results with those of another inherently interpretable model. Figure 4.7 presents the
interpretability outcomes of the Global-Local Transformer (He, Grant, and Ou, 2021) for
brain age estimation. A comparison between Figure 4.7 (Global-Local Transformer) and
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Figure 4.6 (Triamese-ViT) reveals that the interpretability results of Triamese-ViT provide
more detailed and informative insights.

While the Global-Local Transformer provides broad heatmap coverage, this makes it
difficult to associate predictive relevance with distinct anatomical structures, as many
adjacent regions are highlighted simultaneously. In contrast, Triamese-ViT generates more
spatially precise and structurally aligned attention maps, enabling clearer identification of
specific brain regions contributing to predictions.

In contrast, the 3D-like attention maps generated by Triamese-ViT effectively associate
attention values with distinct brain structures, enabling a more precise identification of
regions influencing model predictions. Furthermore, Triamese-ViT provides attention maps
from three distinct orientations, offering a comprehensive 3D representation of the brain and
enhancing interpretability.

It is important to note that broader coverage is not inherently inferior, nor is narrower
focus inherently superior: both can capture valid aspects of the model’s decision-making.
However, in clinical and neuroscientific contexts, interpretability benefits from clarity and
correspondence to known anatomical structures. The advantage of Triamese-ViT lies
in its ability to balance coverage and specificity—highlighting critical regions without
overextending across unrelated tissue areas.

4.3.4 Gender Differences in Explainable Results During Brain Age
Prediction

In this section, we investigate potential gender differences in explainable results using the
Triamese-ViT model. Specifically, we aim to identify brain regions that are particularly
influential for age prediction in males and females, and to determine whether distinct patterns
exist between genders during prediction.

To facilitate this analysis, two separate Triamese-ViT models were trained: one exclusively
on healthy male subjects and another exclusively on healthy female subjects. Subsequently,
the male-trained model was applied to a test dataset composed solely of male subjects to
generate age predictions and associated explainability results. Likewise, the female-trained
model was applied exclusively to a test dataset of female subjects to produce corresponding
age predictions and explainability analyses. This approach allows us to comparatively assess
gender-specific neural contributions to age prediction.

Figure 4.8 presents the results for male-based Triamese-ViT’s interpretability analyses.
Specifically, Figure 4.8.a compares the built-in attention-based interpretation with the
original brain structure, while Figure 4.8.b illustrates the outcomes of the Occlusion
Sensitivity Analysis. The detailed quantitative results of these two methods are provided
in Table A.3.

From the explainability analysis of the male-specific Triamese-ViT model, the built-in
interpretability results indicate that during male brain age prediction, the model primarily
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Figure 4.8: Comparison between the male-based Triamese-ViT’s attention map and occlusion
analysis for male healthy people. Figure 4.8.a presents the results from built-in interpretation
compared to the original brain, while Figure 4.8.b shows the outcomes of the occlusion
analysis. Together, these sections identify the specific brain regions that the male-based
Triamese-ViT model finds most crucial for male individuals during age prediction.

attends to several key regions: the supplementary motor area, the medial portion of the
superior frontal gyrus, the cingulum, the cuneus, the thalamus, and the vermis.

When comparing the built-in attention-based interpretation findings to those derived from
the all-gender Triamese-ViT model (shown in Figure 4.6), we observe that both models
highlight the importance of the cingulum, thalamus, and vermis. However, the male-specific
model additionally emphasizes the supplementary motor area, the medial superior frontal
gyrus, and the cuneus.

Occlusion analysis provides further insights, identifying the insula, cingulum, amygdala,
calcarine fissure, cuneus, middle occipital gyrus, caudate nucleus, and thalamus as critical re-
gions for male brain age prediction. These findings reinforce the significance of the cingulum,
cuneus, and thalamus, while also indicating methodological differences in interpretability:
the built-in interpretability approach more prominently highlights the superior frontal gyrus
and vermis, whereas occlusion analysis places greater emphasis on the insula, amygdala,
calcarine fissure, middle occipital gyrus, and caudate nucleus.

In a direct comparison of occlusion analysis between the male-specific and all-gender
Triamese-ViT models (Figure 4.6), both models consistently identify the insula, cingulum,
caudate nucleus, and thalamus as crucial regions. However, the male-specific model uniquely
emphasizes the amygdala, calcarine fissure, cuneus, and middle occipital gyrus.

In summary, the cingulum, thalamus, vermis, insula, and caudate nucleus consistently
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appear as essential regions in both male-specific and all-gender models. The male-specific
Triamese-ViT additionally prioritizes areas such as the supplementary motor area, medial
superior frontal gyrus, cuneus, amygdala, calcarine fissure, and middle occipital gyrus. This
implies that these regions exhibit significant inter-individual variability among males and
may serve as critical biomarkers for assessing male brain health and age-related differences.

Figure 4.9: Comparison between the female-based Triamese-ViT’s attention map and
occlusion analysis for female healthy people. Figure 4.9.a presents the results from built-in
interpretation compared to the original brain, while Figure 4.9.b shows the outcomes of the
occlusion analysis. Together, these sections identify the specific brain regions that the female-
based Triamese-ViT model finds most crucial for female individuals during age prediction.

Next, we analyze the results from the female-specific Triamese-ViT model. Figure 4.9
presents the interpretability analyses for this model. Specifically, Figure 4.9.a compares the
built-in attention-based interpretability maps against the corresponding anatomical brain
structures, while Figure 4.9.b depicts the outcomes from the occlusion sensitivity analysis.
Detailed quantitative comparisons between these two interpretability approaches are further
illustrated in Table A.3.

From the explainability analysis of the female-specific Triamese-ViT model, the built-
in interpretability results demonstrate that the model primarily emphasizes several critical
brain regions during female brain age prediction, namely the Rolandic operculum, insula,
cingulum, cuneus, caudate nucleus, thalamus, and vermis.

Comparing these built-in attention-based findings with the interpretability outcomes from
the all-gender Triamese-ViT model (Figure 4.6), both models consistently highlight the
Rolandic operculum, cingulum, thalamus, and vermis. However, the female-specific model
further emphasizes the insula, cuneus, and caudate nucleus.

75



Chapter 4. Explainable Triamese ViT 4.3. Results

Occlusion sensitivity analysis further complements these findings by identifying the insula,
cingulum, amygdala, calcarine fissure, cuneus, middle occipital gyrus, caudate nucleus, and
thalamus as particularly influential regions for female brain age prediction. These results
reinforce the critical roles of the insula, cingulum, cuneus, caudate nucleus, and thalamus.
Notably, the built-in interpretation prominently highlights the Rolandic operculum and
vermis, whereas occlusion analysis places greater emphasis on the amygdala, calcarine fissure,
and middle occipital gyrus.

When directly comparing the occlusion analysis between the female-specific and all-gender
Triamese-ViT models (Figure 4.6), both consistently underline the importance of the insula,
cingulum, caudate nucleus, and thalamus. Nevertheless, the female-specific model uniquely
emphasizes the amygdala, calcarine fissure, cuneus, and middle occipital gyrus.

In summary, the Rolandic operculum, cingulum, thalamus, vermis, insula, and caudate
nucleus emerge as consistently critical regions across both the female-specific and all-
gender models. The female-specific Triamese-ViT additionally places greater emphasis
on the cuneus, amygdala, calcarine fissure, and middle occipital gyrus. These regions
exhibit pronounced inter-individual variability among females, indicating their potential as
significant biomarkers for assessing female brain health and age-related changes.

Comparing explainability results directly between male- and female-specific models, both
genders share critical regions such as the thalamus, cingulum, vermis, insula, caudate nucleus,
cuneus, amygdala, calcarine fissure, and middle occipital gyrus. Most of these areas are
also emphasized in the all-gender model, signifying their broad importance in brain age
estimation. However, male predictions uniquely prioritize the supplementary motor area
and medial superior frontal gyrus, while female predictions uniquely emphasize the Rolandic
operculum. This divergence suggests gender-specific differences in brain structures following
developmental processes.

Interestingly, our findings align with prior connectivity research, C. C. Yang et al.
(2022) found that males exhibit higher regional network efficiency in the right Rolandic
operculum, a region linked to motor control and response planning. Additionally, Callaghan
et al. (2014) have reported sex-differential involvement of the supplementary motor area and
middle frontal gyrus, with suppressed activation observed in males and slight enhancement
in females, which corroborating the gender-specific emphasis observed in our attention
maps. Together, these findings suggest that our model’s interpretability results may reflect
meaningful sex-dependent neurobiological differences in brain aging.

Additionally, all interpretability results consistently indicate higher importance for left-
hemisphere regions compared to those in the right hemisphere. This lateralization might
reflect the predominance of right-handedness among subjects, as greater utilization of the
left hemisphere may result in more pronounced structural variability, thereby facilitating
easier identification of age-related differences.
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4.3.5 Normal Aging Analysis

The experimental results presented above demonstrate that the Triamese-ViT model
achieves superior performance in brain age prediction for healthy individuals compared
to both classical and state-of-the-art (SOTA) algorithms and may also provide enhanced
interpretability through its attention maps, surpassing traditional explainable AI (XAI)
methods.

Building on these findings, this section applies the Triamese-ViT model to analyze the
normal aging process in the human brain.

Figure 4.10 presents the attention maps generated by the Triamese-ViT model across
three different axes when predicting brain age for healthy individuals aged 0 to 80 years.
Specifically, Figures 4.10.a, 4.10.b, and 4.10.c correspond to the attention maps along the
x-axis, y-axis, and z-axis, respectively. Each attention map was computed by averaging
attention values across each decade. Analyzing these maps provides valuable insights into
the natural aging process from a machine learning perspective, helping to identify brain
regions that play a significant role in age estimation.

In Figure 4.10, bright areas indicate regions of high relevance to the model’s age
predictions. Notably, the most prominent attention regions consistently appear near the
center of the images, likely corresponding to deep brain structures. The symmetrical
distribution of attention observed in Figure 4.10.a aligns with the mirrored organization
of many brain structures and processes, which supports the reliability of the model’s focus.
Additionally, attention intensity tends to decrease toward the brain’s periphery, suggesting
that central structures may carry more informative features for age estimation than cortical
areas. In several age groups, particularly in the lateral views, increased attention is directed
toward the occipital lobe regions. The occipital lobes are associated with visuospatial
processing, distance and depth perception, color discrimination, object and face recognition,
and memory formation—functions that are known to change with age (Tohid, M. Faizan,
and U. Faizan, 2015).

In younger age groups (0–10 years), the attention maps display a broader distribution
of highlighted regions, potentially reflecting the rapid neurodevelopmental and maturation
processes occurring during early life. As individuals progress into their teens, twenties, and
thirties, the attention maps exhibit a more localized pattern, which may correspond to the
stabilization of brain structure following developmental changes and the onset of subtle age-
related modifications. From the thirties onward, there is a consistent emphasis on midline
structures, potentially indicating alterations in white matter tracts, which are among the
first to exhibit age-related changes. In the forties and fifties, deep brain structures are more
frequently highlighted, reinforcing their relevance in the aging process. In the oldest age
groups (sixties and seventies), attention becomes more diffusely distributed across the brain,
suggesting that a broader range of structural changes becomes increasingly informative for
age estimation.

In conclusion, these patterns align with established principles of brain development
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Figure 4.10: This figure represents the Triamese-ViT’s attention maps from different axes
of the MRIs during natural aging from 0 to 80 years old. a shows x-axis attention maps, b
shows y-axis attention maps, and c shows z-axis attention maps. Each attention map was
calculated by averaging the attention values over each decade.

78



Chapter 4. Explainable Triamese ViT 4.3. Results

and aging. The early years are characterized by dynamic neural changes, followed by a
period of relative stability in early adulthood. Middle age marks the emergence of more
localized age-related structural changes, particularly in deep brain regions, while older
adulthood is associated with widespread structural alterations that become more prominent
and informative for age estimation.

Figure 4.11: This figure presents the attention trend lines for the most important regions
throughout natural aging based on the Triamese-ViT built-in interpretation.

Since the MRI scans used in this study are aligned to the standard MNI space, we can
map the highlighted regions in Figure 4.10 to specific anatomical structures in the brain.
Figure 4.11 provides a detailed analysis of these regions, illustrating the attention trend
lines of highlighted areas during natural aging based on the attention maps generated by the
Triamese-ViT model. Additionally, Table A.2 presents the corresponding attention values
for each identified brain region.

To compute these attention values, we first extracted attention maps from three different
views, as shown in Figure 4.10, and then expanded each into a 3D map with dimensions of
91×109×91. The final 3D attention values for each brain region were obtained by averaging
these 3D attention maps.
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Figure 4.11 reveals distinct machine-learning-driven patterns in how different brain
regions are highlighted throughout the aging process.

Early childhood (0–10 years): Regions such as the Inferior Frontal Gyrus, Rolandic
Operculum, Cingulum, Calcarine, Caudate Nucleus, Thalamus, and Vermis exhibit signif-
icant attention, with the Thalamus and Rolandic Operculum receiving the highest values.
These findings highlight their critical roles in early brain development and neural function.

Adolescence (10–20 years): Attention decreases across most regions, except for the
Cingulum and Thalamus, which retain relatively high attention values. This trend likely
reflects the maturation and stabilization of neural networks during this developmental stage.

Young adulthood (20–30 years): Moderate attention is observed in the Rolandic
Operculum, Cingulum, Caudate Nucleus, Thalamus, and Vermis, potentially linked to
ongoing cognitive and emotional development.

Middle age (40–50 years): Attention stabilizes across most brain regions, with slight
increases in the Thalamus and Vermis, possibly reflecting their roles in maintaining cognitive
function during this period.

Older adulthood (60–70 years): Attention resurges in several regions, including the
Inferior Frontal Gyrus, Rolandic Operculum, Medial Frontal Gyrus, Cingulum, Calcarine,
Cuneus, Occipital Lobe, Precuneus, and Vermis. The Vermis, in particular, shows a
significant increase, which may be associated with age-related changes in coordination and
balance.

Notably, the Thalamus and Cingulum demonstrate consistent significance across all
stages, underscoring their crucial roles in neural and cognitive processes throughout life.
These findings align with prior research, such as (Cera et al., 2019), which highlights
the Cingulum’s vulnerability to pathological aging, and (Fama and Sullivan, 2015), which
emphasizes the Thalamus’s role in cognitive networks and its structural and functional
changes across the lifespan.

4.3.6 Artifacts Analysis

In Figure 4.12, the attention maps exhibit peculiar patterns, including ringing and wrapping
artifacts in panels (a) and (c). In contrast, the target-like focus observed in the 10–20 age
group (panel b) does not exhibit such artifacts. To further investigate these discrepancies,
we conducted an in-depth analysis of the origin of these artifacts.

To systematically examine their source, we performed a series of controlled experiments
using the attention map from the 40–50 age group (panel b) as a representative case, given
its clear and analyzable structure.

We progressively subtracted a constant value from all attention values in the original
attention map to observe how the pattern evolved (the maximum attention value in the
selected attention map is 254). The results are visualized in Figure 4.12:
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Figure 4.12: We progressively subtracted a constant value from all attention values in the
original attention map from the 40–50 age group (panel b), to observe the pattern of artifacts.

• Figure (a): Subtracting 250—A single small bright spot remained, with no observable
artifacts, suggesting no structural anomalies at high attention thresholds.

• Figure (b): Subtracting 200—A square-shaped region emerged, where the edges
retained high attention values while the interior remained zero, forming an initial
boundary.

• Figures (c)–(e): Subtracting 150, 100, and 50—Attention progressively diffused outward
from the initial boundary, with decreasing brightness as distance increased. Meanwhile,
previously zero-valued areas within the central region gradually gained nonzero values,
leaving behind a narrow zero-value boundary, which visually resembles a ring-like
artifact.

• Figure (f): The original attention map—After full intensity diffusion, an approximately
square-shaped region with a dark boundary surrounding a bright inner region became
evident, clearly illustrating the origin of these artifacts.

Our analysis confirms that these visual artifacts primarily result from a sharply delineated
boundary within high-attention-value regions, where a thin border of zero intensity contrasts
sharply with adjacent high-intensity areas. Re-examination of attention values confirmed
that no computational errors or abnormalities were present.

Importantly, our interpretability approach averages attention values across all patches
within specific brain regions, effectively reducing the influence of artifacts while ensuring
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robust biological interpretability. Furthermore, the reliability of our interpretative results
has been independently validated through:

• Occlusion analysis, confirming the biological relevance of high-attention regions.

• Alignment with established medical research findings, reinforcing the credibility of our
conclusions.

We acknowledge that high-frequency intensity variations may impact interpretability
clarity. These fluctuations likely reflect the model’s sensitivity to fine-grained, biologically
meaningful patterns inherent to high-resolution MRI inputs (91 × 109 × 91). To enhance
interpretability in future studies, we propose exploring:

• Spatial smoothing techniques to mitigate high-frequency variations and enhance
attention coherence.

• Attention regularization strategies to suppress excessive fluctuations while preserving
critical information.

By addressing these challenges, we aim to further refine the interpretability and robustness
of attention maps in Triamese-ViT, improving its applicability in brain age estimation and
related neuroimaging tasks.

4.3.7 Contribution to ASD Diagnosis

To evaluate the impact of Triamese-ViT in disease diagnosis, we applied it to datasets of
individuals with Autism Spectrum Disorder (ASD) to identify brain regions most associated
with ASD.

Built-in Attention Mechanism in ASD Data: Since Triamese-ViT was trained
exclusively on healthy samples, its attention mechanism was learned during training and
remains fixed during inference. However, attention weights are influenced not only by the
learned mechanism but also by the input features. If the ASD dataset differs from the
healthy training data—whether in brain structure or function—the self-attention mechanism
generates distinct attention maps due to altered relationships between input patches.

Applying the Triamese-ViT model, trained on healthy samples, to ASD data resulted in
attention maps that deviated from those observed in healthy individuals. Using attention
maps from healthy samples as a baseline, we analyzed these discrepancies to identify how
the highlighted regions in ASD patients diverge from normal brain aging patterns. This
comparison allows us to pinpoint critical brain regions associated with ASD, providing
valuable insights into the neuroanatomical characteristics of ASD brains.

