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The T2K Collaboration presents the first measurement of electron neutrino-induced charged-current
pion production on a predominantly carbon target in a restricted kinematical phase space. This is performed
using data from the 2.5° off-axis near detector, ND280. The differential cross sections with respect to the
outgoing electron and pion kinematics, in addition to the total flux-integrated cross section, are obtained.
Comparisons between the measured and predicted cross-section results using the Neut, Genie, and NuWro
Monte Carlo event generators are presented. The measured total flux-integrated cross section is [2.52 +
0.52(stat) & 0.30(syst)] x 107> cm?nucleon™!, which is lower than the event generator predictions.

DOI: 10.1103/klhv-7t6h

Introduction—Charged-current (CC) pion production
from electron neutrinos scattering off nucleons (v,CCrx™)
is a subdominant interaction that contributes to the v,
appearance signal in accelerator-based long-baseline
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neutrino oscillation experiments such as T2K and NOvA
[1,2]. This channel is sensitive to the parameters that favor
v, = v, oscillations, including §cp and 6,3. The modeling
of neutrino-nucleon interactions contributes ~3% to the
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total systematic uncertainty on the current best-fit oscil-
lation parameters at T2K [3]. Improved constraints, par-
ticularly on v, cross sections, are necessary to determine
oscillation parameters to better precision at T2K, as
well as at next-generation experiments including Hyper-
Kamiokande [4] and DUNE [5].

The v,CCr™ channel has been observed in several
inclusive v, cross-section measurements [6—10], as well
as in an exclusive measurement on argon [11]. Simulations
with the Neut event generator [12] suggest single-pion
production (CClx™) channels contribute ~10% to the v,
appearance signal from the T2K flux given the current best-
fit oscillation parameters [3]. Measuring pion production
and v, cross sections at T2K presents unique challenges
due to low statistics from the beam composition and
numerous backgrounds, limiting the impact of these sam-
ples on constraining oscillation parameters. A recent
measurement of r,CClzt, which combined T2K data
with Super-Kamiokande atmospheric data, revealed an
event rate excess localized to low lepton momentum
[13]. This Letter measured 225 events compared to a
best-fit Monte Carlo (MC) prediction of 160 4 19 under
the near detector constraint. Similar excesses have also
been reported using only T2K data, though with lower
statistical significance [3,14]. This analysis directly lever-
ages data from the T2K off-axis near detector, ND280, to
constrain the v,CCrt channel on carbon, improving our
understanding of this crucial interaction.

The signal definition for this measurement is any CC
interaction that produces an electron and at least one
positively charged pion that escapes the nucleus. This is
v,A = e~ n" X where A is a target nucleus and X represents
an arbitrary combination of hadrons, which, unlike the far
detector samples, may include additional z*. Phase space
constraints are chosen to ensure the e~ and #" can
plausibly be detected and reliably reconstructed. The
constraints are imposed on the e~ momentum (p,) and
angle with respect to the average neutrino direction (0, ),
as well as the pion momentum (p,); these are 0.35 < p, <
30GeV/c, cosf, > 0.7, and p, < 1.5 GeV/c. Events
outside of this region are retained for the fitting process
but cross sections are not calculated here.

T2K experiment—Tokai to Kamioka (T2K) is a long-
baseline neutrino oscillation experiment in Japan [15]. The
J-PARC facility houses both the neutrino beamline and the
near detector complex, which is situated 280 m down-
stream from the neutrino beam line target. Super-
Kamiokande (SK), a 50 kt water Cherenkov detector
located 295 km to the west of J-PARC, serves as the far
detector [16]. A neutrino beam with peak energy 0.6 GeV is
produced by steering a beam of 30 GeV protons towards a
graphite target [17]. This produces charged pions and
kaons, which are then focused using magnetic horns
towards a decay volume. Forward horn current (FHC)
and reverse horn current (RHC) modes are used to select v,

and 7, from decays of focused a* respectively. In FHC
mode, the beam possesses an initial fractional composition
of 92.6% v, with 6.2% v, 1.1% v,, and 0.1% v, [18].

