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Abstract 

Purpose 

This study aims to enhance decision-making in the selection of oil and gas (OG) wells for 

stimulation operations by integrating sustainability into project management practices. By 

proposing an innovative multi-criteria decision-making (MCDM) framework, the research 

seeks to improve production efficiency while considering economic and environmental 

factors. 

Design/methodology/approach 

The proposed framework employs an interval-valued spherical fuzzy (IVSF) entropy method 

to determine the weights of fourteen critical criteria from both engineering and managerial 

perspectives. Four fuzzy ranking methods are then applied to evaluate well selection strategies, 

with the results aggregated using the Borda method. A sensitivity analysis is conducted to 

assess the robustness of the approach, particularly in mitigating risks associated with economic 

forecasts for carbonate reservoirs. 

Findings 

The study demonstrates that the proposed MCDM-based framework enhances decision-

making by providing a structured and transparent evaluation of OG well selection. The 

integration of sustainability-focused criteria ensures alignment with project objectives while 

improving economic viability. The sensitivity analysis confirms the reliability of the method, 

indicating its effectiveness in addressing uncertainties in economic forecasts and operational 

risks. 

Originality/value 

This research presents a novel approach that bridges project management innovation with 

sustainable well selection in the OG industry. By leveraging IVSF entropy and multiple fuzzy 
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ranking techniques, the study introduces a more comprehensive and resilient decision-making 

model. The findings offer practical implications for both technical and managerial 

stakeholders, supporting more informed, efficient, and sustainable OG reservoir management. 

 

 

Keywords: Hydrocarbon Reservoirs; Oil and Gas; Well Selection; Project Management; 

Multiple criteria decision making; Entropy 

1. Introduction 

Investment in energy transition activities and processes is increasing due to technological 

advancements, the growing demand for resources and transportation, and a rising global 

population. In 2022, approximately 13% of total investments by leading companies such as 

BP, Chevron, and Shell were allocated to sustainable energy projects, representing a 42% 

increase compared to 2021 (Sia Partners, 2023). This trend is evident across many companies 

implementing systems, processes, and operations to reduce greenhouse gas (GHG) emissions. 

For instance, between 2019 and 2023, Murphy Oil reduced its GHG emissions intensity by 

37%, methane intensity by 51%, and flaring intensity by 66%, aligning with its 2030 goals of 

achieving zero routine flaring and further reducing GHG intensity by 15% to 20% (Murphy 

Oil Corporation, 2023). 

In line with this development, the role of sustainability in project management within the oil 

and gas (OG) industry is becoming increasingly significant. Project managers should aim to 

integrate sustainability into all aspects of their projects, from resource management to 

stakeholder engagement. This approach extends beyond traditional goals like time and cost 

efficiency to include environmental metrics and minimizing ecological impacts (Silvius & 

Schipper, 2014).  

In 2024, the oil and gas (OG) industry is expected to maintain a strong focus on 

decarbonization initiatives, with companies striving to balance core operations while investing 

in cleaner energy technologies. Notably, the U.S. Environmental Protection Agency (EPA) 

mandates industries to adopt technologies that detect and reduce methane emissions (L.E.K. 



3 

Consulting, 2024). Digital transformation plays a pivotal role in enhancing sustainability 

within project management in the OG sector. By adopting project management software and 

integrating digital tools such as IoT and advanced analytics, companies are improving 

efficiency, reducing costs, and minimizing environmental impact. These technologies 

facilitate real-time data collection and analysis, enabling project teams to make informed 

decisions that align with sustainability goals (ScheduleReader, 2024). 

Projects are fundamental to a company’s growth and success (Muhsen et al., 2024).They 

encompass a range of activities and processes that drive the development of innovative 

products and services, as well as the enhancement of operational procedures. 

Oil and gas (OG) projects are typically categorized into three main segments: upstream, 

midstream, and downstream. Upstream projects include activities related to exploration, 

development, production, enhanced oil recovery, and the decommissioning of platforms. 

Midstream projects involve the transportation, storage, and processing of petroleum, covering 

pipeline operations, processing plants, terminals, and ports. Downstream projects focus on 

refining and distributing oil and gas products, involving crude oil pipelines, natural gas 

pipelines, oil storage terminals, liquefied natural gas (LNG) plants, and gas processing 

facilities (Dartey-Baah et al., 2023). 

All types of projects in the OG industry, particularly those related to exploration and 

production, are inherently hazardous and often highly complex due to significant political, 

environmental, and ecological uncertainties. These uncertainties contribute to the high levels 

of risk commonly associated with OG projects (Ishtiaq et al., 2023). Investments in OG 

projects are vulnerable to potential losses stemming from technical, economic, and political 

risks. For instance, drilled oil wells may encounter numerous technical challenges, while 

economic risks can arise from geopolitical conflicts, regulatory changes, or currency 

fluctuations. Additionally, political risks can further exacerbate the vulnerability of these 

investments (Dartey-Baah et al., 2023). 

Consequently, the application of project management principles is essential. Emphasis should 

be placed on robust risk assessment and the implementation of effective mitigation strategies 

to address these complexities. 
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The strategic adoption of project management plays an indispensable role for businesses 

striving to maintain a cutting-edge business environment (Demir & Turan, 2021; Secundo et 

al., 2022). Effective project management not only drives sales and cuts costs but also raises 

the standard level of products and customer satisfaction (Alnoor et al., 2022; Muhsen et al., 

2024).The growing awareness of these advantages prompts many companies to adopt project 

management strategies, significantly boosting their ability to create value (Lewis, 2000; 

Salazar-Aramayo et al., 2013). Project management can be defined as the use of methods, 

skills, knowledge, and experience to achieve predefined goals of the project and adhere to the 

project's acceptance criteria. Project management concepts can integrate miscellaneous 

disciplines and domains by adopting a problem-solving approach. Collaborating closely 

within a team facilitates a shared understanding, bridging the gaps between expertise and 

approaches (Lyandau, 2022; Marion & Richardson, 2022).  

One of the critical industries where project management plays a vital role is oil and gas 

(OG). This sector faces various challenges, including price fluctuations. However, a 

significant issue lies in the efficient improvement of recovery rates in mature oil fields 

(Aliasser & Adesta, 2021; Dartey-Baah et al., 2023). This challenge has become increasingly 

pressing due to the depletion of OG resources and the rising energy demand. Effective project 

management is essential for advancing recovery techniques while ensuring economic viability 

and environmental sustainability. These factors highlight the critical importance of adept 

project management in navigating the complexities of identifying and developing new 

reservoirs. 

Within this context, hydraulic fracturing (HF) emerges as a pivotal stimulation technique 

for boosting hydrocarbon recovery. Its application extends beyond conventional wells to 

include unconventional sources such as tight gas and shale gas, showcasing significant 

potential in overcoming the inherent challenges of carbonate reservoirs. The success of HF 

treatments depends on comprehensive project management, encompassing candidate-well 

selection (CWS), treatment design, and field operations. Among these, the strategic selection 

of appropriate wells is particularly critical, offering fertile ground for research and innovation. 

This process not only addresses the technical challenges associated with HF but also aligns 

with broader project management objectives to ensure sustainable and efficient resource 
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development (Yu et al., 2016; Zoveidavianpoor & Gharibi, 2016; Zoveidavianpoor et al., 

2013). By emphasizing project management principles, practitioners in the oil and gas (OG) 

sector can more effectively navigate the complexities of enhancing recovery rates, particularly 

within the industry's evolving energy landscape. 

In the realm of HF treatment, the success or failure of the process largely depends on the 

quality of the selected candidate well. To achieve a successful outcome, it is essential to choose 

an appropriate OG well with a lower risk profile and higher recovery potential. Conversely, 

selecting a poor candidate well can result in a failed HF process (Malik et al., 2006; Vincent, 

2011). The selection of an appropriate well is a complex process, influenced by uncertainties 

that arise during the development and production stages. These uncertainties are primarily 

attributed to two key factors: structure-oriented and economic-oriented. The former includes 

considerations such as reservoir sealing and hydrocarbon charge, while the latter encompasses 

oil prices, probability of discovery, and the economic viability of producing reservoirs. 

Despite the significant uncertainties involved, a comprehensive and reliable method for 

candidate well selection across varying situations has yet to be established (Farid et al., 2023).  

When addressing the complexity of decision-making in HF issues, multiple criteria decision-

making (MCDM) methods, as discussed by (Storch de Gracia et al., 2019), offer an effective 

means to evaluate alternative solutions. This is particularly crucial when some parameters are 

qualitative and based on expert knowledge. A notable challenge in this domain is the selection 

of candidate OG wells, which involves a wide range of criteria, many of which cannot be 

precisely defined or quantified, complicating the identification of the optimal solution. Two 

key factors influencing this problem are managerial and engineering considerations. 

Managerial factors, derived from expert opinions, pertain to general project conditions and are 

inherently difficult to quantify. In contrast, engineering factors focus on technical aspects that 

are directly linked to the alternatives. These two factors provide distinct yet complementary 

insights for decision-makers; however, comprehensive studies addressing both simultaneously 

remain scarce. To bridge this gap, this paper proposes an MCDM approach that incorporates 

uncertainties and employs a linguistic representation of criteria weights using fuzzy numbers. 

While this approach presents a promising solution, further research is needed to investigate 

other robust non-deterministic methodologies. 
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Moreover, the ranking of different MCDM methods for a specific problem may vary (Quaiser 

& Srivastava, 2024). This variability in outcomes can be attributed to the diverse mathematical 

techniques employed in MCDM (Yazdani et al., 2019), making it challenging to select a 

preferred method in advance. Consequently, a single prioritization approach may not be 

sufficiently robust (Modibbo et al., 2022; Quaiser & Srivastava, 2024). To address this issue, 

decision-makers often apply multiple methods to determine whether a particular solution 

(alternative) consistently emerges as the top-ranked option. This approach enhances the 

robustness of the results and provides comprehensive insights for decision-making. In this 

study, we employ four fuzzy MCDM methods to achieve this objective: the interval-valued 

spherical fuzzy additive ratio assessment (IVSFS-ARAS), interval-valued spherical fuzzy 

complex proportional assessment (IVSFS-COPRAS), interval-valued spherical fuzzy multi-

objective optimization by ratio analysis (IVSFS-MOORA), and interval-valued spherical 

fuzzy method for order preference by similarity to ideal solution (IVSFS-TOPSIS). 

When applying MCDM methods, determining the weightings of criteria is a critical issue that 

can significantly influence the results (Wang & Luo, 2010) . The literature identifies two main 

approaches for estimating criteria weights: subjective and objective-based methods (Wang & 

Lee, 2009). In the subjective approach, decision-makers rely on their own judgments to assign 

weights to criteria. In contrast, the objective approach uses quantitative information and 

mathematical models, such as entropy, cross-cultural success dimensions (CCSD), and the 

quantitative strategic planning matrix (QSPM), to calculate the weights. Objective-based 

methods are particularly valuable when decision-makers lack sufficient knowledge or 

experience, as they reduce the impact of subjective judgment or intuition on the weighting 

process. 