Occlusion Sensitivity Analysis: To further validate the findings from the attention
maps, we conducted Occlusion Sensitivity Analysis as a benchmarking method. This analysis
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Figure 4.13: Comparison between the Triamese-ViT’s attention map and occlusion analysis
for ASD patients. Figure 4.13.a presents the attention map results compared to the original
brain, while Figure 4.13.b shows the outcomes of the occlusion analysis. Together, these
sections identify the specific brain regions that the Triamese-ViT model finds most crucial
for ASD diagnosis.

systematically moves a mask across the entire brain volume without overlap to determine the
relative importance of each region. The significance of a region is quantified by calculating the
difference in Brain Age Gap (BAG) before and after occlusion (BAGoriginal −BAGocclusion).
A larger difference indicates a higher regional importance. Notably, positive differences
highlight crucial areas, while negative values suggest regions of lesser significance.

The results are presented in Figure 4.13. Specifically, Figure 4.13.a displays the built-in
interpretation results in comparison to the original brain, while Figure 4.13.b illustrates the
outcomes of the occlusion analysis. Additionally, Table A.2 provides detailed importance
scores for different brain regions, corresponding to the highlighted areas in Figure 4.13.a and
Figure 4.13.b.

Both the built-in attention analysis and occlusion sensitivity analysis indicate that the
Thalamus plays a significant role in ASD. Additionally, occlusion analysis highlights the
Caudate Nucleus as another crucial region for ASD diagnosis. These findings align with
existing medical research. For instance, (Schuetze et al., 2016) reported that individuals with
ASD exhibit an expanded surface area in the right posterior thalamus, particularly in the
pulvinar nucleus. They also observed a steeper increase in concavity of the caudal putamen
with age in ASD individuals. Similarly, (Fu et al., 2019) analyzed dynamic functional network
connectivity (dFNC) between 51 intrinsic connectivity networks in 170 individuals with
ASD and 195 age-matched typically developing (TD) controls using independent component
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analysis and a sliding window approach. Their study found that ASD is characterized
by atypical large-scale subcortical-cortical connectivity, including disrupted resting-state
functional connectivity between the thalamus and sensory regions. Furthermore, (Voelbel
et al., 2006) compared neuropsychological test scores and caudate volumes in children with
ASD, bipolar disorder (BD), and TD children. Their findings concluded that children
with ASD exhibit larger bilateral caudate volumes and modest executive function deficits
compared to TD controls.

4.3.8 Gender Differences in Explainable Results During ASD
Diagnosis

Figure 4.14: Comparison between the male-based Triamese-ViT’s attention map and
occlusion analysis for male ASD patients. Figure 4.14.a presents the results from built-
in interpretation compared to the original brain, while Figure 4.14.b shows the outcomes of
the occlusion analysis. Together, these sections identify the specific brain regions that the
male-based Triamese-ViT model finds most crucial for male ASD individuals’ diagnosis.

In this section, we explore potential gender differences in the interpretability results
obtained from the Triamese-ViT model, specifically focusing on identifying critical brain
regions for diagnosing ASD. Our goal is to highlight brain areas that significantly influence
ASD diagnosis in males and females, and to investigate whether distinct regional patterns
emerge between genders.

In the preceding analyses, two separate Triamese-ViT models were trained: one
exclusively using male data and the other exclusively using female data. Here, we apply
male-based models to male ASD patients and female-based models to female ASD patients, to
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obtain interpretability results, allowing for direct comparison between the male- and female-
trained models.

Figure 4.14 illustrates the interpretability analyses obtained from the male-trained
Triamese-ViT model when diagnosing male ASD patients. Specifically, Figure 4.14(a)
provides a comparison between the built-in attention-based interpretability results and the
original anatomical brain structures. Figure 4.14(b) demonstrates the corresponding results
obtained through occlusion sensitivity analysis. Detailed quantitative comparisons of these
two methods are further presented in Table A.4.

From the explainability analysis of the male-specific Triamese-ViT model, the built-in
interpretability results indicate that, during ASD diagnosis, the model primarily attends to
several critical brain regions, including the supplementary motor area, the medial portion of
the superior frontal gyrus, rectus gyrus, cingulum, cuneus, thalamus, and vermis.

Comparing these findings with the built-in attention-based interpretability results derived
from the all-gender Triamese-ViT model (Figure 4.13), both models consistently highlight
the thalamus as important. However, the male-specific model uniquely emphasizes additional
regions, including the supplementary motor area, medial superior frontal gyrus, rectus gyrus,
cingulum, cuneus, and vermis.

Further insights from occlusion sensitivity analysis highlight the cerebellum as another
crucial region specifically for ASD diagnosis in males. These findings illustrate method-
ological differences between interpretability approaches: built-in interpretability prominently
identifies the supplementary motor area, medial superior frontal gyrus, rectus gyrus,
cingulum, cuneus, thalamus, and vermis, whereas occlusion analysis specifically emphasizes
the cerebellum.

Directly comparing occlusion analysis outcomes between male-specific and all-gender
Triamese-ViT models (Figure 4.13), the male-specific model distinctly prioritizes the
cerebellum, while the all-gender model primarily emphasizes the caudate nucleus and
thalamus.

In summary, the thalamus consistently emerges as a critical region for ASD diagnosis
in both male-specific and all-gender models. Additionally, the male-specific Triamese-ViT
model highlights the supplementary motor area, medial superior frontal gyrus, rectus gyrus,
cingulum, cuneus, vermis, and cerebellum as particularly influential. These findings suggest
that, among males, these areas exhibit substantial differences between ASD patients and
healthy individuals, potentially serving as essential biomarkers for male ASD diagnosis.

We now analyze the interpretability results obtained from the female-specific Triamese-
ViT model. Figure 4.15 presents these findings. Specifically, Figure 4.15(a) provides a
comparison between the built-in attention-based interpretability maps and the corresponding
anatomical brain structures, whereas Figure 4.15(b) illustrates results from the occlusion
sensitivity analysis. Detailed quantitative comparisons between these two interpretability
methods are further depicted in Table A.4.

The built-in interpretability analysis of the female-specific Triamese-ViT highlights the
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Figure 4.15: Comparison between the female-based Triamese-ViT’s attention map and
occlusion analysis for female ASD patients. Figure 4.15.a presents the results from built-in
interpretation compared to the original brain, while Figure 4.15.b shows the outcomes of
the occlusion analysis. Together, these sections identify the specific brain regions that the
female-based Triamese-ViT model finds most crucial for female ASD individuals’ diagnosis.

cingulum and thalamus as critical brain regions involved in ASD diagnosis for female patients.
When comparing these built-in attention-based results with those from the all-gender

Triamese-ViT model (Figure 4.13), both models consistently emphasize the importance of the
thalamus. However, the female-specific model additionally prioritizes the cingulum region.

Further insights provided by occlusion sensitivity analysis identify the cingulum, middle
occipital gyrus, thalamus, insula, cuneus, and caudate nucleus as particularly influential
areas for ASD diagnosis in females. These findings reinforce the critical importance of the
cingulum and thalamus while also highlighting additional significant regions such as the
middle occipital gyrus, insula, cuneus, and caudate nucleus.

Directly comparing occlusion sensitivity analyses between the female-specific and all-
gender Triamese-ViT models (Figure 4.13), both models consistently underline the impor-
tance of the caudate nucleus and thalamus. However, the female-specific model uniquely
emphasizes the cingulum, middle occipital gyrus, insula, and cuneus.

In summary, the thalamus and caudate nucleus consistently emerge as critical regions
across both female-specific and all-gender models. Additionally, the female-specific Triamese-
ViT model places greater emphasis on the cingulum, middle occipital gyrus, insula, and
cuneus, suggesting that these regions exhibit significant variability among females and serve
as valuable biomarkers for ASD diagnosis in female individuals.

When directly comparing the interpretability results between male- and female-specific
models, both genders share key regions such as the cingulum, cuneus, and thalamus, which
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are similarly emphasized by the all-gender model, indicating their general relevance to ASD
diagnosis. Nevertheless, male-specific models uniquely prioritize the supplementary motor
area, medial superior frontal gyrus, rectus gyrus, vermis, and cerebellum. In contrast, female-
specific models specifically highlight the middle occipital gyrus, insula, and caudate nucleus.
These divergences underscore gender-specific differences in brain regions critical for ASD
diagnosis.

4.3.9 Improvements for Occlusion Analysis

In this section, we modify the occlusion methodology by masking entire anatomical brain
regions rather than uniformly sized voxel cubes. This allows us to clearly identify the influence
of each distinct brain structure on predictions of brain age and ASD diagnosis.

Firstly, we investigate the influence of this new occlusion approach on brain age
estimation. Figure 4.16 visualizes the outcomes, while detailed quantitative results are
presented in Table A.5. Comparing these new findings with the previous attention map
and voxel-based occlusion results, we again observe the prominence of the thalamus and
cingulum—regions consistently highlighted as critical across different analytical approaches.
This consistency underscores the central role these structures play in various manifestations
of brain aging. Notably, the updated occlusion method uniquely emphasizes the lingual
gyrus, which was not identified as significant in previous analyses. The lingual gyrus, located
in the medial occipital lobe, is associated with visual processing and memory. Supporting
this finding, recent research by (Duan et al., 2024) revealed distinct patterns of brain aging,
notably accelerated gray matter volume loss within medial occipital areas, including the
lingual gyrus. This accelerated regional atrophy correlates strongly with biological aging and
cognitive decline, thereby validating our new occlusion-based results and highlighting the
lingual gyrus as an important area for understanding age-related brain changes.

Next, we applied the region-based occlusion analysis approach to the ASD patient dataset
to identify crucial brain regions for ASD diagnosis. Figure 4.17 visualizes the results, while
detailed quantitative findings are presented in Table A.5. Comparing these new outcomes
to our previous attention map and voxel-based occlusion analyses, the thalamus emerges
again as a consistently critical region across all interpretability methods, underscoring its
significant role in ASD diagnosis. However, the region-based occlusion method additionally
highlights the lingual gyrus and the cerebellum, regions that were not emphasized in prior
voxel-based analyses.

The significance of these findings is supported by existing literature. For instance, Habata
et al. (2021) reported increased cortical thickness within the lingual gyrus in adults with ASD,
correlating with heightened visual sensory sensitivity and social impairments, suggesting a
critical role of this region in the sensory processing anomalies characteristic of ASD. Similarly,
Chandran et al. (2021) observed that increased gyrification and regional gray matter volume
in the right lingual gyrus were associated with higher autistic traits, indicating morphological
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Figure 4.16: Results of region-based occlusion sensitivity analysis for brain age estimation.
Each anatomical brain region was systematically masked in turn, enabling evaluation of its
individual contribution to the model’s predictions.
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alterations in this region may reflect autism severity.
Regarding the cerebellum, prior research by D’Mello and Stoodley (2015) revealed atypical

functional connections between the cerebellum and both motor and non-motor cortical
regions in ASD patients. These atypical connections were hypothesized to contribute directly
to core ASD symptoms. Additionally, their functional connectivity analyses suggested that
disruptions in cerebellar coordination of cognitive and motor processes could underpin aspects
of the disorder’s symptomatology.

Thus, our region-based occlusion analysis further reinforces these findings, highlighting
the lingual gyrus and cerebellum as significant biomarkers for understanding the neural
underpinnings of ASD.

Figure 4.17: Results of region-based occlusion sensitivity analysis for ASD diagnosis.
The analysis systematically obscured entire anatomical brain regions individually, allowing
identification of key regions influencing the diagnostic predictions for ASD patients.
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4.4 Discussion

Our research introduces Triamese-ViT, a deep-learning model specifically designed for brain
age estimation. This model has been evaluated against other state-of-the-art (SOTA)
models in the field, demonstrating superior performance. The most notable innovation
of Triamese-ViT is its unique Tri-architecture, which integrates comprehensive contextual
understanding with detailed image analysis. By exploring complex relationships between
image patches, it achieves more precise, accurate, and interpretable predictions. This
advancement holds significant potential for clinical applications, particularly in the early
detection of neurodegenerative diseases and the development of personalized interventions
based on individual brain health assessments.

In experiments conducted on a public dataset, Triamese-ViT achieved remarkable results,
with a Mean Absolute Error (MAE) of 3.85, a Spearman correlation of 0.94 with chronological
age, and a Spearman correlation of -0.3 between the Brain Age Gap (BAG) and chronological
age. These results highlight both high predictive accuracy and a significant reduction in age
bias, marking a substantial advancement in brain age estimation. Such accuracy is critical in
clinical settings, where reliable brain age assessments can help detect deviations from typical
aging, potentially signaling early neurodegenerative changes.

Beyond its predictive accuracy, Triamese-ViT offers substantial interpretability. We
applied it to the analysis of natural brain aging and examined the attention values across
different brain regions over time. The results reveal distinct patterns that align with
known neurodevelopmental and aging processes. In early childhood, key regions such as
the Inferior Frontal Gyrus, Rolandic Operculum, and Thalamus exhibit high attention
values, underscoring their crucial roles in neural development. During adolescence, attention
decreases across most regions, except for the Cingulum and Thalamus, reflecting the
maturation of neural pathways. In young adulthood, increased activity is observed in regions
such as the Rolandic Operculum and Thalamus, potentially associated with cognitive and
emotional development. Middle age is characterized by stable attention values, with slight
increases in the Thalamus and Vermis, suggesting their involvement in maintaining cognitive
function. In older adults, attention resurges in multiple regions, particularly in the Vermis,
likely due to age-related changes affecting coordination and balance. These findings are
consistent with existing neuroscience research (Sutoko et al., 2020; Humbert et al., 2010;
Karaman et al., 2021; Y. Zhang et al., 2007; Wiltshire et al., 2010; Xuereb et al., 1990; Maiti
et al., 2021; Ho Park et al., 2001), demonstrating the potential of Triamese-ViT as a valuable
tool for brain research. Clinically, this interpretability could assist healthcare professionals in
understanding the neural mechanisms underlying aging and identifying deviations indicative
of disease onset.

We also examined gender-specific differences during brain age prediction through
interpretability analyses of the Triamese-ViT model. To achieve this, we trained separate
Triamese-ViT models using exclusively male or female datasets. By comparing their built-in
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interpretability results and occlusion sensitivity analyses, we identified several brain regions
consistently important for both genders during brain age estimation, including the thalamus,
cingulum, vermis, insula, caudate nucleus, cuneus, amygdala, calcarine fissure, and middle
occipital gyrus. The significance of these regions indicates substantial structural variability
associated with the aging process across both genders.

Additionally, distinct gender-specific biomarkers for brain vitality were observed. Specif-
ically, male brain age prediction models uniquely prioritized the supplementary motor area
and medial superior frontal gyrus, indicating these regions exhibit pronounced age-related
differences among males. Conversely, female brain age predictions uniquely emphasized the
Rolandic operculum, suggesting this region undergoes significant structural changes specific
to females as they age. These divergent findings highlight gender-specific patterns in brain
structural development and aging processes.

The interpretability of Triamese-ViT also has significant implications for disease diagnosis.
Traditional diagnostic methods for brain disorders often require extensive time and rely
on subjective clinical judgment, increasing the workload of medical professionals and
potentially affecting diagnostic accuracy. Machine learning-based interpretability provides
a complementary and objective perspective, facilitating faster and more reliable diagnoses.
For instance, Triamese-ViT’s attention maps highlight brain regions most relevant to a given
diagnosis, aiding clinicians in making informed decisions and reducing the risk of diagnostic
oversight.

We tested Triamese-ViT on a dataset of individuals with ASD and identified the
Thalamus and Caudate Nucleus as key regions associated with ASD. These findings align
with existing medical studies (Schuetze et al., 2016; Fu et al., 2019; Voelbel et al., 2006),
further demonstrating the utility of Triamese-ViT in brain disease research. By identifying
critical brain regions implicated in ASD, Triamese-ViT has the potential to support early
diagnosis and facilitate the development of targeted interventions, ultimately improving
patient outcomes.

We also explored gender differences in brain region importance for Autism Spectrum
Disorder (ASD) diagnosis using the Triamese-ViT model. Our analysis indicated that
the cingulum, cuneus, and thalamus emerged as consistently crucial biomarkers for ASD
diagnosis across both genders, suggesting these areas are broadly involved in the pathology
of ASD. Additionally, distinct, gender-specific biomarkers were identified: for males,
the supplementary motor area, medial superior frontal gyrus, rectus gyrus, vermis, and
cerebellum were uniquely highlighted, whereas for females, the middle occipital gyrus, insula,
and caudate nucleus were particularly emphasized. These differences underscore important
gender-specific variations in the neural structures implicated in ASD diagnosis.

Limitations and Future Work: While Triamese-ViT has demonstrated strong
performance, several limitations warrant discussion. One limitation concerns the high-
frequency variations observed in the model’s attention maps. These fluctuations can reduce
clarity and interpretability, potentially obscuring the biological significance of highlighted
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regions. To address this, future work will focus on enhancing the stability of attention maps
by exploring:

• Spatial Smoothing: Reducing noise to improve spatial coherence and emphasize
biologically meaningful structures.

• Attention Regularization: Applying constraints to suppress excessive fluctuations
and ensure consistent anatomical focus.

These refinements aim to improve the accuracy and interpretability of attention maps,
thereby providing clearer insights into neurobiological processes associated with aging.

A second limitation lies in the normalization strategy used for interpretability. In the
current implementation, attention maps are normalized independently within each age group,
which enhances local visibility but prevents direct cross-group comparison. To overcome this,
future work will explore a global normalization framework that applies a consistent scaling
across all age groups. Such an approach would ensure intensity consistency in attention maps
and improve comparability across both views and cohorts.

Another limitation relates to data efficiency. The model requires relatively large training
datasets to achieve robust generalization, which may restrict applicability in clinical contexts
with limited sample sizes. This challenge could be mitigated by leveraging transfer learning
from large public datasets or adopting data-efficient approaches such as self-supervised
learning.

In addition, Triamese-ViT imposes higher computational and memory demands compared
to single-view CNNs or classical models. Training requires multiple GPUs and extended time,
potentially limiting deployment in real-time or resource-constrained environments. Future
work may employ architectural optimizations and model compression strategies (e.g., pruning
or knowledge distillation) to reduce computational cost.