ND280 is a tracking detector used to measure the
unoscillated neutrino beam at the same off-axis angle as
SK (2.5°). The main target masses of ND280 are two fine-
grained detectors (FGDs) [19]. These are comprised of
modules made from polystyrene scintillator bars; each
adjacent module has 192 bars oriented in alternating
directions perpendicular to the neutrino beam. The
upstream FGD (FGD1) has 15 modules and is predomi-
nantly carbon (86.1%) by mass, with smaller proportions of
hydrogen (7.4%), oxygen (3.7%), titanium (1.7%), silicon
(1.0%), and nitrogen (0.1%). Three time projection cham-
bers (TPCs) adjacent to the FGDs are used to perform
particle identification (PID) as well as for measuring the
charge and momentum of traversing particles [20]. The
TPCs and FGDs are surrounded by electromagnetic calo-
rimeters (ECals) [21] which are used to detect neutral
particles, perform track-shower separation and measure
particle energy. The detector modules are enclosed by the
0.2 T UA1/NOMAD magnet, instrumented with the scin-
tillator-based side muon range detector [22].

This analysis uses an exposure of 11.6 x 10% protons on
target (POT) collected by ND280 between 2010-2013 and
2016-2017 in the FHC mode. Neutrino interactions are
primarily simulated using the Neut 5.4.0 [23] event generator.
The Nuisance2 framework [24] is used to obtain additional
predictions from the Genie 3.4.2 (“AR23” tune) [25] and
NuWro 21.9.2 [26] generators. The beam line is simulated
using FLUKA2011 [27,28], Geant4 [29], and GCALOR [30].

Event selection—Two signal-enriched samples with dis-
tinct pion detection methods are used to measure the
v,CCr" event rate. The TPC-z* sample selects events
where the pion passes from FGDI into the downstream
TPC (TPC2). The FGD-z" sample selects FGD1-contained
pions that decay to Michel electrons by 7z — u™ v, and
u" = et,v,. The primary v, vertex is restricted to a
fiducial volume (FV) within FGDI, excluding the five
outermost scintillator bars in each layer where events tend
to be misreconstructed, leaving a total target mass of
919.5 kg, or (5.54 & 0.04) x 10?° nucleons [8].

The event selection developed for an inclusive v, cross-
section measurement [8] is used here, with the additional
requirement that a pion is detected from the same vertex. In
the TPC-z+ sample, the leading positively charged track is
subjected to PID cuts based on energy deposition (dE/dx)
in the TPC gas mixture, identifying zt candidates; their
momentum is estimated from track curvature in the B field.
The FGD-zt sample tags Michel electrons from clusters of
delayed hits that tend to indicate e™ production from z™
decays. Both signal samples use vetos to target events
originating out-of-FV (OOFV) and events with upstream or
high-angle tracker ECal activity to reduce background
contamination.

151802-4
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FGD-contained pion tracks are typically short, making
their curvature difficult to reconstruct accurately, so their
momenta cannot be determined using the same method as
TPC tracks. The momentum of a FGD-contained z* is
instead inferred from the location of hits left by Michel
electrons with respect to the v, interaction vertex as
described in Ref. [31]. The relation between this distance
d and the pion momentum is parametrized as
Pr = Co X d' 4 ¢,. The constants ¢(;, are determined
from fitting the trend between p, and d for MC. Recent
ND280 cross-section measurements have been limited to a
phase space of p, =200 MeV/c where pions can be
reliably reconstructed in the TPCs [32]; this technique
removes this phase space limitation.

The largest background comes from z°s that originate
from the hadronic recoil system in v,CC and v,NC
(neutral-current) interactions in FGD1; in the CC case
the muons are below the tracking threshold. The z°s decay
into yy pairs that convert to e e~ pairs, initiating electro-
magnetic showers. In cases where the two ys convert
promptly and produce spatially separated tracklike energy
deposits above detection thresholds, they can be misiden-
tified as a z* track and an electron shower emanating from
a shared primary vertex. Around half of this background is
removed by reconstructing the e™e™ invariant mass from
the two candidate particles. The e™ track is taken as the 7+
candidate from the TPC-z" sample, or as the next highest
momentum positively charged track which passes electron
PID for the FGD-z* sample. Events with an invariant mass

clearly below the ete™ peak (m,, < 110 MeV/c?) are
removed. The y background remains dominant at low p,
and high 6., necessitating the aforementioned phase space
constraints. The largest non-y background is from v,CC
events where a low momentum proton ejected from a
nucleus is misidentified as a #; the remaining phase space
constraint of p, > 1.5 GeV/c reflects this inability to
reliably identify tracks in this region. The next largest
background is v,CC events where the y~ is above the
tracking threshold and is misidentified as a e~. The
remaining backgrounds are small (< 5%) and are mostly
those already discussed but with an OOFV primary vertex.