This study proposes a method that integrates expert experience and professional knowledge to 

enhance the selection process for carbonate reservoirs. The method aims to eliminate 

communication barriers between geologists and reservoir engineers while providing an 

alternative to numerical reservoir simulation by significantly reducing the required database 

size. Notably, this paper applies the IVSFS-ARAS (Aydoğdu & Gül, 2022), IVSFS- 

COPRAS  (Omerali & Kaya, 2022), IVSFS-MOORA (Aydın & Kutlu Gündoğdu, 2021), and 
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IVSFS- TOPSIS (Kutlu Gündoğdu & Kahraman, 2019)   methods to the well selection field 

for the first time. 

Each of the selected methods has demonstrated robustness in various decision-making 

scenarios, particularly in multi-criteria decision analysis (MCDA). Their versatility enables 

them to effectively handle diverse types of data and criteria, making them well-suited for 

addressing the complexities inherent in reservoir selection. By combining these methods, we 

leverage their unique strengths. For example, while TOPSIS focuses on proximity to the ideal 

solution, ARAS emphasizes the ranking of alternatives based on their performance. This 

complementary approach provides a more comprehensive evaluation of potential reservoirs. 

Our primary objective is to bridge the gap between geologists and reservoir engineers. These 

methods facilitate a structured decision-making framework that is both easily understood and 

effectively communicated across disciplines. This reduces misunderstandings and fosters 

collaboration. Additionally, the selected methods are designed to perform well with smaller 

datasets, aligning with our goal of significantly reducing database size compared to traditional 

numerical reservoir simulations. Such efficiency is essential for practical applications in the 

field. 

The oil and gas (OG) sector is closely connected to sustainability challenges; however, current 

research lacks a comprehensive focus on both managerial and engineering factors within this 

context. Most previous studies have concentrated on a single aspect, with a limited number of 

articles addressing either engineering factors (Gutor et al., 2003; Habibnia & Shadizadeh, 

2009; Howard & Fast, 1970; Shadizadeh et al., 2009) or managerial factors (Ebrahimnejad et 

al., 2009; Gardas et al., 2019). This study is therefore novel in its approach, as it examines 

both managerial and engineering dimensions to identify comprehensive factors related to 

sustainability in the OG sector. The contributions of the paper are summarized as follows: 

 A comprehensive MCDM framework is proposed, utilizing IVSFS integrated with 

an entropy-based weighting mechanism, based on the project management 

standards and academic research for informed decision-making, ensuring robust 

handling of uncertainties in the HF well selection process and enhances decision-

making processes under uncertainty. 
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 The framework incorporates a dual perspective by evaluating managerial factors 

(e.g., regulatory pressure, sustainability, and political stability) alongside 

engineering factors (e.g., reservoir pressure, well completion method, and 

production method). This study offers comprehensive approach addresses the 

multifaceted challenges in HF well selection. 

 The study utilizes an innovative ranking method that effectively demonstrates its 

robustness. Four MCDM techniques, including ARAS, COPRAS, MOORA, and 

TOPSIS, adapted to interval-valued spherical fuzzy sets for comprehensive 

evaluation. The Borda method is used to aggregate the rankings from these methods, 

ensuring methodological robustness and reducing reliance on a single prioritization 

technique. 

 The proposed methodology is empirically validated through a case study involving 

seven wells in three Iranian carbonate reservoirs, demonstrating its practical 

applicability in selecting optimal wells for HF treatment in complex geological and 

operational contexts. 

 By emphasizing sustainability metrics and economic viability in the evaluation 

process, the framework aligns with contemporary goals of reducing environmental 

impacts in the OG sector. It provides actionable insights for practitioners to balance 

production efficiency with ecological responsibility. 

 Highlighting critical criteria in order to guild managers and decision-makers in 

applying and formulating strategies. This ensures the robustness and reliability of 

the proposed decision-making approach. 

This paper is organized as follows: Section 2 provides a comprehensive literature review 

of well selection and MCDM methods, discussing the influential factors in candidate well 

selection and their implications for project management in both academia and industry. In 

Section 3, we present our proposed model for well selection, outlining its stages and explaining 

each in detail, with an emphasis on its relevance to academic research and project management 

practices. Section 4 illustrates the practical application of our model through a real-world case 

study, integrating theoretical perspectives with project management insights to validate key 

academic concepts. Section 5 focuses on sensitivity analysis, examining the impact of varying 
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input parameters on the model's outcomes and presenting a thorough analysis of the results, 

highlighting their academic and project management implications. Section 6 discussed the 

theoretical, managerial, and policy implications, and finally, Section 7 provides concluding 

remarks and suggestions for future research directions in well selection, MCDM, and project 

management, aiming to bridge the gap between academic research and practical application in 

the oil and gas industry. 

2. Literature review and associated background  

2.1. Candidate OG well selection 

The methodologies implemented for HF candidate well selection could be categorized in two 

parts, i.e. conventional techniques that cover the engineering or geological aspects in the 

decision-making process; and advanced methods which consider the classification and setting 

of affecting parameters mostly by Artificial Intelligence (AI) methods (Zoveidavianpoor et 

al., 2012). 

The methodologies implemented for HF candidate well selection can be categorized into two 

parts: conventional techniques, which address the engineering or geological aspects of the 

decision-making process, and advanced methods, which involve the classification and 

prioritization of influencing parameters, primarily using Artificial Intelligence (AI) techniques 

(Zoveidavianpoor et al., 2012). 

In the field of candidate well selection, the inherent nonlinearity and uncertainty in datasets 

make them ambiguous and imprecise. Consequently, researchers have employed advanced 

methods to address these challenges (Yu et al., 2016). For example, Yang et al. (2006) 

developed a novel prediction method for fracturing effects using a support vector machine, 

which conducted a comprehensive analysis of relevant parameters. Furthermore, Guo et al. 

(2014) proposed an enhanced reservoir evaluation index system by incorporating fuzzy logic 

theory and a multilevel grey analysis (GRA)-based model for gas well reservoirs. 

Moreover, the challenge of selecting candidate wells shares many common characteristics 

with other environmental problems, such as water resource planning (Weng et al., 2010), 
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environmental management  (Sánchez-Lozano & Bernal-Conesa, 2017), and energy 

management (Çolak & Kaya, 2017).  

2.2. Multiple criteria decision-making methods 

In recent years, the use of Multi-Criteria Decision-Making (MCDM) methods has become 

increasingly prevalent in addressing decision-making challenges related to sustainable energy 

(Konstantinos et al., 2019). This trend can largely be attributed to the ability of MCDM 

methods to account for the inherent complexity of socio-economic and biophysical systems, 

as well as the multidimensional nature of sustainability-related issues. However, despite their 

growing popularity, the application of MCDM methods is not without challenges and 

limitations that warrant critical examination. 

In practice, MCDM methods have been applied in various contexts, including risk-based 

decision-making problems such as maintenance strategies for identifying factors contributing 

to failures in oil and gas pipelines, as well as project portfolio selection in energy resources 

(Wang et al., 2009). For example, Lev (2007) introduced several MCDM methodologies, 

including the Analytic Hierarchy Process (AHP), the Multi-Attribute Utility Theory (MAUT), 

and the Simple Multi-Attribute Rating Technique (SMART), which have been effectively 

utilized for petroleum project selection. While these methodologies have proven effective, 

they often rely heavily on subjective judgments, which can introduce bias and variability, 

especially in complex decision-making scenarios. 

The study of environmentally oriented MCDM problems has been the focus of several 

academic investigations. One such study, conducted by Sánchez-Lozano et al. (2016) 

employed the fuzzy TOPSIS method to identify suitable sites for onshore wind farms, 

demonstrating how fuzzy adaptations of various MCDM methods, such as fuzzy AHP and 

fuzzy TOPSIS, can be combined to achieve more accurate results. While this combination 

enhances precision, it also complicates the decision-making process, potentially reducing the 

transparency and interpretability of the results—factors that are critical for stakeholder 

engagement in environmental projects. Furthermore, Liu et al. (2018) conducted a study using 

the ANP-SWOT methodology to evaluate industry strategies in the Chinese building sector, 

demonstrating the effectiveness of this approach in addressing complex problems in real-
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world scenarios.  Namin et al. (2022) review Mining Method Selection (MMS) approaches, 

which represent one of the most important decisions in mine design. They show that AHP and 

TOPSIS are the most commonly used methods for selecting mining methods. Shekar et al. 

(2025) use five MCDM methods to prioritize sub-watersheds for effective resource 

management aimed at mitigating soil erosion and ranking erosion zones that require urgent 

intervention. Recent studies have shown that morphometric analysis combined with MCDM 

methods like VIKOR, TOPSIS, and SAW can effectively prioritize erosion-prone sub-

watersheds, offering valuable insights for sustainable soil and water management (El Abassi 

et al., 2024). In the context of Iran’s oil and gas industry, recent research has emphasized the 

need for advanced decision-making tools to enhance service supply chain performance, using 

fuzzy SWARA and MABAC methods to uncover critical capabilities and optimal service 

locations (Mehdiabadi et al., 2025). Lately, to enhance supplier selection in the oil and gas 

sector, recent studies have applied fuzzy AHP and TOPSIS methods, effectively integrating 

expert-validated criteria to support more balanced and data-driven decision-making 

.(Abdollahi Kamran et al., 2025)  

 

 However, the integration of multiple methodologies can introduce methodological 

complexity, potentially hindering practical application and decision-making clarity. Gul and 

Ak (2021) applied interval-valued spherical fuzzy sets to extend the method for order 

preference by similarity to the ideal solution (IVSF-TOPSIS), addressing limitations in 

traditional risk priority number (RPN) calculations. This approach modified the Failure Modes 

and Effects Analysis (FMEA) framework to evaluate potential failures in product or process 

design. While this advancement highlights innovation in fuzzy MCDM applications, it also 

raises concerns about increased complexity and the risk of overfitting models to specific 

datasets. Jin et al. (2021) developed a three-dimensional house of quality using an interval-

valued spherical fuzzy adaptation of the classical ORESTE method to rank key quality 

characteristics and determine product quality levels. Similarly, in the healthcare sector, Kutlu 

Gündoğdu and Kahraman (2021) proposed an interval-valued spherical fuzzy version of the 

AHP for comparing the service performance of several hospitals. These applications 

demonstrate the versatility of fuzzy MCDM methods; however, they also highlight the 
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importance of critically evaluating how effectively these methods address the unique 

challenges of each sector. 

The preceding studies suggest that the practical application of fuzzy MCDM methods is an 

effective approach to solving complex environmental problems. MCDM provides a valuable 

framework for developing systematic methodologies to rank environmental projects, which 

often involve diverse objectives and constraints that must satisfy socio-political conditions. 

However, as Mulliner et al. (2016) noted, these objectives can be non-commensurable and 

conflicting, further complicating the decision-making process. 

