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Abstract

The rapid integration of computer vision into Autonomous Systems (AS) has introduced
new vulnerabilities, particularly in the form of adversarial threats capable of manipulat-
ing perception and control modules. While multiple surveys have addressed adversarial
robustness in deep learning, few have systematically analyzed how these threats manifest
across the full stack and life-cycle of AS. This review bridges that gap by presenting a
structured synthesis that spans both, foundational vision-centric literature and recent AS-
specific advances, with focus on digital and physical threat vectors. We introduce a unified
framework mapping adversarial threats across the AS stack and life-cycle, supported by
three novel analytical matrices: the Life-cycle—Attack Matrix (linking attacks to data, train-
ing, and inference stages), the Stack—Threat Matrix (localizing vulnerabilities throughout
the autonomy stack), and the Exposure—Impact Matrix (connecting attack exposure to
Al design vulnerabilities and operational consequences). Drawing on these models, we
define holistic requirements for effective AS defenses and critically appraise the current
landscape of adversarial robustness. Finally, we propose the AS-4DS scoring framework
to enable comparative assessment of defense methods in terms of their alignment with the
practical needs of AS, and outline actionable directions for advancing the robustness of
vision-based autonomous systems.
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1 Introduction

Autonomous Systems (AS) are rapidly transitioning from research prototypes to mission-
critical platforms in transportation, logistics, and robotics (Sheridan 2016; Siciliano and
Khatib 2016). At their core, AS combine high-resolution sensors, fast communication links,
complex control software, and deep neural networks to enable autonomous operation in
unstructured environments (Bekey 2005; Guizzo 2011).

A defining trend in modern AS is their deep reliance on computer vision. Vision mod-
els, ranging from classic convolutional neural networks (CNNs) (He et al. 2016), real-time
detectors such as YOLO (Wang et al. 2023a) and RT-DETR (Zhao et al. 2024a), to advanced
transformers (Oquab et al. 2024) and vision-language models (Xu et al. 2024; Renz et al.
2024) underpin not only perception but also sensor fusion, semantic mapping, predic-
tion, planning, and even direct actuation. The industry-wide move towards vision-centric
and even vision-only paradigms is perhaps best exemplified by Tesla’s Autopilot and Full
Self-Driving systems (Tesla Inc 2022), which intentionally omit LIDAR and radar in favor
of multi-camera, deep learning pipelines for end-to-end environment understanding and
control.

While classic non-vision attack vectors such as GPS spoofing (Horton and Ranganathan
2018), CAN-bus injection (Kang et al. 2021), and physical attacks on radar or LiDAR sys-
tems (Cao et al. 2019; Kong et al. 2020) have been extensively studied, and industry best
practices for their detection and mitigation are relatively mature, the shift to vision-centric
architectures introduces a new class of system-wide vulnerabilities. Years of adversarial
machine learning research have shown that even digital imperceptible perturbations to
image inputs can induce misclassification and dangerous misinterpretation (Szegedy et al.
2013; Goodfellow et al. 2014). In the physical world, attacks such as adversarial stickers on
traffic signs (Eykholt et al. 2018) or adversarial patches (Zhang et al. 2022a) among others
demonstrate the persistence and transferability of adversarial threats across architectures
and conditions.

Crucially, in vision-centric AS, a single vulnerability in perception rarely remains iso-
lated. Because perception outputs directly feed into planning, prediction, and control with
limited or no human oversight, adversarial effects can propagate, be amplified by sensor
fusion or trajectory optimization, and ultimately result in system-level failures. This risk is
heightened by the industry trend towards closed-loop, end-to-end architectures, where raw
vision inputs may directly dictate vehicle or robot behavior.

Unlike static computer vision systems, AS operate in dynamic, multi-agent, and safety-
critical environments (Bojarski et al. 2016; Janai et al. 2020). Attacks can target any phase,
from data acquisition and model training to online operation or inter-vehicle communica-
tion, and their impact can extend far beyond classification accuracy, undermining safety,
trust, and real-world performance in ways rarely captured by static benchmarks.

This review is motivated by the urgent need to understand adversarial vulnerabilities
and defenses for vision-centric AS, bridging insights from both foundational adversarial
machine learning and the fast-evolving AS-specific literature. By systematically mapping
how threats propagate across the AS stack and life-cycle, we clarify real deployment chal-
lenges, highlight the limitations of existing approaches, and provide a unified analytical
foundation for evaluating adversarial robustness in AS. Our survey intentionally bridges
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the gap between the mature vision-centric adversarial ML literature and the recent but fast-
growing AS-specific corpus.

1.1 Related work

Several recent surveys have addressed elements of adversarial attacks and defenses, but
none provide a life-cycle-integrated, stack-specific analysis tailored to real-world AS. For
example, Badjie et al. (2024) present a systematic review of adversarial attacks and coun-
termeasures in image classification models for autonomous driving, with detailed cover-
age of attack types and proactive/reactive defenses. However, their analysis is limited to
perception modules and does not examine attack propagation through planning and control
subsystems, nor does it offer a unified threat model for the entire AS life-cycle. Akhtar
et al. (2021), a comprehensive review of advances in adversarial attacks and defenses for
computer vision is provided, focusing on algorithmic and architectural aspects after 2018.
However, their work does not account for the layered structure or operational context of AS,
omitting issues such as temporal vulnerability, subsystem coupling, or deployment-specific
constraints.

Deng et al. (2021) provide a detailed analysis of different attacks and defenses in the
workflow of the autonomous driving system, covering adversarial attacks for various deep
learning models and attacks in both physical and cyber contexts. While comprehensive in
scope, their survey does not offer a structured framework for evaluating defense strategies
across different stages of the AS life-cycle. Liu et al. (2021) examine adversarial attacks and
defenses from an interpretation perspective, providing valuable insight into model vulner-
ability, but focusing less on system-level threats specific to autonomous systems.

Almutairi and Barnawi (2023) present an overview of adversarial attacks, defenses, and
frameworks to secure DNNs in smart vehicles, organizing their analysis around security
challenges but lacking a cohesive approach to understanding cross-layer vulnerabilities.
Similarly, Khamaiseh et al. (2022) provide an extensive survey on adversarial attacks and
defense mechanisms for image classification, though their focus remains primarily on algo-
rithmic approaches rather than on the operational contexts of autonomous systems.

Amirkhani et al. (2023) review prominent attack and defense mechanisms for object
detection in autonomous vehicles, offering discussions on their strengths and weaknesses,
but without addressing the integrated nature of attack surfaces across the entire autonomous
vehicle stack. Boltachev (2024) highlights key types of disruptive attacks on autonomous
driving models, demonstrating potential threats through experimental validation but not
providing a systematic framework for defense evaluation.

Ibrahum et al. (2024) perform a systematic review of adversarial attacks and defenses
in autonomous vehicles, prioritizing safety and introducing a taxonomy inspired by SOTIF.
However, their focusis on risk scenarios and lacks an analytical framework linking attack
surfaces, layered vulnerabilities, and defense evaluation across the AS stack. Girdhar et al.
(2023) offer a review centered on cybersecurity in autonomous vehicles, highlighting known
attack vectors and defenses but stopping short of providing an actionable structure for map-
ping attacks or evaluating defenses in an integrated, system-aware fashion.

Xu et al. (2020) broaden the perspective to attacks and defenses in images, graphs, and
text, but their survey remains modality-driven and does not tackle the architectural and tem-
poral challenges unique to AS. The work by Costa et al. (2024) surveys adversarial attacks
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and defenses across various deep learning architectures, offering a high-level synthesis
without focusing on the operational realities, threat models, or deployment constraints of
AS. Malik et al. (2024) present a systematic review of adversarial machine learning attacks
and defensive controls, but their analysis lacks the specificity required for autonomous sys-
tems operating in dynamic environments.

1.2 List of contributions

In contrast, our survey bridges the foundational adversarial machine learning concepts
presented in Akhtar et al. (2021); Xu et al. (2020); Costa et al. (2024); Liu et al. (2021);
Amirkhani et al. (2023); Malik et al. (2024); Khamaiseh et al. (2022) and the overly com-
ponent-specialized AS surveys in Badjie et al. (2024); Ibrahum et al. (2024); Girdhar et al.
(2023); Deng et al. (2021); Almutairi and Barnawi (2023); Boltachev (2024) with a holistic,
layered systems analysis of AS, organized around three key contributions:

1. Bridging gaps in existing surveys: While prior reviews often isolate general adver-
sarial ML or AS-specific applications, our work integrates foundational adversarial
concepts, vision-based robustness literature, and AS-specific challenges into a uni-
fied analytical framework. This enables life-cycle-integrated thinking and supports the
development of practical AS defenses.

2. System-level threat modeling via analytical matrices: We construct three matrices
that connect existing adversarial literature to the specific vulnerabilities of AS:

e The Life-cycle-attack matrix categorizes threats across the Data, Training, and
Inference stages of the Al life-cycle, linking attack types (e.g., poisoning, back-
doors, evasion) to stage-specific weaknesses and highlighting temporal exposure
windows, (Sect. 4.1).

e The Exposure-impact matrix organizes threats by Al design vulnerabilities (e.g.,
data hunger, model sensitivity), attack surfaces, and downstream consequences such
as sabotage or system misguidance, providing a framework to understand full-sys-
tem threat pathways in real-world AS deployments, (Sect. 4.2).

e The Stack—threat matrix maps how adversarial attacks impact AS subsystems’
Perception, Planning, and Control layers, demonstrating how vulnerabilities propa-
gate and compound across the stack. We ground our analysis with realistic subsys-
tem scenarios, target models, and operational implications, (Sect. 4.3).

e Additionally, we provide a comparative synthesis of both digital and physical
adversarial attacks, characterizing representative methods in terms of attack type,
robustness, and practical implications. This serves as a unified reference for eval-
uating attack feasibility and severity in both real-world and simulation contexts,
(Sect. 3).

Rather than serving as abstract taxonomies, these matrices function as actionable threat
modeling tools to guide robustness benchmarking and inform future research.
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3. Critical appraisal and evaluation of defense strategies: We develop a structured
methodology to assess how well existing adversarial defenses meet the unique needs of
AS:

e Drawing from the literature and the threat matrices developed in this review, we
derive a high-level set of overall requirements that adversarial defenses must sat-
isfy to be viable in AS environments. Focusing on real-time constraints, adaptabil-
ity, interpretability, and efficiency, (Sect. 5.1).

e We examine the current landscape of defenses targeting physical-world attacks,
identifying the strengths and limitations of existing approaches and clarifying where
critical gaps remain, (Sect. 5.2).

e We consolidate and simplify prior defense taxonomies, aligning them with AS-
specific criteria to enable more meaningful evaluation across mechanism types,
(Sect. 5.3).

e Based on this foundation, we introduce the Autonomous systems adversarial
defense score (AS-ADS), a novel evaluation framework that scores defense meth-
ods across four deployment-relevant axes: real-time capability, adaptability to
novel threats, interpretability, and resource efficiency, (Sect. 5.4).

e To demonstrate the AS-ADS framework, we evaluate a representative subsample
of 30 defense methods; 15 from the general vision adversarial robustness literature,
and 15 from AS-specific works, highlighting the trade-offs and readiness of each,
(Table 9):

This review, to the best of our knowledge, is the first to systematically bridge foundational
adversarial machine learning and AS-specific literature in a holistic, layered systems analy-
sis of Autonomous Systems.

1.3 Methodology and review protocol

This review implements a structured, reproducible literature survey based on PRISMA
2020 principles, specifically adapted to the context of machine learning and AS. Our goal
is to comprehensively synthesize advances in adversarial robustness for vision-based mod-
els relevant to AS, bridging both foundational vision-centric theory and recent AS-specific
developments.

We included works ranging from foundational studies (dating back to 1988) to the most
recent publications available as of May 2025, identified through five major databases: IEEE
Xplore, SpringerLink, ACM Digital Library, ScienceDirect, and arXiv (tracks: cs.CV, cs.
RO, stat.ML). Search queries combined terms such as “adversarial attack,” “defense,”
“autonomous systems,” “dataset,” “computer vision,” “robotics,” “LiDAR,” and related
phrases. After deduplication, non-vision and unrelated tracks were filtered, followed by
manual screening of titles and abstracts. Full-text eligibility required methodological clar-
ity, empirical evaluation, and relevance to either adversarial computer vision or AS.

Inclusion criteria were: (i) peer-reviewed venue (CORE A*/A/B or Scimago Q1-Q3
journal) or high-impact arXiv preprint, (ii) empirical focus on adversarial robustness, and
(iii) coverage of vision models, pipelines, or AS-specific systems. Studies outside these
domains, lacking empirical grounding, or duplicating prior work were excluded. Flexible
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Table 1 Summary of the Initial records identified 1041

PRISMA screening resutls Duplicates removed 99
Titles and abstracts screened 942
Excluded during abstract screening 614
Full-text articles assessed 328
Excluded after full-text review 91
Studies included in the final synthesis 237

Table 2 Breakdown of included papers by domain (vision-centric or AS-specific), era (foundational or re-
cent), and contribution type (defense, attack, dataset, other). Percentages reflect the share of each row total

Domain Era Defense Attack Dataset ~ Other Row Total
Vision-centric Foundational (pre-2020) 39 (44.8%) 28 (32.2%) 3 (3.4%) 17(19.5%) 87
Vision-centric Non-foundational (2020+) 43 (60.6%) 21 (29.6%) 3 (4.2%) 4(5.6%) 71
AS-specific ~ Foundational (pre-2020) 1 (6.7%) 2(13.3%) 0(0.0%) 12(80.0%) 15
AS-specific ~ Non-foundational (2020+) 32 (50.0%) 17 (26.6%) 4 (6.3%) 11 (17.2%) 64
Column totals 115 (48.5%) 68 (28.7%) 10 (4.2%) 44 (18.6%) 237

Defense: Proposes, benchmarks, or surveys robustness mechanisms. Attack: Proposes, benchmarks, or
surveys adversarial threats

Dataset: Introduces or is primarily a dataset/benchmark paper. Other: Surveys, theoretical, sensor, or
general background works

inclusion criteria were applied to physical attack/defense and real-world system studies,
reflecting their practical significance.