Like many deep learning models, Triamese-ViT is also sensitive to imaging artifacts, in-
scanner motion, and site-specific variability. Although ComBat harmonization was applied
to reduce scanner effects, other noise sources may still degrade performance. Robustness
could be further enhanced through strategies such as adversarial training or noise-robust loss
functions.

While our interpretability findings are consistent across methods and supported by prior
studies, they have not yet been systematically verified by clinical or neuroscience experts.
Future work will involve expert validation to ensure biological plausibility and clinical
relevance, particularly in assessing whether the identified gender-specific biomarkers align
with established neurobiological knowledge.

Another limitation stems from our approach to ASD analysis. We employed a model
trained on healthy participants to indirectly identify atypical regions in ASD, rather than
training a model specifically on ASD datasets. This indirect strategy provides useful insights
but is not optimized for ASD detection. Due to the limited size of available ASD cohorts,
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we prioritized transfer-based interpretability. Future efforts will focus on assembling larger
ASD datasets and developing models explicitly trained for ASD, which could yield deeper
and more clinically meaningful results.

Although our study highlights critical brain regions implicated in ASD, we did not
provide direct quantitative validation of these findings. Future research will incorporate
volumetric and morphometric analyses of highlighted regions in both healthy and ASD
participants to determine whether attention-identified regions correspond to significant
structural differences. Such quantitative validation would strengthen the clinical utility of
Triamese-ViT in supporting disease detection and monitoring.

In addition, while the present study focused primarily on demonstrating the benefits of
integrating three orthogonal views using a Multi-Layer Perceptron (MLP) fusion mechanism,
more advanced strategies could further enhance both performance and interpretability.
Future work will explore adaptive weighting mechanisms, attention-based fusion, and graph
neural networks (GNNs) to better capture inter-view relationships and improve contextual
learning.

Finally, expanding beyond structural MRI represents another promising direction. Multi-
modal integration—including T1- and T2-weighted imaging as well as diffusion-weighted
imaging (DWI)—could provide complementary information, improving accuracy, robustness,
and generalizability in diverse neuroimaging contexts.

4.5 Conclusion

In this chapter, we presented the Triamese-ViT model, a novel transformer-based architecture
designed for brain age estimation with built-in interpretability. By leveraging three
orthogonal views of sMRI scans, Triamese-ViT integrates complementary structural features
through a Tri-MLP fusion strategy, achieving state-of-the-art predictive performance while
maintaining fairness across age groups. A key contribution of this work lies in its intrinsic
interpretability, which we validated through occlusion sensitivity analysis and by identifying
brain regions consistent with established neurobiological findings. Furthermore, the model
provided new insights into normal aging trajectories, gender-specific structural differences,
and clinically relevant biomarkers for ASD diagnosis.

Despite these strengths, several limitations must be acknowledged. First, the model
requires substantial computational resources and training time compared to simpler archi-
tectures. Second, its reliance on large-scale datasets may restrict applicability in small-
sample clinical settings. Finally, while interpretability results were consistent across methods,
they have yet to be systematically validated by domain experts, which will be a crucial
step in future work. Potential improvements include integrating multi-modality MRI data,
employing advanced fusion strategies, and exploring efficiency-oriented methods such as token
pruning, adapter-based fine-tuning, and model compression.

Overall, this chapter demonstrated that Triamese-ViT balances accuracy, fairness, and
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interpretability, establishing a strong foundation for explainable and clinically meaningful
neuroimaging AI. In the next chapter, we introduce the User-Centric Democratic AI
Framework. This framework addresses fairness and bias more explicitly at the service and
interaction level, aiming to democratize AI applications and enhance their accessibility and
trustworthiness in real-world contexts.
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Chapter 5

User Centric Democratic AI
Framework

5.1 Introduction

The primary objective of artificial intelligence (AI) is to develop technologies that enhance
human well-being and address critical societal challenges (Hodges, 2006; Taddeo and Floridi,
2018). Its origins can be traced back to efforts to simulate human intelligence (Hodges, 2006).
Over the past five years, AI has been increasingly applied across various domains, including
drug and vaccine discovery (Jumper et al., 2021), environmental problem-solving (Gomes
et al., 2019), humanitarian crisis prediction (Tomašev et al., 2019), and policymaking (M. K.
Lee et al., 2019). As AI continues to gain prominence, ethical considerations have become
a central concern (Conitzer et al., 2017), with the public demanding greater transparency
and autonomy in AI-driven decision-making processes (Montes and Goertzel, 2019), in other
words, a more democratic AI.

Democratic systems rely fundamentally upon citizens’ equitable rights of participation
and fair representation (Diakopoulos, 2019). Although this principle remains incompletely
achieved and frequently contested in practical contexts (Phillips, 2021), democracies
persistently strive to broaden rights and include groups historically marginalized or excluded.
Artificial intelligence, by contrast, inherently depends upon datasets reflective of past
conditions and therefore poses a danger to these democratic aspirations by potentially
perpetuating historical biases and inequalities into future contexts, thereby undermining
democratic progress. Specifically, by forecasting human behaviors across varying scenarios
using historical observations, AI distinguishes between individuals according to characteris-
tics embedded within data. Consequently, this approach risks solidifying existing societal
biases and reviving discriminatory patterns that society has sought—legally, socially, and
politically—to abandon (Eubanks, 2018; Mayson, 2018; Mehrabi et al., 2021). It is therefore
imperative to consistently monitor and rigorously audit AI systems and their practical

95



Chapter 5. User Centric Democratic AI Framework 5.1. Introduction

deployments.
Moreover, an individual’s visibility and representation within AI systems are contingent

upon their historical presence within the data. Artificial intelligence struggles to accurately
identify and categorize individuals belonging to groups that have been inadequately
represented historically in training datasets. For instance, minorities historically absent or
minimally represented in visual datasets remain largely unrecognized by computer vision
algorithms (Buolamwini and Gebru, 2018), and historically marginalized populations may
be systematically excluded from associations with particular occupations, risking increased
bias within employment procedures mediated by AI technologies (Caliskan, Bryson, and
Narayanan, 2017). This overarching phenomenon holds profound implications for democratic
governance: persistent invisibility of certain groups in datasets implies their reduced presence
within AI-generated portrayals of the citizenry and diminished influence over predictive
models concerning political attitudes, behaviors, interests, and grievances. Consequently,
populations already disadvantaged or disenfranchised risk experiencing further exclusion and
discrimination, particularly in the contexts of government service provision, policy formation
informed by digitally captured preferences, or exposure to intensified state surveillance and
persecution.

AI systems can also amplify the visibility of particular groups in ways that exacerbate
inequalities. For instance, historically marginalized communities frequently appear dispro-
portionately in criminal justice data, leading AI-driven policing and sentencing algorithms to
disproportionately target individuals from these groups (Chouldechova, 2017; M. Matthews,
S. Matthews, and Kelemen, 2022). Particularly in jurisdictions such as the United
States, where convicted felons face varying restrictions on voting rights depending upon
state regulations, systematic biases embedded within AI-based criminal justice approaches
might cumulatively skew voter demographics, thereby further disenfranchising historically
marginalized populations (Aviram, Bragg, and Lewis, 2017). Additionally, AI-driven
methodologies have significant potential to influence electoral boundary delineation, raising
the possibility of perpetuating or even deepening existing inequities (Cho and Cain, 2020). AI
thus risks perpetuating structural discrimination by embedding historically biased patterns
into present and future decision-making processes, even amidst societal efforts to move
towards greater equality and fairness.

In other words, AI-generated depictions of public sentiment, collective political identity,
and electoral district boundaries may consistently disadvantage groups that were historically
marginalized. Unequal visibility to AI systems could correspondingly alter democratic
influence, benefiting some groups while disadvantaging others. For example, AI technology
could enhance the representation and policy influence of already advantaged populations by
making their preferences, priorities, grievances, and opinions more conspicuous and accessible
to policymakers. Meanwhile, groups less represented in data sets might have their interests
and views systematically overlooked or undervalued within AI-driven political forecasting
and policy impact analyses.
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Moreover, AI applications can substantially reshape labor markets, often adversely.
Although companies could theoretically harness automation technologies to complement
human workers—allowing them to engage in more productive tasks and thus enhance the
overall value of labor—in practice, enterprises tend predominantly to pursue automation as a
strategy for labor cost reduction, substituting human tasks with AI systems (Acemoglu and
Restrepo, 2018). This substitution diminishes employees’ negotiating strength and income,
shifting the balance toward capital at labor’s expense, thus potentially exacerbating economic
disparities and undermining collective bargaining capacities. Consequently, this economic
weakening of labor could translate into diminished political representation and influence for
workers (Gallego and Kurer, 2022).

It remains uncertain precisely which types of labor will be most affected by AI-driven
technological advancement. Automation traditionally replaces routine-based human tasks,
primarily impacting lower-skilled occupations (Acemoglu and Restrepo, 2022b). Neverthe-
less, successive waves of AI innovation have demonstrated that even tasks within white-collar
and knowledge-intensive professions—previously considered resistant to automation—contain
substantial routine components. Consequently, the political and economic repercussions
of AI-induced transformations may extend far more broadly than earlier automation
waves. Recent debates surrounding the effects of large language models and generative
AI technologies on creative industries and software development exemplify this broader
vulnerability. Illustratively, the 2023 Hollywood writers’ strike revealed emergent tensions,
as screenwriters sought contractual safeguards against studios utilizing AI for scriptwriting
and related tasks (Wilkinson, 2023).

Simultaneously, AI holds significant promise for addressing labor shortages in aging
populations by automating substitutable tasks, thus allowing shrinking workforces to
concentrate on non-automatable roles. Such a redistribution of labor could sustain
productivity amid demographic pressures confronting developed economies (Acemoglu and
Restrepo, 2022a). However, fully leveraging AI’s economic potential requires deliberate
measures to ensure broad-based benefit distribution, rather than concentration within elite
groups alone. Particularly with wealth gains arising from digital technologies, the traditional
connection between innovation and widely shared prosperity appears increasingly fragile or
disrupted. This provokes serious concern about whether elite groups disproportionately
capture AI-generated economic benefits, while the general population disproportionately
absorbs the risks associated with automation. If such imbalances persist, they could intensify
societal inequalities and further erode democratic norms.

To date, AI technology has been predominantly developed by a limited number of major
technology corporations, such as Microsoft, Google, and Facebook. Shen (2017) reported
that approximately 10,000 individuals across just seven countries were responsible for coding
the vast majority of AI systems worldwide. This concentration of control poses significant
challenges, as it restricts the broader potential and accessibility of AI applications. In extreme
cases, AI systems may exhibit biases and lack generalizability to diverse populations, thereby
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undermining their intended societal benefits.
The potentially destabilizing nature of these developments underscores the critical

importance of precisely how AI technologies are deployed and regulated. Clearly, AI intersects
directly with democratic ideals of equality. Inequities might emerge in the distribution of
public goods and government services mediated by AI systems, in citizens’ visibility and
representation within AI-derived analyses, and in economic prospects for individuals whose
occupational responsibilities become replaceable through AI innovations.

In response to these concerns, Democratic AI (DemAI) has emerged as a framework aimed
at ensuring public participation in AI-related decision-making. By aligning AI development
with democratic principles, this approach seeks to promote Social Good beyond conventional
professional ethical codes and legislative restrictions on technology and industry.

The democratization of AI refers to the principle of providing equitable access to AI-
related resources, opportunities, and benefits (Strouse et al., 2021). However, the concept
of Democratic AI remains loosely defined (Garvey, 2018). Broadly speaking, it can be
interpreted as a system in which individuals, regardless of their technical expertise, are
empowered to contribute to AI development and decision-making processes.

The democratization of artificial intelligence presents multiple benefits, particularly
through its potential to diminish monopolistic control of AI technologies (Ahmed, Mula,
and Dhavala, 2020). By lowering entry barriers, democratization allows individuals
lacking specialized AI expertise to utilize and benefit from these technologies. The open
dissemination of data, algorithms, and cloud computing resources further enables widespread
access to AI, independent of users’ financial resources or institutional affiliations. Publicly
accessible datasets and algorithms facilitate more efficient and cost-effective resolution of
complex AI challenges. Additionally, democratized AI holds considerable promise in reducing
biases and promoting fairness within AI systems, mitigating disparities arising from gender,
ethnicity, socioeconomic status, and related factors. Moreover, open-source platforms such
as PyTorch and TensorFlow have significantly propelled advancements in deep learning
research, encouraged talent cultivation, and accelerated the overall growth of AI knowledge.
Collectively, these elements foster greater inclusivity, stimulate innovation, and amplify the
societal benefits derived from AI.

Despite its potential benefits, Democratic AI faces several challenges. A key concern
is the involvement of non-technical participants, which may compromise the rigorously
designed ethical values embedded in AI systems by experts (Rao, 2020). Bias remains a
significant risk in AI, even within systems developed by highly skilled engineers (Zou and
Schiebinger, 2018). Allowing inexperienced contributors to influence AI development may
lead to biased outcomes, erroneous conclusions, and unintended consequences. Moreover,
identifying the sources of bias is inherently difficult, and remediation efforts can be costly
and uncertain in their effectiveness. Additionally, the absence of a formalized definition
or mathematical framework for Democratic AI leaves it largely conceptual, lacking a
widely accepted implementation model. These unresolved issues have hindered its practical
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development and widespread adoption.

Figure 5.1: Despite advances in accessibility, AI development and deployment remain
largely dominated by major corporate entities, which continues to influence the technology’s
effectiveness and fairness. As a result, systemic biases—such as those related to socioeconomic
status, gender, and age—persist within AI systems and may be inadvertently reinforced. The
figure was generated using ChatGPT (OpenAI, 2025).

In this work, we seek to address the challenges associated with Democratic AI by
investigating its potential to tackle both societal and technological issues. To this end,
we propose a user-centric Democratic AI (u-DemAI) framework, which optimizes individual
benefits through an iterative user-in-the-loop process.

To validate the effectiveness of our framework, we conducted a case study on brain
age estimation in medical services. Our experimental results demonstrate the substantial
advantages of the u-DemAI framework, which actively involves users in the decision-making
process and fosters autonomy within a community-driven AI ecosystem. Notably, the success
of our experiments serves as proof of concept for the practical implementation of democratic
AI, underscoring its benefits over traditional expert-driven AI systems by facilitating the
participation of non-experts.
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5.2 Preliminary

5.2.1 What is Democratic AI

In political theory, democracy is a system in which the people possess the power and liberty
to determine their governing structure. With the advancement of Artificial Intelligence (AI),
new discussions have emerged within the social sciences, particularly in areas such as AI
governance and the implications of integrating AI into democratic systems. Conversely,
when democratic principles are embedded into AI systems, a new research domain, referred
to as Democratic AI (DemAI), arises. This concept, also known as AI democratization,
aims to bring democratic processes into AI development and deployment. In AI-driven
services, this implies that users should have greater authority in AI governance. To gain a
deeper understanding of AI democratization, it is essential to first examine some fundamental
concepts that serve as the basis for constructing a theoretical framework for DemAI.

As the demand for democratic AI increases, researchers have proposed various conceptu-
alizations of ideal Democratic AI systems:

• (Nguyen et al., 2022) describe Democratic AI as a machine learning system that
operates based on hierarchical self-organization within a distributed environment. Their
framework consists of well-connected, decentralized learning agents that possess limited
yet highly personalized data and dynamically adjust themselves through an interplay
of specialized and generalized processes.

• (Shashi et al., 2022) argue that Federated Analytics (FA) provides a suitable foundation
for Democratic AI. However, they note that the current implementation of Federated
Learning (FL) follows a single-server, multiple-client architecture, which limits the
generalization capacity of AI models. To address this, they propose a Democratic
AI framework based on Federated Learning, aimed at enhancing the generalization
capabilities of AI models across cloud-based systems.

• (Montes and Goertzel, 2019) highlight that AI development is currently dominated
by a small number of centralized mega-corporations, whose priorities often align with
their stakeholders’ interests rather than public welfare. To counteract this oligopolistic
control, they propose a Democratic AI framework as a decentralized, distributed market
for AI services, leveraging distributed ledger technology to ensure transparency and
equity in AI deployment.

By synthesizing these perspectives, we propose the following generalized definition of
Democratic AI:

Democratic AI refers to an AI implementation that involves relevant stakeholders
in the optimization of AI services, ensuring that these services promote social
values and benefit the broader community.
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A key tenet of Democratic AI is the inclusion of people in the AI optimization loop,
ensuring that AI services align with social values and remain accessible to all individuals.
This approach fulfills (Montes and Goertzel, 2019) vision of breaking corporate monopolies
in AI governance, while also addressing (Nguyen et al., 2022) expectation of enhancing
generalization and personalization in AI services.

To formalize this concept, we propose a mathematical framework for Democratic AI,
termed user-centric Democratic AI (u-DemAI), which will be introduced in the following
sections and evaluated through a case study.

5.2.2 Overview of Our u-DemAI Framework

The u-DemAI framework proposed in this study is a comprehensive, multi-functional, and
publicly accessible system that provides users with various optimization strategies, models,
and datasets. It fosters collaborative AI development, allowing individuals to share trained
models based on local datasets, while enabling cloud-based AI services that are openly
available to users.

Users can upload trained models to the u-DemAI system, where the framework evaluates
their performance and records their predictive capabilities. These performance records are
compiled into a ranked list, allowing users to select models based on empirical evaluation
metrics.

When users request a prediction, the u-DemAI framework leverages multiple cloud-based
AI services and actively involves users in the optimization loop. Users are given the flexibility
to:

• Select preferred models from the uploaded list, using recorded performance metrics as
a reference.

• Specify target preferences, which may include fairness criteria across demographic
attributes such as gender, age, and ethnicity.

• Choose optimization objectives, including:

– Maximizing prediction accuracy.

– Ensuring fairness across demographic groups.

– Balancing accuracy and fairness for socially responsible AI deployment.