Despite the extensive exploration of MCDM models across various contexts, a notable gap 

remains in the literature regarding their application for candidate well selection and 

prioritization. This gap highlights the need for further research to adapt and refine MCDM 

methodologies specifically for the oil and gas sector, ensuring that the unique complexities 

and uncertainties of well selection are effectively addressed. 

2.3. Effective criteria in candidate OG well selection 

To aid in the selection of candidate wells, various criteria have been suggested by different 

authors. Howard and Fast (1970)  have identified nine engineering factors that are crucial for 

candidate well selection. However, engineering factors have predominantly been the focus of 

research in this area. Recent studies by Shadizadeh et al. (2009), and Habibnia and Shadizadeh 

(2009) have emphasized the significance of rock formation mechanical properties, remaining 

reserves, petrophysical properties, and stress profiling in identifying the key factors for 

candidate well selection. Furthermore, Gutor et al. (2003) found that the age of the well has 

little effect on selecting re-stimulation candidates.  

While these studies have primarily focused on engineering factors, other relevant aspects have 

been generally overlooked. To address this gap, this paper presents a research methodology 

for risk assessment of offshore wells, with a comprehensive approach that takes into account 

all relevant factors. In addition to what mentioned above, specific factors such as the role of 

regulatory compliance (Mwelu et al., 2020), stakeholder engagement (Silvius & Schipper, 

2019), and risk management as managerial factors (Schieg, 2006), alongside engineering 

considerations like enhanced oil recovery techniques (Zeqiraj, 2022), environmental impact 
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assessments (Vilardo & La Rovere, 2018), and the adoption of cleaner technologies (Ikram et 

al., 2021) can provide a clearer picture of the current research landscape and highlight the gaps 

that our study seeks to address.  

To aid in the selection of candidate wells, various criteria have been proposed by different 

authors. Howard and Fast (1970) identified nine engineering factors as crucial for candidate 

well selection. However, research in this area has predominantly focused on engineering 

factors. Recent studies by Shadizadeh et al. (2009), and Habibnia and Shadizadeh (2009) have 

highlighted the significance of rock formation mechanical properties, remaining reserves, 

petrophysical properties, and stress profiling in identifying the key factors for candidate well 

selection. Furthermore, Gutor et al. (2003) concluded that the age of a well has minimal impact 

on the selection of re-stimulation candidates. 

While these studies have primarily concentrated on engineering factors, other relevant aspects 

have generally been overlooked. To address this gap, this paper presents a research 

methodology for the risk assessment of offshore wells, adopting a comprehensive approach 

that considers all relevant factors. 

In addition to the aforementioned aspects, specific factors such as regulatory compliance 

(Mwelu et al., 2020), stakeholder engagement (Silvius & Schipper, 2019), and risk 

management as managerial considerations (Schieg, 2006), alongside engineering 

considerations like enhanced oil recovery techniques (Zeqiraj, 2022), environmental impact 

assessments (Vilardo & La Rovere, 2018), and the adoption of cleaner technologies (Ikram et 

al., 2021), provide a broader perspective of the current research landscape. These factors also 

underscore the gaps that our study seeks to address. 

Several other important studies primarily address managerial issues. Gardas et al. (2019) 

identified collaborative logistics and regulatory pressure as the most significant factors 

influencing the oil and gas (OG) sector. Ebrahimnejad et al. (2009) highlighted managerial 

factors, such as economic risks and political stability, as key elements impacting OG projects. 

Given the nature of Iranian hydrocarbon reservoirs, which predominantly consist of fractured 

carbonate rock types, decision-making committees prioritize specific parameters from the 

aforementioned ones that are most relevant to the Iranian candidate well selection problem. 
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The following table (Table 1) illustrates the mentioned parameters and their effect on 

candidate selection. It is worth noting that some of the main criteria include several sub-

parameters, represented in Table 1. 

 

Table 1. The affecting criteria information (Table by Authors) 

Type of factor Criteria Notation Effect References  

Engineering Water Cut 𝐶ଵ Negative 
(JIANG et al., 

2004) 

Managerial Collaborative Logistics 𝐶ଶ Positive 

(Chima, 2007; 

Palmieri et 
al., 2019; 

Saad et al., 
2014) 

Engineering Operational Parameters 𝐶ଷ Negative 

(KEk et al., 
2022; Salamai 
et al., 2019) 

Managerial Regulatory Pressure 𝐶ସ Negative 

(Khan et al., 
2021; Liu et 
al., 2022) 

Managerial Economic and financial risks 𝐶ହ Negative 
(Cheng et al., 

2019) 

Engineering Well Direction 

 Horizontal 

 Directional 

 Vertical 

𝐶଺ Positive 

 

(Khan et al., 
2021) 

Managerial Environment and Sustainability 𝐶଻ Positive 

(Cheng et al., 
2019; Edoho, 

2008) 

Engineering 
Well Completion 

Method 

 Open hole 

 In same direction 

 In opposite direction 

 Intermediate 

𝐶଼ Positive 

(Ma et al., 
2020; Zhang 
et al., 2011) 
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3 Problem definition and solving methodology 

The well selection problem is a strategic issue in natural OG exploitation, and its operational 

success depends on the proper selection of target well and target formation. On the other hand, 

selecting the optimal well among many alternatives could address an MCDM problem.  

In literature, weights of criteria in an MCDM problem could be calculated subjectively and 

objectively (Wang & Lee, 2009). While subjective methods find the criteria weights 

exclusively based on the preference or judgment of decision-makers, objective methods take 

advantage of specific mathematical models. 

Objective weighting could be known as a well-suited approach for decision-making problems 

that deal with primarily quantitative information. Therefore, we implemented the entropy-

based weighting procedure, through which weights are not affected by the subjective judgment 

and intuition of the decision-maker. 

Type of factor Criteria Notation Effect References  

Managerial Political stability 𝐶ଽ Positive 

(Cheng et al., 
2019; Doukas 
et al., 2011) 

Engineering Sand Production 𝐶ଵ଴ Positive (Pham, 2017) 

Engineering Production Method 

 Naturally Flow 

 Artificial lift 

 Dead Wells 

𝐶ଵଵ 

Positive 

(Yehorchenko
va & 

Yehorchenko
v, 2020) 

Engineering Reservoir Pressure 𝐶ଵଶ Positive (Pathak, 2021) 

Managerial  Resource Risks 

𝐶ଵଷ 

Negative 

(Cheng et al., 
2019; Farrell 

& Brandt, 
2006) 

Engineering Field Type 
 Offshore 

 Onshore 

𝐶ଵସ 
Positive 

(Elkholosy et 
al., 2024) 
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The well selection problem is a strategic issue in OG exploitation, where operational success 

depends on the proper selection of the target well and formation. Selecting the optimal well 

from multiple alternatives constitutes a multi-criteria decision-making (MCDM) problem. 

In the literature, the weights of criteria in an MCDM problem can be calculated either 

subjectively or objectively (Wang & Lee, 2009). Subjective methods determine criteria 

weights based solely on the preferences or judgments of decision-makers, while objective 

methods rely on specific mathematical models. 

Objective weighting is particularly well-suited for decision-making problems that primarily 

involve quantitative information. Therefore, we employed an entropy-based weighting 

procedure, which ensures that weights are unaffected by the subjective judgments and 

intuitions of the decision-maker. 

The entropy method (Shannon, 2001) is based on the idea that the importance of a criterion 

can be derived from its relativity to the entire set of alternatives. This means that a greater 

impact on the evaluations of the alternatives results in higher importance (Singh & Benyoucef, 

2011). The advantages of the entropy method over other weighting methods stem from the 

elimination of decision-maker subjectivity in determining weights. It is particularly useful in 

cases where decision-makers disagree on priorities. In other words, objective weights derived 

through entropy can be used to adjust subjective weights assigned by decision-makers 

(Shemshadi et al., 2011). 

The application of MCDM methods in selecting candidate wells has often been overlooked. 

Relying solely on a single prioritization method can lead to inconsistent rankings due to the 

inherent characteristics of MCDM methods. To address this limitation, decision-makers 

frequently employ multiple MCDM methods with low correlation to enhance the robustness 

of results, mitigate the shortcomings of individual models, and provide a comprehensive 

perspective for decision-making. In this context, the IVSFS-ARAS, IVSFS-COPRAS, IVSFS-

MOORA, and IVSFS-TOPSIS methods were selected for their relatively low correlation, 

which aids in effectively prioritizing alternatives. This paper proposes a comprehensive 

methodology, illustrated in Figure 1, which comprises three main components: group work, 

criteria weighting, and alternative evaluation. 
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This methodology rigorously evaluates fourteen criteria from both engineering and managerial 

perspectives, achieving a balance between sustainability and economic viability. The IVSF 

entropy method efficiently determines the significance of each criterion, thereby improving 

the management of uncertainties inherent in expert judgments. By incorporating multiple 

fuzzy ranking methods, the approach offers diverse strategic perspectives, which is 

particularly valuable when wells demonstrate similar viability. The Borda count method 

further enhances decision accuracy by consolidating these rankings, ensuring that the final 

decision aligns closely with project objectives. Additionally, sensitivity analysis is conducted 

to evaluate the stability of outcomes under varying assumptions, a critical factor for reliable 

decision-making in complex reservoir environments. The integration of advanced fuzzy logic, 

robust ranking methodologies, and sensitivity analyses not only strengthens decision-making 

in the oil and gas sector but also supports strategic management and sustainability goals. 

Notably, this approach utilizes interval-valued spherical fuzzy sets, which provide flexible 

definitions of membership functions presented as intervals based on expert judgments. 
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Figure 1. Diagram of the proposed model for well selection (Figure by Authors) 
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3.1. Interval-valued spherical fuzzy sets 

This part is devoted to presenting the definition of Interval-valued spherical fuzzy sets 

(IVSFS), arithmetic operations, distance measurement, and the method of defuzzification. An 

IVSFS 𝑋௦
෪  𝑋෨௦is defined as follows:  

𝑋௦
෪ =  ቄർ𝑢, ቀ൫ൣ𝜇௑ೞ෪

௅ (𝑢), 𝜇௑ೞ෪
௎ (𝑢)൧, ൣ𝜐௑ೞ෪

௅ (𝑢), 𝜐௑ೞ෪
௎ (𝑢)൧, ൣ𝜋௑ೞ෪

௅ (𝑢), 𝜋௑ೞ෪
௎ (𝑢)൧൯ቚ𝑢 ∈ 𝑈ቁቅ ( 1 ) 

0 ≤ 𝜇௑ೞ෪
௅ (𝑢) ≤ 𝜇௑ೞ෪

௎ (𝑢) ≤ 1 ( 2 ) 

0 ≤ 𝜐௑ೞ෪
௅ (𝑢) ≤ 𝜐௑ೞ෪

௎ (𝑢) ≤ 1 ( 3 ) 

ቀ𝜇௑ೞ෪
௎ (𝑢)ቁ

ଶ

+  ቀ𝜐௑ೞ෪
௎ (𝑢)ቁ

ଶ

+ ቀ𝜋௑ೞ෪
௎ (𝑢)ቁ

ଶ

≤ 1 ( 4 ) 

In which 𝜇௑ೞ෪
௎ (𝑢) , 𝜐௑ೞ෪

௎ (𝑢) and 𝜋௑ೞ෪
௎ (𝑢) are upper degrees of membership, non-membership and 

hesitancy. Furthermore, in the following conditions, the IVSFS will reduce to a single valued 

SFS.  