Following this protocol, we included 237 papers in the final synthesis. Each was classi-
fied in a reproducible two-level taxonomy: (1) Domain (vision-centric or AS-specific), and
(2) Contribution Type (defense, attack, dataset, or other supportive/background). Within
each domain, references were further split as foundational (pre-2020) or non-foundational
(2020 onward). Contribution types were assigned using a combination of keyword analy-
sis (title/abstract), citation context (appearance in attack or defense tables/sections), and
manual review for ambiguous cases. The domain split (vision-centric vs AS-specific) was
established via systematic keyword matching and manual inspection for works with cross-
domain relevance. While every effort was made to ensure comprehensive and reproducible
coverage, we acknowledge the potential for misclassification in ambiguous cases and invite
community feedback for future updates.

The review process and screening outcomes are summarized in Table 1.

Table 2 summarizes the final distribution of included studies by domain, era, and contri-
bution type, supporting full reproducibility and transparency.

2 Background

Understanding adversarial robustness in AS requires grounding in the specific architectures,
vision model deployments, and operational realities that distinguish AS from conventional
computer vision systems. In practice, modern AS tightly integrate vision models not only
for perception, but also across sensor fusion, prediction, planning, and closed-loop control,
resulting in complex pathways for attack propagation and defense. The threat landscape
in AS is shaped by this interconnectedness, exposing weaknesses that are rarely visible in
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static, perception-only or digital-only evaluations. The limitations of current benchmarks
and defense taxonomies, (most of which are tailored to standard image tasks), underscore
the need for analysis methods and robustness criteria explicitly aligned with AS operational
stacks and environment. This section provides the technical foundations, empirical context,
and critical gaps necessary for our analysis.

2.1 Vision models & the autonomous system stack

Modern AS are fundamentally vision-driven, with deep learning models tightly integrated
across nearly every functional layer; from perception to planning, control, and actuation.
Unlike traditional computer vision pipelines, where outputs often remain within isolated
modules, AS architectures are defined by close interconnection: the output of one model
(e.g., object detection, segmentation) serves as direct input to downstream planning and
control components, with minimal human oversight or redundancy.

The AS stack can be broadly divided into three groups: the Physical Environment, the
Hardware Layer, and the Hardware and Software Integration layer, as shown in Fig. 1.
The physical environment refers to the operational context, such as roadways for driverless
vehicles or warehouse floors for robots. In the hardware layer we find sensors such as cam-
eras (Forsyth and Ponce 2011; Szeliski 2022), LiDAR (Besl 1988; Hsu 2002), radar (Knee
2005; Hao et al. 2002), and ultrasonic sensors (Kinsler et al. 2000), which are often fused
for greater robustness (Yeong et al. 2021) (sesor fusion). Communication hardware enables
inter-device connectivity for federated learning (Yang et al. 2021), remote operations (Yu
et al. 2021), or mission planning via satellite links (Prevot et al. 2016). Actuators close the
hardware loop by translating digital commands into real-world action.

Across all layers, the adoption of general-purpose vision models, such as ResNet-50 (He
etal. 2016), ViT (Dosovitskiy et al. 2020), SAM (Kirillov et al. 2023), and DINOv2 (Oquab
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Fig. 1 Autonomous system stack diagram
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et al. 2024), reflects the field’s inheritance of both the strengths and adversarial vulnerabili-
ties discovered in conventional computer vision. Specialized models (e.g., DriveVLM Tian
et al. 2024, CarLLaVA Renz et al. 2024, BEVFormer Li et al. 2022) further illustrate the
trend toward unified, stack-spanning pipelines.

More in depth, the AS Perception layer is now dominated by a broad spectrum of vision
models. Ranging from early CNN backbones like ResNet-50 (He et al. 2016) to advanced
architectures for detection and segmentation. Real-time detectors, such as YOLOv4 (Boch-
kovskiy et al. 2020), YOLOv7 (Wang et al. 2023a), RT-DETR (Zhao et al. 2024a), and
EfficientDet (Tan et al. 2020), enable high-throughput object and obstacle identification.
For segmentation and spatial reasoning, models like DeepLabv3+ (Chen et al. 2018a), Mask
R-CNN (He et al. 2017), and SAM (Kirillov et al. 2023) provide fine-grained environmental
parsing, while ViT (Dosovitskiy et al. 2020) and DINOv2 (Oquab et al. 2024) represent the
adoption of transformer-based and foundation models. Multi-modal sensor fusion architec-
tures—DAIR-V2X (Zhao et al. 2024b), UMOoE (Lou et al. 2023), COMPASS (Ma et al. 2022)
integrate camera, LiDAR, and other modalities for richer world models. Classical two-stage
detectors like Fast R-CNN (Girshick 2015), Faster R-CNN (Ren et al. 2015), SSD (Liu et al.
2016a), and RetinaNet (Lin et al. 2017) also persist in specific AS deployments.

Within the Planning layer, outputs from perception are translated into actionable deci-
sions and trajectories using a new wave of context-aware models. BEVFormer (Li et al.
2022) performs multi-view, spatiotemporal fusion for 3D scene understanding. Vision-
language models such as DriveVLM (Tian et al. 2024), CarLLaVA (Renz et al. 2024), and
VLM-AD (Xu et al. 2024) incorporate semantic context and agent interaction for robust
closed-loop planning. End-to-end pipelines such as DAVE2 (Bojarski et al. 2016), Pilot-
Net (Bojarski et al. 2017), and Conditional Imitation Learning (Codevilla et al. 2018) map
visual or multimodal input directly to navigation actions, bypassing rule-based intermediar-
ies. Legacy approaches such as ChauffeurNet (Bansal et al. 2018) and ALVINN (Pomerleau
1988) laid the groundwork for behavior prediction and direct perception-control mapping.

At the Control layer AS increasingly embed neural controllers, building upon founda-
tions like ALVINN (Pomerleau 1988) towards deep reinforcement and imitation learning
models (Lillicrap et al. 2015; Pan et al. 2017; Dursun et al. 2025), to execute planned actions
in real time. These controllers handle adaptive actuation, closed-loop correction, and safe
responses to unstructured or adversarial environments. Classic rule-based and PID control-
lers are now frequently augmented or replaced by neural networks that leverage features
from vision and planning models for fine-grained actuation, error recovery, and robust oper-
ation under uncertainty. This integration enables rapid, flexible adjustment, but also exposes
the system to error propagation: a perturbation at perception or planning can now directly
alter low-level control, amplifying the risk of system-level failures.

Because the AS stack is tightly coupled and feedback-driven, whether at the sensor inter-
face, within fusion modules, or at the control output, vulnerabilities in vision models cannot
be isolated locally. Perturbations at any point in the stack can cascade through planning
and control, ultimately triggering unexpected or catastrophic outcomes. This architecture
demands adversarial robustness methods that are not only perception-aware, but explicitly
stack and life-cycle-aware as well. A central principle developed throughout this review.
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2.2 Adversarial threats in autonomous systems

The concept of adversarial examples was first introduced in Szegedy et al. (2013), who
showed that deep learning models can be deceived by carefully crafted, human-impercep-
tible perturbations to input data. Formally, adversarial attacks seek to modify a given input
xg € R? to a new point x € R, such that x is assigned a specific target class by the model,
differing from the original prediction. The perturbation § = x — x¢ is typically constrained
to be small in a chosen norm (e.g., ||0]|,, < €) to ensure that x remains visually indistinguish-
able from x( to humans. Methods such as evasion attacks employ optimization techniques,
including the box-constrained L-BFGS algorithm (Fletcher 2013), to compute minimal per-
turbations that induce misclassification. Notably, these adversarial examples are often trans-
ferable. A single perturbation generated for one model can also mislead other deep neural
networks-raising serious concerns for the security and reliability of Al systems as originally
demonstrated in Liu et al. (2016b); Papernot et al. (2016a).

In the context of AS, digital attacks (e.g., FGSM Goodfellow et al. 2014, PGD Madry
et al. 2019, C&W Carlini and Wagner 2017b) remain important, operating at inference or
training time to introduce pixel-level perturbations or backdoors (e.g., BadNets Gu et al.
2017, MetaPoison Huang et al. 2020). These attacks, originally evaluated on canonical data-
sets like ImageNet or CIFAR, have proven highly transferable and can undermine robust-
ness at multiple stages of the AS pipeline.

However, AS face a much broader threat landscape. Physical attacks—such as adver-
sarial stickers (Eykholt et al. 2018), patches (Brown et al. 2018), or crafted objects (Kong
et al. 2020)—exploit the perception pipeline by manipulating the environment itself, often
defeating digital-only defenses and persisting across sensors, agents, and time.

Cross-modal and systemic attacks further challenge AS, targeting their reliance on
multiple, distributed sensors and communication channels. Examples include GPS spoof-
ing (Horton and Ranganathan 2018), LIDAR jamming (Cao et al. 2019), CAN bus manipu-
lation (Kang et al. 2021), and attacks on federated learning (Yang et al. 2021), each capable
of inducing both local and system-wide failures.

Cascading and life-cycle-aware threats are particularly critical. A single successful
attack at perception can propagate via sensor fusion, scenario prediction, and control feed-
back loops, leading to mission-level safety breaches (e.g., semantic DoS Wan et al. 2022,
adversarial planning Edelkamp 2023). These systemic vulnerabilities are largely overlooked
in standard ML taxonomies.

Limitations of canonical taxonomies: Most classical frameworks categorize attacks by
knowledge and timing, but largely omit the location layer, specially physical attacks and
system-level propagation, reflecting a historical focus on static image classifiers and digital
benchmarks. In AS, this omission is critical: physical and cross-modal threats are often the
most dangerous, propagating through the stack and undermining safety in ways digital-only
frameworks cannot capture. This is further pictured in appendix A, Table 10.

These limitations motivate our evaluation of attacks by location (physical and digital)
developed in Sect. 3, and our life-cycle and stack-aware matrices developed in Sect. 4,
which explicitly integrate both digital and physical threats at each layer and throughout the
operational life-cycle of AS.
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2.3 Defense mechanisms & autonomous systems

Adversarial defense research in AS has evolved rapidly, spanning mechanisms adapted from
generic computer vision and those developed specifically for the unique constraints of AS.
Defenses are most often categorized as proactive (e.g., adversarial training, regularization,
input Pre-Processing, certification), reactive (e.g., detection, denoising, reconstruction), or,
as as new category found in this review, unified approaches that integrate multiple strategies
and account for the layered nature of AS deployments.

Proactive defenses such as adversarial training (Madry et al. 2019) remain foundational,
retraining models on adversarial examples to improve robustness. This method, applied to
both image and LiDAR-based perception modules (e.g., Lu and Radha (2023) for scaling
attacks in KITTI/Waymo scenarios), demonstrates gains under known digital threats. How-
ever, these approaches incur high computational cost and generalize poorly to unseen or
physical attacks, which often bypass digital adversarial defenses (Rozsa et al. 2016; Chen
and Lee 2021). Additional proactive methods, including regularization (Szegedy et al. 2013;
Ross and Doshi-Velez 2018), model distillation (Hinton et al. 2015; Papernot et al. 2016¢),
and input Pre-Processing (denoising, smoothing) (Xie et al. 2017a; Liao et al. 2018) offer
marginal improvements, but often at the cost of clean accuracy or robustness to adaptive
adversaries (Li et al. 2024a; Lou et al. 2023).

Model ensembles (Trameér et al. 2017; Xie et al. 2017b) have also been explored to
increase diversity and resilience, but their increased inference latency and hardware require-
ments are problematic for real-time AS tasks, limiting on-vehicle deployment (Lu et al.
2023; Zhao et al. 2024Db). Certified defenses, including randomized smoothing (Cohen et al.
2019; Zhang et al. 2022¢) and formal verification (Gowal et al. 2018; Lecuyer et al. 2019),
offer provable guarantees under certain conditions, yet typically remain restricted to limited
model classes and do not extend easily to full-stack or dynamic AS environments.

Reactive defenses monitor and respond to attacks at runtime. Detection-based mecha-
nisms, such as those in Among Us Li et al. (2023) (cooperative AVs) or PhySense (Yu et al.
2024) (physical perturbation detection) use input monitoring or auxiliary detectors to iden-
tify adversarial events. While valuable, such approaches can suffer from high false positive
rates and are vulnerable to sophisticated, adaptive attacks (Soares et al. 2022; Abdu-Aguye
et al. 2020). Denoising and reconstruction via autoencoders or similar tools (Meng and
Chen 2017; Samangouei et al. 2018) can restore clean inputs, but may introduce harmful
delay or information loss—unacceptable in safety-critical AS.

Unified and stack-aware defenses are gaining attention as the limitations of layer or
mechanism-specific solutions become clear. For instance, UMoE Fusion (Lou et al. 2023)
exploits multimodal sensor fusion to mitigate sensor blinding, while SpecGuard (Dash et al.
2024) provides sensor and layer-aware detection against UAV sensor spoofing addressing
vulnerabilities beyond the perception layer. PatchCleanser (Xiang et al. 2022) and Seg-
ment-and-Complete (Liu et al. 2022) combine certified smoothing with detection to tar-
get physical patch attacks. Temporal defenses such as ADAV (Mu 2024) and Time-Travel
Defense (Etim and Szefer 2024) incorporate cross-frame and historical consistency, crucial
for detecting persistent or stealthy threats in dynamic settings.