The u-DemAI framework integrates multiple cloud-based AI services to enhance predictive
accuracy and fairness. Predictions are aggregated from multiple AI models, and evolutionary
optimization techniques are employed to determine the optimal weighting for each service.
These weights are dynamically adjusted based on user feedback collected from different
demographic communities. This feedback-driven approach enables the system to optimize
social values, such as ensuring equitable AI predictions across user groups.
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In summary, u-DemAI establishes an open and democratized AI service ecosystem by
integrating users into the AI optimization process. Through transparent model selection,
customizable preferences, and continuous feedback loops, the framework empowers users to
shape AI services according to their values and needs.

Figure 5.2 illustrates the architecture of the proposed u-DemAI framework, highlighting
its key components and the interaction between users and cloud-based AI services.

Figure 5.2: The community-adaptive democratic process of the proposed u-DemAI framework
over cloud-based AI services.

5.2.3 Case Study: Medical Brain Age Estimation

In this study, we focus on a specific medical task as our case study due to its relevance
to Democratic AI and its potential benefits to patients. We select brain age estimation,
a contemporary challenge in medical AI, which requires both high predictive accuracy and
age-wise fairness (Cole and Franke, 2017; Luders, Cherbuin, and Gaser, 2016).

The human brain can be conceptualized as a Turing’s Type-B machine, characterized by
randomly interconnected neurons (R. Jiang and Crookes, 2019). Brain function is closely
linked to mental health, making brain age estimation an essential indicator in neurological
and psychiatric research (R. Jiang, P. Chazot, et al., 2022).

Brain age estimation is commonly framed as a classification or regression task, serving
as a key biomarker of brain health (Peng et al., 2021). Previous studies have successfully
employed AI-driven neuroimaging analysis to predict individual brain age, achieving state-
of-the-art performance (Cole and Franke, 2017; Luders, Cherbuin, and Gaser, 2016). By
training deep learning models on neuroimaging data from healthy individuals, it is possible
to develop AI models capable of estimating biological brain age (Cole and Franke, 2017).
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5.3 Modelling Democratic AI

5.3.1 Democratic AI beyond Clouds

Despite its literal interpretation, Democratic AI is inherently interconnected with cloud
computing technology. The rationale behind this is that Democratic AI aims to make
AI services widely accessible to the general public, necessitating internet-based access from
any location. Consequently, cloud computing serves as an indispensable infrastructure for
enabling scalable, distributed AI services (Nguyen et al., 2022; Shashi et al., 2022).

Leading AI companies, including Microsoft, Google, and IBM, have expressed their
commitment to democratizing AI, with cloud computing playing a pivotal role in this
initiative. These prominent AI providers offer cloud-based AI services to a diverse range
of users, such as edge devices, smart home systems, healthcare institutions, and industrial
applications.

A fundamental challenge in this paradigm is selecting the most suitable AI service for a
given user or application. This challenge is precisely addressed by our user-centric Democratic
AI (u-DemAI) framework. In this paper, we introduce u-DemAI as a novel algorithm designed
to actively involve users in AI service selection, thereby maximizing both individual benefits
and broader societal values derived from AI-driven solutions.

5.3.2 Fairness in Brain Age Prediction

In machine learning, fairness refers to the absence of systematic bias in model predictions
with respect to sensitive attributes such as age, gender, or ethnicity. A fair model ensures that
its predictive performance is consistent across different sub-populations, preventing unequal
treatment of particular groups.

In the context of brain age prediction, fairness is most directly related to mitigating
ageism, which means avoiding systematic overestimation or underestimation of brain age for
specific chronological age groups. If prediction errors vary consistently with age, the model is
considered biased. Such age-related bias not only undermines the scientific validity of brain
age as a biomarker but also risks misinforming clinical interpretations.

To quantify fairness in this study, we employed three criteria:

• Pearson correlation coefficient between the brain age gap and true age: This measures
whether the error is linearly associated with chronological age. A value close to zero
indicates fair predictions that are not systematically biased by age.

• Slope of fitted regression lines for the brain age gap: This criterion evaluates whether
errors increase or decrease systematically with age. A slope close to zero reflects age-
invariant error distribution.
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• Standard deviation of absolute errors: This captures the variability of prediction errors
across individuals. A lower standard deviation indicates that errors are more evenly
distributed across the population, supporting fairness.

Ensuring fairness in brain age prediction is critical because brain age has been proposed
as a biomarker of neurological health. If the model’s predictions were systematically biased
toward specific age ranges, this could lead to misleading conclusions in both clinical and
research contexts. By explicitly incorporating fairness into our training objective, we ensure
that brain age predictions are reliable and equitable across different age groups, enhancing
both the scientific validity and clinical applicability of our results.

5.3.3 Community Based User-Centric DemAI

From the user’s perspective, individuals within an AI service community prefer to evaluate AI
services based on their own experiences rather than relying solely on predefined specifications
provided by the service provider. To formalize this concept, we define a set of evaluation
measures denoted as {mk}, reflecting user preferences. To simplify the decision-making
process and enable more intuitive choices, we introduce a combined loss function L over k
measures:

L =
∑
k

αkmk, (5.1)

where αk represents the preference weights assigned by users. For example, in brain age
estimation, we want to keep accuracy and fairness balance, so we set m1 as accuracy (MAE),
m2 as fairness (the Pearson correlation coefficient between the brain age gap and chronological
age). If accuracy is a higher priority, then α1 corresponding to accuracy will be assigned
a larger value. Conversely, if fairness is prioritized, a higher α2 is assigned to fairness.
Consequently, the overall measure L enables users to make informed choices when selecting
an AI service i.

In this study, we define:

• m1 as MAE.

• m2 as the Pearson correlation coefficient between the brain age gap and true age (PC),
which serves as an indicator of ageism in the predicted results.

For our case study, we assume that all users assign equal importance to accuracy and fairness,
setting α1 = α2 = 0.5 to balance both factors. In this way, fairness is integrated directly into
the optimization objective. This ensures that the model is penalized not only for inaccurate
predictions but also for systematic age-related bias.

Given that users have access to multiple AI services, these services can be combined using
a weighted approach to optimize the overall loss function L:
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cjD =
∑
i

wic
j
i , (5.2)

where:

• cji represents the prediction result for the j-th user from AI service i.

• wi is the user-defined weight for AI service i.

• cjD denotes the final combined prediction, which is determined through the democratic
AI process.

It is important to note that Equation (5.2) is user-driven, as the weight parameters {wi}
are determined by individual user preferences. Since cjD is derived through user feedback, the
entire optimization process in our user-centric Democratic AI (DemAI) framework actively
includes users in the decision-making loop. Users can directly influence the selection of AI
services and set their preferences for social values through the assignment of {αk}. The
democratic selection process can then be mathematically formulated as an optimization
problem:

wi = argminL(wi, αk, c
j
i ) (5.3)

This formulation ensures that users retain full control over AI service utilization, as:

• Users select the AI services they prefer.

• Users define the weights assigned to each AI service.

• The final optimization outcome of the Democratic AI framework depends entirely on
user-defined preferences.

The implementation of a user-centric Democratic AI system raises two fundamental
mathematical challenges:

1. User Integration: How can users be effectively incorporated into the democratic
optimization loop?

2. Convergence to Optimality: How can we ensure that the democratic process leads
to the best possible optimization outcome?

To address these challenges, we introduce a novel natural democratic computing process
tailored for our u-DemAI framework, which will be further elaborated in the following
sections.
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5.3.4 Evolutionary Democratic Process

In principle, Democratic AI can be regarded as a natural computing process driven by human
behavior within a community of users (Koster et al., 2022). To effectively integrate AI
services over the cloud, incorporating user feedback into the optimization loop for achieving
socially beneficial AI outcomes, we draw inspiration from Particle Swarm Optimization
(PSO) to emulate an evolutionary democratic model. In this framework, PSO serves as the
optimization core that aggregates and fine-tunes diverse user-contributed models. Its primary
objective is to determine the optimal weighted ensemble of these models that best satisfies
the collective goals defined by user preferences—such as balancing predictive accuracy and
fairness. A comparable approach was introduced in Chapter 3, where the nl-AAE model
addressed variability across age-specific subgroups to enhance predictive accuracy. Here,
that proven modeling strategy is extended and embedded within the broader framework
of u-DemAI. While the ensemble principles from Chapter 3 are retained to ensure robust
accuracy, the key innovation of Chapter 5 lies in the democratic integration of user-defined
objectives. In this setting, fairness is explicitly incorporated as an optimization criterion,
particularly targeting the mitigation of ageism in brain age predictions. As a result, u-DemAI
advances beyond accuracy alone to achieve socially aligned, user-driven, and equitable model
outcomes.

We initialize n particles, each assigned a random initial position with a random initial
velocity. Each particle represents an n-dimensional weight vector corresponding to the AI
services:

(β1, β2, ..., βn)

where βi denotes the weight assigned to the i-th AI service.
For the i-th particle, we define:

• xi = (βi1, βi2, ..., βin) → Current position of the particle.

• vi → Current velocity of the particle.

• yi → Best position of the particle based on previous iterations.

• t → Number of iterations.

• g → Loss function used to evaluate each particle’s performance.

The best position for each particle is updated iteratively using user feedback from the AI
service community. The update rule follows:

yi(t+ 1) =

{
yi(t), g(xi(t+ 1)) ≥ g(yi(t))

xi(t+ 1), g(xi(t+ 1)) < g(yi(t))
(5.4)
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This mechanism ensures that each particle retains the best-performing configuration
encountered so far.

The global best position among all particles, denoted as ŷ, is defined as:

ŷ(t) ∈ {y0(t), y1(t), . . . , ys(t)}
such that g(ŷ(t)) = min{g(y0(t)), g(y1(t)), . . . , g(ys(t))}

(5.5)

The velocity update equation for each particle in dimension j is:

Vij(t+ 1) = ωVij(t) + γ1rand(0, 1)(yij(t)− xij(t))

+ γ2rand(0, 1)(ŷj(t)− xij(t))
(5.6)

where:

• ω → Inertia weight, controlling the contribution of the previous velocity.

• γ1, γ2 → Acceleration coefficients, determining the influence of personal and global best
positions.

• rand(0,1) → A randomly sampled value between 0 and 1.

The particle’s position is then updated using:

xi(t+ 1) = xi(t) + Vi(t+ 1) (5.7)

The trajectory of a particle is analyzed in discrete time steps, with xt representing the
particle’s position at time t. This system can be described by the following non-homogeneous
recurrence relation:

xt+1 = (1 + ω − ρ1 − ρ2)xt − ωxt−1 + ρ1y + ρ2ŷ, (5.8)

where ρ1 = C1 · random(0, 1), ρ2 = C2 · random(0, 1). Given the initial conditions x(0) = x0,
x(1) = x1, and assuming that y and ŷ remain constant over time, we obtain the closed-form
solution to the recurrence relation as:

xt = k1 + k2α
t + k3θ

t, (5.9)

with coefficients defined as follows:

k1 =
ρ1y + ρ2ŷ

ρ1 + ρ2
(5.10)

µ =

√
(1 + ω − ρ1 − ρ2)

2 − 4ω (5.11)
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α =
1 + ω − ρ1 − ρ2 + µ

2
(5.12)

θ =
1 + ω − ρ1 − ρ2 − µ

2
(5.13)

x2 = (1 + ω − ρ1 − ρ2)x1 − ωx0 + ρ1y + ρ2ŷ (5.14)

k2 =
θ(x0 − x1)− x1 + x2

µ(α− 1)
(5.15)

k3 =
α(x1 − x0) + x1 − x2

µ(θ − 1)
(5.16)

Equation (5.9) can thus be utilized to calculate the trajectory of the particle. According
to equations (5.1) and (5.13), the convergence behavior of the sequence {xt}+∞

t=0 is determined
by the parameters α and θ.

By considering expectations, we have (the detailed proof can be found in reference (Van
Den Bergh, 2001)):

E[ρ1] = C1

∫ 1

0

x

1− 0
dx =

C1

2
(5.17)

E[ρ2] = C2

∫ 1

0

x

1− 0
dx =

C2

2
(5.18)

Assuming that parameters ρ1, ρ2, and ω are chosen such that the sequence {xt}+∞
t=0

converges, from equation (5.10), we obtain the limit:

lim
t→+∞

xt = k1 =
ρ1y + ρ2ŷ

ρ1 + ρ2
(5.19)

Using the expected values derived from equations (5.17) and (5.18), we further simplify
the expression to obtain:
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lim
t→+∞

xt =
C1

2
y + C2

2
ŷ

C1

2
+ C2

2

=
C1y + C2ŷ

C1 + C2

=
C1

C1 + C2

y +
C2

C1 + C2

ŷ

=

(
1− C2

C1 + C2

)
y +

(
1− C1

C1 + C2

)
ŷ

= (1− α)y + αŷ

(5.20)

Here, x(t) denotes the position of the particle at time t.
Equation (5.20) indicates that the particle converges to a point determined by the line

connecting the current best position y and the global best position ŷ.
For the experiments conducted in our case study, we set the following parameters:

• ω = 0.2

• C1 = C2 = 0.2

• Number of iterations: 100

• Number of initial particles: 300

The mathematical formulation of this evolutionary democratic model provides a rigorous
proof of convergence, demonstrating that Democratic AI optimizes AI services toward socially
desirable values.

In our framework, user feedback operates at two complementary levels. First, users can
contribute locally trained models to u-DemAI. Each contributed model is systematically
evaluated on an internal benchmark dataset maintained by the system. Only models
that achieve satisfactory performance are retained as candidate base models, ensuring
that the pool of available models remains robust and reliable regardless of the quality of
individual submissions. Second, users are empowered to express their preferences through the
configuration of the loss function. For instance, they may adjust the relative weights assigned
to accuracy and fairness in the optimization objective, thereby tailoring the system to their
specific priorities. In this way, user feedback is not merely qualitative but is quantitatively
embedded into the optimization process, enabling u-DemAI to produce models that are both
high-performing and aligned with diverse user-defined values.

It is important to clarify that Particle Swarm Optimization (PSO) in u-DemAI does not
aim to directly simulate human feedback. Instead, PSO serves as the optimization algorithm
for determining the optimal weighting of user-contributed models within an ensemble. Users
provide feedback implicitly by specifying their objectives through preference weights in the
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loss function. PSO then optimizes the ensemble weights of the available models to minimize
this user-defined loss. In this way, user input defines the optimization target, while PSO
operates as the computational tool to achieve the optimal ensemble configuration. This
ensures that u-DemAI effectively integrates diverse user preferences while maintaining stable
convergence properties.

5.3.5 AI Services for Brain Age Estimation

As demonstrated in the previous chapters, several independent deep learning models have
already shown promising performance on brain age estimation tasks, establishing this domain
as a reliable benchmark for evaluating model accuracy and fairness. Building on these results,
we now employ brain age estimation as the case study for the proposed u-DemAI framework.
This choice not only allows us to validate the framework in a well-studied application
but also highlights how user-defined preferences (e.g., accuracy–fairness trade-offs) can be
systematically integrated into model selection and optimization.

In this context, we assume the availability of four cloud-based AI services, each providing
brain age estimation through state-of-the-art models. These models have demonstrated
strong performance in predicting brain age, and their details are as follows:

1. CNN developed in this study was implemented using the Keras framework with
TensorFlow as the backend. The model leverages deep 3D convolutional architectures
to extract structural patterns associated with brain aging from volumetric MRI data.
The network architecture comprises seven sequential blocks. The first five blocks each
include a 3D convolutional layer with a kernel size of 3 × 3 × 3, followed by batch
normalization, an Exponential Linear Unit (ELU) activation function, and a max
pooling layer. The sixth block incorporates a dropout layer to prevent overfitting,
while the seventh block includes a fully connected (dense) layer for regression output.
The input to the network is a 3D brain volume of size 121 × 145 × 121 voxels.
Through successive convolutional and pooling operations, the model reduces the
spatial dimensions and outputs 128 feature maps of size 4 × 5 × 4. These feature
maps are subsequently flattened and passed through the final dense layer to produce
the estimated brain age. To enrich the input representation, the model is trained
on two imaging channels obtained by concatenating gray matter and white matter
segmentations. The model is optimized using the Mean Absolute Error (MAE) as the
loss function and the Adam optimizer. The learning rate is set to 0.001 with a weight
decay of 10−4, and the Adam hyperparameters are β1 = 0.9 and β2 = 0.999.

2. GoogLeNet (Inception V1) (Couvy-Duchesne, Faouzi, et al., 2020) is a deep convo-
lutional neural network architecture adapted for regression tasks in this study. The
model builds upon the original Inception V1 architecture by replacing the final softmax
classification layer with a fully connected regression layer, enabling prediction of
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continuous brain age values rather than class labels. The architecture consists of a stem
network, followed by two Inception modules and a max-pooling layer. This is succeeded
by five additional Inception modules, two of which are connected to auxiliary regression
branches designed to mitigate the vanishing gradient problem. Following another max-
pooling layer, the network includes two more Inception modules, an average pooling
layer, a dropout layer, and a final fully connected regression layer. Each convolutional
unit within the network comprises a convolutional layer, batch normalization, a ReLU
activation function, and an output layer. The stem network consists of an input layer,
a convolutional unit, a max-pooling layer, two additional convolutional units, another
max-pooling layer, and an output layer. Within each Inception module, the structure
includes an input layer, seven parallel convolutional filters, a max-pooling layer, a
concatenation layer, and an output layer. Each auxiliary regression branch contains an
average pooling layer, a convolutional layer, a fully connected layer followed by a ReLU
activation, a dropout layer, and a final regression output layer. The model is trained
using 3D gray matter density maps of size 121 × 145 × 121 as input, with the target
output being the subject’s chronological age. The loss function employed is MAE, and
the network is optimized using the Adam optimizer with a learning rate of 0.0001 and
a batch size of 8.