𝜇௑ೞ෪
௅ (𝑢) = 𝜇௑ೞ෪

௎ (𝑢) (5) 

𝜐௑ೞ෪
௅ (𝑢) = 𝜐௑ೞ෪

௎ (𝑢) (6) 

𝜋௑ೞ෪
௅ (𝑢) = 𝜋௑ೞ෪

௎ (𝑢) (7) 

Therefore, based on above Eqs (5)-(7), an interval-valued spherical fuzzy number is as 

follows: 

൫ൣ𝜇௑ೞ෪
௅ (𝑢), 𝜇௑ೞ෪

௎ (𝑢)൧, ൣ𝜐௑ೞ෪
௅ (𝑢), 𝜐௑ೞ෪

௎ (𝑢)൧, ൣ𝜋௑ೞ෪
௅ (𝑢), 𝜋௑ೞ෪

௎ (𝑢)൧൯ (8) 

The Eq (8)  can be denoted by 𝛼෤ = ([𝑎, 𝑏], [𝑐, 𝑑], [𝑒, 𝑓]) in which 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 𝜖 [0,1] and 

𝑏ଶ + 𝑑ଶ + 𝑓ଶ ≤ 1. Therefore, 𝛼෤∗ = ([1,1], [0,0], [0,0]) defined as largest IVSFS, 𝛼ି =

([0,0], [1,1], [0,0]) is the smallest IVSFS, and 𝛼෤∗/ି = ([0,0], [0,0], [1,1]) represents the 

median IVSFS number. 

Moreover, the union, intersection, and arithmetic operations over IVSFS are defined by (Kutlu 

Gündoğdu & Kahraman, 2019) as follows:   
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Definition 1. Let A, B be two IVSFSs then, the union and intersection operations are defined 

as follows:  

𝐴 ∪ 𝐵 = ൞

ൣmax൫𝜇஺
௅ (𝑢), 𝜇஻

௅ (𝑢)൯ , max (𝜇஺
௎(𝑢), 𝜇஻

௎(𝑢))൧

ൣmin൫𝜐஺
௅(𝑢), 𝜐஻

௅ (𝑢)൯ , min (𝜐஺
௎(𝑢), 𝜐஻

௎(𝑢))൧

ൣmin൫𝜋஺
௅(𝑢), 𝜋஻

௅ (𝑢)൯ , min (𝜋஺
௎(𝑢), 𝜋஻

௎(𝑢))൧

ൢ (9) 

𝐴 ∩ 𝐵 = ൞

ൣmin൫𝜇஺
௅ (𝑢), 𝜇஻

௅ (𝑢)൯ , min (𝜇஺
௎(𝑢), 𝜇஻

௎(𝑢))൧

ൣmax൫𝜐஺
௅(𝑢), 𝜐஻

௅(𝑢)൯ , max (𝜐஺
௎(𝑢), 𝜐஻

௎(𝑢))൧

ൣmin൫𝜋஺
௅(𝑢), 𝜋஻

௅ (𝑢)൯ , min (𝜋஺
௎(𝑢), 𝜋஻

௎(𝑢))൧

ൢ (10) 

 

Definition 2. Let 𝛼ଵ = {(𝑎ଵ, 𝑏ଵ) , (𝑐ଵ, 𝑑ଵ), (𝑒ଵ, 𝑓ଵ)} and 𝛼ଶ = {(𝑎ଶ, 𝑏ଶ) , (𝑐ଶ, 𝑑ଶ), (𝑒ଶ, 𝑓ଶ)} are 

two IVSFS numbers, therefore, arithmetic operations, and the distance between these two 

numbers are defined as follows:  

𝛼ଵ ⊕ 𝛼ଶ =  ቄൣ((𝑎ଵ)ଶ + (𝑎ଶ)ଶ − (𝑎ଵ)ଶ(𝑎ଶ)ଶ)ଵ ଶ⁄ , ((𝑏ଵ)ଶ + (𝑏ଶ)ଶ

− (𝑏ଵ)ଶ(𝑏ଶ)ଶ)ଵ ଶ⁄ ൧, [𝑐ଵ𝑐ଶ, 𝑑ଵ𝑑ଶ ], ቂ൫(1 − (𝑎ଶ)ଶ)(𝑒ଶ)ଶ + (1 − (𝑎ଵ)ଶ)(𝑒ଶ)ଶ

− (𝑒ଵ)ଶ(𝑒ଶ)ଶ൯
ଵ ଶ⁄

, ൫(1 − (𝑏ଶ)ଶ)(𝑓ଵ)ଶ + (1 − (𝑏ଵ)ଶ)(𝑓ଶ)ଶ − (𝑓ଵ)ଶ(𝑓ଶ)ଶ൯
ଵ ଶ⁄

ቃቅ 

(11) 

𝛼ଵ⨂𝛼ଶ =  ቄ[𝑎ଵ𝑎ଶ, 𝑏ଵ𝑏ଶ ], ൣ((𝑐ଵ)ଶ + (𝑐ଶ)ଶ − (𝑐ଵ)ଶ(𝑐ଶ)ଶ)ଵ ଶ⁄ , ((𝑑ଵ)ଶ + (𝑑ଶ)ଶ

− (𝑑ଵ)ଶ(𝑑ଶ)ଶ)ଵ ଶ⁄ ൧, ቂ൫(1 − (𝑐ଶ)ଶ)(𝑒ଵ)ଶ + (1 − (𝑐ଵ)ଶ)(𝑒ଶ)ଶ

− (𝑒ଵ)ଶ(𝑒ଶ)ଶ൯
ଵ ଶ⁄

, ൫(1 − (𝑑ଶ)ଶ)(𝑓ଵ)ଶ + (1 − (𝑑ଵ)ଶ)(𝑓ଶ)ଶ − (𝑓ଵ)ଶ(𝑓ଶ)ଶ൯
ଵ ଶ⁄

ቃቅ 

(12) 

𝑑(𝛼ଵ𝛼ଶ) =
ଵ

ସ
൫ห𝑎ଵ

ଶ − 𝑎ଶ
ଶห + ห𝑏ଵ

ଶ − 𝑏ଶ
ଶห + ห𝑐ଵ

ଶ − 𝑐ଶ
ଶห + ห𝑑ଵ

ଶ − 𝑑ଶ
ଶห + ห𝑒ଵ

ଶ − 𝑒ଶ
ଶห +

ห𝑓ଵ
ଶ − 𝑓ଶ

ଶห൯, 

(13) 

Definition 3. It is noticeable that the multiplication and power by a scalar (𝜆 > 0) can be 

defined in the following equations.  

𝜆. 𝛼෤ = ቀቂ൫1 − (1 − 𝑎ଶ)ఒ, ൯
ଵ ଶ⁄

, ൫1 − (1 − 𝑏ଶ)ఒ, ൯
ଵ ଶ⁄

ቃ , ൣ𝑐ఒ, 𝑑ఒ൧, ቂ൫(1 − 𝑎ଶ)ఒ −

(1 − 𝑎ଶ − 𝑒ଶ)ఒ൯
ଵ ଶ⁄

, ൫(1 − 𝑏ଶ)ఒ − (1 − 𝑏ଶ − 𝑓ଶ)ఒ൯
ଵ ଶ⁄

ቃቁ  

(14) 
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𝛼෤ ఒ = ቀൣ𝑎ఒ, 𝑏ఒ൧, ቂ൫1 − (1 − 𝑐ଶ)ఒ, ൯
ଵ ଶ⁄

, ൫1 − (1 − 𝑑ଶ)ఒ, ൯
ଵ ଶ⁄

ቃ , ቂ൫(1 − 𝑐ଶ)ఒ −

(1 − 𝑐ଶ − 𝑒ଶ)ఒ൯
ଵ ଶ⁄

, ൫(1 − 𝑑ଶ)ఒ − (1 − 𝑑ଶ − 𝑓ଶ)ఒ൯
ଵ ଶ⁄

ቃቁ  

(15) 

Furthermore, based on the above definitions, the following relationships for two given IVSFS 

are established.  

 𝛼෤ଵ ⊕  𝛼෤ଶ = 𝛼෤ଶ ⊕  𝛼෤ଵ 

 𝛼෤ଵ⨂ 𝛼෤ଶ = 𝛼෤ଶ⨂ 𝛼෤ଵ 

 𝜆. (𝛼෤ଵ ⊕  𝛼෤ଶ) = 𝜆. 𝛼෤ଵ ⊕  𝜆. 𝛼෤ଶ 

 (𝛼෤ଵ⨂ 𝛼෤ଶ)ఒ = 𝛼෤ଵ
ఒ

⨂ 𝛼෤ଶ
ఒ  

 𝜆ଵ. 𝛼෤ ⊕ 𝜆ଶ. 𝛼෤ = (𝜆ଵ + 𝜆ଶ)𝛼෤ 

 𝛼෥𝜆1⨂𝛼෥𝜆2 = 𝛼෥𝜆1+𝜆2 

(16) 

3.2. Entropy method 

As presented in Figure 1, in this section, we aim to determine the importance or significance 

of the attributes identified in the previous section for Well Selection. Instead of relying on 

subjective weighting schemes, we propose combining objective weighting by introducing a 

new version of the Entropy method with interval-valued spherical fuzzy sets. The steps of this 

process are presented below. 

By setting up the experts’ committee, the interval-valued spherical fuzzy entropy-based 

MCDM method can be described as shown in steps 1 to 8 (Shannon, 2001), being designed to 

obtain the normalized criteria weight. 

Step 1. Obtain the fuzzy decision matrix regarding experts’ ideas with triangular fuzzy 

numbers as defined in the following matrix with m alternatives and n attributes.  

𝑥௜௝
௦ =  ൥

𝑥ଵଵ
௦ ⋯ 𝑥ଵ௡

௦

⋮ ⋱ ⋮
𝑥௠ଵ

௦ ⋯ 𝑥௠௡
௦

൩ (17) 

Step 2. Perform normalization of the decision matrix to find the projection value൫𝑝௜௝
௦ ൯. 
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𝑝௜௝
௦ =

𝑥௜௝
௦

max
௜

𝑥௜௝
௦  ∀𝑗 = 1,2, … , 𝑛, 𝑠 ∈ (𝐵, 𝑀, 𝑇) (18) 

Where 𝑥௜௝
௦  represent the interval-valued spherical fuzzy triangular score of alternative 𝑖 for 

criterion 𝑗, being represented within the bottom: 𝐵 = 𝛼ି, middle: 𝑀 = 𝛼෤∗/ି and Top: 𝑇 =

𝛼෤∗ values of the triangular membership function as follows. 