Events involving y conversions consistent with the y —
ete™ hypothesis (m;,, < 55 MeV/c?) are assigned to a
pair of y control samples. These events must also pass one
of the pion PID cuts used for the signal samples. The y
control samples also use sets of OOFV vetoes, ensuring the
normalized invariant hadronic mass and momentum trans-
fer distributions of the selected #° production modes
generally match those of the targeted backgrounds.

The data and MC events selected by the merged signal
and control samples are shown projected as distributions of
electron kinematics and pion momentum in Fig. 1. A total
of 115 events are selected by the signal samples in the
targeted phase space, compared with 129 events predicted
by Neut. The signal samples have a combined efficiency of
~20% that varies minimally across all in-phase space bins.
The FGD-z" sample almost exclusively contributes to the
lowest four p, bins. The data and MC shape distributions
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distinguished by true event type.
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generally match well in most bins for the signal samples;
the y control samples exhibit poorer agreement, but these
are more statistically limited.

Fit and extraction—The unfolding method involves an
unregularized binned template parameter likelihood fit used
in several recent T2K cross-section analyses [33-35]. The
binning scheme uses eight signal-region bins that enclose
the target phase space. The intermediate bin edges are
optimized to approximately distribute an equal amount of
signal events between the bins along each kinematic
observable. The fit uses template parameters that are
proportional to the signal event rate in each true kinematic
bin; nuisance parameters are assigned to scale combina-
tions of MC events corresponding to different systematic
uncertainties. The template and nuisance parameters are
iteratively varied to minimize the data-MC difference,
yielding a set of best-fit parameters. The four samples
are fitted separately and the systematic uncertainties are
supplied as covariance matrices that encode the initial
uncertainties of and correlations between nuisance param-
eters. The template parameters have no initial uncertainty
and are free to move without prior constraints. During the
fitting process, the negative log-likelihood ratio y? ~
—2log(Lyy) — 210g(Lyys) is minimized. The L, term
is the likelihood ratio for the Poisson distribution with
Barlow-Beeston modifications to account for finite MC
statistics [36], and Ly is the likelihood ratio for the set of
parameter values at a specific fit point given their prior
uncertainties divided by the maximum likelihood for those
parameter values.

The differential cross-section values are calculated with
respect to a kinematic variable x using do/dx; =
N;/e;,®ON;Ax;, where Ax is an interval in 3D of the
kinematic space defined by the analysis bin edges, N is
the background subtracted number of signal events, ¢ is the
selection efficiency, and i denotes the bin index. This is
normalized by the flux integral @ (see data release [37]) and
the number of nuclear targets Ny. The fitting process yields
best-fit values and post-fit uncertainties for N, ¢;, and ®.
The total cross section (o) is calculated by summing the

TABLE I. The contributions of each source of uncertainty on
the total flux-integrated cross section (o).

Uncertainty source Fractional error on ¢ [%]

Detector response 5.7
Flux model 6.8
Interaction and background modelling 7.8
Target mass 0.7
Total statistical 20.6
Total systematic 11.7

differential results multiplied by their bin widths. The
uncertainties on the binned cross sections are evaluated
by varying the fit parameters within their post-fit uncer-
tainties and numerically propagating these changes to the
cross-section results.