3. ResNet (Peng et al., 2021): This model is based on the ResNet architecture and shares
similar parameter settings with the custom-built CNNs described earlier. The primary
architectural distinction lies in the incorporation of residual blocks, which are absent in
our self-designed CNNs. The network comprises five residual blocks, each followed by a
3D max pooling layer with a kernel size of 3×3×3 and a stride of 2×2×2. Each residual
block consists of two repetitions of a core sequence: a 3D convolutional layer with a
kernel size of 3×3×3 and a stride of 1×1×1, followed by batch renormalization and an
ELU activation. To enable residual learning, the input to each residual block is added
to the output of the second convolutional layer, facilitating gradient flow and improving
training stability. Following the convolutional and residual stages, the output is passed
to a fully connected block structured as a multilayer perceptron. The input to the
MLP is a flattened feature vector of size 128× 4× 5× 4 = 10, 240. The FC1 contains
256 neurons with ELU activation, followed by a dropout layer with a keep rate of 0.8.
The FC2 consists of a single neuron and performs linear regression to predict brain
age. The model is trained on 3D gray matter density maps as input data. MAE is
used as the loss function. Optimization is performed using the Adam optimizer with
a learning rate of 0.001, a weight decay of 10−4, and momentum parameters β1 = 0.9
and β2 = 0.999.

4. Support Vector Regression (SVR) (Cole and Franke, 2017) is a machine learning ap-
proach derived from SVM, originally designed for classification tasks. While traditional
SVMs construct optimal hyperplanes to separate classes in a high-dimensional feature
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space, SVR extends this concept to regression by finding a function that approximates
the target outputs within a specified margin of tolerance. In this study, SVR is employed
for brain age estimation using high-dimensional surface-based gray matter features.
Specifically, each individual is represented by approximately 650,000 gray matter
measurements derived from surface-based preprocessing. A RBF kernel is used to
capture the nonlinear relationships between structural brain features and chronological
age. The model is implemented using the scikit-learn package in Python. To ensure
robust performance and generalization, the model is trained for over 300 epochs, with
the goal of achieving optimal predictive accuracy across validation trials.

By integrating these cloud-based AI services, we evaluate the effectiveness of our user-
centric Democratic AI (u-DemAI) framework in adapting to diverse user communities and
automatically optimizing predictions for different population groups.

To assess the adaptability of u-DemAI, we segment users into three distinct age-based
communities:

• Young group: 16 ∼ 30 years old.

• Middle-aged group: 31 ∼ 60 years old.

• Elderly group: 61 ∼ 100 years old.

Each community is evaluated separately to determine whether u-DemAI can dynamically
optimize AI services, ensuring personalized performance improvements for different age
groups. The upcoming experiments aim to demonstrate the framework’s ability to enhance
accuracy and fairness across user populations.

5.3.6 Datasets

The dataset used in this study is derived from (Cole and Franke, 2017) and comprises 2,641
healthy individuals’ brain structural MRI (sMRI) scans, along with additional demographic
information such as age and gender. The age range of participants spans from 16 to 90
years, with an average age of 35.8 years and a standard deviation of 16.2 years. Among the
participants, 53% are female and 47% are male. Further details regarding the dataset can be
found in (Cole and Franke, 2017).

It is worth noting that this same dataset was also employed in Chapter 3 (Nonlinear
Age-Adaptive Ensemble Learning), where it was used to evaluate ensemble-based strategies
for brain age estimation. By reusing this dataset here, we ensure consistency across chapters
and enable a more direct comparison between the previously proposed ensemble learning
approaches and the user-centric Democratic AI (u-DemAI) framework introduced in this
chapter.

In this study, we utilize two different types of neuroimaging data as input for the AI
services:
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• Gray Matter and White Matter Maps: These maps were provided by the PAC
organization and serve as input for the self-defined CNN, ResNet, and GoogLeNet
models used in this study.

• Surface-Based Processing of Gray Matter: This dataset is derived from vertex-wise
cortical thickness and surface area measurements extracted from sMRI scans using
FreeSurfer 6.0 (Fischl, 2012). These processed features are used as input for the Support
Vector Regression (SVR) model.

By incorporating both volumetric and surface-based neuroimaging features, our approach
ensures a comprehensive representation of brain structure, enhancing the accuracy and
interpretability of brain age estimation.

5.4 Experimental Results

5.4.1 Experimental Setup

The dataset used in this study comprises 2,641 healthy individuals’ brain structural MRI
(sMRI) scans, along with demographic attributes such as age and gender. For model training
and evaluation, we allocate 75% of the dataset for training and 25% for testing to assess the
performance of the AI services.

To quantitatively evaluate the estimation accuracy of AI services, we use the Mean
Absolute Error (MAE), which measures the discrepancy between the chronological age and
the predicted age. MAE is a widely adopted metric in brain age estimation research (Couvy-
Duchesne, Faouzi, et al., 2020; Peng et al., 2021; Cole and Franke, 2017), where a lower MAE
indicates higher predictive accuracy.

To assess the fairness of AI services and their susceptibility to ageism, we introduce three
evaluation criteria:

The first criterion is the Pearson correlation coefficient between the brain age gap
(chronological age minus predicted age) and chronological age. A lower correlation suggests
that the model’s performance is less influenced by true age, indicating higher fairness and
resistance to age-related bias. The Pearson correlation coefficient is computed as:

ρX,Y =
cov(X, Y )

σXσY

(5.21)

where:

• X represents the brain age gap.

• Y represents the true age.

• cov(X, Y ) is the covariance between X and Y .
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• σX and σY denote the standard deviations of X and Y , respectively.

The second fairness criterion is the slope rate of the brain age gap with increasing
chronological age (Couvy-Duchesne, Faouzi, et al., 2020). A lower slope indicates that the
predicted age remains stable across different age groups, suggesting reduced age bias and
higher fairness. The slope rate is computed as:

lim
∆a→0

∣∣∣∣G(a+∆a)−G(a)

∆a

∣∣∣∣ (5.22)

where:

• a represents chronological age.

• G(a) represents the brain age gap as a function of age.

This metric is analyzed by examining the slope of the brain age gap vs. chronological age
regression line.

The third criterion is the standard deviation of absolute error between chronological age
and predicted age, which reflects the degree of variability in the model’s predictions. A lower
standard deviation indicates a higher ability to mitigate age-related bias, ensuring greater
fairness in predictions. The standard deviation is computed as:

S =

√∑n
i=1(xi − x̄)2

n− 1
(5.23)

where:

• n represents the total number of samples.

• xi is the absolute brain age gap of the i-th sample.

• x̄ is the mean absolute brain age gap across all samples.

By incorporating these three fairness criteria, we ensure a comprehensive evaluation of
age bias in AI-based brain age estimation. These metrics provide insights into how well
AI services generalize across different age groups and whether they unintentionally favor or
disadvantage specific populations.

5.4.2 Ageism in Single Models

To examine the presence of ageism in AI-based brain age estimation, we evaluate four widely
used AI models: CNN (Couvy-Duchesne, Faouzi, et al., 2020), ResNet (Peng et al., 2021),
GoogLeNet (Inception V1) (Couvy-Duchesne, Faouzi, et al., 2020), and Support Vector
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Regression (SVR) (Cole and Franke, 2017). This analysis aims to determine whether age
bias is method-dependent and to assess the degree of fairness across different models.

Figure 5.3 illustrates GoogLeNet’s brain age gap as a function of chronological age across
different age groups. The results indicate that ageism is present in GoogLeNet’s brain age
estimation, as evidenced by the varying slope of the brain age gap-chronological age regression
line in different age ranges. Specifically:

• Young Age Group (17-30 years old): The red regression line predominantly lies
below the black horizontal line, suggesting that the predicted brain age is consistently
overestimated for younger individuals.

• Middle Age Group (30-60 years old): The red regression line intersects the black
horizontal line, indicating a transition where the brain age gap shifts from negative
to positive.

• Elderly Group (60-90 years old): The red regression line remains above the black
horizontal line, implying that the predicted brain age is consistently underestimated
for older individuals.

These findings demonstrate that GoogLeNet exhibits systematic age bias: the brain
ages of younger individuals are more likely to be overestimated, whereas the brain ages
of older individuals are more likely to be underestimated. This pattern of bias highlights the
importance of evaluating and mitigating ageism in AI-driven brain age estimation models.

Table 5.1 presents the slopes of the fitted regression lines for the brain age gap across
different age groups for the four single AI services. The results indicate that each model
exhibits varying degrees of age bias, and the fairest algorithm differs across age groups. In
other words, certain models are more suitable for predicting brain age in younger individuals,
while others perform better for elderly populations.

Key observations from Table 5.1 include:

• GoogLeNet demonstrates the highest fairness for young individuals (17–30 years old),
as its slope is the least affected by age.

• CNN exhibits the most stable predictions for middle-aged individuals (30–60 years old),
suggesting it is well-suited for this demographic.

• ResNet outperforms other models in terms of fairness for elderly individuals (60–90
years old), as its predictions show the least bias in this age group.

• SVR consistently exhibits the highest degree of age bias across all age groups, making
it the least fair model among the four services.

These findings highlight the method-dependent nature of age bias in brain age estimation
and emphasize the importance of selecting appropriate AI models based on the target age
group.
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(a) Young

(b) Middle Aged

(c) Elder

Figure 5.3: Unfairness and ageism in brain age estimation for single service. Here, age ranges
for Young, Middle and Elder groups are: 16-30, 31-60 and 61-100. It shows the brain age gap
as a function of the chronological age using the GoogLeNet model in different groups. The
best fit of line regression (red) in each plot with the 95% prediction interval (yellow area)
denotes the degree of bias.
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Services/ Indicators Young Middle Elder
Single service 1: GoogLeNet 0.29 0.10 0.20
Single service 2: ResNet 0.39 -0.08 0.16
Single service 3: CNN 0.30 0.01 0.19
Single service 4: SVM 0.42 0.21 0.20

Table 5.1: The details of single services’ slopes of fitted lines for age gap in different age
groups.

5.4.3 Evaluation of the Democratic Process

In this section, we evaluate the performance of our proposed user-centric Democratic AI
(u-DemAI) framework in brain age estimation, specifically assessing its ability to mitigate
ageism. The prediction outcomes of u-DemAI are derived from the individual AI services,
including CNN, ResNet, GoogLeNet, and SVR.

The changes of u-DemAI’s training loss are shown in Figure 5.4. Here, training specifically
denotes the optimization process performed by Particle Swarm Optimization (PSO). At this
stage, no additional parameters within the base models are updated.

Figure 5.4: Changes of u-DemAI’s training loss.

To address age-related biases in brain age estimation, we define three distinct age
groups—young, middle-aged, and elderly—as user-specific preferences within the u-DemAI
framework. For each age group, a separate u-DemAI model is constructed by integrating
the predictions of the four single-model services. During inference, the u-DemAI model
corresponding to a user’s age group generates predictions by utilizing optimized weight
allocations that evolve through user-inclusive learning loops.
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By dynamically adjusting the weights of individual AI services, the u-DemAI framework
effectively accounts for age-specific brain characteristics, thereby enhancing prediction
fairness and reducing ageism.

We can see that this technique was also used in Chapter 3, as nl-AAE focuses on improving
predictive accuracy across age-specific subgroups. In this chapter, we extend that line of work
by embedding this proven modelling technique within the broader framework of u-DemAI.
While the modelling methods from Chapter 3 are reused here to ensure reliable prediction
accuracy, the novelty of Chapter 5 lies in introducing the concept of democratic, where
user-defined objectives explicitly balance accuracy and fairness. In particular, fairness is
operationalized through the mitigation of ageism in predicted outcomes, making brain age
estimation not only accurate but also socially aligned.

Figure 5.5 illustrates the evolution of individual service weights and the optimization
objective within the u-DemAI models across different age groups during training.

• The blue, brown, green, and purple lines represent the evolving weights of GoogLeNet,
ResNet, self-defined CNN, and SVR, respectively, within the u-DemAI models for each
age group.

• The red line denotes the variation of the loss function across iterations within the
u-DemAI framework.

As observed in Figure 5.5:

• For the young group, both individual service weights and the loss function converge to
a stable value after approximately 45 iterations.

• For the middle-aged group, convergence is achieved in approximately 36 iterations, a
pattern that is also consistent with the elderly group.

These results suggest that u-DemAI effectively optimizes service weights through iterative
training, achieving a stable and adaptive model tailored to different age groups. This
demonstrates that the democratic learning process successfully fine-tunes model predictions
by incorporating user preferences and mitigating age bias in brain age estimation.

Figure 5.6 illustrates the brain age gap as a function of chronological age for five different
AI services. The results demonstrate that u-DemAI outperforms all other methods in
mitigating ageism, as its brain age gap remains the most stable across different age groups.

Key observations from Figure 5.6 include:

• u-DemAI exhibits the least variation in brain age gap across aging, indicating its
superior ability to address age-related biases in brain age estimation.

• SVR demonstrates the highest degree of ageism, displaying the largest deviations in
predicted age across different age groups.
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(a) Young

(b) Middle Aged

(c) Elder

Figure 5.5: The iterative process in the u-DemAI framework for different age communities.
We can see both the service weights and the cost function converge successively.
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• Among the individual AI models, the self-designed CNN emerges as the fairest single
service, exhibiting the lowest degree of bias in brain age predictions.

• All single services tend to underestimate brain age in elderly individuals while
overestimating brain age in younger individuals.

• In contrast, u-DemAI consistently predicts a slightly higher brain age than the
chronological age, effectively reducing systematic bias.

These findings further confirm that u-DemAI successfully mitigates ageism in brain age
estimation, providing more reliable and equitable predictions across different age groups
compared to conventional single-model approaches.

Figure 5.6: Test performance of AI models/services. It represents the brain age gap in 5
different services as function of the whole chronological age. Here, ggnet means GoogLeNet,
resnet means ResNet, cnn means a self-defined CNN, and svm refers to SVM. We can see
that our u-DemAI reduced the bias.

The test results are detailed in Table 5.2, where we evaluate fairness and ageism in
predicted brain ages using three key criteria. The results indicate that:

• Slopes of the fitted age gap regression lines: u-DemAI demonstrates the highest fairness,
followed by the self-designed CNN. In contrast, ResNet and GoogLeNet show similar
levels of fairness degradation, while SVR exhibits the highest degree of age bias.
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Services Slopes SDAE PC MAE
Single service 1: GoogLeNet 1.13 3.09 0.34 3.70
Single service 2: ResNet 0.96 3.87 0.33 3.92
Single service 3: CNN 0.38 3.49 0.13 4.34
Single service 4: SVM 1.39 3.86 0.55 5.19
Ensemble Service A (Couvy-Duchesne, Faouzi, et
al., 2020)

0.51 1.97 0.21 3.33

Ensemble Service B (Da Costa, Dafflon, and
Pinaya, 2020)

0.78 2.83 0.27 3.76

Ensemble Service C, developed in Chapter 3 (Z.
Zhang, R. Jiang, et al., 2022)

0.27 0.12 0.06 3.19

Our u-DemAI 0.04 2.67 0.01 2.99

Table 5.2: The details of tested services’ performance. Here, the 1st column is the slopes
of fitted lines for the age gap, the 2nd column is the standard deviation of absolute error
(SDAE), the 3rd column is the Pearson coefficient (PC) between the brain age gap and true
age, and the last column is MAE. Our u-DemAI has consistently achieved the best among
all measures.

• Standard deviation of absolute error: u-DemAI achieves the lowest standard deviation
(2.67), indicating the highest robustness against age-related bias.

• Pearson correlation coefficient between the brain age gap and chronological age: u-
DemAI achieves the best fairness, with an exceptionally low Pearson coefficient of 0.01,
whereas SVR performs the worst, with a coefficient of 0.55.

In terms of estimation accuracy, u-DemAI achieves the highest prediction accuracy, with
a Mean Absolute Error (MAE) of 2.99. Among the single AI models:

• GoogLeNet demonstrates the best performance with an MAE of 3.7.

• SVR remains the least accurate, with an MAE of 5.19.

We further compare u-DemAI against expert-designed ensemble models evaluated on the
same PAC 2019 dataset:

• Couvy-Duchesne, Faouzi, et al. (2020) developed an ensemble model integrating seven
different algorithms, achieving Slopes of 0.51, SDAE of 1.97, Pearson coefficient of 0.21
and MAE of 3.33.

• Da Costa, Dafflon, and Pinaya (2020) implemented a shallow machine learning ensemble
model, resulting in Slopes of 0.78, SDAE of 2.83, Pearson coefficient of 0.27 and MAE
of 3.76.

121



Chapter 5. User Centric Democratic AI Framework 5.5. Discussion

• Z. Zhang, R. Jiang, et al. (2022), developed in Chapter 3, proposed a nonlinear age-
adaptive ensemble learning approach, yielding Slopes of 0.27, SDAE of 0.12, Pearson
coefficient of 0.06 and MAE of 3.19.

In contrast, u-DemAI—developed through user-driven model combination, without expert
intervention, almost outperforms all the expert-designed ensemble methods in both accuracy
and fairness (except the standard deviation of absolute error).

Overall, u-DemAI consistently outperforms existing models across all fairness and
accuracy metrics while integrating a PSO process involving non-expert users. These results
highlight the tremendous potential of Democratic AI in promoting fairness, accuracy, and
social value for individuals and communities.

5.5 Discussion

AI has become a driving force in technological transformation, yet concerns regarding its
fairness and inclusivity have intensified in recent years (Posner, Fei-Fei, et al., 2020). The
discourse surrounding AI fairness primarily revolves around two critical aspects: the diversity
of AI users and the presence of biases in AI predictions. As noted by (Posner, Fei-Fei, et al.,
2020), the AI field is currently experiencing a diversity crisis, making this a pivotal moment
for addressing inclusivity in AI development.

To mitigate these challenges, Democratic AI (DemAI) has emerged as a potential solution,
aiming to lower barriers to AI accessibility and empower a broader user base. However, several
challenges hinder its widespread adoption:

• Lack of a precise definition and mathematical formalization of the democratic AI
process.

• Increased risk of bias in AI predictions due to uncontrolled variability in user
contributions.

• Potential risks posed by inexperienced AI contributors, which may lead to inaccurate
or misleading outcomes, with significant consequences.

Our study clarifies and addresses these concerns surrounding Democratic AI through the
following key contributions:

• Formal Definition of Democratic AI: We provide a comprehensive definition of
Democratic AI, emphasizing its role in engaging users in the optimization process
toward achieving socially beneficial outcomes.