𝑥௜௝
௦ = ቀቂ𝜇

௫ഢണ
ೞ෪

௅ (𝑢), 𝜇
௫ഢണ

ೞ෪
௎ (𝑢)ቃ , ቂ𝜐

௫ഢണ
ೞ෪

௅ (𝑢), 𝜐
௫ഢണ

ೞ෪
௎ (𝑢)ቃ , ቂ𝜋

௫ഢണ
ೞ෪

௅ (𝑢), 𝜋
௫ഢണ

ೞ෪
௎ (𝑢)ቃቁ (19) 

Step 3. If 𝑝௜௝
௦ = 0, then change the value to 𝑝௜௝

௦ = 1. This issue is based on the mathematical 

rule of ln(1) = 0 and ln(1) = 𝑖𝑛𝑓. 

Step 4. Entropy ൫𝐸௜௝
௦ ൯ is a measure of uncertainty expressed by a given probability distribution 

𝑝௜௝
௦  and determined for each criterion 𝑗 by the following equation: 

𝐸𝑛௝
௦ = 1 −

ଶ

ହ௠
∑

⎣
⎢
⎢
⎢
⎢
⎢
⎡ ቤ൬𝜇

𝑥𝑖𝑗
𝑠෪

𝐿 ൰
ଶ

− 0.25ቤ + ቤ൬𝜇
𝑥𝑖𝑗

𝑠෪
𝑈 ൰

ଶ

− 0.25ቤ

+ ቤ൬𝜐
𝑥𝑖𝑗

𝑠෪
𝐿 ൰

ଶ

− 0.25ቤ + ቤ൬𝜐
𝑥𝑖𝑗

𝑠෪
𝑈 ൰

ଶ

− 0.25ቤ

+ ቤ൬𝜋
𝑥𝑖𝑗

𝑠෪
𝐿 ൰

ଶ

− 0.25ቤ + ቤ൬𝜋
𝑥𝑖𝑗

𝑠෪
𝑈 ൰

ଶ

− 0.25ቤ
⎦
⎥
⎥
⎥
⎥
⎥
⎤

  ௠
௜ୀଵ   (20) 

Step 5. The Dispersion ൫𝐷𝑝௝
௦൯ of the intrinsic information of each criterion is calculated by the 

following equation, which indicates how much useful information the relevant index of the 

൫𝐶௝൯  provides to the decision-maker. The closer the measured values of the index are to each 

other, the more likely it is that competing alternatives will not differ in terms of that index. 

Therefore, the role of that indicator in decision-making should be reduced equally  

𝐷𝑝௝
௦ = 1 − 𝐸𝑛௝

௦, ∀𝑗 ∈ {1,2, … , 𝑛}, 𝑠 ∈ (𝐵, 𝑀, 𝑇) (21) 

The measure of Dispersion characterizes the intrinsic contrast intensity of 𝐶௝. The higher the 

𝐷𝑝௝
௦, the more significant the criterion ൫𝐶௝൯  will be. 

Step 6.  Finally the normalized criteria weight൫ 𝑁𝑤௝
௦൯  is presented by Eq. (22): 

𝑁𝑤௝
௦ =

𝐷𝑝௝
௦

∑ 𝐷𝑝௝
௦௠

௝ୀଵ

, ∀𝑗 ∈ {1,2, … , 𝑛}, 𝑠 ∈ (𝐵, 𝑀, 𝑇) (22) 
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By obtaining the normalized criteria weight, we enter the third phase of our methodology; rank 

the alternatives. Thus, by the successive application of IVSFS-ARAS (Zavadskas & Turskis, 

2010) (Appendix 1), IVSFS-COPRAS (Zavadskas & Kaklauskas, 1996) (Appendix 2), 

IVSFS-MOORA (Karande & Chakraborty, 2012) (Appendix 3), and IVSFS-TOPSIS (Deng 

et al., 2007) (Appendix 4), the target wells’ prioritization for HF treatment has been carried 

out.  

The mathematical formulations of four fuzzy MCDM models are presented in appendix A1, 

A2, A3 and A4.  

A: Identify appropriate experts and establish a committee to address this strategic decision 

problem. This approach helps to avoid bias and minimize partiality in the decision-making 

process, as involving multiple decision-makers is generally more effective than relying on a 

single individual. 

B: Define the IVSFS scale based on linguistic variables for the entropy, ARAS, MOORA, 

COPRAS, and TOPSIS methods. 

C: Determine the criteria and alternatives based on the experts’ analysis of reservoir 

conditions. 

D: Input the criteria into the IVSFS-entropy matrix and assign weights accordingly. 

E: Evaluate the performance of each potential well using the IVSFS-ARAS, IVSFS-COPRAS, 

IVSFS-MOORA, and IVSFS-TOPSIS methods, based on the weighted criteria. 

F: Aggregate the results obtained from the MCDM models to establish the final ranking using 

the Borda method. The Borda method, based on the majority voting rule, is recognized as a 

consolidation approach. This combination of strategy modeling has also been applied by 

Akhavan et al. (2015). 

G: Perform a sensitivity analysis of all implemented MCDM models to verify the robustness 

of the results. 

The mathematical formulations of the four fuzzy MCDM models are provided in Appendices 

A1, A2, A3, and A4 
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4. Case study and the experimental results  

4.1. Geological setting of studied wells 

Regarding the best candidate well selection for HF treatment, the management team aims to 

select the best wells from seven available target wells in three Iranian hydrocarbon fields. 

These three areas are chosen based on the long-term strategic decision of the National Iranian 

Oil Company (NIOC), which would like to invest in these areas. Based on their evaluation, 

these three fields have more potential to have a successful operation. Figure 2 illustrates the 

geographical location of the three fields, which are hatched and labelled in capital letters: A, 

B and C. Since site C is located at sea, we considered the ‘field type’ (offshore/onshore) 

attribute in our weighted parameters.  

Regarding the selection of the best candidate wells for HF treatment, the management team 

intends to choose the most suitable wells from seven available target wells located across three 

Iranian hydrocarbon fields. These three areas have been selected as part of the National Iranian 

Oil Company's (NIOC) long-term strategic decision to invest in these regions. Based on 

evaluations, these fields demonstrate higher potential for successful operations. Figure 2 

illustrates the geographical locations of the three fields, marked with hatching and labelled in 

capital letters: A, B, and C. Since Field C is situated offshore, the 'field type' attribute 

(offshore/onshore) has been included as a weighted parameter in the analysis. 
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Figure2. The geographical location of three studied Iranian hydrocarbon fields which are hatched and 
labelled (Iran National Cartographic Center, n.d.) 

 

Field A 

Field A is located near the city of Ahwaz, and its structure, similar to most fields in this region, 

follows the northeast-southwest trend of the Zagros Mountains. The structure is an anticline 

measuring 75 km in length and 10 km in width at the surface. This field has three reservoir 

formations, with the Ilam formation being the target for HF treatment. The Ilam formation 

consists of limestone and dolomite and is the deepest reservoir in Field A. Two wells from this 

field, Ahwaz (Ilam-zone B), named Az250 and Az268, were selected for candidate analysis 

and designated as A1 and A2, respectively. 

Field B 

Field B is located about 30 Km North of Khoramshahr, on the west bank of the Karun River. 

Its topography is flat, and the ground elevation is about 3-5 meters above sea level. The area 

is affected by some seasonal flooding. The structure is a symmetrical anticline 24 km long and 

10 km wide, elongated in a north-south direction. No significant faults have been highlighted. 

However, in the 3D seismic interpreted by ENI ( an Italian multinational OG company), some 
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fracture trending has been determined (Taheri Nakhost & Shadizadeh, 2013). The target 

formation in this field is Fahlian, which is dominant; this consists of dolomitic limestone. 

Regarding data availability, four wells in this field were chosen for candidate investigation 

(B1, B2, B3, and B4).  

Field B is located about 30 km north of Khoramshahr, on the west bank of the Karun River. 

Its topography is flat, with a ground elevation of approximately 3–5 meters above sea level. 

The area is subject to seasonal flooding. The structure is a symmetrical anticline measuring 24 

km in length and 10 km in width, oriented in a north-south direction. No significant faults have 

been identified. However, in the 3D seismic data interpreted by ENI (an Italian multinational 

OG company), some fracture trends have been observed (Taheri Nakhost & Shadizadeh, 

2013). The target formation in this field is the Fahlian, a dolomitic limestone formation. Based 

on data availability, four wells in this field were selected for candidate analysis, designated as 

B1, B2, B3, and B4. 

Field C 

Field C is an offshore oil field located in the northwest Persian Gulf. It features an anticlinal 

structure with a fault on the western flank. The Asmari reservoir, composed of dolomite and 

limestone, is the target formation for HF treatment. Due to production challenges and data 

limitations, only one well (C1) was selected from the 12.9 × 6.2 km field in the Asmari 

formation. 

For consistency throughout the paper, we have renamed B1 to B4 as A1 to A4. Additionally, 

the alternatives within field A (originally A1 and A2) are now designated as A5 and A6, 

respectively. Finally, C1 has been reassigned as A7 

4.2. Calculating the weights of criteria with the IVSFS-entropy method 

Our team of decision-makers consists of a group of Iranian specialists in petroleum reservoir 

engineering and rock mechanics engineering. After defining the goal of the current study, 

which is candidate well selection for HF treatment; the decision-makers (DMs) introduced 

fourteen criteria and their sub-parameters that are the most effective parameters related to our 
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goal. These criteria have been defined based on available literature, knowledge, and the 

experiences of our experts regarding Iranian reservoirs (see Table 1).  

Table 2 demonstrates the main information about seven target wells which change to the fuzzy 

linguistic terms and correspondent fuzzy numbers obtained from Table 3 (Saaty, 2006). In all 

fields, the upper layer of the target formation is the confining layer, and the fracture cannot be 

propagated through the upper layer. Also, there is no evidence of sand (or solid) production in 

target wells.  

Table 2. The fuzzy Linguistic variables of seven target wells by experts (Table by Authors) 

Criteria Alternatives 

A1 A2 A3 A4 A5 A6 A7 

𝐶ଵ AMI AMI AMI AMI SMI SMI LI 
𝐶ଶ EI VHI EI SMI SLI SLI LI 
𝐶ଷ EI EI SMI SMI SMI LI AMI 
𝐶ସ VHI EI EI EI LI LI SMI 
𝐶ହ EI EI EI EI SMI SMI HI 
𝐶଺ LI LI ALI LI EI EI ALI 
𝐶଻ VHI VHI VHI EI AMI AMI EI 
𝐶଼ SMI SMI SMI HI SMI SMI SMI 
𝐶ଽ VHI VHI VHI AMI AMI AMI EI 
𝐶ଵ଴ HI HI HI HI SLI SLI EI 
𝐶ଵଵ VLI LI LI LI LI LI LI 
𝐶ଵଶ EI EI EI EI HI HI EI 
𝐶ଵଷ HI HI HI HI SMI SMI EI 
𝐶ଵସ HI HI HI HI SMI SLI SMI 

 

In Table 4, the normalized decision matrix ൫𝑃௜௝
௦ ൯based on the Eq.(18) is obtained. Then 𝐿𝑛 

adjustment based on step 3 should be made.  