Sources of systematic uncertainty—The systematic
uncertainties arise from the flux model, the detector
response and the v — A interaction model. The uncertainties
on the v,, 7y, v,, and 7, flux modes are encoded in a
covariance matrix that constrains the total shape and
normalization uncertainties of the flux in the neutrino
energy-flavor space [17]. The flux prediction is informed
by replica target hardon production measurements by
NAG1/SHINE [38,39]. The uncertainties in the detector
response are determined using separate dedicated control
samples each corresponding to different aspects of event
reconstruction in ND280. The difference in event rates
between data and MC are then used to evaluate each source
of uncertainty; these are also encapsulated by a single
covariance matrix containing the reconstructed space bins
of the four analysis samples. The dominant uncertainties in
the detector response for the signal samples are from the
TPC PID and matching between TPC-ECal tracks. For the
y control samples, the detector mass uncertainty effect on
the photon mean free path is dominant. The v — A inter-
action model uncertainties are theory-driven and corre-
spond to parameters that model signal and background
interactions as well as final-state interactions (FSI). A

> c038.> 0.7, p_<15 GeVie = 035<p<30Geve p<lsGeve ] = 035 5p, <30 GeVie, cost,>07 3
% I8 Data fit (stat) § 30 I8 Data fit (stat) % I8 Data fit (stat) E
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;:’» --- Genie3.42 x*=147 @g 208 Genie342 =156 é | --- Genie342 x*=5.64 3
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FIG. 2. The differential flux-integrated cross-section (do) results and predictions from Neut, Genie, and Nuwro as a function of particle
kinematics (p,,cos8,, p,). The upper p, bin extends to 30 GeV/c and is normalized to account for the lower effective bin width.
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description of each parameter and the prefit uncertainties
assumed is available in Ref. [3]. For this analysis, the
dominant interaction model uncertainties are those asso-
ciated with FSI and normalizations to the multipion
production channels. The fractional systematic and stat-
istical uncertainties on the total cross section are shown in
Table I.

Results—The total flux-integrated cross section is
[2.52 4 0.52(stat) + 0.30(syst)] x 107° cm? nucleon™!.
The predicted total flux-integrated cross sections from
event generators are listed alongside this in Table II. All
of the neutrino event generators predict a larger cross
section than this measurement, an effect which ranges from
0.5-1.60. The differential cross-section results are shown in
Fig. 2; these results are also lower than the event generator
predictions in the strongly forward going and high pion
momentum regions of kinematic phase space. The cross-
section result in the 0.45 < p, < 1.5 GeV/c region exhib-
its the largest discrepancy, with the Neut and Genie pre-
dictions overestimating this by 2.5¢ and 2.40, respectively.
The Nuwro prediction is notably closer but still > 1¢ from
the measured cross section. These results contrast with a
I/MCCIHJr measurement at T2K [18], where the data is
overestimated by Neut and Genie below 0.2 GeV /¢, while the
region above this exhibits good agreement in most bins.
From Fig. 1, this ND280 sample does not experience an
event rate excess comparable to what is seen in the far
detector analyses [13,14]. However, this analysis does not
measure much of the phase space relevant to these samples
(p. < 0.35 GeV/c). Below this limit it is too difficult to
distinguish between signal events and the y backgrounds;
ascertaining whether any discrepancies in this region are a
result of mismodeling the signal or background is not
possible. The data release is hosted in Ref. [37].

Conclusions—The T2K collaboration has performed the
first cross-section measurement of v,CCz™ on carbon in a
restricted kinematic phase space. The total flux-integrated
result is lower than predictions of the Neut, Genie, and Nuwro
MC event generators. The cross-section result for 0.45 <
Pr < 1.5 GeV/c exhibits a more substantial disagreement
with Neut and Genie. This result represents an important first
step in testing v, — A interaction models for the exclusive

TABLE II. The measured and predicted total flux-integrated
cross sections (o) per target nucleon (nucl) from Neut, Genie, and
Nuwro. The p value is calculated using the total y> between the
three-dimensionally binned data and Monte Carlo histograms for
all eight in-phase space bins.

Generator 6(1073° cm® nucl™!) p value
Neut 5.4.0 3.51 0.30
Genie 3.4.2 3.25 0.59
NuWro 21.9.2 2.84 0.89
Data 2.52+£0.60 e

#* production channel. Future studies should focus on
enhancing e®-y separation techniques to reduce the 7°
backgrounds in the low p, region. The recent upgrades to
ND280 may be capable of addressing this more effectively
by making full use of its highly segmented FGD [40,41].
Larger datasets will also be necessary to reduce the
statistical uncertainty and more precisely evaluate the
performance of event generators in describing this
interaction.
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