• Mathematical Framework: We establish a rigorous mathematical formalization of the
democratic AI process, demonstrating that DemAI can be interpreted as a natural
computing process inspired by human behavior in diverse communities.
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• Algorithmic Optimization via Evolutionary Methods: We introduce an evolutionary
algorithm-based optimization process within DemAI, leading to the development of
our u-DemAI framework, which is proven to exhibit guaranteed convergence in its
iterative optimization loop.

• Empirical Validation Through a Medical AI Case Study: We validate the effectiveness
of u-DemAI through an AI-driven brain age estimation task, demonstrating that by
incorporating non-expert users into the optimization loop, Democratic AI can surpass
expert-designed single models and ensemble methods in both accuracy and fairness.

It is important to recognize that integrating democracy into AI is inherently interdisci-
plinary, spanning social sciences, mathematics, and computer science. However, its practical
implementation may inevitably rely on cloud-based AI services, where users interact with AI
models via cloud platforms. As a result, the study of Democratic AI is deeply intertwined
with cloud computing technologies, and future research must address the security implications
of deploying AI services in a decentralized, user-driven manner.

Our proposed u-DemAI framework introduces several novel aspects to the study of
Democratic AI:

• A well-defined conceptual framework that underscores the social values of AI democ-
ratization.

• A mathematical interpretation of Democratic AI as a natural computing process,
capturing the role of human behavior in optimizing AI services.

• Formal proof of convergence in the democratic optimization process, ensuring that
u-DemAI refinement leads to stable and beneficial outcomes.

• Demonstration of u-DemAI in a real-world medical AI application, providing empirical
evidence that Democratic AI can surpass expert-guided AI systems in performance and
fairness.

Users in u-DemAI serve as both model contributors and model consumers, extending
beyond clinicians to include any interested individual or institution. In practice, users can (1)
train a local model on their own data and upload the trained model to the u-DemAI platform,
and (2) request a task-specific model by specifying preferences such as accuracy–fairness
trade-offs. All submitted models are evaluated centrally on a held-out public reference
dataset, where their performance is benchmarked and stratified according to fairness metrics.
For each request, u-DemAI then selects the top-performing models and constructs a weighted
ensemble optimized under the user-specified objective, ultimately providing a downloadable
model tailored to the user’s needs. Importantly, because the framework only integrates
models that meet baseline performance, overall system reliability is preserved. The upload of
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weaker models does not degrade the system, ensuring that users always benefit from robust
and well-performing solutions.

It is also important to clarify how the proposed u-DemAI differs from other established
machine learning paradigms, such as federated learning and active learning. While all three
approaches aim to improve AI performance and inclusivity, they differ fundamentally in
objectives and mechanisms.

Federated learning (FL) is designed to train models across decentralized datasets without
requiring raw data exchange. Its primary goal is privacy preservation and efficient distributed
training (McMahan et al., 2017). In FL, users contribute their local model updates to a
central server, which aggregates these updates into a global model. However, individual users
typically do not directly control the optimization objectives (such as fairness vs accuracy
trade-offs).

Active learning (AL) seeks to reduce labeling costs by iteratively selecting the most
informative samples to be labeled by an oracle (Settles, 2009). Its focus is on improving
model performance under limited annotation budgets. The user interacts with the training
loop by providing new labels, but users generally do not influence how multiple models are
combined or how fairness is incorporated.

In contrast, the u-DemAI framework is not primarily concerned with data privacy (as
in FL) or label efficiency (as in AL). Instead, it introduces a democratic optimization
process where users directly participate in shaping the AI service output. Users specify their
preferences (for example, weighting accuracy and fairness equally or prioritizing one over
the other), and the framework integrates multiple pre-trained AI services by dynamically
adjusting their weights through an evolutionary democratic process. Thus, u-DemAI is
centered on empowering users to control AI outcomes, rather than solely on optimizing
training efficiency or privacy.

Limitations and Future Work: Although u-DemAI highlights the value of user-in-the-
loop optimization, applying such mechanisms in clinical practice faces practical limitations.
First, clinical users vary in expertise: while domain experts may provide highly informed
feedback, non-specialist clinicians or patients may introduce subjective or inconsistent inputs.
Second, the integration of feedback processes into busy clinical workflows may impose
significant time burdens, limiting adoption. For future work, efficient interfaces that minimize
clinical workload are required. And it should also investigate hybrid approaches that combine
automated evaluation with targeted expert feedback to ensure both robustness and usability
in healthcare environments.

While the present study demonstrates the feasibility of u-DemAI through simulations,
this approach inevitably has limitations. Simulated user preferences and interactions,
although informative for proof-of-concept, cannot fully capture the diversity, inconsistency,
or unpredictability of real human behavior. In practice, users may have heterogeneous
objectives, provide noisy or conflicting feedback, or change their preferences over time—all
factors that are difficult to replicate in controlled simulations. As a result, the current
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evaluation may overestimate system stability and underestimate challenges associated
with large-scale deployment. Future work should therefore incorporate human-in-the-loop
evaluation, where researchers and lay users directly interact with the system to train local
models, specify fairness–accuracy trade-offs, and provide iterative feedback. Such user studies
would not only validate the robustness of u-DemAI in real-world settings but also reveal new
insights into how democratic participation can shape AI optimization in practice.

Our case study only focuses on brain age estimation, but the u-DemAI framework
is inherently general and applicable across domains. The core mechanism—evaluating
contributed models on a common benchmark dataset, ranking them by performance and
fairness metrics, and constructing user-specific ensembles guided by preference-weighted loss
functions—does not depend on the medical imaging setting. For example, in healthcare,
u-DemAI could be adapted to disease risk prediction or treatment outcome forecasting; in
non-medical domains, it could support recommender systems, financial forecasting, or policy
simulations. What makes u-DemAI generalizable is its user-in-the-loop design, which allows
task-specific objectives (e.g., accuracy vs. fairness vs. robustness) to be flexibly defined.
Future research should explore cross-domain case studies to demonstrate its robustness and
scalability beyond neuroimaging.

5.6 Conclusion

In this chapter, we have introduced the concept of Democratic AI (DemAI) and proposed
a user-centric Democratic AI (u-DemAI) framework that integrates user preferences into
the optimization loop of AI services. We formalized DemAI mathematically as a natural
computing process, and demonstrated how user-defined objectives (such as accuracy vs
fairness trade-offs) can be operationalized within an evolutionary optimization scheme using
Particle Swarm Optimization (PSO). Importantly, our formulation ensures both convergence
guarantees and adaptability to diverse user-defined priorities.

Through a case study on brain age estimation, we validated the effectiveness of u-DemAI
in addressing fairness, specifically with respect to age-related bias in predictive outcomes. By
incorporating fairness-related metrics into the optimization objective, u-DemAI was shown to
outperform both individual AI services and expert-designed ensembles in terms of accuracy
and fairness. This highlights the potential of Democratic AI to democratize not only access
to AI resources, but also their governance and optimization.

However, several limitations remain. First, our current evaluation was conducted under
simulation using a held-out dataset, rather than incorporating real-time human-in-the-loop
interactions. This limits the ecological validity of our findings, particularly in clinical contexts
where user feedback may be heterogeneous, inconsistent, or resource-constrained. Second,
while we demonstrated fairness in relation to age, the extension of u-DemAI to other
socially salient attributes (such as gender, ethnicity, socioeconomic background) remains
to be fully explored. Finally, the reliance on centralized benchmarking datasets may
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constrain generalizability, as real-world deployments will inevitably face distribution shifts
and heterogeneous data quality.

Future work will aim to extend u-DemAI in several directions. First, we plan to
incorporate real human-in-the-loop evaluation to test the robustness of the system when
exposed to diverse user communities. Second, we will investigate fairness across multiple
demographic dimensions beyond age, and explore mechanisms for balancing potentially
competing fairness objectives. Third, we intend to generalize the framework to other domains,
including healthcare decision support, education, and policy forecasting, to further assess its
scalability and impact. Collectively, these efforts will strengthen the case for Democratic AI
as a practical paradigm for inclusive, transparent, and socially beneficial AI systems.
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Chapter 6

Conclusions

This chapter concludes the dissertation by summarizing the key contributions, reflecting on
their significance for both neuroscience and artificial intelligence, discussing the limitations
of the proposed methods, and outlining future research directions. The work presented
here followed a trajectory of increasing scope—from methodological innovation in ensemble
learning, to explainable architectures in deep learning, and finally to embedding democratic
principles into AI frameworks. Together, these contributions demonstrate interpretability,
fairness, and inclusivity, offering a holistic approach to the challenge of brain age estimation
and beyond.

6.1 Contributions

The first contribution of this dissertation was nl-AAE, a nonlinear age-adaptive ensemble
model designed to address the imbalance inherent in brain age datasets. By dividing data into
age-specific subgroups and training dedicated ensemble models, nl-AAE demonstrated that
nonlinear weighting across independent learners (GoogLeNet, ResNet, CNN, and SVR) could
improve prediction accuracy while reducing systematic bias. Importantly, this framework
showed that age-sensitive modeling can mitigate the skewed influence of demographic
imbalance, achieving both higher accuracy and greater fairness compared to single-model
approaches.

The second contribution advanced brain age estimation by Triamese-ViT, a multi-
view transformer-based model with built-in interpretability. Unlike traditional CNNs or
ensemble methods, Triamese-ViT processed MRI volumes along three orthogonal views (axial,
coronal, sagittal), combining their outputs through a fusion mechanism to produce final
predictions. Beyond achieving state-of-the-art predictive accuracy, Triamese-ViT has built-
in interpretation, which generated attention maps, and occlusion sensitivity analysis became a
baseline for it to prove its credibility. The explainable results from Triamese-ViT highlighted
crucial regions for brain age estimation. These explainable outcomes revealed the significant
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regions for normal aging, gender-specific, and ASD diagnosis.
The third contribution expanded the methodological scope to the societal level by embed-

ding brain age estimation within a user-centric Democratic AI framework. Unlike nl-AAE and
Triamese-ViT, which were primarily expert-driven, u-DemAI explicitly incorporated fairness
as part of its optimization objective and placed users at the center of the AI. By allowing
users to specify preferences—such as accuracy vs fairness trade-offs—and by combining user-
contributed models through optimization, the framework democratized access to AI services.
The case study on brain age estimation demonstrated that u-DemAI not only reduced ageism
in predictions but also surpassed expert-designed ensemble models, underscoring the potential
of democratized AI.

6.2 Broader Significance

The findings of this thesis have significance in three dimensions: neuroscience, machine
learning, and the societal governance of AI.

From a neuroscience perspective, the proposed models reinforce the utility of brain age
as a biomarker, offering reliable tools for assessing deviations in normal aging trajectories.
Triamese-ViT, in particular, identified brain regions whose age-related changes align with
prior literature, thereby validating the biological plausibility of deep learning explanations.
These insights may guide early diagnosis of neurodegenerative disorders, inform treatment
monitoring, and support personalized medicine.

From a machine learning perspective, the work advances ensemble learning, transformer
architectures, and fairness-aware optimization. nl-AAE demonstrated the power of nonlinear
adaptive ensembles in imbalance datasets; Triamese-ViT contributed to the growing body of
interpretable vision transformers; and u-DemAI introduced a novel paradigm in which fairness
is mathematically embedded into optimization objectives. Collectively, these innovations
enrich the methodological toolkit of AI beyond the specific application of brain age prediction.

From a societal perspective, u-DemAI highlighted how democratic participation can be
operationalized in AI. By treating users not only as consumers but also as contributors and
decision-makers, the framework offers a vision of AI that is transparent, accountable, and
aligned with diverse social values. In this sense, the thesis contributes to democratic AI,
demonstrating its feasibility through a concrete medical case study.

6.3 Limitations

Despite donating these contributions, several limitations must be acknowledged.
First, the reliance on publicly available datasets such as PAC 2019 constrains the diversity

of populations represented in both training and testing. Most participants originate from
Western cohorts, which limits generalizability across different demographic, cultural, and
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clinical populations. Future studies should incorporate multi-site, cross-cultural data to
evaluate model robustness under broader population variability.

Second, the practical deployment of the proposed models—nl-AAE, Triamese-ViT,
and u-DemAI—faces notable challenges in clinical settings. The nl-AAE model, while
improving predictive accuracy across age groups, depends on large and well-balanced
datasets that are rarely available in hospital environments. Additionally, its ensemble
structure, which integrates multiple base learners, increases computational demands and
memory consumption, complicating integration with clinical data systems. Triamese-ViT,
although achieving state-of-the-art accuracy and interpretability, also requires extensive
computational resources and high-quality preprocessed MRI data. These requirements
make it less suitable for real-time clinical deployment or for institutions with limited
computational infrastructure. Moreover, the interpretability maps—although biologically
plausible—have yet to be systematically validated by clinical experts, leaving their diagnostic
utility unconfirmed.

Similarly, while the u-DemAI framework represents a step toward democratized and
fairness-aware AI, it was evaluated primarily through simulation rather than real-world user
interaction. The use of Particle PSO served as a proxy for modeling collective user behavior
and preference-driven optimization, but it cannot fully replicate the complexity, variability,
and contextual decision-making processes of actual human feedback. Implementing such a
human-in-the-loop framework in practice will require well-designed user interfaces, ethical
oversight, and regulatory compliance to ensure safety and accountability in clinical use.

Finally, fairness in this study was operationalized primarily in relation to ageism—mitigating
systematic overestimation or underestimation of brain age across chronological age groups.
Although this is a central fairness concern in brain age prediction, other sensitive attributes
such as gender, ethnicity, and socioeconomic status were not explicitly addressed. Extending
fairness auditing across multiple demographic dimensions, and exploring bias mitigation
strategies that generalize across diverse populations, remains an essential future direction.

In summary, the deployment of the proposed frameworks in clinical practice requires
further validation across multi-site datasets, model compression for resource-limited envi-
ronments, expert collaboration for interpretability assessment, and expansion of fairness
considerations beyond age-related bias. Addressing these limitations will be critical to
achieving reliable, equitable, and clinically applicable brain age estimation systems.

6.4 Future Work

Several future research directions are presented here.
In our study, model performance was primarily evaluated using widely adopted metrics

in the brain age estimation literature, including mean absolute error (MAE) and Pearson
correlation. These measures allow direct comparison with prior work, ensuring consistency
and reproducibility across studies. However, we acknowledge that statistical significance
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testing of performance differences (e.g., paired hypothesis testing between models) would
provide a stronger validation of the observed improvements. Incorporating such analyses
represents an important direction for future work, as it would allow us to confirm whether
the differences between models are not only numerically but also statistically meaningful.

Future studies should explore multi-modality MRI integration, incorporating modalities
such as T2-weighted imaging, diffusion-weighted imaging (DWI), and quantitative suscep-
tibility mapping (QSM) to capture complementary structural and microstructural features.
This could enhance both predictive performance and robustness to noise.

On the methodological side, data-efficient learning strategies—including self-supervised
pretraining, transfer learning from large neuroimaging datasets, and federated learning—offer
pathways to reduce dependence on large labeled datasets. Furthermore, model compression
techniques, such as pruning, quantization, or knowledge distillation, may mitigate the
computational burden, making models more suitable for clinical deployment.

For interpretability, stabilizing attention maps and implementing global normalization
strategies will be crucial for ensuring cross-cohort comparability. Incorporating expert-in-
the-loop validation will also enhance the credibility and clinical utility of model explanations.

For the democratic AI framework, the next step is to conduct real human-in-the-
loop evaluations. This includes involving clinicians, patients, and domain experts in the
preference-setting process and testing usability in real clinical workflows. Additionally,
fairness optimization should extend beyond age to encompass gender, ethnicity, and other
demographic factors, ensuring that the benefits of AI are equitably distributed. Beyond
healthcare, the u-DemAI framework could be generalized to domains such as education,
environmental monitoring, and policy-making, further demonstrating its versatility.

6.5 Conclusion

In conclusion, this dissertation demonstrates that advancing brain age estimation requires
more than building accurate predictive models. It requires interpretability to ensure trust,
fairness to ensure inclusivity, and democratization to ensure that AI reflects the values of
the communities it serves. By integrating methodological rigor with neuroscientific insight
and democratic principles, the research presented here contributes to a vision of AI that is
technically advanced, clinically relevant, and socially responsible.

The trajectory traced in this work—from nl-AAE to Triamese-ViT to u-DemAI—illustrates
a gradual expansion of focus: from accuracy, to interpretability, to fairness and democrati-
zation. Together, these contributions form a forward-looking research direction, bridging
the gap between innovation and societal impact. While limitations remain, the insights and
methods developed here provide a strong foundation for future work at the intersection of
machine learning, neuroscience, and democratic AI.
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Appendices

Table A.1: The sensitivity of various brain regions in healthy individuals and ASD patients
during brain age estimation. BMI (Built-in Model Interpretation) reflects attention values,
while OSA (Occlusion Sensitivity Analysis) shows impact when occluding regions.