Unified defense frameworks, e.g., UniCAD (Pellicer et al. 2024), MixDefense (Du et al.
2018), and UNMASK (Freitas et al. 2020), integrate detection, denoising, and robust classi-
fication to provide scalable, adaptive defense pipelines more suitable for realistic AS opera-
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tion. However, most existing defenses, even those tailored for AS, are evaluated primarily
at the perception layer and fail to systematically assess downstream effects on planning,
control, or mission-level safety.

The entire taxonomy and surveyed papers can be found in Appendix A, Table 11

2.4 Datasets and benchmarks for AS robustness

Effective evaluation of adversarial robustness in AS relies on benchmarks that capture both
the technical complexity and real-world context in which these systems operate. The evolu-
tion of benchmarks in this space has both propelled adversarial machine learning and intro-
duced critical challenges unique to AS contexts. Early breakthroughs in adversarial attacks
and defenses were closely tied to canonical datasets such as MNIST (Lecun et al. 1998),
CIFAR-10/100 (Krizhevsky 2009), and ImageNet (Deng et al. 2009). These simple, acces-
sible, and widespread benchmarks enabled the rapid development of fundamental attack
algorithms like FGSM and PGD (Goodfellow et al. 2014; Madry et al. 2019), and laid the
foundation for robustness research, including systematic evaluations on corrupted or per-
turbed variants such as ImageNet-P (Hendrycks et al. 2021), CIFAR-C, and CIFAR-P (Hen-
drycks and Dietterich 2019).

Despite their foundational role, these datasets are now recognized as insufficient proxies
for AS robustness due to their static, digital nature and lack of feedback, temporal depen-
dencies, or sensor diversity. Hendrycks et al. (2021) and Croce et al. (2020) demonstrate that
robustness metrics obtained on the traditional benchmarks often overstate real-world safety.
Models robust on CIFAR or ImageNet may fail when confronted with the complexities of
multi-modal perception, sensor fusion, or dynamic interactions in actual AS deployments.
This disconnect is further underscored by simulation-to-reality transfer failures, as docu-
mented in Nesti et al. (2022); Xu et al. (2022).

To address these limitations, the field has gradually shifted towards more application-
driven and AS-oriented datasets. DOTA (Xia et al. 2018) introduced complex aerial scenes
and diverse object viewpoints, directly benefiting research in UAV and aerial surveillance.
The Mapillary Traffic Sign Dataset (Poggi and Mattoccia 2017) captures traffic sign varia-
tion in real-world conditions, serving as a testbed for perception modules in autonomous
driving. Such datasets improve environmental fidelity and task relevance but still fall short
of providing holistic benchmarks for closed-loop or stack-wide robustness.

Recent advances in simulation environments—such as CARLA-GeAR (Nesti et al. 2022),
SafeBench (Xu et al. 2022), and RobustE2E (Jiang et al. 2024)-have enabled holistic,
closed-loop evaluation of adversarial threats across the full AS stack. These platforms sup-
port the generation of physically realizable attacks (e.g., adversarial patches, sensor spoof-
ing), multi-agent and V2X scenarios (Li et al. 2023; Zhao et al. 2024b), and robust testing
under diverse conditions (Lou et al. 2023; Zhang et al. 2023). Real-world datasets—such
as Car Hacking (Kang et al. 2021) and adversarial Google Street View (Etim and Szefer
2024)—offer authentic sensor and actuator traces, though they lack the diversity and control
of simulated environments.

Despite this, much adversarial research remains focused on standard vision mod-
els, with attacks like C&W (Carlini and Wagner 2017b), AutoAttack (Croce and Hein
2020), and patch-based methods (Brown et al. 2018), and defenses such as randomized
smoothing (Cohen et al. 2019), MixDefense (Du et al. 2018), and certified patch segmen-
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tation (Zhang et al. 2022c), almost exclusively evaluated on datasets like ImageNet or
RobustBench (Croce et al. 2020). This leaves a gap in addressing how adversarial effects
propagate across perception, planning, and control in realistic AS settings.

AS-specific research is bridging this divide by introducing attacks targeting the full sys-
tem stack—e.g., physical patching (Eykholt et al. 2018; Li et al. 2022), LIDAR spoofing (Cao
et al. 2019), sensor-fusion breakdowns (Lou et al. 2023; Zhao et al. 2024b), and CAN-bus
injection (Khan et al. 2022)—and by leveraging advanced benchmarks and simulation plat-
forms. Concurrently, new defenses emphasize multimodal anomaly detection (Lou et al.
2023), certified segmentation (Zhang et al. 2022c¢), physical input filtering (Lu and Radha
2023), and robust V2X fusion (Zhao et al. 2024b), increasingly targeting end-to-end, stack-
aware robustness (Jiang et al. 2024).

A summarized illustration can be found in Appendix A, Table 12.

While this move toward AS-specific realism has enhanced operational relevance, it also
fragments the field. Different works use incompatible sensor suites, attack models, scenario
generators, and evaluation protocols—as highlighted in recent benchmark studies (Xu et al.
2022; Nesti et al. 2022). Even subtle differences in simulation parameters or the spatial/tem-
poral configuration of physical attacks can yield markedly divergent robustness evaluations,
severely limiting reproducibility and comparability across the literature. Consequently,
there is a growing consensus, reflected in recent works (Croce et al. 2020; Xu et al. 2022;
Lou et al. 2023). That progress depends on unified frameworks and holistic benchmarks:
those that can relate algorithmic advances in general adversarial robustness to deployment
in AS, and, reciprocally, that enable AS-specific innovations to be evaluated in the context
of broader vision robustness objectives.

This persistent fragmentation across datasets, evaluation protocols, and adversarial meth-
odology underscores the need for a unified approach—one that systematically bridges the
gap between general computer vision research and the operational requirements of AS. To
address this, our review introduces a threat-matrix-driven evaluation strategy (see Sect. 4).
The unification is finally brought to fruition in in our Critical Appraisal of Defenses in the
Context of Autonomous Systems, (see Sect. 5).

3 Adversarial attacks in AS: digital and physical locations

Adversarial attacks in Autonomous Systems can be broadly categorized on the basis of their
location into two primary domains: digital and physical. Digital attacks occur within the
digital pipeline, targeting input data or communications, while physical attacks exploit real-
world environments to manipulate sensory input.

3.1 Digital attacks

Digital adversarial attacks focus on manipulating input data directly in the digital domain
to deceive machine learning (ML) models. These attacks are some of the most extensively
studied due to their accessibility and the relative simplicity of generating adversarial per-
turbations. Common methods include the aforementioned FGSM (Goodfellow et al. 2014),
PGD (Madry et al. 2019), DDN (Rony et al. 2019), or Carlini and Wagner (2017b) amongst
others. Figure 2 illustrates an example of FGSM.
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Fig. 2 Example of digital adver-
sarial attack (FGSM)

These attacks differ in optimization strategies (e.g., single-step vs. iterative), misclas-
sification objectives (targeted vs. untargeted), and their perturbation budget (constrained
by ¢, norms or pixel count). Their applications in AS include not only direct evasion of
perception pipelines but also poisoning training datasets, injecting malicious patterns into
communication logs, or crafting precursors to physical-world attacks through digital-to-
physical transfer.

Despite their digital nature, these attacks pose concrete threats to deployed systems,
especially when deployed over OTA updates, V2X communication, or shared ML pipelines.
As such, a clear comparative understanding of their effectiveness, stealth, and robustness is
vital for evaluating the threat landscape faced by real-world autonomous platforms.

To this end, Table 3 presents a structured quantitative synthesis of the fundamental digi-
tal adversarial attacks applicable to AS-related vision models. It summarizes their success
rates, perturbation magnitudes, transferability across models, and contextual relevance.

3.2 Physical attacks

Physical adversarial attacks are a type of attack in which an adversary attempts to deceive
or mislead a ML approach that relies on data gathered from the environment through the use
of physical hardware sensors such as cameras. Physical attacks do so by introducing physi-
cal perturbations to its environment or inputs. Physical adversarial attacks can take various
forms, such as altering the lighting conditions (Xiao et al. 2018), modifying the appearance
of objects in the environment (Oslund et al. 2022), or manipulating the sensors that the
autonomous system relies on to perceive the world (Cao et al. 2019). Furthermore, in many
cases, attacks may be unnoticeable to humans when placed in the real world as they may be
mistaken by decorations, urban art or vandalism and not seen as a bigger threat by humans,
which hinders the possibility of manual human intervention to prevent attacks in real time.
Physical attacks can be configured both in a white-Box or a Black-box setting with differ-
ences in performance based on the attack, and their timing would normally be considered
Evasion, although it could be the case that they act as Poisoning attacks in the event that the
system being compromised is in the learning stage.

Physical adversarial attacks can be generated by transferring digital adversarial attacks
into physical objects as demonstrated in various studies (Kurakin et al. 2016; Athalye et al.
2017; Sharif et al. 2016). Different techniques to achieve that shift exist which obtain differ-
ent levels of attack robustness. However, in the physical environment, attack robustness is
challenged by other factors, including natural changes in environment conditions, the attack
surface being smaller and more complex due to it being three dimensional, the background
not being alterable, or different camera angles.
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Table 3 Quantitative overview of digital adversarial attacks targeting autonomous systems

Attack Description Common AS  Success Pertur-  Robustness Remarks
method targets rate (%) bation  (transferability)
size
FGSM Fast one-step CNNs in 65-85% loo < 0.080w Compu-
(Goodfel-  gradient sign perception (model-specific) tation-
lowetal.  method. Effi- pipelines ally fast,
2014) cient but weaker (YOLO, non-iterative
ResNet,
MobileNet)
I-FGSM Tterative FGSM; Traffic sign 90-99% loo < 0.08edium (higher Standard
/ PGD PGD is a uni- classifiers, with ensemble) benchmark
(Kurakin ~ versal first-order camera input for robust
etal. 2016; attack stream training
Madry
etal. 2019)
DDN Minimizes Percep- 80-95% ly = 0.5 Medium Good for
(Rony et al. norm directly tion tasks precise
2019) via decoupled (ResNet, attack with
optimization EfficientNet) minimal
distortion
C&W Optimizes Sensor fu- 95-100%  £2 ~ 0.1 High Slow but
(Carlini distortion with  sion, camera or lower stealthy;
and Wag-  a Lagrangian input, LIDAR often
ner 2017b) framework. Very projection bypasses
strong classifiers defenses
DeepFool  Minimal ¢2 AS camera 85-95% l2 ~ 0.01Medium Produces
(Moosavi-  perturbationto  classi- -0.1 very im-
Dezfooli cross decision fiers, edge perceptible
etal. 2016) boundary detectors noise
UAP Image-agnostic ~ Scene clas- 80-92% ¢5 < 0.3 High Transfer-
(Moosavi-  perturbations sification able to
Dezfooli that generalize  (e.g., road unseen data
etal. 2017) across inputs conditions) and models
JSMA Perturbs salient ~ AS object 70-90% Few Low High distor-
(Papernot  pixels using detectors pixels tion when
etal. 2016) gradient-based (< 1%) success is
saliency maps enforced
Square Score-based On-device 85-95% loo < 0.0Medium Efficient in
Attack black-box at- perception query-limit-
(Andri- tack with local ~ models ed settings
ushchenko square updates
et al. 2020)
SimBA Black-box attack Control 75-90% f2 < 0.5 Medium Simple and
(Guo etal. viarandomized layer feature effective in
2019b) low-frequency  extractors low-query
noise directions regime
One-Pixel / Changes only Simple classi- 30-70% 1-5 Very Low Not robust;
Few-Pixel one or few fiers (MNIST, pixels poor scal-
(Suetal.  pixels. Evasion ~GTSRB) ability to
2019; Xiao with minimal complex
etal. 2018) footprint images
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Table 3 (continued)

Attack Description Common AS  Success Pertur-  Robustness Remarks
method targets rate (%) bation (transferability)
size

Backdoor Inserts triggers  Entire AS 100% Trigger  High (persistent) Remains
(e.g., into training training (when patch dormant;
BadNets)  data. Attack trig- pipelines triggered)  (0.5-5% extremely
(Guetal.  gered only when area) dangerous
2017) pattern appears in safety-

critical AS
MetaPoi-  Craft poisoned  Offline 80-95% Clean-  High Invisible to
son (Huang training datato ~ AS model label defenders;
et al. 2020) manipulate deci- training (stealth) long-term

sion boundaries  (perception) threat

Success rate (%) reflects attack effectiveness reported across standard AS-relevant models and datasets.
Perturbation size describes typical norm-bound constraints (e.g., oo, £2) or pixel counts. Robustness
refers to transferability across models, datasets, and tasks. Metrics are extracted or averaged from
controlled benchmarks and attack papers, focusing on vision-based perception pipelines in AS

In the context of AS, physical adversarial attacks represent a significant hazard, with the
potential to compromise system safety and dependability. For instance, autonomous vehi-
cles could be misled into misinterpreting traffic control devices such as stop signs or traffic
lights, precipitating a potentially perilous situation. The effectiveness of physical adversar-
ial attacks on object detection systems, pivotal in autonomous vehicles, was demonstrated
in a study by Eykholt et al. (2018). The research indicated that a physical evasion attack
could be orchestrated by adding minimal perturbations to stop signs, thereby distorting the
accurate perception of autonomous vehicles.