Table 3. Fuzzy linguistic terms and correspondent fuzzy numbers for each criterion and alternative (Table by 
Authors) 

Importance Correspondent fuzzy numbers 

Absolutely more Importance (AMI) ([0.85,0.95], [0.10,0.15], [0.05,0.15]) 

Very High Importance (VHI) ([0.75,0.85], [0.15,0.20], [0.15,0.20]) 

High Importance (HI) ([0.65,0.75], [0.20,0.25], [0.20,0.25]) 

Slightly More Importance (SMI) ([0.55,0.65], [0.25,0.30], [0.25,0.30]) 

Equally Importance (EI) ([0.50,0.55], [0.45,0.55], [0.30,0.40]) 

Slightly Low Importance (SLI) ([0.25,0.30], [0.55,0.65], [0.25,0.30]) 

Low Importance (LI) ([0.20,0.25], [0.65,0.75], [0.20,0.25]) 
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Very Low Importance (VLI) ([0.15,0.20], [0.75,0.85], [0.15,0.20]) 

Absolutely Low Importance (ALI) ([0.10,0.15], [0.85,0.95], [0.05,0.15]) 



 

Table 4. The normalized fuzzy decision matrix of seven alternatives (Table by Authors) 

Alternatives A1 A2 A3 A4 A5 A6 A7 

Criteria a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f 

𝐶ଵ 0.9 1 0.1 0.2 0.1 0.2 0.9 1 0.1 0.2 0.1 0.2 0.9 1 0.1 0.2 0.1 0.2 0.9 1 0.1 0.2 0.1 0.2 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.2 0.25 0.7 0.8 0.2 0.3 
𝐶ଶ 0.5 0.6 0.5 0.6 0.3 0.4 0.8 0.9 0.2 0.2 0.2 0.2 0.5 0.6 0.5 0.6 0.3 0.4 0.6 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.2 0.25 0.7 0.8 0.2 0.3 

𝐶ଷ 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.9 0.95 0.1 0.2 0.1 0.2 

𝐶ସ 0.8 0.9 0.2 0.2 0.2 0.2 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.6 0.65 0.3 0.3 0.3 0.3 

𝐶ହ 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.7 0.75 0.2 0.3 0.2 0.3 

𝐶଺ 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.1 0.2 0.9 1 0.1 0.2 0.2 0.3 0.7 0.8 0.2 0.3 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.1 0.15 0.9 1 0.1 0.2 

𝐶଻ 0.8 0.9 0.2 0.2 0.2 0.2 0.8 0.9 0.2 0.2 0.2 0.2 0.8 0.9 0.2 0.2 0.2 0.2 0.5 0.6 0.5 0.6 0.3 0.4 0.9 1 0.1 0.2 0.1 0.2 0.9 1 0.1 0.2 0.1 0.2 0.5 0.55 0.5 0.6 0.3 0.4 

𝐶଼ 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.65 0.3 0.3 0.3 0.3 

𝐶ଽ 0.8 0.9 0.2 0.2 0.2 0.2 0.8 0.9 0.2 0.2 0.2 0.2 0.8 0.9 0.2 0.2 0.2 0.2 0.9 1 0.1 0.2 0.1 0.2 0.9 1 0.1 0.2 0.1 0.2 0.9 1 0.1 0.2 0.1 0.2 0.5 0.55 0.5 0.6 0.3 0.4 

𝐶ଵ଴ 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.5 0.55 0.5 0.6 0.3 0.4 

𝐶ଵଵ 0.2 0.2 0.8 0.9 0.2 0.2 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.25 0.7 0.8 0.2 0.3 

𝐶ଵଶ 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.5 0.6 0.5 0.6 0.3 0.4 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.5 0.55 0.5 0.6 0.3 0.4 

𝐶ଵଷ 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.5 0.55 0.5 0.6 0.3 0.4 

𝐶ଵସ 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.7 0.8 0.2 0.3 0.2 0.3 0.6 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.7 0.3 0.3 0.6 0.65 0.3 0.3 0.3 0.3 

 

 



In the entropy method is applied according to steps 4–6 to determine the criteria weights. 

Generally, as the number of criteria and alternatives increases, the application of comparison-

based models for criteria weighting, such as AHP, becomes more challenging due to inconsistency. 

This limitation highlights the advantage of the entropy method, which does not require reciprocal 

comparisons.  

Table 5, the entropy method is applied according to steps 4–6 to determine the criteria weights. 

Generally, as the number of criteria and alternatives increases, the application of comparison-

based models for criteria weighting, such as AHP, becomes more challenging due to inconsistency. 

This limitation highlights the advantage of the entropy method, which does not require reciprocal 

comparisons.  

Table 5. The criteria weight determined by the IVSFS-Entropy method (Table by Authors) 

Criteria 𝐸𝑛௝
௦ 𝐷𝑝௝

௦ 𝑁𝑤௝
௦ 

𝐶ଵ 0.349 0.650 0.104 

𝐶ଶ 0.628 0.371 0.059 

𝐶ଷ 0.605 0.395 0.063 

𝐶ସ 0.637 0.362 0.057 

𝐶ହ 0.729 0.270 0.043 

𝐶଺ 0.498 0.501 0.080 

𝐶଻ 0.433 0.566 0.090 

𝐶଼ 0.611 0.388 0.062 

𝐶ଽ 0.338 0.662 0.105 

𝐶ଵ଴ 0.579 0.420 0.067 

𝐶ଵଵ 0.466 0.533 0.085 

𝐶ଵଶ 0.738 0.261 0.041 

𝐶ଵଷ 0.579 0.420 0.067 

𝐶ଵସ 0.549 0.450 0.071 

 

4.3. Evaluation of alternatives and determining the final rank by fuzzy 

MCDM methods 

In this step, we proceed to the second phase of our problem-solving methodology, which 

involves evaluating the alternatives based on the weights derived from the entropy method and 

the data provided by experts through the decision matrix. The IVSFS-ARAS, IVSFS-

COPRAS, IVSFS-MOORA, and IVSFS-TOPSIS methods are applied in this phase. 
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IVSFS-ARAS method results: For each criterion in the presented case, the value of the 

optimality function is determined using IVSFS-ARAS model, then for defuzzification of 

IVSFS-ARAS, the centre-of-area method is used, and the utility degree of an alternative (𝑘௜) 

is calculated. The third column of Table 6 represents the crisp value of the optimality 

function(𝐻௜), the next column contains the utility degree of alternative (𝑘௜), and the rank of 

an alternative can be found in the last column. A3 and A1 achieve the first and second ranks 

respectively. 

Table 6. The optimality function and degree of alternative value determined by the IVSFS-ARAS method 
(Table by Authors) 

Alternatives 
(𝐻௜) 

(𝑘௜) Rank 
a b c d e f 

A1 0.175 0.198 0.000 0.000 1.513 0.068 -0.213 2 

A2 0.175 0.199 0.000 0.000 0.756 0.069 -0.114 7 

A3 0.172 0.196 0.000 0.000 1.517 0.069 -0.214 1 

A4 0.173 0.195 0.000 0.000 1.265 0.073 -0.199 6 

A5 0.162 0.185 0.000 0.000 1.280 0.074 -0.205 5 

A6 0.155 0.176 0.000 0.000 1.284 0.073 -0.209 4 

A7 0.126 0.143 0.000 0.000 1.044 0.087 -0.209 3 

 

IVSFS-COPRAS method results: In this method, the relative significance or priority value 

(𝑄௜)for each alternative is calculated. Finally, the utility degree (𝑁௜) for each alternative is 

determined, and the complete ranking of partners is obtained (see Table 7). 

Table 7 .The relative weight, utility degree, and rank of each alternative determined by the IVSFS-COPRAS 
(Table by Authors) 

Alternatives 
P 

Q N Rank 
a b c d e f 

A1 0.997 0.999 3.41E-
06 

2.89E-
05 

0.1 0 -0.503 99% 2 
A2 0.996 0.999 2.96E-

06 
0 0.1 0 -0.073 15% 7 

A3 0.996 0.999 1.64E-
06 

1.39E-
05 

0.049 0.015 -0.508 100% 1 
A4 0.997 0.999 2.63E-

06 
2.39E-

05 
0.049 0.013 -0.333 66% 5 

A5 0.995 0.999 2.79E-
06 

2.22E-
05 

0.074 0.017 -0.350 69% 4 
A6 1 0.999 7.26E-

06 
5.55E-

05 
0.080 0 -0.358 70% 3 

A7 0.978 0.995 0.0001 0.0012 0.027 0.083 -0.238 47% 6 

IVSFS-MOORA method results: In this method, the benefits of criteria for each alternative 

(𝐻௜
௦) are calculated, then the defuzzification according to the center-of-area method is applied, 
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and we obtain the ranking of alternatives. A3 and A1 achieve the first and second ranks 

respectively (Table 8). 

 



 

Table 8. The benefits of criteria and the rank of each alternative determined by the IVSFS-MOORA (Table by Authors) 
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Rank 2 7 1 5 4 3 6 



 

Table 9. The ideal solution, and the rank of each alternative determined by IVSFS-TOPSIS (Table by 
Authors) 

Alterna
tives A1 A2 A3 A4 A5 A6 A7 

𝐷ା 0.256 0.203 0.201 0.209 0.231 0.228 0.322 
𝐷ି 0.182 0.148 0.148 0.141 0.119 0.122 0.205 

𝐶 0.416 0.421 0.424 0.403 0.339 0.348 0.388 
Rank 3 2 1 4 7 6 5 

 

IVSFS-TOPSIS results: Negative and positive ideal solutions (𝐷+, 𝐷−) are determined to 

obtain the ranking score (𝐶) of alternatives. The results of the IVSFS-TOPSIS are shown in 

Table 9, which indicates that A3 and A2 obtain the first and the second ranks with a C value 

of 0.424 and 0.421 respectively.  

Comparative analysis: To validate the applicability and suitability of the four preferred 

ranking methods to solve the well selection problem, their ranking performance (see Table 10) 

is compared using the Borda method. Borda is a known consolidation technique which is based 

on the majority voting rule. This method is widely applied by different researchers to validate 

the applicability and suitability of implemented ranking methods (Akhavan et al., 2015). 