Brain Region
Healthy People ASD Patients

BMI OSA BMI OSA

Precentral L 0.30 1.47 0.08 0.42

Precentral R 0.26 1.15 0.07 0.48

Frontal Sup L 0.40 1.43 0.02 0.45

Frontal Sup R 0.43 0.97 0.03 0.34

Frontal Sup Orb L 0 0.56 0 0.24

Frontal Sup Orb R 0 0.52 0 0.23

Frontal Mid L 0.69 1.06 0.05 0.36

Frontal Mid R 0.54 0.75 0.03 0.40

Frontal Mid Orb L 0 0.83 0 0.32

Frontal Mid Orb R 0 0.39 0 0.19

Frontal Inf Oper L 2.15 1.93 0.22 0.60

Frontal Inf Oper R 0.82 1.83 0.07 0.69

Frontal Inf Tri L 1.15 1.07 0.09 0.32

Frontal Inf Tri R 0.75 1.19 0.05 0.42

Frontal Inf Orb L 0 1.26 0 0.43

Frontal Inf Orb R 0 1.03 0 0.38

Continued on next page...
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Brain Region
Healthy People ASD Patients

BMI OSA BMI OSA

Rolandic Oper L 4.31 5.09 0.63 1.79

Rolandic Oper R 3.94 2.57 0.55 1.39

Supp Motor Area L 0.25 2.28 0.11 0.68

Supp Motor Area R 0.05 2.18 0.05 0.51

Olfactory L 0.29 2.93 0.06 1.02

Olfactory R 0 2.62 0 0.98

Frontal Sup Medial L 0.89 1.69 0.10 0.53

Frontal Sup Medial R 0.69 0.78 0.05 0.28

Frontal Med Orb L 0.20 0.85 0.08 0.27

Frontal Med Orb R 0.04 0.94 0.02 0.32

Rectus L 0.22 1.15 0.07 0.39

Rectus R 0.01 1.09 0 0.42

Insula L 1.19 5.24 0.26 1.85

Insula R 0.97 5.02 0.26 2.13

Cingulum Ant L 1.81 4.47 0.29 1.57

Cingulum Ant R 2.02 4.20 0.20 1.54

Cingulum Mid L 1.47 2.30 0.53 1.41

Cingulum Mid R 0.20 2.40 0.09 1.09

Cingulum Post L 3.79 1.86 0.99 1.65

Cingulum Post R 2.36 1.52 1.01 1.61

Hippocampus L 0.07 1.96 0.07 1.19

Hippocampus R 0.07 1.22 0.07 0.81

ParaHippocampal L 0.05 0.63 0.05 0.51

ParaHippocampal R 0.06 0.82 0.06 0.45

Amygdala L 0 0.52 0 0.41

Amygdala R 0 0.83 0 0.49

Calcarine L 1.31 0.85 0.24 1.35

Calcarine R 2.29 0.46 0.36 1.44

Cuneus L 2.16 0.30 0.30 1.00

Cuneus R 1.40 0.42 0.16 1.01

Continued on next page...
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Brain Region
Healthy People ASD Patients

BMI OSA BMI OSA

Lingual L 0.06 1.87 0.04 1.54

Lingual R 0 0.99 0 1.26

Occipital Sup L 1.00 0.17 0.08 0.42

Occipital Sup R 1.95 0.41 0.22 0.58

Occipital Mid L 1.16 0.15 0.11 0.28

Occipital Mid R 1.22 0.20 0.10 0.37

Occipital Inf L 0 0.19 0 0.20

Occipital Inf R 0 0.08 0 0.16

Fusiform L 0.02 0.78 0.02 0.59

Fusiform R 0.02 0.54 0.02 0.50

Postcentral L 0.79 0.81 0.13 0.37

Postcentral R 0.33 1.05 0.05 0.51

Parietal Sup L 0 0.31 0 0.27

Parietal Sup R 0 0.37 0 0.22

Parietal Inf L 0 0.40 0 0.37

Parietal Inf R 0 0.74 0 0.66

SupraMarginal L 0.58 0.68 0.05 0.37

SupraMarginal R 0.43 0.59 0.05 0.47

Angular L 0 0.29 0 0.26

Angular R 0 0.37 0 0.39

Precuneus L 0.87 0.97 0.21 0.81

Precuneus R 0.72 0.98 0.29 0.96

Paracentral Lobule L 0.11 1.78 0.07 0.51

Paracentral Lobule R 0.03 1.77 0.01 0.41

Caudate L 2.66 7.27 0.41 3.19

Caudate R 2.96 6.60 0.50 2.83

Putamen L 0.05 6.42 0.05 2.34

Putamen R 0.04 6.69 0.04 2.78

Pallidum L 0 5.40 0 1.87

Pallidum R 0 5.88 0 2.42

Continued on next page...
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Brain Region
Healthy People ASD Patients

BMI OSA BMI OSA

Thalamus L 2.60 8.09 0.76 3.60

Thalamus R 3.50 6.18 1.85 3.09

Heschl L 0.08 7.43 0.08 2.57

Heschl R 0.09 5.52 0.09 2.97

Temporal Sup L 1.74 2.23 0.21 0.81

Temporal Sup R 1.18 1.63 0.15 0.90

Temporal Pole Sup L 0 0.43 0 0.20

Temporal Pole Sup R 0 0.74 0 0.30

Temporal Mid L 0.82 0.50 0.10 0.31

Temporal Mid R 0.93 0.26 0.11 0.25

Temporal Pole Mid L 0 0.14 0 0.07

Temporal Pole Mid R 0 0.08 0 0.05

Temporal Inf L 0.03 0.20 0.03 0.17

Temporal Inf R 0.02 0.12 0.02 0.10

Cerebelum Crus1 L 0 0.31 0 0.20

Cerebelum Crus1 R 0 0.34 0 0.21

Cerebelum Crus2 L 0.03 0.21 0.01 0.16

Cerebelum Crus2 R 0 0.18 0 0.10

Cerebelum 3 L 0 1.64 0 1.18

Cerebelum 3 R 0 1.32 0 0.89

Cerebelum 4 5 L 0 1.88 0 1.49

Cerebelum 4 5 R 0 1.36 0 1.33

Cerebelum 6 L 0 0.94 0 0.76

Cerebelum 6 R 0 0.89 0 0.83

Cerebelum 7b L 0 0.15 0 0.13

Cerebelum 7b R 0 0.13 0 0.08

Cerebelum 8 L 0 0.32 0 0.25

Cerebelum 8 R 0 0.33 0 0.20

Cerebelum 9 L 0.02 0.85 0.01 0.56

Cerebelum 9 R 0 0.84 0 0.55

Continued on next page...
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Brain Region
Healthy People ASD Patients

BMI OSA BMI OSA

Cerebelum 10 L 0 0.48 0 0.31

Cerebelum 10 R 0 0.38 0 0.21

Vermis 1 2 2.04 1.74 0.53 1.01

Vermis 3 3.22 1.83 0.70 1.52

Vermis 4 5 1.56 2.11 0.45 1.89

Vermis 6 0.61 1.54 0.27 1.51

Vermis 7 0.43 1.24 0.26 0.93

Vermis 8 0.58 1.24 0.38 1.00

Vermis 9 0.80 1.74 0.56 1.04

Vermis 10 0.74 1.83 0.39 1.05
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Table A.2: The sensitivity of various brain regions in normal aging during brain age
estimation. The values are derived from Built-in Model Interpretation (BMI).

Brain Region
Normal Aging

0s 10s 20s 30s 40s 50s 60s 70s

Precentral L 0.86 0.19 0.42 0.25 0.25 0.14 0.62 0.24

Precentral R 1.03 0.18 0.43 0.24 0.25 0.12 0.67 0.25

Frontal Sup L 0.25 0.06 0.17 0.10 0.13 0.07 0.35 0.14

Frontal Sup R 0.27 0.05 0.19 0.13 0.14 0.08 0.39 0.17

Frontal Sup Orb L 0 0 0 0 0 0 0 0

Frontal Sup Orb R 0 0 0 0 0 0 0 0

Frontal Mid L 0.47 0.08 0.28 0.19 0.22 0.12 0.63 0.23

Frontal Mid R 0.33 0.07 0.22 0.15 0.16 0.10 0.49 0.18

Frontal Mid Orb L 0 0 0 0 0 0 0 0

Frontal Mid Orb R 0 0 0 0 0 0 0 0

Frontal Inf Oper L 2.07 0.42 1.28 0.91 0.98 0.61 2.64 1.02

Frontal Inf Oper R 0.53 0.14 0.44 0.28 0.30 0.19 0.92 0.36

Frontal Inf Tri L 0.92 0.15 0.55 0.38 0.42 0.24 1.19 0.47

Frontal Inf Tri R 0.46 0.11 0.34 0.24 0.27 0.15 0.77 0.29

Frontal Inf Orb L 0 0 0 0 0 0 0 0

Frontal Inf Orb R 0 0 0 0 0 0 0 0

Rolandic Oper L 5.69 1.49 3.39 2.59 2.64 1.66 5.98 2.59

Rolandic Oper R 5.30 1.34 3.18 2.33 2.49 1.44 6.15 2.54

Supp Motor Area L 0.86 0.21 0.87 0.77 0.87 0.42 1.74 0.83

Supp Motor Area R 0.59 0.12 0.27 0.13 0.15 0.06 0.32 0.13

Olfactory L 0.44 0.16 0.60 0.60 0.57 0.33 1.27 0.38

Olfactory R 0 0 0 0 0 0 0 0

Frontal Sup Medial L 1.00 0.25 1.08 0.84 0.92 0.52 2.16 0.91

Frontal Sup Medial R 0.48 0.10 0.31 0.22 0.23 0.14 0.71 0.27

Frontal Med Orb L 0.74 0.19 0.91 0.76 0.85 0.40 1.89 0.79

Frontal Med Orb R 0.15 0.04 0.16 0.16 0.16 0.09 0.53 0.16

Rectus L 0.63 0.18 0.64 0.58 0.61 0.31 1.59 0.64

Rectus R 0.02 0 0.02 0.01 0.01 0.01 0.05 0.02

Continued on next page...
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Brain Region
Normal Aging

0s 10s 20s 30s 40s 50s 60s 70s

Insula L 1.81 0.62 1.26 0.90 0.96 0.56 1.23 0.90

Insula R 1.84 0.69 1.04 0.68 0.71 0.40 1.34 0.64

Cingulum Ant L 2.58 0.81 2.63 2.22 2.24 1.21 5.61 2.02

Cingulum Ant R 1.76 0.47 1.19 0.88 1.01 0.57 2.77 1.05

Cingulum Mid L 3.62 1.14 3.13 2.88 3.04 1.68 5.14 2.79

Cingulum Mid R 0.70 0.21 0.44 0.33 0.32 0.16 0.58 0.28

Cingulum Post L 4.37 2.18 4.94 4.39 4.55 2.68 7.93 4.35

Cingulum Post R 2.47 2.16 2.66 2.45 2.31 2.31 2.22 2.17

Hippocampus L 0.84 0.21 0.36 0.19 0.20 0.09 0.40 0.15

Hippocampus R 0.90 0.21 0.37 0.19 0.22 0.09 0.40 0.16

ParaHippocampal L 0.58 0.14 0.21 0.11 0.12 0.05 0.23 0.09

ParaHippocampal R 0.76 0.17 0.26 0.13 0.15 0.06 0.30 0.11

Amygdala L 0 0 0 0 0 0 0 0

Amygdala R 0 0 0 0 0 0 0 0

Calcarine L 1.62 0.48 1.51 1.23 1.30 0.77 3.12 1.20

Calcarine R 2.34 0.69 1.74 1.46 1.55 0.95 1.96 1.51

Cuneus L 2.03 0.63 1.77 1.43 1.48 0.88 4.02 1.51

Cuneus R 1.25 0.35 0.80 0.61 0.71 0.41 1.71 0.67

Lingual L 0.17 0.06 0.20 0.20 0.21 0.12 0.50 0.20

Lingual R 0 0 0 0 0 0 0 0

Occipital Sup L 0.68 0.18 0.48 0.33 0.36 0.23 1.01 0.35

Occipital Sup R 1.82 0.46 1.09 0.86 0.91 0.55 2.38 0.90

Occipital Mid L 1.01 0.23 0.60 0.42 0.47 0.30 1.31 0.47

Occipital Mid R 0.88 0.23 0.63 0.46 0.51 0.31 1.40 0.51

Occipital Inf L 0 0 0 0 0 0 0 0

Occipital Inf R 0 0 0 0 0 0 0 0

Fusiform L 0.28 0.06 0.09 0.04 0.05 0.02 0.10 0.04

Fusiform R 0.29 0.06 0.08 0.04 0.05 0.02 0.09 0.03

Postcentral L 1.55 0.33 0.78 0.46 0.49 0.27 1.34 0.50

Postcentral R 0.69 0.13 0.36 0.20 0.21 0.11 0.58 0.22

Continued on next page...
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Brain Region
Normal Aging

0s 10s 20s 30s 40s 50s 60s 70s

Parietal Sup L 0 0 0 0 0 0 0 0

Parietal Sup R 0 0 0 0 0 0 0 0

Parietal Inf L 0 0 0 0 0 0 0 0

Parietal Inf R 0 0 0 0 0 0 0 0

SupraMarginal L 0.49 0.12 0.32 0.22 0.26 0.14 0.77 0.26

SupraMarginal R 0.61 0.15 0.35 0.23 0.24 0.13 0.65 0.21

Angular L 0 0 0 0 0 0 0 0

Angular R 0 0 0 0 0 0 0 0

Precuneus L 1.17 0.45 1.24 1.09 1.14 0.65 2.18 1.17

Precuneus R 0.78 0.59 0.74 0.75 0.77 0.71 0.71 0.76

Paracentral Lobule L 0.67 0.12 0.45 0.34 0.35 0.16 0.79 0.32

Paracentral Lobule R 0.10 0.02 0.11 0.07 0.09 0.05 0.22 0.09

Caudate L 3.11 1.11 2.13 1.51 1.58 1.00 2.61 1.54

Caudate R 3.17 1.31 2.39 1.79 1.97 1.18 2.67 1.93

Putamen L 0.57 0.12 0.23 0.11 0.13 0.06 0.21 0.08

Putamen R 0.30 0.09 0.17 0.08 0.09 0.03 0.15 0.06

Pallidum L 0 0 0 0 0 0 0 0

Pallidum R 0 0 0 0 0 0 0 0

Thalamus L 6.07 2.70 5.02 2.83 2.88 1.69 0 2.21

Thalamus R 5.69 4.66 6.03 5.28 5.52 3.95 4.13 5.18

Heschl L 1.17 0.28 0.63 0.33 0.31 0.14 5.56 0.24

Heschl R 1.32 0.30 0.62 0.30 0.28 0.13 0.63 0.24

Temporal Sup L 1.90 0.47 1.19 0.81 0.90 0.52 0.67 0.89

Temporal Sup R 1.61 0.34 0.86 0.60 0.65 0.36 2.39 0.69

Temporal Pole Sup L 0 0 0 0 0 0 1.67 0

Temporal Pole Sup R 0 0 0 0 0 0 0 0

Temporal Mid L 1.15 0.24 0.58 0.34 0.37 0.20 0 0.40

Temporal Mid R 0.98 0.25 0.60 0.45 0.50 0.27 1.08 0.54

Temporal Pole Mid L 0 0 0 0 0 0 1.12 0

Temporal Pole Mid R 0 0 0 0 0 0 0 0
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Brain Region
Normal Aging

0s 10s 20s 30s 40s 50s 60s 70s

Temporal Inf L 0.46 0.08 0.10 0.05 0.05 0.02 0 0.04

Temporal Inf R 0.47 0.08 0.11 0.05 0.06 0.02 0.11 0.04

Cerebelum Crus1 L 0 0 0 0 0 0 0.12 0

Cerebelum Crus1 R 0 0 0 0 0 0 0 0

Cerebelum Crus2 L 0.04 0.01 0.09 0.06 0.08 0.04 0 0.07

Cerebelum Crus2 R 0 0 0 0 0 0 0.19 0

Cerebelum 3 L 0 0 0 0 0 0 0 0

Cerebelum 3 R 0 0 0 0 0 0 0 0

Cerebelum 4 5 L 0 0 0 0 0 0 0 0

Cerebelum 4 5 R 0 0 0 0 0 0 0 0

Cerebelum 6 L 0 0 0 0 0 0 0 0

Cerebelum 6 R 0 0 0 0 0 0 0 0

Cerebelum 7b L 0 0 0 0 0 0 0 0

Cerebelum 7b R 0 0 0 0 0 0 0 0

Cerebelum 8 L 0 0 0 0 0 0 0 0

Cerebelum 8 R 0 0 0 0 0 0 0 0

Cerebelum 9 L 0.06 0.02 0.06 0.07 0.08 0.04 0.24 0.10

Cerebelum 9 R 0 0 0 0 0 0 0 0

Cerebelum 10 L 0 0 0 0 0 0 0 0

Cerebelum 10 R 0 0 0 0 0 0 0 0

Vermis 1 2 2.42 0.72 3.04 2.82 2.97 1.72 7.54 3.69

Vermis 3 3.92 1.40 4.27 4.18 4.67 2.52 10.44 4.76

Vermis 4 5 2.14 0.71 2.63 2.59 2.80 1.48 6.71 3.01

Vermis 6 1.44 0.49 1.79 1.67 1.75 0.94 4.55 1.81

Vermis 7 1.28 0.49 1.64 1.49 1.63 0.87 4.50 1.72

Vermis 8 1.97 0.66 2.17 1.96 2.44 1.36 7.16 2.81

Vermis 9 2.56 0.91 3.20 3.08 3.55 2.04 11.62 4.51

Vermis 10 1.88 0.54 2.58 2.38 2.32 1.38 6.96 2.97
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Table A.3: The sensitivity of various brain regions in healthy male and female individuals
during Triamese-ViT brain age prediction. BMI (Built-in Model Interpretation) reflects
attention values, while OSA (Occlusion Sensitivity Analysis) shows impact when occluding
regions.