There are diverging views within the community regarding the effectiveness of these
physical adversarial perturbations. Some studies, such as Lu et al. (2017), suggest that while
these adversarial alterations could lead a deep neural network to misinterpret a stop sign
image in a physical environment within a specific range of distances and angles, they are not
uniformly successful in duping object detectors across varied distances and viewing angles.
However, it should be noted that these experiments were conducted in a simplified setting,
involving printed attack signs.

More sophisticated and resilient attack methods have since emerged, capable of handling
changes in viewpoint, some of which are further explored in this paper. Moreover, it is sug-
gested that as AS and the various deep learning methodologies underpinning their operation
continue to evolve, the nature of attacks will similarly adapt and become more advanced.
Therefore, contrary to some researchers who may downplay the potential harm of physical
adversarial attacks, these threats are considered critical and warrant urgent attention in order
to ensure system integrity and safety. A summary of the main types of physical attacks is
displayed at the end of this section in 4.

3.2.1 Adversarial stickers and paintings
The use of adversarial stickers and paintings for deceiving object detection or image clas-
sification in AS has been a topic of study. Specifically, Eykholt et al. (2018) examined their

effectiveness on deep learning models used in autonomous vehicles. The method involves
placing carefully crafted stickers for target objects into the real world, which can cause
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Table4 Comprehensive summary of physical adversarial attacks applicable to autonomous systems, integrat-
ing both qualitative and quantitative evidence from the literature

Attack Target Description Implications Success Size Robustness Key
type system(s) rate (%) studies
Adversari- Traffic Sign  Printed Misclassifica- ~ Up to <5%of  Partial Eykholt
al Stickers Recogni- perturba-  tion of traffic ~ 91.49% object (angle/ et al.
tion, Object  tions (e.g., signs; risk of area distance (2018);
Detection onsigns)  safety-critical sensitive)  Oslund
crafted errors in AVs et al.
using (2022);
FGSM or Zhu
GANSs to etal.
mislead (2024)
perception
models
Adversari- UAV Detec- Small 2D Enables human Upto 90% <1% of  Limited Thys
al Patches tion, Person  patches evasion from image etal.
(2D) Detection embedded surveillance or area (2019);
in clothing drone systems Wu
or scenes, et al.
optimized (2020)
to evade
detection
Adversari- Object Detec- Physically Persistent mis- Up to 85% Object High Toheed
al Patches tion (YOLO, printed 3D classification surface (real-world et al.
(3D) SSD) patches of camouflaged dependent tested) (2022);
placed on  objects Du
real objects et al.
(e.g. (2022)
vehicles)
Adversari- Image Printed Demonstrates ~ 65-85%  Full object Partial Kura-
al Objects  Classification adversarial real-world kin
(2D) images vulnerability of et al.
misclassi-  classifiers (2016)
fied under
varied
conditions
Adversari- Object Crafted Compromises  80-90%  Full object High Athalye
al Objects  Detection, 3D shapes  multi-sensor et al.
(3D) Multi-Sensor  optimized  fusion in (2017);
Fusion via EOT or autonomous Cao
Systems end-to-end vehicles etal.
sensor- (2020)
aware
learning
Adver- Autonomous  Adversar-  Attacks AS Approxi-  Full Medium Zhou
sarial Driving ial large-  from afar; mately billboard et al.
Billboards ~Systems scale signs misguides 65% (2020)
created via perceptionin  misdetec-
optimiza-  motion tion
tion in 3D
simulator
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Table 4 (continued)

Attack Target Description Implications Success Size Robustness Key
type system(s) rate (%) studies
Adver- Person T-shirts Enables physi- 57-74% Clothing-  Partial Wu
sarial Recognition  or jackets  cal anonymity scale et al.
Clothing with from Al-based (2020)

adversarial surveillance

patterns

to evade

detection
Adversari- Object Raindrop  Misinter- 60-70% N/A Medium Guesmi
al Rain Detection, overlays pretation of accuracy et al.

Classification onlensor surroundings drop (2023)

images to  under weather

obstruct conditions

vision

systems
Adver- Object Controlled Disrupts Up to Global High Hsiao
sarial Detection lighting feature extrac-  93.7% (controlled) et al.
Lighting (e.g., glare/ tion; breaks fooling (2024)

shadow) perception rate

to cause

detection

failures

Target system(s) refers to the machine learning subsystems being attacked (e.g., traffic sign recognizer,
object detector). Success rate (%) indicates the reported attack success under physical-world or simulation
conditions. Size estimates the spatial footprint of the adversarial pattern relative to the object or image
surface. Robustness denotes the resilience of the attack to changes in viewpoint, lighting, and physical
conditions. Metrics are synthesized from experimental results in the cited studies; where multiple results
are reported, the maximum or typical observed value is given

Fig. 3 Example of adversarial stickers Adversarial Stickers

SPEED
LIMIT

45

Misclassification

Clean Stop sign

misclassification of the object detection system. The authors demonstrated that these stick-
ers could be designed to be virtually imperceptible to humans, but still deceive the object
detection system. A visualization of the attack is shown in Fig. 3

To generate the adversarial stickers and paintings, the authors used a modified version of
the FSM algorithm. They began by selecting a target label, such as a yield sign or a speed
limit sign, and used the FGSM algorithm to generate a small perturbation that would cause
the object detection system to misclassify the stop sign as the target label. The authors also
used a generative adversarial network (GAN) to train a model that could generate images
that looked similar to stop signs but contained the adversarial perturbations, while remain-
ing imperceptible to humans.

The study’s findings suggest that the adversarial stickers succeeded in deceiving numer-
ous cutting-edge deep learning models employed in autonomous vehicles, resulting in
potentially perilous circumstances. Importantly, the researchers demonstrated the transfer-
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ability of these adversarial stickers across disparate models and camera types. Furthermore,
the study investigated the influence of physical factors such as lighting conditions, viewing
angles, and distances, on the effectiveness of the adversarial stickers. The effectiveness of
the stickers did exhibit variation depending on these factors, but crucially retained effective-
ness across a broad spectrum of scenarios.

3.2.2 Adversarial patches

Adversarial patches refer to intricately crafted patches that can be introduced into an image
to misguide object detection systems and cause them to misclassify objects in the scene.
Such attacks have been previously used to prevent cameras from detecting humans, as evi-
denced by the development of T-shirts that are printed with adversarial patches (Wu et al.
2020) or by having people wear the patches themselves (Thys et al. 2019). In addition to
this, adversarial patches have also been utilized to evade face recognition systems (Komkov
and Petiushko 2021) or to prevent AS from detecting objects in the scene (Du et al. 2022).

Work by Zhang et al. (2022a) explores the vulnerability of multi-scale object detection
models utilized in UAVs to adversarial patch attacks. The authors, similarly to the way
adversarial stickers are generated, employed a modified version of the fast gradient sign
method (FGSM) algorithm to generate adversarial patches. They initially trained a deep
learning model to create patches that could be incorporated into an image to induce misclas-
sification by the object detection system. The patches were designed to be small and incon-
spicuous to humans but yet potent in deceiving the object detection system.

The research found that adversarial patches were efficient in deceiving several cutting-
edge object detection models employed in UAVs. The authors showed that even when the
patches covered less than one percent of the image area, they could still deceive the object
detection system. Furthermore, the patches were transferable across different object detec-
tion models, making them a potential threat to UAVs that rely on deep learning models for
object detection.

The research also scrutinized the impact of the size and location of the adversarial
patches on the attack’s effectiveness. The authors found that larger patches and patches
placed in more critical areas of the image were more effective in deceiving the object detec-
tion system.

It is worth noting that a potential limitation of the study at hand is that the patch experi-
ment results only demonstrate the path being 2D and placed on top of the image. However,
in real-world scenarios, attackers are more likely to use these patches to camouflage objects,
such as military vehicles like tanks or fighter jets with an adversarial patch. Therefore, the
use of a 3D adversarial patch may be more realistic in such situations.

To address this limitation, Toheed et al. (2022) proposes a method for conducting physi-
cal adversarial attacks on object detection systems using 3D adversarial objects. The authors
argue that current adversarial attacks on object detectors mainly rely on 2D adversarial per-
turbations, which have limited ability to cause misclassification of objects in the real world.

The authors introduce a 3D adversarial object that is designed to be imperceptible to
humans but can cause misclassification of objects by the object detector. The 3D object
is created using computer-aided design (CAD) software and 3D printing technology. The
proposed attack is tested on the YOLOV2 object detection system and the COCO dataset,
demonstrating its effectiveness in causing misclassification of objects in the real world.
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3.2.3 Adversarial objects

Adversarial objects are crafted in a way that they cause the ML model to misclassify, misin-
terpret, or fail to recognize them, even though they might appear normal to the human eye.
They follow a similar approach to adversarial stickers or patches. However, they differ in
that a complete 2D or 3D object is built.

Kurakin et al. (2016) was one of the first to investigate 2D physical adversarial objects,
this paper investigates the effectiveness of adversarial examples in real-world settings. The
authors focus on the transferability of adversarial examples between digital and physical
domains, as well as their robustness to various transformations, such as changes in camera
angle and lighting conditions. The authors extend their investigation to the physical world,
questioning whether adversarial examples generated in the digital domain can still be effec-
tive when captured by a camera and processed by a ML model.

To study this question, the authors generate adversarial examples using FGSM and print
them out, simulating a physical-world scenario. They then capture images of these printed
adversarial examples using a smartphone camera and feed the captured images to a deep
learning model to evaluate the model’s performance.

The experiments show that adversarial examples generated in the digital domain can still
be effective in the physical world, causing the ML model to misclassify the printed images.
The authors also demonstrate that the adversarial examples are robust to various transforma-
tions, such as changes in camera angle, lighting conditions, and resizing of the images. This
finding suggests that adversarial examples pose a significant challenge to the deployment
of deep learning models in real-world applications, as they can cause the models to make
incorrect decisions even under different physical conditions.

More curated and targeted to Autonomous System papers in the 2D object landscape
include (Kong et al. 2020; Zhou et al. 2020). Zhou et al. (2020) presents a systematic
approach for generating adversarial billboards designed to compromise object detection
models in autonomous driving systems. The authors propose a bi-level optimization frame-
work that considers both the attack’s success probability and the perturbation’s perceptual
similarity. They leverage a 3D simulator to account for physical-world factors such as light-
ing, camera perspective, and occlusion. While this approach provides valuable insights into
the robustness of object detection models under various physical-world scenarios, the use
of a 3D simulator may not fully capture the complexity of real-world conditions, potentially
limiting the generalizability of the results. Kong et al. (2020) employs a Generative Adver-
sarial Network (GAN) to create adversarial examples resilient to real-world environmental
factors. The method comprises a generator network responsible for producing adversarial
perturbations and a discriminator network tasked with discerning between real and adver-
sarial examples. To enhance the transferability of the generated adversarial examples, the
authors incorporate domain adaptation techniques and apply geometric and photometric
transformations during training. While Kong et al. (2020) demonstrates the potential for
crafting physical-world-resilient adversarial examples, the adversarial training process can
be computationally expensive and sensitive to hyperparameters, which may limit its practi-
cal applicability.

Athalye et al. (2017) was one of the first works to introduce 3D adversarial objects. The
paper presents a novel approach to generating adversarial examples that are robust to various
transformations and are effective in both the digital and physical domains. The authors pro-
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pose a method called Expectation over Transformation (EOT), which aims to create adver-
sarial examples that maintain their adversarial properties under different transformations.

Traditional adversarial example generation methods often focus on fooling a ML model
in the digital domain, without considering the effects of real-world transformations, such as
rotations, translations, and changes in lighting. As a result, these adversarial examples may
lose their effectiveness when applied to physical objects or real-world scenarios. To address
this issue, the authors introduce the EOT algorithm, which incorporates an expectation over
a chosen set of transformations during the adversarial example generation process. By opti-
mizing the adversarial perturbation under this expectation, the algorithm ensures that the
generated adversarial examples are robust to the specified set of transformations.

The authors evaluated the performance of the EOT algorithm on various state-of-the-art
deep learning models, such as Inception v3 and ResNet, using different datasets like Ima-
geNet and CIFAR-10. They also compare the EOT algorithm with other existing methods,
such as FGSM and PGD. The results demonstrate that the EOT algorithm is able to generate
adversarial examples that are robust to a wide range of transformations, outperforming other
methods in both digital and physical domains. The authors further showcased the effective-
ness of the EOT algorithm through real-world demonstrations, such as 3D printed objects
and images displayed on a screen.

Cao et al. (2020) specifically targets the vulnerabilities of autonomous driving systems
to 3D adversarial objects. This paper specifically targets Multi-Sensor Fusion (MSF)-based
perception systems used in autonomous vehicles. The authors propose a real-time, end-
to-end optimization algorithm that takes into account the physical constraints and sensor
characteristics of the MSF-based perception system to generate 3D adversarial objects. By
considering the limitations of the sensors and the physical constraints of the objects, the
proposed method generates adversarial objects that can deceive the MSF-based perception
system in real-world scenarios. The paper evaluates its method using simulation and real-
world experiments, focusing on the effectiveness of the 3D adversarial objects in deceiving
MSF-based perception systems in autonomous vehicles.

Table 4 summarizes the main types of physical adversarial attacks, their implications,
and key examples along with simple quantitative indicators such as Success Rate or Robust-
ness to further contextualize their relevance in vision models and therefore to AS.

4 Threat modelling in autonomous systems

This section presents a comprehensive framework for threat modeling in AS, with a particu-
lar focus on vision-based models. We introduce a taxonomy that systematically analyzes the
exposure of each stage in the AS life-cycle to adversarial attacks (both digital and physical).
By mapping specific attack vectors to corresponding life-cycle components and system lay-
ers, this framework provides a structured basis for identifying vulnerabilities and informs
the development of effective, targeted defense strategies for real-world AS deployments.