Table 10. The ranking of alternatives with four methods (Table by Authors) 

Alternatives Method 
IVSFS-MOORA IVSFS-TOPSIS IVSFS-ARAS IVSFS-COPRAS 

A1 2 3 2 2 
A2 7 2 7 7 
A3 1 1 1 1 
A4 5 4 6 5 
A5 4 7 5 4 
A6 3 6 4 3 
A7 6 5 3 6 

In this research, the achieved rankings are consolidated using four methods: IVSFS-ARAS, 

IVSFS-COPRAS, fuzzy IVSFS-TOPSIS, and fuzzy IVSFS-MOORA, as presented in Table 

11. For example, well A3 ranks higher than the other wells across the IVSFS-ARAS, IVSFS-

COPRAS, fuzzy IVSFS-MOORA, and IVSFS-TOPSIS methods. Therefore, based on 

majority voting, the rank of well A3 in the table is assigned as 1 when compared to the other 

wells. We then aggregated the results to determine the final rankings of the alternatives. 
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Table 11. The Borda method for seven alternatives (Table by Authors) 

 A1 A2 A3 A4 A5 A6 A7 Sum Rank 

A1 ----- 1 0 1 1 1 1 5 2 

A2 0 ----- 0 0 0 0 0 0 7 

A3 1 1 ----- 1 1 1 1 6 1 

A4 0 1 0 ----- 0 0 1 2 4 

A5 0 1 0 1 ----- 0 0 2 5 

A6 0 1 0 1 0 ----- 1 3 3 

A7 0 1 0 0 0 1 ----- 2 6 

 

To the best of the authors’ knowledge, this is the first time that MCDM methods have been 

applied to the well selection problem. Although the comparison between similar studies is not 

available, MCDM methods can be evaluated by considering their responses with varying 

weights via sensitivity analysis.  

5. Discussion and sensitivity analysis 

The present study utilizes a novel entropy-based fuzzy MCDM approach to identify the 

optimal candidate for HF treatment in Iranian hydrocarbon reservoirs. The findings indicate 

that well A3 ranks highest among the evaluated options based on the established criteria. This 

result aligns with the principles of decision theory, which emphasize the importance of 

systematic evaluation in complex decision-making scenarios. The proposed stepwise 

methodology provides a systematic and effective decision-making tool for assessing potential 

investments in the stimulation of target wells, and it can be readily applied to other carbonate 

reservoirs beyond the scope of this study. Therefore, our approach offers a practical framework 

for selecting the most suitable well for HF treatment, contributing to the optimization of 

reservoir performance and recovery. 

In comparing our results with existing literature, we note that previous studies have utilized 

various MCDM methods, such as the AHP and the TOPSIS, for well selection and evaluation 

(Mardani et al., 2015). However, these methods often face limitations in handling uncertainty 
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and subjectivity, which our entropy-based fuzzy approach effectively addresses. The 

incorporation of fuzzy logic enhances the robustness of our rankings by accommodating the 

inherent uncertainties in the criteria assessments, a factor that has been emphasized in recent 

research on decision-making in the oil and gas sector (Gul & Ak, 2021).  

Our analysis of raw data from fourteen criteria reveals a strong correlation between ranking 

outcomes and calculated weights. Well A3 emerges as the top candidate for HF treatment, 

demonstrating high levels of positive criteria and moderate values for negative criteria. In 

contrast, well A7, characterized by a high water cut and medium to high economic and 

financial risks, ranks the lowest. These findings offer valuable insights for selecting the most 

promising candidate wells and contribute to the broader discourse on effective resource 

management in hydrocarbon extraction. 

The process of ranking alternatives is closely intertwined with the distribution of weights 

assigned to each criterion. As highlighted in the literature, sensitivity analysis is crucial for 

understanding the stability of decision-making results and assessing how variations in criteria 

weights affect the final alternative ranking (Mulliner et al., 2016). To conduct a sensitivity 

analysis, we varied the criteria weights and monitored the resulting changes in the ranking of 

alternatives across different MCDM methods. The findings of this analysis, presented in 

Figure 3, illustrate the significant impact of changes in criteria weights on the final ranking of 

alternatives. This aligns with existing theories on decision-making, which suggest that even 

minor adjustments in criteria weights can lead to substantial shifts in rankings, thereby 

emphasizing the need for careful consideration of weight assignments in MCDM applications. 
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 Sensitivity Analysis of Criteria Weights Across Varying Weight Levels  
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Figure 3. Criteria sensitivity to change (criteria are numbered on the left side and vertical strip line stands for the 
sensitivity of criteria) (Figure by Authors) 

Dark green lines illustrate the acceptable variation of criteria weight when the ranking does 

not change, whereas the light green lines represent one change in the priority of alternatives. 

In principle, vertical strip line stands for the sensitivity of criteria to the change; wherein 

shorter stripes show higher sensitivity levels. Decision-making criteria are numbered on the 

left side of the chart in the following order: 1. Field type, 2. Water cut, 3. Collaborative 

Logistics, 4. Regulatory Pressure, 5. Operational parameters, 6. Economic and financial risks, 

7. Well direction, 8. Environment and Sustainability, 9. Well completion method, 10. Political 
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stability, 11. Sand production, 12. Production method, 13. Reservoir pressure (psi), and 14. 

Resource Risks. For each criterion, the first line is the implementation results of IVSFS-

COPRAS; following with IVSFS-ARAS, IVSFS-TOPSIS, and IVSFS-MOORA (bottom). 

As shown in Figure 3, It is evident that ‘well completion method,’ ‘field type,’ 

‘environment and sustainability,’ and ‘economic and financial risks’ have the least influence 

on the final ranking of alternatives. In contrast, ‘water cut,’ ‘regulatory pressure,’ ‘production 

method,’ and ‘resource risks’ have a moderate impact on the final ranking of alternatives. 

Furthermore, the IVSFS-TOPSIS method exhibits the highest sensitivity to changes in weight. 

Additionally, the ranking of alternatives is more sensitive when the criteria weights exceed 1, 

compared to when they are below 1. 

One sensitivity coefficient reported here is the sensitivity of criterion i, represented as 𝑆𝐶௜ 

which is calculated based on the relative number of changes that occurred in the ranking orders 

(displayed in Figure 3) and according to Eqs. (23) and (24), wherein 𝐷௜௝ corresponds the 

relative number of changes made in the ranking order with regard to ith criteria and the jth 

MCDM method.  

𝐷௜௝ = ෍
𝑑௜௝

∑ 𝑑௜௝

௝

௡ୀଵ

 , 𝑖 = 1, … ,14; 𝑗 = 1, … ,4 (23) 

𝑆𝐶௜ =
∑ 𝐷௜௝

௜
௡ୀଵ

∑ ∑ 𝐷௜௝
௝
௡ୀଵ

௜
௡ୀଵ

, 𝑖 = 1, … ,14; 𝑗 = 1, … ,4 (24) 

Figure 4 presents the value of iSC  for the candidate well selection problem. 
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Figure 4. Relative sensitivity to the changes in ranking regarding criteria (Figure by Authors) 

     

 According to Figure 4, it is obvious that the alternatives’ rankings are more sensitive to ‘water 

cut’, ‘regulatory pressure’, and ‘resource risks. Conversely, ‘well completion method’, ‘field 

type’ and ‘environment and sustainability’ have fewer relative influences on changes occurred 

in the subsequent ranking.  

In addition to 𝑆𝐶௜, another sensitivity coefficient is considered, i.e., 𝑆𝐶௝ which is associated 

with the relative sensitivity of ranking achieved by jth MCDM method to 𝐷௜௝. 𝑆𝐶௝  is obtained 

by Eq. (25). 

𝑆𝐶௝ =
∑ 𝐷௜௝

௝
௡ୀଵ

∑ ∑ 𝐷௜௝
௝
௡ୀଵ

௝
௡ୀଵ

, 𝑖 = 1, … ,14; 𝑗 = 1, … ,4 (25) 

Table 12 contains the value of 𝑆𝐶௝with regard to criterion i. In Table 12, each cell represents 

the sensitivity coefficient of the associated MCDM method to the corresponding criteria in 

which higher values introduce more sensitivity of the MCDM method to the variation of 

criteria weights. 
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Table 12.  Comparison of ranking sensitivity to different criteria weights within MCDM methods (Table by 
Authors) 

Criteria/Method IVSFS-COPRAS IVSFS-ARAS IVSFS-TOPSIS IVSFS-MOORA 

Field type 0.000 0.039 0.042 0.000 

Water Cut 0.238 0.179 0.190 0.330 

Collaborative Logistics 0.076 0.021 0.027 0.073 

Regulatory Pressure 0.128 0.276 0.161 0.088 

Operational Parameters 0.046 0.013 0.028 0.045 

Economic and financial risks 0.080 0.039 0.013 0.020 

Well Direction  0.018 0.029 0.091 0.044 

Environment and Sustainability 0.019 0.000 0.019 0.069 

Well Completion Method 0.000 0.023 0.015 0.000 

Damage Penetration (skin) 0.142 0.095 0.050 0.069 

Sand Production 0.057 0.021 0.042 0.084 

Production Method 0.063 0.034 0.084 0.082 

Reservoir Pressure (psi) 0.042 0.052 0.113 0.034 

resource risks 0.092 0.179 0.125 0.061 

 

The sensitivity of MCDM methods to variations in the 'water cut' parameter is apparent. 

Consequently, these methods demonstrate lower sensitivity to factors such as the 'well 

completion method' and 'environment and sustainability.' The distinct sensitivity patterns 

exhibited by each MCDM method can be identified through pairwise correlation analysis of 

the rankings they produce. The analysis reveals that the highest sensitivity correlation occurs 

between IVSFS-MOORA and IVSFS-COPRAS, followed by IVSFS-TOPSIS and IVSFS-

ARAS. Conversely, the lowest sensitivity correlation is observed between IVSFS-MOORA 

and IVSFS-ARAS. Figure 5 illustrates which method is the most robust in response to 

variations in criteria weights. 
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Figure 5. Relative sensitivity to change in ranking with regard to methods (Figure by Authors) 

Figure 5 reflects the relative close matching among the MCDM methods. It could be suggested 

that the IVSFS-MOORA and IVSFS-ARAS methods could be noted as less sensitive to 

criteria weight changes and are thus more robust methods. 

Understanding the significance and ranking of each alternative in the final selection of wells 

for this project is crucial. This process involves identifying the alternative that ranks highest 

based on the seven most critical criteria: C1, C6, C7, C9, C11, C13, and C14. Furthermore, 

conducting a sensitivity analysis of the well alternatives can reveal potential changes in the 

final rankings if certain criteria are excluded. This analysis excludes consideration of each key 

criterion's influence at every stage. Ultimately, it ensures that the decision-making process 

remains robust and adaptable to variations in criteria importance. 

Since we have focused solely on the most important criteria from a managerial perspective, it 

is crucial to demonstrate how these criteria influence the final ranking of the alternatives. To 

illustrate this, we have deliberately excluded these criteria from our calculations to observe 

the resulting rankings of the alternatives in their absence. Figure 6 illustrates the ranking 

outcomes of the alternatives when these key criteria are omitted. 
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Figure 6. Sensitivity analysis of alternatives ranks with “only” impact of the criteria (Figure by Authors) 

When Criterion C1, related to water cut, is excluded, A6 consistently emerges as the top 

contender, underscoring its stable performance across various metrics. In contrast, A7's 

performance is notably impacted, suggesting its ranking benefits significantly from low water 

cut values. This observation indicates that, even with the water cut factor removed, A6 remains 

a formidable option due to its inherent qualities, such as reservoir characteristics or operational 

efficiency. 

In scenario C6, the exclusion of well direction significantly diminishes A5’s standing, 

underscoring its reliance on this factor for a favorable evaluation. In contrast, A4 demonstrates 

improved performance, suggesting that it is less dependent on well direction and may provide 

a more adaptable approach to well selection. 