Brain Region
Male Female

BMI OSA BMI OSA

Precentral L 0.09 0.05 0.11 0.14

Precentral R 0.15 0.14 0.12 0.04

Frontal Sup L 0.07 0.03 0.09 0.16

Frontal Sup R 0.09 0.02 0.10 0.21

Frontal Sup Orb L 0 0.01 0 0.04

Frontal Sup Orb R 0 0.06 0 0.13

Frontal Mid L 0.16 0.06 0.13 0.41

Frontal Mid R 0.08 0.05 0.10 0.07

Frontal Mid Orb L 0 0.01 0 0.13

Frontal Mid Orb R 0 0.02 0 0.16

Frontal Inf Oper L 0.19 0.10 0.42 0.17

Frontal Inf Oper R 0.09 0.03 0.16 0.10

Frontal Inf Tri L 0.26 0.05 0.29 0.22

Frontal Inf Tri R 0.10 0.05 0.17 0.08

Frontal Inf Orb L 0 0.02 0 0.25

Frontal Inf Orb R 0 0.01 0 0.13

Rolandic Oper L 0.35 0.13 0.51 0.13

Rolandic Oper R 0.40 0.07 0.37 0.03

Supp Motor Area L 1.60 0.03 0.40 0.17

Supp Motor Area R 0.10 0.03 0.25 0.18

Olfactory L 0.31 0.02 0.02 0.06

Olfactory R 0 0.04 0 0.08

Frontal Sup Medial L 1.46 0.05 0.30 0.13

Frontal Sup Medial R 0.14 0.05 0.15 0.47

Frontal Med Orb L 0.88 0.02 0.10 0.04

Frontal Med Orb R 0.16 0.01 0.01 0.12
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Brain Region
Male Female

BMI OSA BMI OSA

Rectus L 1.13 0.08 0.41 0.06

Rectus R 0.02 0.10 0.01 0.07

Insula L 0.11 0.04 0.74 0.56

Insula R 0.07 0.02 0.22 0.08

Cingulum Ant L 1.06 0.03 0.72 0.09

Cingulum Ant R 0.38 0.08 0.47 0.83

Cingulum Mid L 0.96 0.01 1.44 0.18

Cingulum Mid R 0.08 0.01 0.19 0.17

Cingulum Post L 1.81 0.03 1.76 0.24

Cingulum Post R 1.38 0.10 2.09 1.09

Hippocampus L 0.10 0.04 0.06 0.30

Hippocampus R 0.10 0.02 0.08 0.20

ParaHippocampal L 0.10 0.13 0.10 0.28

ParaHippocampal R 0.12 0.21 0.17 0.14

Amygdala L 0 0.07 0 0.61

Amygdala R 0 0.02 0 0.20

Calcarine L 0.81 0.04 0.25 0.15

Calcarine R 0.18 0.03 0.31 0.67

Cuneus L 1.20 0.01 0.54 0.11

Cuneus R 0.13 0.03 0.19 0.89

Lingual L 0.15 0.02 0.02 0.12

Lingual R 0 0.01 0 0.14

Occipital Sup L 0.15 0.02 0.12 0.34

Occipital Sup R 0.17 0.03 0.19 0.34

Occipital Mid L 0.19 0.02 0.30 0.87

Occipital Mid R 0.12 0.02 0.18 0.04

Occipital Inf L 0 0.01 0 0.23

Occipital Inf R 0 0.01 0 0.12

Fusiform L 0.07 0.16 0.10 0.15

Fusiform R 0.03 0.17 0.08 0.12
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Brain Region
Male Female

BMI OSA BMI OSA

Postcentral L 0.23 0.08 0.17 0.13

Postcentral R 0.11 0.09 0.06 0.07

Parietal Sup L 0 0.02 0 0.13

Parietal Sup R 0 0.04 0 0.05

Parietal Inf L 0 0.08 0 0.20

Parietal Inf R 0 0.17 0 0.04

SupraMarginal L 0.08 0.03 0.05 0.12

SupraMarginal R 0.06 0.10 0.04 0.05

Angular L 0 0.07 0 0.29

Angular R 0 0.05 0 0.07

Precuneus L 0.87 0.02 0.35 0.14

Precuneus R 0.14 0.04 0.27 0.42

Paracentral Lobule L 0.49 0.03 0.15 0.22

Paracentral Lobule R 0.27 0.02 0.14 0.28

Caudate L 0.54 0.04 0.53 0.21

Caudate R 0.42 0.07 0.34 0.71

Putamen L 0.03 0.03 0.25 0.37

Putamen R 0.02 0.02 0.06 0.15

Pallidum L 0 0.04 0 0.16

Pallidum R 0 0.02 0 0.35

Thalamus L 2.35 0.08 1.14 0.30

Thalamus R 1.64 0.11 0.87 1.07

Heschl L 0.06 0.09 0.51 0.22

Heschl R 0.08 0.03 0.67 0.04

Temporal Sup L 0.34 0.09 0.22 0.05

Temporal Sup R 0.18 0.06 0.22 0.03

Temporal Pole Sup L 0 0.21 0 0.39

Temporal Pole Sup R 0 0.06 0 0.10

Temporal Mid L 0.14 0.07 0.21 0.08

Temporal Mid R 0.10 0.04 0.10 0.10
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Brain Region
Male Female

BMI OSA BMI OSA

Temporal Pole Mid L 0 0.63 0 0.16

Temporal Pole Mid R 0 0.29 0 0.14

Temporal Inf L 0.06 0.05 0.03 0.07

Temporal Inf R 0.03 0.03 0.04 0.14

Cerebelum Crus1 L 0 0.19 0 0.28

Cerebelum Crus1 R 0 0.20 0 0.10

Cerebelum Crus2 L 0.19 0.37 0.02 0.16

Cerebelum Crus2 R 0 0.26 0 0.05

Cerebelum 3 L 0 0.06 0 0.11

Cerebelum 3 R 0 0.06 0 0.26

Cerebelum 4 5 L 0 0.15 0 0.10

Cerebelum 4 5 R 0 0.11 0 0.12

Cerebelum 6 L 0 0.34 0 0.17

Cerebelum 6 R 0 0.31 0 0.11

Cerebelum 7b L 0 0.22 0 0.03

Cerebelum 7b R 0 0.05 0 0.02

Cerebelum 8 L 0 0.26 0 0.04

Cerebelum 8 R 0 0.16 0 0.05

Cerebelum 9 L 0.12 0.03 0.02 0.06

Cerebelum 9 R 0 0.01 0 0.12

Cerebelum 10 L 0 0.97 0 0.05

Cerebelum 10 R 0 0.89 0 0.19

Vermis 1 2 2.64 0.30 0.51 0.33

Vermis 3 2.36 0.08 0.32 0.20

Vermis 4 5 1.84 0.12 0.08 0.11

Vermis 6 2.10 0.15 0.13 0.04

Vermis 7 2.49 0.24 0.37 0.03

Vermis 8 3.65 0.09 0.68 0.04

Vermis 9 4.02 0.04 0.73 0.11

Vermis 10 2.26 0.09 0.29 0.22
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Brain Region
Male Female

BMI OSA BMI OSA

Table A.4: The sensitivity of various brain regions in ASD male and female patients during
Triamese-ViT diagnosis. BMI (Built-in Model Interpretation) reflects attention values, while
OSA (Occlusion Sensitivity Analysis) shows impact when occluding regions.

Brain Region
Male Female

BMI OSA BMI OSA

Precentral L 0.08 0.09 0.11 0.09

Precentral R 0.14 0.09 0.12 0.04

Frontal Sup L 0.06 0.04 0.08 0.13

Frontal Sup R 0.09 0.02 0.10 0.16

Frontal Sup Orb L 0 0 0 0.05

Frontal Sup Orb R 0 0.06 0 0.10

Frontal Mid L 0.16 0.05 0.14 0.32

Frontal Mid R 0.07 0.05 0.11 0.07

Frontal Mid Orb L 0 0.01 0 0.13

Frontal Mid Orb R 0 0.03 0 0.08

Frontal Inf Oper L 0.17 0.09 0.47 0.12

Frontal Inf Oper R 0.07 0.02 0.20 0.08

Frontal Inf Tri L 0.24 0.04 0.33 0.19

Frontal Inf Tri R 0.09 0.03 0.20 0.08

Frontal Inf Orb L 0 0.02 0 0.19

Frontal Inf Orb R 0 0.01 0 0.10

Rolandic Oper L 0.40 0.09 0.54 0.10

Rolandic Oper R 0.31 0.03 0.39 0.04

Supp Motor Area L 1.43 0.02 0.46 0.11

Supp Motor Area R 0.10 0.01 0.24 0.11

Olfactory L 0.35 0.01 0.02 0.07

Olfactory R 0 0.05 0 0.07

Frontal Sup Medial L 1.29 0.06 0.32 0.13
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Brain Region
Male Female

BMI OSA BMI OSA

Frontal Sup Medial R 0.15 0.04 0.15 0.34

Frontal Med Orb L 0.92 0.02 0.13 0.07

Frontal Med Orb R 0.17 0.01 0.01 0.13

Rectus L 1.46 0.05 0.36 0.08

Rectus R 0.03 0.07 0.01 0.07

Insula L 0.11 0.04 0.73 0.48

Insula R 0.06 0.02 0.21 0.11

Cingulum Ant L 1.05 0.08 0.73 0.15

Cingulum Ant R 0.37 0.09 0.45 0.60

Cingulum Mid L 0.93 0.01 1.47 0.12

Cingulum Mid R 0.08 0.01 0.20 0.11

Cingulum Post L 1.76 0.04 1.80 0.13

Cingulum Post R 1.38 0.09 2.07 0.58

Hippocampus L 0.17 0.05 0.06 0.21

Hippocampus R 0.05 0.02 0.08 0.16

ParaHippocampal L 0.11 0.12 0.09 0.23

ParaHippocampal R 0.10 0.22 0.12 0.15

Amygdala L 0 0.05 0 0.38

Amygdala R 0 0.03 0 0.16

Calcarine L 0.07 0.05 0.35 0.15

Calcarine R 0.17 0.03 0.26 0.39

Cuneus L 1.01 0.04 0.59 0.12

Cuneus R 0.12 0.04 0.18 0.49

Lingual L 0.14 0.01 0.02 0.10

Lingual R 0 0.01 0 0.10

Occipital Sup L 0.10 0.04 0.11 0.26

Occipital Sup R 0.15 0.03 0.18 0.23

Occipital Mid L 0.15 0.02 0.24 0.59

Occipital Mid R 0.10 0.01 0.17 0.07

Occipital Inf L 0 0.01 0 0.14
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Brain Region
Male Female

BMI OSA BMI OSA

Occipital Inf R 0 0.02 0 0.07

Fusiform L 0.07 0.14 0.09 0.14

Fusiform R 0.02 0.17 0.05 0.08

Postcentral L 0.24 0.07 0.20 0.06

Postcentral R 0.09 0.07 0.06 0.04

Parietal Sup L 0 0.02 0 0.06

Parietal Sup R 0 0.02 0 0.05

Parietal Inf L 0 0.09 0 0.11

Parietal Inf R 0 0.15 0 0.07

SupraMarginal L 0.08 0.07 0.06 0.08

SupraMarginal R 0.04 0.07 0.04 0.04

Angular L 0 0.06 0 0.19

Angular R 0 0.04 0 0.08

Precuneus L 0.84 0.02 0.41 0.09

Precuneus R 0.13 0.04 0.25 0.21

Paracentral Lobule L 0.46 0.01 0.15 0.09

Paracentral Lobule R 0.24 0.02 0.10 0.10

Caudate L 0.58 0.07 0.54 0.22

Caudate R 0.30 0.06 0.46 0.47

Putamen L 0.02 0.02 0.28 0.30

Putamen R 0.01 0.01 0.06 0.11

Pallidum L 0 0.01 0 0.12

Pallidum R 0 0.01 0 0.28

Thalamus L 2.24 0.06 1.15 0.19

Thalamus R 1.57 0.09 0.81 0.69

Heschl L 0.07 0.06 0.64 0.16

Heschl R 0.05 0.03 0.53 0.03

Temporal Sup L 0.34 0.06 0.24 0.04

Temporal Sup R 0.13 0.05 0.21 0.03

Temporal Pole Sup L 0 0.14 0 0.29

Continued on next page...

146



Appendix A. Appendices

Brain Region
Male Female

BMI OSA BMI OSA

Temporal Pole Sup R 0 0.08 0 0.11

Temporal Mid L 0.14 0.04 0.17 0.06

Temporal Mid R 0.09 0.03 0.10 0.04

Temporal Pole Mid L 0 0.43 0 0.13

Temporal Pole Mid R 0 0.32 0 0.09

Temporal Inf L 0.07 0.03 0.03 0.05

Temporal Inf R 0.02 0.03 0.03 0.06

Cerebelum Crus1 L 0 0.20 0 0.13

Cerebelum Crus1 R 0 0.14 0 0.07

Cerebelum Crus2 L 0.16 0.37 0.02 0.06

Cerebelum Crus2 R 0 0.18 0 0.04

Cerebelum 3 L 0 0.04 0 0.05

Cerebelum 3 R 0 0.04 0 0.10

Cerebelum 4 5 L 0 0.12 0 0.10

Cerebelum 4 5 R 0 0.13 0 0.09

Cerebelum 6 L 0 0.28 0 0.17

Cerebelum 6 R 0 0.28 0 0.10

Cerebelum 7b L 0 0.20 0 0.02

Cerebelum 7b R 0 0.03 0 0.02

Cerebelum 8 L 0 0.23 0 0.03

Cerebelum 8 R 0 0.12 0 0.04

Cerebelum 9 L 0.10 0.03 0.01 0.06

Cerebelum 9 R 0 0.01 0 0.07

Cerebelum 10 L 0 0.70 0 0.05

Cerebelum 10 R 0 1.56 0 0.09

Vermis 1 2 2.78 0.16 0.38 0.17

Vermis 3 2.31 0.06 0.36 0.08

Vermis 4 5 1.82 0.09 0.11 0.07

Vermis 6 1.99 0.08 0.13 0.06

Vermis 7 2.49 0.10 0.27 0.04
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Brain Region
Male Female

BMI OSA BMI OSA

Vermis 8 3.93 0.06 0.42 0.06

Vermis 9 3.90 0.06 0.48 0.08

Vermis 10 1.79 0.12 0.30 0.12
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Table A.5: The sensitivity of various brain regions based on Region-Based Occlusion
Sensitivity Analysis comparing healthy individuals and ASD patients.

Brain Region
Region-Based OSA

Healthy People ASD Patients

Precentral L 2.37 0.69

Precentral R 0.78 0.73

Frontal Sup L 2.74 2.43

Frontal Sup R 3.32 2.95

Frontal Sup Orb L 0.24 0.22

Frontal Sup Orb R 0.41 0.32

Frontal Mid L 5.08 2.94

Frontal Mid R 2.30 2.18

Frontal Mid Orb L 0.51 0.83

Frontal Mid Orb R 0.78 0.81

Frontal Inf Oper L 0.66 0.85

Frontal Inf Oper R 0.62 0.89

Frontal Inf Tri L 1.68 1.80

Frontal Inf Tri R 1.01 0.67

Frontal Inf Orb L 0.32 0.27

Frontal Inf Orb R 0.92 1.07

Rolandic Oper L 0.71 0.86

Rolandic Oper R 0.35 0.79

Supp Motor Area L 0.35 0.27

Supp Motor Area R 0.45 0.25

Olfactory L 0.06 0.04

Olfactory R 0.05 0.07

Frontal Sup Medial L 2.03 0.99

Frontal Sup Medial R 2.50 2.20

Frontal Med Orb L 0.18 0.15

Frontal Med Orb R 0.53 0.41

Rectus L 0.08 0.05

Rectus R 0.15 0.22
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Brain Region
Region-Based OSA

Healthy People ASD Patients

Insula L 0.94 0.91

Insula R 0.51 0.56

Cingulum Ant L 0.44 0.30

Cingulum Ant R 2.38 1.72

Cingulum Mid L 0.21 0.14

Cingulum Mid R 0.42 0.10

Cingulum Post L 0.70 0.60

Cingulum Post R 2.73 2.33

Hippocampus L 0.84 0.88

Hippocampus R 1.81 3.11

ParaHippocampal L 0.44 0.27

ParaHippocampal R 1.02 0.82

Amygdala L 0.20 0.06

Amygdala R 0.17 0.18

Calcarine L 1.21 0.57

Calcarine R 4.71 4.03

Cuneus L 0.20 0.12

Cuneus R 2.14 1.85

Lingual L 1.15 0.57

Lingual R 12.33 9.88

Occipital Sup L 0.80 0.72

Occipital Sup R 1.73 1.10

Occipital Mid L 1.34 1.72

Occipital Mid R 0.87 0.53

Occipital Inf L 0.13 0.10

Occipital Inf R 0.14 0.12

Fusiform L 0.97 0.73

Fusiform R 2.05 2.78

Postcentral L 2.91 1.38

Postcentral R 1.10 1.79
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Brain Region
Region-Based OSA

Healthy People ASD Patients

Parietal Sup L 0.71 0.50

Parietal Sup R 0.70 0.69

Parietal Inf L 2.64 1.21

Parietal Inf R 0.55 0.22

SupraMarginal L 0.38 0.27

SupraMarginal R 0.41 0.29

Angular L 1.29 0.31

Angular R 0.58 0.43

Precuneus L 1.10 0.45

Precuneus R 2.44 1.08

Paracentral Lobule L 0.91 0.30

Paracentral Lobule R 0.32 0.60

Caudate L 0.40 0.37

Caudate R 2.02 1.23

Putamen L 1.02 0.75

Putamen R 0.49 0.57

Pallidum L 0.86 0.57

Pallidum R 2.85 2.20

Thalamus L 3.47 2.89

Thalamus R 4.69 4.19

Heschl L 0.43 0.61

Heschl R 0.10 0.12

Temporal Sup L 1.06 1.10

Temporal Sup R 0.80 0.92

Temporal Pole Sup L 0.73 0.61

Temporal Pole Sup R 1.04 1.96

Temporal Mid L 1.26 1.21

Temporal Mid R 1.41 1.90

Temporal Pole Mid L 0.33 0.66

Temporal Pole Mid R 0.96 1.34
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Brain Region
Region-Based OSA

Healthy People ASD Patients

Temporal Inf L 0.50 1.02

Temporal Inf R 0.88 1.06

Cerebelum Crus1 L 1.47 2.02

Cerebelum Crus1 R 3.72 4.49

Cerebelum Crus2 L 0.71 1.14

Cerebelum Crus2 R 2.23 1.92

Cerebelum 3 L 0.04 0.01

Cerebelum 3 R 0.13 0.27

Cerebelum 4 5 L 0.27 0.54

Cerebelum 4 5 R 1.10 0.81

Cerebelum 6 L 0.58 0.87

Cerebelum 6 R 3.06 3.04

Cerebelum 7b L 0.41 0.71

Cerebelum 7b R 0.37 0.20

Cerebelum 8 L 0.96 1.15

Cerebelum 8 R 2.46 3.17

Cerebelum 9 L 1.94 0.93

Cerebelum 9 R 1.80 1.66

Cerebelum 10 L 0.38 0.17

Cerebelum 10 R 2.17 2.79

Vermis 1 2 0.02 0.01

Vermis 3 0.06 0.05

Vermis 4 5 0.10 0.20

Vermis 6 0.05 0.04

Vermis 7 0.15 0.16

Vermis 8 0.24 0.21

Vermis 9 0.23 0.51

Vermis 10 0.79 0.36
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