4.1 Life-cycle attack matrix
We introduce the A4S Al Life-Cycle Attack Matrix (see Fig. 4), a framework that systemati-

cally categorizes adversarial threats targeting AS across the Data, Training, and Inference
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Fig.4 AS Al life-cycle attack matrix

stages of the Al life-cycle. By mapping attack types to each stage, the matrix provides a com-
prehensive structure for identifying vulnerabilities, understanding how adversaries exploit
phase-specific weaknesses, and informing the design of more effective defense strategies.
Figure 4 organizes adversarial threats into three main stages of the Al life-cycle: Data,
Training, and Inference. Each stage is associated with characteristic attack types that lever-
age distinct vulnerabilities in AS pipelines.
At the Data stage, adversaries may engage in:

e Data poisoning attacks: Introducing malicious data into the training dataset to corrupt
the learning process, leading to erroneous model behavior. For instance, altering traffic
sign images to mislead recognition systems in autonomous vehicles (Morgulis et al.
2019).

e Training-data extraction attacks: Extracting sensitive information from the training
data, potentially compromising privacy and security. This can involve reconstructing
proprietary datasets used in AS development (Malik et al. 2024).

During the Training stage, potential attacks include:

e Model poisoning attacks: Manipulating the training process to embed vulnerabilities
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within the model, which can be exploited during deployment. This includes tampering
with the training data or the learning algorithm itself (Almutairi and Barnawi 2023).

o Backdoor attacks: Inserting hidden triggers into the model that cause it to behave mali-
ciously when specific conditions are met. For example, embedding triggers that activate
under certain visual patterns encountered by AS (Pourkeshavarz et al. 2024).

o Attacks in federated learning (FL): Federated learning offers a decentralized ap-

proach to training machine learning models across multiple devices, making it particu-
larly relevant for AS applications such as autonomous vehicles. In FL, each client—such
as an autonomous vehicle—trains a local model using its own data. Only the model
updates are shared with a central server, where they are aggregated to create a global
model. This approach not only preserves data privacy but also reduces computational
and communication costs by distributing the training process across multiple devices
(Jallepalli et al. 2021).
However, FL’s decentralized nature introduces unique security challenges. Malicious
actors can exploit the collaborative training process to compromise the global model.
For instance, a rogue client might poison its local training data or tamper with model
updates, leading to degraded performance or targeted misbehavior. Moreover, FL’s
privacy-preserving mechanisms, such as secure aggregation and differential privacy,
can make detecting such attacks more difficult, further complicating the task of ensur-
ing robust security. Recent studies, including (Li et al. 2024c; Queyrut et al. 2023; Shi
et al. 2022), provide a comprehensive overview of FL architectures, their adversarial
challenges, and potential defense strategies within AS. A simple visualization of attack
vectors in a FL architecture is shown in Fig. 5.

At the Inference stage, AS are susceptible to:

e Model extraction attacks: Adversaries query the deployed model to reconstruct its
parameters or architecture, facilitating intellectual property theft or enabling further at-
tacks (Malik et al. 2024).

e Evasion attacks: Crafting inputs that are intentionally designed to be misclassified
by the model, thereby bypassing security measures. Physical-world examples include
adversarial patches or stickers that cause misclassification in object detection systems
(Girdhar et al. 2023).

o Prompt attacks: Exploiting prompt-based systems by injecting malicious prompts that

Fig. 5 Example of prototype-based FL
architecture and attack surface
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alter the model’s behavior or outputs, potentially leading to unintended actions in AS
(Shan et al. 2024).

e Adversarial deployment attacks: Introducing adversarial elements into the environ-
ment, such as deceptive road markings or manipulated traffic signs, to mislead the AS
perception and decision-making processes (Boltachev 2024).

This taxonomy underscores the multifaceted nature of adversarial threats across the Al
life-cycle in Autonomous Systems. By systematically categorizing these attacks, we aim to
enhance the understanding and development of robust defense mechanisms tailored to each
stage of the Al deployment pipeline.

4.2 Exposure-impact matrix

The AS Adversarial Exposure-Impact Matrix, illustrated in Fig. 6, offers a detailed taxon-
omy of adversarial attack vectors that specifically exploit vulnerabilities in AS. The matrix
organizes these vulnerabilities according to fundamental Al challenges, such as the need for
large datasets, sensitivity to model updates, similarities across models, and input fragility,
linking each to concrete attack surfaces, including data pipelines, model APIs, and environ-
mental inputs.

These vulnerabilities enable a wide spectrum of attacks, ranging from data poisoning and
backdoors during training to model extraction and evasion at inference. The matrix clari-
fies both where and how AS can be compromised and traces the downstream consequences
from data collection and model preparation through deployment to operational harms such
as misguidance, sabotage, or intellectual property (IP) theft.

Al inherent vulnerabilities and attack surfaces: AS inherit several critical vulner-
abilities from the underlying Al models and datasets on which they rely, exposing multiple
attack surfaces:

AS Adversarial Exposure Matrix

Al Inherent
o Model update data i i it imilari
vulnerabilities Data Hunger & .P Reverse Engineering Input sensitive Similarity across
sensitivity prone models
i Federated learning or
Attack Data collection sources: any access to model Model APIs or other access | Adversarial Queries Surface transfer
Surface Physical, public or databases training pipelines to model predictions Examples
Data Poisoning Training-Data Transfer Attacks
1. Physical environment alterations 1. Digital extraction
2. Spoofing malicious images in 2. Physical
training 3 | \.‘/ % ! 3
= v 5 E: § G
Attacks - N
Backdoor Attacks - = 7
M= | i
Training 4 bt
Fy " Dotabase -
o)
Life Cycle - Coltection preparation _ =
i ata => = rainin, &
impact T o o E o T e r
validation” " Cleaning Pipelines Model Feedback Aopicanon
id IP theft Elusion Leakage
Real World Exploitation
Impacts Deception Crashes C p Crashes & Misdirection
Casualties

Fig.6 AS exposure-impact matrix
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e Data hunger: The requirement for large and diverse datasets makes AS vulnerable to
data poisoning attacks, where adversarial modifications—such as altered traffic sign im-
ages—are injected into the training data (Eykholt et al. 2018).

o Model update sensitivity: The adoption of federated learning and access to model up-
date pipelines introduce the risk of model poisoning attacks, allowing adversaries to
manipulate updates and embed backdoors (Cheng et al. 2021).

e Input sensitivity: The inherent fragility of Al models to subtle input changes makes
them susceptible to adversarial examples, including both digital perturbations and
physical attacks (such as stickers or patches on objects) (Brown et al. 2018).

e Similarity across models: The resemblance between different models allows for trans-
fer attacks, where adversarial examples crafted for one model can successfully mislead
another (Trameér et al. 2017).

Real-world impacts: The AS Adversarial Exposure Matrix reveals how the convergence
of Al vulnerabilities, attack surfaces, and adversarial tactics results in tangible real-world
consequences. By mapping these threats from data collection through training, inference,
and deployment, the matrix highlights clear pathways through which Autonomous Systems
can be undermined:

e Data hunger — Data poisoning: The demand for extensive, diverse datasets exposes
AS to data poisoning, where physical or digital manipulation of training data causes
misguidance and deception at the perception layer.

e Model update sensitivity — Model poisoning and backdoor attacks: Continuous
model refinement in AS creates opportunities for adversaries to introduce model poison-
ing or embed backdoors via tainted updates. This results in manipulation and sabotage,
eroding model integrity and reliability.

e Reverse engineering prone — Model extraction: When attackers gain access to mod-
el outputs through open APIs or similar interfaces, they can perform model extraction,
leading to IP theft and exposure of proprietary algorithms. This undermines competitive
advantage and may facilitate further adversarial actions.

o Input sensitivity — Evasion attacks and training-data extraction: Systems that rely
on accurate sensor interpretation or user input are vulnerable to evasion attacks and ad-
versarial queries. Such elusion and environmental manipulation can cause crashes, ca-
sualties, and information leakage, as the AS fails to interpret its environment correctly.

e Similarity across models — Transfer attacks: Exploiting similarities among models,
adversaries can launch transfer attacks that scale across multiple AS platforms, result-
ing in widespread exploitation and a further erosion of public trust in these technologies.

By mapping each vulnerability and attack type to its downstream impact, the matrix under-
scores that even subtle technical manipulations can cascade into severe, real-world conse-
quences. Understanding these relationships is crucial for designing robust defense strategies
that ensure the reliability, safety, and integrity of Autonomous Systems.

Table 5 consolidates recent research that exemplifies the real-world impacts identified in
the AS Adversarial Exposure Matrix. These studies provide concrete evidence of adversarial
attacks, their methodologies, and their consequences for AS, emphasizing the need for com-
prehensive defense mechanisms.

@ Springer



Securing (vision-based) autonomous systems: taxonomy, challenges, and...

Page 25 0f 59 373

Table 5 Representative set of

attacks and their real-world im-

pacts in Autonomous Systems

Study Attack type Real-world
impact
Dynamic Adversarial Attacks ~ Physical adver- ~ Misclassifica-

on Autonomous Driving Sys-
tems Chahe et al. (2023)

Adversary ML Resilience in
Autonomous Driving Through
Human-Centered Perception
Mechanisms Shah (2023)
Embodied Adversarial Attack:
A Dynamic Robust Physical
Attack in Autonomous Driv-
ing Wang et al. (2023b)

Beyond Boundaries: A
Comprehensive Survey of
Transferable Attacks on Al
Systems Wang et al. (2023c)
Towards Robust and Secure
Embodied Al: A Survey on
Vulnerabilities and At-
tacks Xing et al. (2025)
Discovering Adversarial
Driving Maneuvers Against
Autonomous Vehicles Song
et al. (2023)

Efficient Adversarial Attack
Strategy Against 3D Object
Detection in Autonomous
Driving Chen et al. (2024b)
Adversarial Backdoor At-
tack on Trajectory Predic-
tion Pourkeshavarz et al.
(2024)

sarial patches on
moving objects

Physical attacks
on road signs
(e.g., tape,
graffiti)
Laser-based
dynamic physical
attacks

Transfer attacks
leveraging model
similarities

Adversarial
manipulation of
Al-controlled
robots
Adversarial driv-
ing maneuvers

3D object detec-
tion manipulation

Clean-label data
poisoning

tion of traffic
signs, leading
to misguidance
and deception

Misclassifica-
tion, causing
safety hazards

Misinterpreta-
tion of the
environment,
resulting in po-
tential crashes
Scaled exploita-
tion across
multiple autono-
mous systems
Safety-critical
failures, includ-
ing crashes and
casualties
System misguid-
ance, crashes,
and operational
compromise
Misclassifica-
tion of objects,
leading to po-
tential crashes
Causes system-
atic errors in
path prediction,
increasing colli-
sion risks

4.3 Stack-threat matrix

Because AS operate in uncontrolled, open environments, they are especially vulnerable to
attacks that target the physical world. Physical adversarial attacks are particularly critical,
as they directly compromise the perception capabilities of sensors and cameras, thereby
undermining all subsequent layers. Nonetheless, vulnerabilities are not limited to physical
inputs. Table 6 provides our matrix mapping relevant examples with their scenarios and
implications per stack layer. Some more in depth conceptual examples are presented bellow
to further understand the relevance per layer:

At the the Perception Layer, attacks can manipulate the sensory input of an AS, causing
the system to perceive incorrect or misleading information. Adversarial attacks in computer
vision can cause an AS to misclassify objects in the environment, leading to incorrect or
unsafe actions (Ai et al. 2021; Wang et al. 2021).

Tampering with the perception layer often involves that further layers (planning and con-
trol) will also be compromised as data flows from one layer to the other, an incorrect view
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Table 6 Stack-threat matrix

Attack Scenario Target Implications References
description
Perception layer
Adversarial Patch embedded on ~ Object detector/classifier Misclassifica- Brown et al.
Patch road sign or object tion, system (2018)
malfunction,
hazardous
incidents
Adversarial Adversarial sticker Object detection/segmentation Scene misper- Chen et al.
Sticker on object/surface ception, incor-  (2019)
rect decisions
Adversarial Person wearing Human/object classification Pedestrian Xu et al.
Apparel adversarial clothes or missed, security  (2020; Sharif
accessories breach et al. (2019)
Adversarial Placing adversarially- Object recognition False identifica- Kong et al.
Object engineered 2D/3D tion, safety risks (2020)
object in environment
Lighting Manipulate scene Vision-based perception Misclassifica-  Hsiao et al.
Attack lighting/shadows tion, detection  (2024)
failure
Adversarial Raindrop patterns on  Vision-based perception Degraded Guesmi et al.
Rain lens/image perception, (2023)
environmental
misinterpretation
Adversarial Clothing designed to  Person detection/recognition Security risk, Hu et al.
Clothing fool detector evasion of (2023a)
detection
Remote Malicious pattern Camera-based detection False nega- Man et al.
Perception  injection via compro- tives for critical  (2023)
Attack mised comms objects
LiDAR Fake laser signals to  LiDAR perception False obstacle ~ Cao et al.
Spoofing LiDAR sensor detection, colli- (2019)
sion risk
Planning layer
Traffic Sign Subverted or altered  Traffic sign recognition Misnavigation,  Eykholt et al.
Attack traffic sign rule violation, (2018)
accident risk
GPS Falsified GPS signals Navigation system Route deviation, Horton and
Spoofing loss of control,  Ranganathan
accidents (2018)
UAV Track- Compromised UAV route/target tracker Loss of target,  Fuetal.
ing Attack  tracking data or mission failure  (2022)
communication
Adversarial Adversarial billboard/ Object detection/classification Scene confu- Zhou et al.
Billboard sign in environment sion, misbehav-  (2020)
ior, planning
error
Adversarial Crafted planner Planning algorithm Unsafe/inef- Edelkamp
Planning input/feedback ficient routing,  (2023)
increased risk
Trajectory  Adversarial inputto  Trajectory prediction Wrong agent Cao et al.
Attack prediction model movement fore- (2022)

cast, collision

@ Springer



Securing (vision-based) autonomous systems: taxonomy, challenges, and... Page 27 of 59 373
Table 6 (continued)
Attack Scenario Target Implications References
description
Semantic Benign object Behavioral planning module Unnecessary Wan et al.
DoS Attack induces overly con- stops or detours, (2022)
servative behavior degraded
performance
Control layer
UAV OD Spoofed images for ~ UAV object detection/control Erroneous con-  Tian et al.
Spoofing UAV detection trol action, un-  (2022)
safe maneuvers
Semantic Malicious image Control subsystem Poor control Xie et al.
Exploit for segmentation/ decisions, po- (2017b)
detection tential accidents
Trojaning  Injecting backdoor Control algorithm Unauthorized Cheng et al.
Attack during model training actuation, hijack (2021)
risk
Model Query-based model  Control algorithm/model IP theft, enables Li et al.
Extraction  stealing further attack (2021)
planning
Flying Drone delivers adver- Vision-based control Remote error Hanfeld
Patch sarial patch into field injection, loss of et al. (2023)
of view control
Ghostlmage Remote projection of Camera-based control Misclassifica- Man et al.
Attack adversarial pattern tion, control (2020)
errors
CAN Malicious CAN bus  Vehicle control systems Unauthorized Khan et al.
Injection message injection control, theft (2022)

of the environment can lead to, for instance an incorrect route being planned and wrong
commands sent to the actuators in the control layer. The scenarios for attacks that target the
perception layer involve the exploitation of the area in which camera sensors actuate, in
this case the physical environment, thus the threat to be considered are physical adversarial
attacks. These include adversarial patches, objects and stickers which have been outlined
previously and summarized in Sect. 3.2.