In scenario C7, when environmental and sustainability criteria are excluded, A7 ranks the 

lowest, indicating that its strong initial ranking was heavily influenced by its environmental 

performance. This change suggests that A7’s strategy should not rely solely on its 

sustainability attributes, especially if these factors are deprioritized. 
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In the case of C9, where political stability is disregarded, A7’s rank declines significantly, 

implying that it derives considerable benefit from its stable regional context. Meanwhile, A1 

appears more appealing, suggesting that political considerations previously overshadowed its 

potential. In environments where political risk is minimized, A1 may emerge as a stronger 

option. 

When C11 is excluded and the production method is not considered, A3’s ranking drops 

markedly, confirming the critical importance of its specialized production techniques. 

Meanwhile, A6 rises in rank, indicating that its prior lower position was influenced by less 

optimal production methods. A3 remains a prime candidate when its specialized production is 

a priority, while A6 could be preferable in scenarios where variability in production methods 

is acceptable. 

The analysis concerning C13 reveals that A7 benefits most from the exclusion of resource risk 

factors, as it had been previously penalized for higher risks. Conversely, A3’s ranking 

deteriorates, suggesting that its previously inflated position was due to lower perceived risks. 

This underscores the need for a robust reassessment of risk management strategies, particularly 

for A7, while A3 may need to address potential underestimations of its risk exposure. 

Lastly, omitting C14, which focuses on the field type, leads to a significant decline in A2’s 

rank, highlighting its reliance on favorable field conditions. In contrast, A1 shows an improved 

ranking, indicating resilience against varying field conditions. This resilience makes A1 a 

strong candidate in scenarios with uncertain field-type advantages, whereas A2 may require 

more careful evaluation under such circumstances. 

The analysis indicates that some oil wells, such as A7, achieve high rankings when certain 

criteria are included, but their rankings decline when these criteria are excluded. This 

highlights a strong dependency on specific positive factors, such as sustainability and political 

stability. Conversely, wells like A6 exhibit consistent performance across various criteria, 

indicating a more balanced profile. 
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The managerial strategy should therefore be multifaceted: it should take into account the 

inherent core strengths of each well while avoiding over-reliance on a single criterion. 

Furthermore, to better understand the impact of each criterion, we examine a scenario where 

the manager chooses to focus exclusively on the most important criteria. This analysis explores 

the potential changes in the final rankings of the alternatives under such conditions. To 

illustrate this, Figure 7 presents the rankings derived when the manager considers only one of 

these important criteria at a time. 

 

 

Figure 7. Sensitivity analysis of alternatives ranks with “without” impact of the criteria (Figure by Authors) 

By considering C1, A2 emerges as the top contender when focusing exclusively on water cut, 

a factor typically viewed as negative. This suggests that A2 offers the most favorable water-

cut conditions among all alternatives—an advantage that should not be overlooked. 

Conversely, A7 is the least favorable under this criterion, indicating a greater need for 

extensive water-handling infrastructure, which could significantly impact overall costs and 

environmental strategy. For projects where minimizing water production is vital, A2 should 

be prioritized, presenting a promising solution. 

Focusing on C6, it becomes evident that well direction significantly impacts accessibility and 

extraction efficiency. A4 ranks the highest in this criterion, demonstrating optimal alignment 
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with the reservoir, which is a potential advantage. In contrast, A7 ranks the lowest, suggesting 

challenges related to the reservoir’s orientation—an issue that should be approached with 

caution. A4 should be considered for projects where well direction is critical to maximizing 

recovery. For A7, additional interventions or technologies may be required to mitigate its 

directional disadvantages, presenting a potential hurdle. 

Concentrating on C7 (Environment and Sustainability) reveals that A2 tops the rankings under 

this criterion, indicating a leadership position in environmental considerations—an advantage 

with significant potential. A3, on the other hand, ranks the lowest, which may reflect less 

favorable sustainability practices. For projects prioritizing environmental impact, A2 offers 

benefits such as lower regulatory hurdles and enhanced community relations. Conversely, A3 

might face more environmental challenges or regulatory scrutiny, a potential drawback to 

consider. 

A4 and A7 exhibit the most substantial and least favorable advantages, respectively, when 

political stability is the sole focus. This suggests that A4 operates in a significantly stable 

political environment, while A7 does not. For geopolitically sensitive projects, A4 represents 

a lower-risk profile. However, in the case of A7, comprehensive risk mitigation strategies 

should be implemented to address political instability effectively. 

A1 is the most favored when evaluated based on the production method, indicating that its 

approach is highly effective. In contrast, the lowest ranking for A5 suggests that its production 

method may be less suited to the specific reservoir conditions. A1 likely offers the highest 

operational efficiency, which is critical for meeting production targets and minimizing costs. 

A5, however, may require methodological adaptations to achieve comparable efficiency 

levels. 

Focusing on C13 highlights that A6 leads the rankings, implying the lowest perceived resource 

risks. Conversely, A2 and A7 exhibit the highest resource risks. Managers should prioritize 

A6 in projects where minimizing resource-related uncertainties is paramount. For wells like 

A2 and A7, thorough due diligence and a robust focus on risk assessment will be essential. 

When examining C14, A1 and A7 score the highest and lowest, respectively. This indicates 

that A1 benefits from a more advantageous field type, while A7 might encounter operational 
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complexities or cost issues related to its field type. Selecting A1 could yield benefits due to 

favorable field conditions, such as logistical convenience or lower costs. For A7, careful 

consideration is necessary to determine whether the benefits outweigh the challenges 

associated with its field type. 

By individually analyzing key criteria, it becomes evident that certain oil wells exhibit specific 

strengths and weaknesses depending on the criterion in question. For instance, A2 and A4 

demonstrate resilience in environmental sustainability and political stability, respectively—

factors critical for long-term operational success. Conversely, A7 frequently ranks lower 

across multiple criteria, identifying it as a well that may pose significant challenges and require 

additional investment to mitigate its disadvantages 

6. Theoretical, managerial, and policy implications 

This study brings meaningful insights to theory, management, and policy in how we make 

decisions under pressure and uncertainty especially when choosing sites for hydraulic 

fracturing (HF) in oil and gas. On the theory side, it sharpens how fuzzy logic can work within 

MCDM methods. By using an entropy-based method to weigh different factors, the study 

better captures the gray areas in expert opinions. It also shows how shifts in those weights can 

significantly change how choices are ranked, giving depth to how we think about decision 

theory. The introduction of the IVSFS-MCDM framework adds something new to the field. It 

builds on tools like AHP and TOPSIS, but goes further—allowing decision-makers to handle 

uncertainty and conflicting inputs with more flexibility and realism. For managers, this 

framework is a practical asset. It helps guide smarter, more data-informed choices on where 

to invest, weighing not just what’s profitable, but also what’s environmentally and technically 

sound. It includes tools for sensitivity analysis, helping companies foresee potential risks and 

plan accordingly. Plus, it’s built to work across different regions and project types, making it 

ideal for global or complex operations. At a policy level, the work emphasizes the need to 

factor sustainability into early project decisions. It supports using clear, measurable tools like 

entropy weighting, to reduce bias and build trust in the decision process. It also encourages 

teamwork across disciplines and highlights the importance of investing in research to support 
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better decision tools like IVSFS-MCDM. In the end, this study doesn’t just push technical 

boundaries, it offers a grounded approach for those making hard decisions in a high-stakes 

industry. 

7. Conclusion  

This study proposes a novel IVSFS-entropy MCDM method for selecting optimal candidate 

wells for hydraulic fracturing in oil and gas fields, aligning with project management 

principles within an academic context. The method employs a Borda approach to integrate 

four MCDM methods, providing a weight assignment for each criterion and resulting in a final 

ranking of target wells. A comprehensive sensitivity analysis confirms the robustness of the 

method, emphasizing the equal importance of managerial and engineering factors in the 

selection process, thereby reflecting the interdisciplinary approach encouraged in project 

management academia. 

The implementation of the proposed procedure in geological exploration has the potential to 

streamline reservoir engineering processes and enhance project management outcomes in the 

sector. Unlike traditional hydraulic fracturing methods that rely solely on mathematical 

approaches, the proposed model emphasizes professional expertise, aligning with the 

academic project management principle of integrating expert judgment. The incorporation of 

the fuzzy entropy method considers the influence of various economic attributes in the oilfield 

selection process, echoing the project management focus on comprehensive risk and economic 

assessment, ultimately leading to more precise and accurate results. Overall, this approach 

provides a nuanced and robust framework for reservoir characterization and selection, offering 

valuable insights for both academic research and practical project management in the oil and 

gas industry. 

The study’s findings designate alternative A3 as the optimal candidate, followed by others in 

a specific order, which are pivotal for integrating academic project management 

methodologies with practical engineering applications. These findings highlight the significant 

factors that impact the hydraulic fracturing treatment problem, reinforcing key project 

management concepts such as risk assessment and resource management. 
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In this context, the absence of a specific well chosen and stimulated based on the outcomes 

underscores a gap between academic theory and practical application—a common challenge 

in project management research. Nevertheless, the proposed approach presents a potentially 

viable alternative to, or supportive tool for, the costly numerical simulation process involved 

in well selection. This suggests a valuable intersection between academic research and 

practical project management. 

To enhance the rigor and comprehensiveness of this study while aligning with academic 

project management standards, a numerical simulation of hydraulic fracturing in target wells 

could be conducted. This would evaluate the efficacy of the proposed methodology and bridge 

the gap between theory and practice, a core aim of project management academia. Further 

validation of the methodology through comparisons with actual well candidate selection 

outcomes could strengthen the connection between academic research and industry 

application. 

The sensitivity analysis results provide valuable lessons and implications for the oil industry, 

particularly in improving business operations. Understanding how each well’s performance 

would behave in the presence or absence of specific criteria allows for the identification of 

attributes that make wells robust under varying conditions. These insights can be used to 

categorize wells based on specific criteria, enhancing resource allocation to wells with 

consistently strong performance across multiple factors. The results increase efficiency in 

various processes and operations, requiring fewer resources to achieve desired outcomes. This 

analysis informs decisions on selecting wells that meet current and future designs, ensuring 

operational improvements based on performance-driven criteria. 

The policy implications of the results underscore the need for dynamic regulations in the oil 

industry. Policy frameworks that prioritize criteria such as environmental conservation and 

political stability encourage eco-conscious business practices while ensuring optimal project 

management outcomes. Such policies drive the development of advanced technologies aimed 

at achieving corporate sustainability goals. Policies based on these findings would not only 

support the transition to the green energy sector but also enhance the effectiveness of project 

management criteria by favoring practices aligned with environmental sustainability. A policy 
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aligned with these criteria paves the way for improved efficiency and sustainability in the 

system. 

Additionally, employing other fuzzy MCDM models and expanding the study to include grey 

or interval-based MCDM models could deepen academic investigation into project 

management methodologies, fostering a broader understanding of the proposed approach and 

its applications in the oil and gas industry. 
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