Attacks in to the perception layer and to other layers can be distinguished based on
the attacker objectives, this means that although every successful physical attack involves
alterations to the perception of the environment produced at the perception layer, not every
physical attack shall be considered a perception layer attack.

Perception layer attacks aim to remove or add elements to the system’s perception of the
world, altering its fundamental behavior. If the example of driverless cars is considered,
attacks involving adversarial traffic signs (Morgulis et al. 2019) might be more appropri-
ately classified as planning layer attacks rather than perception layer attacks. This is because
even if a stop sign is misclassified as a 45 mph speed limit sign, the car will still be able to
navigate the road and recognize that a traffic sign is present. However, its planned route or
correct trajectory will be altered due to an unintended decision made at the planning layer.
In contrast, an attack involving a pedestrian wearing an adversarial T-shirt (Xu et al. 2020)
should be considered a perception layer attack, as it renders an element invisible, preventing
the car from accounting for all elements on the road. Therefore, attackers’ aiming purely at
the perception layer will normally leverage physical attacks targeting object detectors.
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At the Planning Layer adversarial attacks can be crafted leveraging vulnerabilities
in Deep learning classifiers including physical attack such as adversarial traffic signs as
demonstarted by Morgulis et al. (2019). The security implications can include incorrect
routes, traffic violations, or accidents. In Fu et al. (2022), an adaptive adversarial attack
on real-time Unmanned Aerial Vehicle (UAV) tracking systems is introduced. The authors
devise the Ad2Attack method, a mechanism that produces adversarial examples aimed at
deceiving deep learning-powered UAV tracking systems. A successful compromise of the
tracking system’s performance can lead to the UAV losing track of its intended target. This
loss of tracking can, in turn, result in inaccurate or suboptimal route planning, thus posing
significant operational challenges.

Other significant vulnerabilities can be found in planning systems which involve gather-
ing information from external sources to make planning decisions, such as GPS spoofing,
an example of such attack can be found in Horton and Ranganathan (2018), attacks such as
this can manipulate the drone’s perceived location and potentially take control of its move-
ments. Although this example is not in the image domain, it is believed that systems may use
other information in the planning layer such as saved streetview images downloaded from
an external server to aid navigation. Thus, attacks similar to GPS spoofing, where malicious
images are injected into the planning layer leveraging wireless technology vulnerabilities,
may exist in the future.

For the Control Layer, Tian et al. (2022) presents an architecture for an unmanned aerial
vehicle (UAV) is described, in which the drone’s camera acts as a sensor and sends real time
images to the controller for processing and display through a Wi-Fi network. The controller,
which is based on Dronet, processes the image to gain situational awareness of the environ-
ment and generates control instructions. These instructions are transmitted to the actuator
through the Wi-Fi network to control the drone. Given the vulnerabilities in Wi-Fi networks,
there may exist an active attacker who controls the Wi-Fi link and generates imperceptible
perturbations (adversarial examples) to images sent by the camera to remain undetected.
This attack may result on the drone receiving wrong velocity commands which could make
it intentionally crash to an object or even a human, or at least alter its normal course. A
illustration of this attack is shown in Fig. 7.

Xie et al. (2017b) explores adversarial attacks on deep learning-based semantic segmen-
tation and object detection systems, both of which play a critical role in the control layer of
autonomous vehicles. Through the generation of adversarial examples, these systems can
be manipulated, leading to erroneous control decisions with potentially hazardous outcomes
such as accidents or system malfunctions.

The researchers present a method for creating adversarial examples that effectively
deceive both semantic segmentation and object detection algorithms. The technical back-
bone of this paper involves the resolution of an optimization problem, the goal of which
is to create adversarial perturbations that maximize the target model’s loss function while

Adversarial
Generated
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Wrong collision
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captured by Camera > r a‘\ Control System l
Wrong steering
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Fig. 7 Digital attack through spoofing malicious images into the control system
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remaining visually undetectable to human observers. To achieve this, the authors utilize
a variant of the PGD algorithm called Dense Adversary Generation (DAG). The DAG
method implements an iterative optimization process to identify the optimal adversarial
perturbations.

Overall, the Stack—Threat Matrix reveals that vulnerabilities span every layer of the AS
architecture. Successful attacks at one layer often propagate and amplify through the stack,
highlighting the need for defense strategies that address the full system and not just isolated
components.

5 Critical appraisal of defenses in the context of autonomous systems

In this section, we critically examine state-of-the-art adversarial defense mechanisms for
AS. We begin by outlining the unique operational and security requirements that robust AS
defense systems must satisfy (Sect. 5.1). Next, we focus on the challenges posed by physi-
cal adversarial attacks and review recent approaches for defending against them (Sect. 5.2).
Drawing on the analyses above, we refine our taxonomy of defense mechanisms and narrow
our evaluation to those methods most relevant and effective for AS, discussed in Sect. 5.3
and summarized by Table 7. Finally, in Sect. 5.4, we systematically assess a set of thirty
representative defense mechanisms, introducing our novel AS-4DS scoring framework to
quantify their alignment with the practical needs of AS.

5.1 Defining requirements for AS defense systems

Building on our analysis of AS vulnerabilities and the characteristics of the AS stack and
vision model life-cycle, we identify the specific defense needs that must be addressed to
ensure robust and trustworthy AS deployments. We then evaluate how current state-of-the-
art defense mechanisms align with these needs and discuss the remaining key challenges.

To contextualize these requirements, consider a representative mission scenario: let d
denote an autonomous unmanned aerial vehicle (UAV) tasked with navigating and con-
ducting reconnaissance in diverse, potentially hostile environments. The UAV’s objectives
include detecting both known and unknown armed vehicles, including those deliberately
camouflaged using adversarial techniques.

Suppose further that d € D, where D is a fleet of UAVs operating in different areas and
leveraging federated learning (FL) to collaboratively update their models. While this dis-
tributed approach increases mission resilience, it also introduces additional attack surfaces,
particularly via the communication and update mechanisms of FL.

Throughout its mission, UAV d may face a variety of adversarial threats. For example,
adversarial patches, as described in Zhang et al. (2022a), may be used by adversaries to
camouflage vehicles and evade detection targeting the perception layer. Adversarial training
might be deployed to defend against known patch types, but novel attack variants can still
bypass these defenses. Visually distracting adversarial billboards (Zhou et al. 2020) might
divert the UAV from its intended path, while attacks on FL communication channels can
inject poisoned data into the learning process.

Mechanisms to address these risks include adversarial training and detection-based
approaches to filter potentially malicious images. However, a recurring limitation is their
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Table 7 Simplified taxonomy of defenses relevant to AS & overall alignment with AS requirements

Mechanism

Real-time Adaptability

Interpretability

Efficiency

References

Adversarial
Training

Input
Pre-Processing

Model
Ensembles

High

High

Mod

Low

Low

Mod

Low

Mod

Low

Low

High

Low

Goodfellow et al.
(2014); Madry et al.
(2019); Tramér and
Boneh (2019); Wong
et al. (2020); Tramer
etal. (2017); Rozsa
et al. (2016); Chen
and Lee (2021);
Shen et al. (2021);
Xie et al. (2019);
Wang et al. (2024a)

Xie et al. (2017a);
Liao et al. (2018); Li
et al. (2024a); Shu
et al. (2021); Reyes-
Amezcua et al.
(2024); Naseer et al.
(2018); Hu et al.
(2023b); Zhang

et al. (2024); Shibly
et al. (2023); Nie

et al. (2022); Zhang
et al. (2022b); Wang
et al. (2024b)

Xie et al. (2017b);
Engstrom et al.
(2019); Liao et al.
(2018); Xu et al.
(2017); Bhagoji
etal. (2017); Bui
etal. (2021); Trameér
et al. (2017); Deng
and Mu (2023);
Mani et al. (2019);
Lu et al. (2023),
(2023); Chen et al.
(2024a); Huang

et al. (2021); Lou
et al. (2023); Zhao
et al. (2024b)
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Table 7 (continued)

Mechanism Real-time Adaptability Interpretability Efficiency References
Detection High Mod High Mod Guo et al. (2019a);
Mechanisms Angelov and Soares

(2021); Goodfellow
et al. (2014); Carlini
and Wagner (2017a);
Grosse et al. (2017);
Feinman et al.
(2017); Xu et al.
(2017); Gupta et al.
(2020); Sabokrou

et al. (2024); Soares
et al. (2022); Gong
et al. (2023); Abdu-
Aguye et al. (2020);
Hussain and Hong
(2023); Li et al.
(2024b), (2023);,

Yu et al. (2024);

Liu et al. (2022),
(2022); Chen and
Chu (2023); Lu and

Radha (2023)
Certified Mod Low High Mod Gowal et al. (2018);
Defenses Tjeng et al. (2017);

Muravev and

Petiushko (2022);

Lecuyer et al.
(2019); Xiang et al.
(2022); Yang et al.
(2023); Zhang et al.
(2022c¢)

Unified Defense High High High Mod Pellicer et al.
(2024); Du et al.
(2018); Freitas et al.
(2020); Cao et al.
(2024); Dash et al.
(2024); Tarchoun
et al. (2023); Jing
et al. (2024); Han
et al. (2024); Yu
etal. (2024)

lack of adaptability to novel attacks and inability to learn from previously unseen patterns
without extensive retraining.

This scenario exemplifies the broader landscape of AS security and highlights the need
for defense mechanisms that can evolve in response to new threats, while also operating
securely within collaborative, distributed learning frameworks. Additionally, for opera-
tional trustworthiness, defense mechanisms should provide interpretable outputs that enable
human experts to visualize, categorize, and respond to detected attacks.

For instance, the detection approach proposed by Soares et al. (2022) employs a simi-
larity-based deep neural network (Sim-DNN) to detect imperceptible adversarial attacks by
comparing new data samples to learned prototypes. This prototype-based method is inter-
pretable and does not require adversarial training, but still lacks robust response capabilities
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(e.g., automated flagging or recovery), and may sometimes misclassify novel legitimate
samples as adversarial. Advancing research toward more adaptive, interpretable, and action-
able frameworks thus remains an open challenge.

Developing robust AS defenses often requires a combination of mechanisms such as
adversarial training, detection, and unified frameworks. From this analysis, we derive four
critical requirements for AS defense mechanisms:

o Real-time detection and response: Defenses must promptly identify and mitigate ad-
versarial inputs to prevent compromise of safety-critical decisions.

e Adaptability to novel attacks: Mechanisms should respond effectively to new and
evolving adversarial strategies without requiring complete retraining.

e Interpretability and transparency: Outputs should be explainable and accessible to
human operators, enabling informed oversight and intervention.

o Resource efficiency: Methods must be computationally and energetically efficient for
practical deployment on resource-constrained AS platforms.

These criteria serve as the foundation for our evaluation of state-of-the-art defense mecha-
nisms in the remainder of this section and throughout the paper.

5.2 Defenses against physical adversarial attacks

Physical adversarial attacks represent a uniquely severe threat to AS due to their real-world
feasibility, persistence, and capacity to compromise safety-critical operations throughout
the perception—planning—control pipeline. Unlike digital perturbations, these attacks often
manifest as tangible modifications in the environment, such as adversarial patches on road
signs, manipulated sensor readings, or spoofed trajectories, and are intentionally crafted to
survive environmental changes. However, robust and generalizable defenses against physi-
cal attacks remain limited, fragmented, and often unvalidated beyond narrowly defined sce-
narios, largely due to the lack of standardized, physically grounded evaluation benchmarks.

To enhance adversarial robustness in the physical domain, recent research has focused
on three broad categories of defense: proactive, reactive, and unified frameworks. Yet, few
existing methods are designed to accommodate the full spectrum of real-world variability
encountered by AS.

Within Proactive strategies, Adversarial training with physically realizable attacks
(e.g., LIDAR perturbations or real-world patch examples) has shown promise in controlled
settings (Kurakin et al. 2016; Lu and Radha 2023), but generalization to unseen condi-
tions such as new weather, sensor occlusion, or novel object types is often poor. Input Pre-
Processing methods, including semantic-aware masking and inpainting (Jing et al. 2024),
as well as multi-step diffusion-based purification (Nie et al. 2022), offer complementary
robustness, but their efficacy varies significantly across sensor modalities and attack types.
Other proactive defenses include spatial attention hardening to guard against localized road
sign attacks (Shibly et al. 2023) and multi-sensor aerial fusion to strengthen detection pipe-
lines (Chen and Chu 2023). Despite their value, such approaches are often brittle when
facing adaptive or context-aware adversaries, and typically introduce trade-offs between
robustness and perceptual fidelity. Similarly, trajectory prediction models trained under
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uncertainty provide resilience at the planning level, but remain underexplored for targeted
physical threats (Zhang et al. 2022b).

Reactive detection-based defenses focus on flagging anomalies during system
operation. Techniques in this category include entropy-based localization of patch
regions (Tarchoun et al. 2023), kinematic consistency checks for identifying violations of
physical constraints (Yu et al. 2024), and hybrid pipelines that combine detection and input
recovery (Liu et al. 2022). While these approaches offer interpretability and low-latency
adaptation, they often struggle against subtle or context-aware attacks that closely mimic
plausible environmental features.

Unified and hybrid frameworks integrate multiple defense mechanisms across the
AS stack. For example, control-aware frameworks such as SpecGuard (Dash et al. 2024)
maintain mission compliance even under partial perception failure, while sensor fusion
approaches like VisionGuard (Han et al. 2024) validate consistency between sensory
modalities. Adaptive neural modeling strategies, such as RCDN (Wang et al. 2024b), aim
to dynamically harden internal representations against adversarial perturbations. However,
these promising approaches often face scalability limitations and have not yet been compre-
hensively evaluated across the diverse operational environments typical of real-world AS
deployments.

Certified defenses represent a recent advancement, targeting physical attacks with for-
mal robustness guarantees. PatchCleanser (Xiang et al. 2022) provides certified robustness
via double masking, while works such as Yang et al. (2023) and Zhang et al. (2022c) extend
certification to control systems and semantic segmentation. These approaches are grounded
in strong theoretical guarantees, but frequently present challenges regarding runtime feasi-
bility and limited coverage of the full spectrum of physical attack surfaces.

Despite these advances, several key challenges remain. Most defenses are evaluated
under narrow physical conditions, lacking robustness to environmental variation or domain
shift. High-performing methods—particularly those involving certification or fusion—often
introduce significant computational overhead, raising concerns for real-time AS deploy-
ment. Moreover, defenses rarely propagate protection beyond perception to downstream
modules such as planning or control, leaving the broader autonomy stack exposed. Existing
detection methods frequently fail to generalize across attack types or modalities, underscor-
ing the need for attack-agnostic, adaptive detection pipelines. Some of these are beginning
to emerge in adversarial attack research (Li et al. 2024b) and deepfake detection (Pellicer
et al. 2024a), and could potentially be translated to the physical domain due to their proto-
type-based characteristics, though this remains to be explored.

Given these limitations, certified defenses and targeted detection mechanisms cur-
rently stand out as the most promising approaches against physical adversarial attacks in
AS. Recent contributions, (some of which are evaluated in detail in Sect. 5.4) demonstrate
notable progress, but comprehensive integration and rigorous validation across the full AS
pipeline remain critical open challenges for future work.

5.3 Defense taxonomy simplification
To address the real-time, adaptive, interpretable, and resource-conscious requirements of

AS, we categorize SOTA defenses according to their core methodology, rather than along
legacy proactive/reactive lines. We exclude Model Regularization, Model Distillation, and
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Provable defenses from our main analysis. Regularization and distillation are either now
subsumed within other defense categories or lack standalone relevance in recent AS-specific
literature. Provable (i.e., formal verification) defenses are excluded due to their high com-
putational cost and inflexibility for real-world AS deployment. Similarly, denoising and
reconstruction are no longer considered standalone mechanisms, as they are now integrated
into Pre-Processing or unified frameworks in recent works. Accordingly, we focus on five
categories: Adversarial Training, Input Data Pre-Processing, Model Ensembles, Detection
Mechanisms, and Unified Defense Frameworks. Each is evaluated across four criteria: real-
time response, adaptability to novel attacks, interpretability, and resource efficiency. Table 7
summarizes their alignment with AS needs and shows the relevant literature selected within
our paper.

5.3.1 Adversarial training

Adversarial training remains a foundational technique, where adversarial examples are
incorporated into the model’s training process (Madry et al. 2019). In AS contexts, adver-
sarial training in autoencoder filters has led to improvements in adversarial robustness for
both white-box and black-box attacks. Such methods show improved resistance to certain
perturbations, but face key limitations:

e Real-time response: High. Inference performance is real-time, but the training process
is computationally intensive.
Adaptability: Low. Generalization to unseen attacks is limited.
Interpretability: Low. The mechanisms by which robustness is achieved are often
opaque.

e Efficiency: Low. High cost in both training and memory.

5.3.2 Input data pre-processing

Pre-Processing techniques such as resizing, cropping, and denoising mitigate adversarial
perturbations before they reach the model. Studies such as Xie et al. (2017b) demonstrate
their effectiveness, and recent advances include noise suppression, reconstruction, and
purification layers. DiffPure (Nie et al. 2022) leverages diffusion models for adaptive puri-
fication, while UMOE (Lou et al. 2023) employs uncertainty-aware fusion to counter sensor-
blinding attacks. Pre-Processing is widely adopted for real-time viability:

Real-time response: High. Lightweight implementations can operate on edge devices.
Adaptability: Low. These methods are often bypassed by adaptive or physical attacks.
Interpretability: Moderate. Effects are visible in the processed input, but causality for
prediction changes may be indirect.

o Efficiency: High. Minimal runtime cost.

Notably, this category is evolving: standard techniques (e.g., resizing, cropping, denois-

ing) (Xie et al. 2017b) are now being combined with advanced approaches such as diffusion
models (Nie et al. 2022). Pre-Processing is increasingly integrated into more complex pipe-
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lines, leading to Unified Models such as Han et al. (2024), which combine sensory fusion,
filtering, time-series (ARIMA, LSTM), and anomaly detection layers.

5.3.3 Model ensembles

Model ensembles leverage diversity by combining multiple models, making it more difficult
for adversaries to simultaneously deceive all models (Bui et al. 2021). Key characteristics
are:

o Real-Time Response: Moderate. Inference latency increases with the number of mod-
els.

e Adaptability: Moderate. Greater diversity can improve resistance to transfer attacks.
Interpretability: Low. Internal logic is often obscured by the ensemble fusion process.

e Efficiency: Low. Requires substantial hardware for parallel model execution.

Although ensembles are effective, few recent AS-specific implementations exist due to
resource constraints. For example, the MADE framework (Zhao et al. 2024b) employs
ensemble-like anomaly scoring over multi-vehicle inputs to detect collaborative attacks in
V2X scenarios. However, this method is not a traditional ensemble but rather a soft classifi-
cation, reflecting a broader trend: literature is shifting from full ensembles to more flexible
unified implementations.

5.3.4 Detection mechanisms

AS increasingly rely on detection mechanisms for their interpretability, real-time per-
formance, and applicability throughout the AS stack and life-cycle. Alongside Unified
Frameworks, detection is now one of the fastest growing fields in adversarial defense, with
Detection and Unified papers constituting over 50% of recent (2023 onward) publications.

Examples include Among Us Li et al. (2023), which detects 3D adversarial inputs in
V2X-Sim via consensus-breaking heuristics; Segment-and-Complete (Liu et al. 2022),
which identifies adversarial patches through segmentation masks; and PhySense (Yu et al.
2024), which generalizes detection to real-world perturbations. Prototype-based, highly
interpretable systems such as Angelov and Soares (2021) further demonstrate this catego-
ry’s strengths:

e Real-time response: High. Detection is typically performed pre-inference.
Adaptability: Moderate. Detection patterns can generalize to some unseen attacks.

o Interpretability: High. Outputs are often visual or score-based, supporting operator
trust.

e Efficiency: Moderate. Auxiliary models or priors may increase computational demands.

5.3.5 Certified defenses

Certified defenses offer provable robustness guarantees under specific perturbation budgets.
In AS-relevant domains:
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e PatchCleanser (Xiang et al. 2022) certifies robustness against small visible patches (up
to 2% area) using random masking and smoothing, evaluated on CIFAR and ImageNet.

o Demasked Smoothing (Zhang et al. 2022c) certifies patch-level segmentation robust-
ness via randomized ablation masking, showing strong resistance on ADE20K under
shadow and patch attacks.

e Certified Robust Control (Yang et al. 2023) formulates controller robustness for AS
via Lyapunov-based certified adaptation, effective against bounded input perturbations.

Strengths and trade-offs are:

Real-time response: Moderate. Certification layers may introduce runtime sampling.
Adaptability: Low. Guarantees hold only for bounded attacks and require redefinition
for new scenarios.

Interpretability: High. Theoretical guarantees are transparent and explainable.
Efficiency: Moderate—Low. Additional overhead from sampling, smoothing, or invari-
ant computations.

5.3.6 Unified defense frameworks

Unified frameworks, as defined in this review, represent a new taxonomy. They integrate
heterogeneous defense techniques (e.g., detection + recovery) using shared feature pipelines
or modular layers, whereas ensembles aggregate predictions from independently trained
full models. For example, Pellicer et al. (2024b) present a lightweight framework combin-
ing prototype-based detection and classification for attacks and unseen classes, along with
attack recovery via denoising methods, achieving over 90% accuracy on CIFAR-10.

Other notable unified defenses include Du et al. (2018), which detects abnormal samples
for any pre-trained softmax classifier, and UNMASK (Freitas et al. 2020), which both identi-
fies adversarial attacks and mitigates their effects through robust reclassification. UNMASK
can detect up to 96.75% of attacks and restore correct classification in up to 93% of cases.

More AS-specific frameworks, such as SpecGuard (Dash et al. 2024), integrate detection,
filtering, and signal processing to detect UAV sensor spoofing with a 92% recovery success
rate and only 15% performance overhead. Time-Travel (Etim and Szefer 2024) compares
live input with historical image matches to detect false patches, achieving 100% effective-
ness against recent adversarial examples in traffic sign classification.

Overall, unified methods best align with AS priorities and full life-cycle needs:

e Real-time response: High. Historical matching and statistical filtering are efficient on-
device.

e Adaptability: High. Frameworks leverage both priors and learned models.
Interpretability: High. Alerts are easily visualized and validated by operators.

e Efficiency: Moderate. Moderate computational and storage requirements.

5.4 Autonomous systems adversarial defense score (AS-ADS) framework
To systematically assess the suitability of defense methods for AS, we build on the updated

taxonomy provided in Table 7.
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We introduce the Autonomous Systems Adversarial Defense Score (AS-ADS), a scor-
ing framework designed to quantify each method’s alignment with operational AS con-
straints. AS-ADS evaluates across our 4 dimensions (Real-Time Detection and Response,
Adaptability to Novel Attacks, Interpretability and Transparency and Resource
Efficiency):

Each criterion is rated on a 0 to 1 scale in 0.25 increments. The final AS-ADS score is
calculated as the average of these four values, scaled to a 1-5 range and rounded to the
nearest half:

O

AS-ADS(P) = <W> %5

4

where R, A, I, E € [0,1] represent the real-time, adaptability, interpretability, and effi-
ciency scores, respectively.

R, A, I, E are obtained for each paper after marking using rubrics in Table 8.

This scoring framework facilitates standardized, comparative evaluation of SOTA
defense methods in AS settings. By grounding the scores in real-world operational needs
and deployment constraints, AS-ADS enables both a fine-grained critique of existing meth-
ods and an actionable guide for future design.

For the evaluation, we selected a representative subset of 30 defenses from the litera-
ture discussed in this paper, focusing on Pre-Processing, Detection, Certified, and Unified
defenses, as identified in Sect. 5.3. Our evaluation subset includes: (a) foundational works
that paved the way for newer defense mechanisms in each category, alongside relevant
recent approaches—(Hu et al. 2023b; Shu et al. 2021; Gupta et al. 2020; Sabokrou et al.
2024; Reyes-Amezcua et al. 2024; Abdu-Aguye et al. 2020; Hussain and Hong 2023; Soares
et al. 2022; Li et al. 2024b; Grosse et al. 2017; Pellicer et al. 2024b; Du et al. 2018; Freitas
et al. 2020; Yin et al. 2025; Cao et al. 2024)—and (b) work from 2022 onward tailored spe-
cifically to the AS domain—(Dash et al. 2024; Tarchoun et al. 2023; Jing et al. 2024; Han
et al. 2024; Yu et al. 2024; Xiang et al. 2022; Yang et al. 2023; Zhang et al. 2022c¢; Liu et al.
2022; Chen and Chu 2023; Lu and Radha 2023; Shibly et al. 2023; Nie et al. 2022; Zhang
et al. 2022b; Wang et al. 2024b).

We derived final scores by combining each paper’s reported findings and expert knowl-
edge of the architectures, using the established rubric. For reproducibility indivual scores

'bl'able_8 AS-ADS scoring rubric Criterion 0 pts 0.25 pts 0.5 pts 1.0 pts
y criterion Real-time Batch High latency =~ Optimized Real-
response infer- inference  time at
ence only edge-level
only
Adaptability to  Static Minor Modular, Robust
novel attacks ~ model  generalization partially  to unseen
adaptable  attacks
Interpretability Black-  Minimal logs ~ Score- Prototype/
box basedor  semantic
visual explanation
Resource High GPU-depen-  Deploy-  Light-
efficiency overhead dent able with  weight
tuning for AS
hardware
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per paper can be found in Appendix B, the overall scores per paper have been presented in
Table 9

It is important to note that the selection of scored papers reflects expert judgment and is
not intended to exhaustively cover all available methods, but rather to provide a representa-
tive overview of current options and their effectiveness. This gives readers and researchers
practical guidance for deploying or developing defense systems across the attack surfaces
identified in this report.

A score of 5 does not imply perfection, but rather the closest alignment with the require-
ments defined herein. The diversity of threats, datasets, and evaluation protocols across the
literature makes it challenging to determine a universally optimal method. Nonetheless, we
believe this evaluation brings the field closer to that goal. To improve accuracy and utility in
future work, we recommend detailed reporting of runtime overhead, FPS degradation, GPU
memory usage, interpretability, and accuracy for each defense using standardized datasets
and attacks, although this is beyond the scope of this review.

6 Conclusion and future directions

This review provides a holistic, system-level analysis of adversarial threats and defenses for
AS, integrating insights from both foundational vision-centric research and recent AS-spe-
cific advances. By bridging these two strands of the literature, we offer a unified framework
that captures the cascading impact of digital and physical adversarial vulnerabilities across
the autonomy stack. Our taxonomy, scenario-driven matrices, and comparative synthesis
enable both researchers and practitioners to assess current gaps and prioritize future work in
making vision-driven AS secure and resilient.

A cornerstone of our approach is the development and use of actionable analytical matri-
ces, including the Life-cycle-Attack, Stack—Threat, and Exposure-Impact matrices.
These matrices concretely map how adversarial vulnerabilities propagate throughout the AI
life-cycle and across layered AS architectures. For example, our Life-cycle—Attack Matrix
reveals both the temporal exposure of AS to poisoning, backdoor, and evasion attacks,
and the unique risk windows at each stage of system operation. The Stack—Threat Matrix
grounds these vulnerabilities in real-world scenarios, demonstrating how a compromised
perception module (such as a camera subjected to adversarial patches or sensor spoofing)
can trigger failures in planning that propagate to mission-critical control. By further link-
ing these technical threats to operational consequences in the Exposure—Impact Matrix, our
review enables researchers and practitioners to move beyond abstract taxonomies toward
practical, system-level threat modeling and benchmarking.

Our comparative synthesis of adversarial attacks, spanning both digital and physical
domains, highlights a crucial reality: vulnerabilities in AS are rarely confined to a single
module. Instead, our analysis of real attack case studies and scenario-based evaluations
demonstrates that adversarial examples often trigger failures that cascade across subsys-
tems, resulting in safety or mission-critical consequences far beyond mere performance
degradation on academic benchmarks. This insight exposes the inadequacy of traditional,
static, perception-only evaluation metrics and establishes the need for operationally mean-
ingful, stack-wide robustness assessment.

@ Springer



Securing (vision-based) autonomous systems: taxonomy, challenges, and... Page 39 of 59 373

Table 9 AS-ADS evaluation of adversarial defenses. “AS” marks those developed for Autonomous Systems

Method description Score  References AS

Detection mechanisms

Detects adversarial inputs using evolved image processing sequences 2 Gupta et al. -

via genetic algorithms (2020)

Detects adversaries via SSL-based consistency checks in feature and 4.5 Sabokrou et al. -

label space (2024)

Combines LSTM temporal consistency checks with majority voting for 2 Abdu-Aguye et al. —

time-series attack detection (2020)

Reveals adversarial artifacts through autoencoder reconstruction error 2.5 Hussain and Hong —

analysis (2023)

Detects outliers through learned similarity metrics in contrastive feature 2.5 Soares et al. -

space (2022)

Learns attack-agnostic features via self-supervised contrastive prototype 3 Lietal. (2024b) —

alignment

Identifies anomalies through statistical hypothesis testing in feature 1 Grosse et al. -

space (2017)

Detects patches through entropy analysis and visual localization 4 Tarchoun et al. v
(2023)

Identifies physics violations through kinematic consistency checks 4.5 Yu et al. (2024) v

Detects/recovers patches via joint detection-completion pipeline 4 Liuetal (2022)

Pre-processing defenses

Embeds frequency-aware watermarks in RAW files using multi-spectral 4 Hu et al. (2023b) —

fusion

Optimizes augmentation parameters via gradient-based adversarial 1 Shu et al. (2021) -

search

Enhances robustness through transfer of adversarial patterns across 1 Reyes-Amezcua  —

vision tasks et al. (2024)

Neutralizes patches through semantic context-aware masking/inpainting 5.0 Jing etal. (2024) Vv

Scales LiDAR robustness via density-aware point cloud processing 4.5 Lu and Radha v
(2023)

Hardens aerial detection through multi-sensor fusion 2.5 Chen and Chu v
(2023)

Protects road sign recognition through spatial attention hardening 2.5 Shibly et al. v
(2023)

Purifies inputs through multi-step diffusion denoising 2 Nie et al. (2022) v

Improves trajectory prediction via uncertainty-aware training 2.5 Zhang et al. v
(2022b)

Unified defenses

Integrates detection-denoiser architecture with noise-adaptive 3.5 Pellicer et al. -

thresholds (2024b)

Detects OOD samples through temperature-scaled confidence 2.5 Du et al. (2018) -

calibration

Verifies predictions through robust part-based feature alignment 4 Freitas et al. -
(2020)

Links adversarial and backdoor attack patterns for joint cross-attack 3 Yin et al. (2025) —

detection

Detects face spoofing through dual-space (spatial/frequency) recon- 4 Caoetal. (2024) —

struction analysis

Ensures mission-compliant recovery through specification-aware 4.5 Dash etal. (2024) v

control

Guarantees cross-sensor consistency through multi-modal fusion checks 4.5 Han et al. (2024)
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Table 9 (continued)

Method description Score  References AS

Enables robust perception via dynamic neural feature modeling 4.5 Wang et al. v
(2024b)

Certified defenses

Provides certified patch robustness through double-masking with formal 4.5 Xiang et al. v

guarantees (2022)

Certifies control stability under perturbations via Lyapunov analysis 4 Yang et al. (2023) v

Ensures segmentation robustness via masked smoothing certification 4 Zhang et al. v
(2022¢)

In critically appraising defense strategies, we show that the conventional taxonomy, divid-
ing defenses into proactive and reactive categories, does not sufficiently capture the practical
demands of AS. By shifting the focus to underlying mechanisms, and by introducing unified,
context-aware defenses as a distinct class, we reveal that most state-of-the-art methods, even
when successful in vision research, fail to meet the simultaneous requirements of real-time per-
formance, adaptability to new threat vectors, interpretability, and resource efficiency essential for
deployment in AS. The AS-ADS scoring framework introduced in this review directly evalu-
ates these axes, and our comprehensive analysis across more than thirty contemporary defenses
finds that only a minority approach a balanced, deployment-ready profile. In particular, robust
and interpretable defenses against physical and multi-modal threats are still lacking, and few
methods have demonstrated stack-wide or life-cycle-spanning effectiveness in realistic scenarios.

Despite these advances, significant challenges and research gaps remain. Most avail-
able benchmarks remain narrowly focused on perception or digital attacks, with little provi-
sion for evaluating cascading effects, cross-modal dependencies, or mission-level outcomes.
Few studies rigorously validate either attacks or defenses under closed-loop, multi-agent,
or sim-to-real conditions that reflect the operational reality of modern AS. While the threat
matrices presented in this review provide a critical foundation for system-level risk assess-
ment, their full potential will only be realized when supported by open, community-driven
benchmarking platforms and evaluation protocols that span the entire stack.

Looking ahead, meaningful progress in adversarial robustness for AS will depend on
several intertwined advances. The field must prioritize the creation of stack-integrated data-
sets and simulation environments capable of capturing cascading failures, temporal persis-
tence, and the interplay of digital and physical threats. Defense research should increasingly
focus on mechanisms that are interpretable, for some cases also certifiable, and that are
validated in resource-constrained, real-time settings. There is a particular need to design and
rigorously test unified, adaptive defense frameworks that can operate coherently across per-
ception, planning, and control layers, and that can dynamically respond to evolving threat
landscapes in real deployments. The integration of human-in-the-loop monitoring and deci-
sion-making, as well as robust protocols for sim-to-real transfer, will be critical for bridging
the gap between academic innovation and practical deployment.

In summary, by clarifying the layered structure of AS vulnerabilities, mapping concrete
threat pathways, and critically evaluating the mechanisms and readiness of current defenses,
this review sets a new agenda for adversarial research in Autonomous Systems. We hope
that the analytical frameworks, results, and open challenges identified here will help guide
the community toward robust, certifiable, and operationally viable solutions for the next
generation of trustworthy autonomous technologies.
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Appendix A: Background tables

See Table 10.

Table 10 Foundational taxonom-  Attacker Attack timing
ic classification of image-domain knowledge

Attack
location

Examples

adversarial attacks - -
White-Box  Evasion

White-Box  Poisoning

Black-Box  Evasion

Black-Box  Poisoning

Attack location is included to
show the digital-focused in
literature. However in many
cases, surveys do not include
this dimension

Digital

Digital

Digital

Digital

L-BFGS Fletcher (2013);
FGSM Goodfellow et al.
(2014); I-FGSM Kurakin
et al. (2016); PGD
Madry et al. (2019);
DeepFool Moosavi-
Dezfooli et al. (2016);
C&W Carlini and
Wagner (2017b); JISMA
Papernot et al. (2016b);
UAP Moosavi-Dezfooli
et al. (2017); DDN Rony
et al. (2019); Elastic Net
Chen et al. (2018b)

Data Injection Biggio

et al. (2012); Label
Flipping Koenig et al.
(2015); Backdoor Gu

et al. (2017); MetaPoison
Huang et al. (2020)

Boundary Brendel et al.
(2017); ZOO Chen et al.
(2017); SimBA Guo

et al. (2019b); One Pixel
Su et al. (2019); Square
Attack Andriushchenko
et al. (2020); HSJA Chen
et al. (2020)

BadNets Gu et al.
(2019); Clean-label
Backdoor Zhao et al.
(2019); GAN-based
Poisoning noz-Gonzalez
etal. (2019)

Appendix B: AS-ADS method evaluations

This includes the scores and small reasoning behind each scored for the defense methods

evaluated in SECTION:

® DRAW: Defending camera-shooted RAW against image manipulation (Hu et al.
2023b)Real-Time: 0.5 (Lightweight network optimized for camera integration)

e Adaptability: 0.5 (Cross-ISP pipeline protection)
Interpretability: 1.0 (Pixel-level manipulation maps)
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Efficiency: 1.0 (0.95% params vs U-Net)Method: Embeds frequency-aware water-
marks in RAW files using multi-spectral fusion, preserving detection capability through
arbitrary ISP processing chains. AS-ADS Score: 3.75

Adversarial differentiable augmentation (Shu et al. 2021)Real-Time: 0.25 (Offline
augmentation optimization)

Adaptability: 0.5 (Partial corruption resistance)

Interpretability: 0.0 (No diagnostic features)

Efficiency: 0.25 (2.3 GPU hours/search)Method: Automates augmentation parameter
selection via gradient-based adversarial search for robust training. AS-ADS Score: 1.25

Evolutionary IPTS detection (Gupta et al. 2020)Real-Time: 0.25 (Multi-stage processing)
Adaptability: 0.5 (Attack-specific sequences)

Interpretability: 0.5 (Difference maps)

Efficiency: 0.25 (Genetic algorithm overhead)Method: Evolves optimal image processing
pipelines using genetic algorithms to reveal adversarial artifacts. AS-ADS Score: 1.875

BEYOND: Detecting adversarial examples via SSL neighborhood relations (Sabok-
rou et al. 2024)Real-Time: 1.0 (Optimized for edge deployment with 50 neighbors pro-
cessed at 23 ms/image)

Adaptability: 1.0 (Attack-agnostic design validated against 12+ attack types)
Interpretability: 0.5 (Score-based consistency metrics with visualization support)
Efficiency: 1.0 (Lightweight SSL backbone with 0.9M parameters)AS-ADS Score: 4.375

Delta data augmentation (Reyes-Amezcua et al. 2024)Real-Time: 0.25 (Transfer learn-
ing focus)

Adaptability: 0.5 (Cross-dataset transfer)

Interpretability: 0.0 (Opaque perturbation transfer)

Efficiency: 0.25 (GPU-intensive)Method: Transfers adversarial patterns from high-
level vision tasks to enhance low-level task robustness. AS-ADS Score: 1.25

Temporal consistency defense (Abdu-Aguye et al. 2020)Real-Time: 0.5 (143 ms LSTM
inference)

Adaptability: 0.25 (Fixed thresholds)

Interpretability: 0.25 (Entropy logs)

Efficiency: 0.5 (Embedded compatibility)Method: Combines frame-wise consistency
checks with temporal majority voting for video attack detection. AS-ADS Score: 1.875

Autoencoder reconstruction (Hussain and Hong 2023)Real-Time: 0.5 (47 ms inference)
Adaptability: 0.5 (73% unseen attacks)

Interpretability: 0.5 (Reconstruction errors)

Efficiency: 0.5 (580MB model)Method: Detects adversaries through reconstruction er-
ror analysis using compact autoencoders. AS-ADS Score: 2.5

Similarity metric analysis (Soares et al. 2022)Real-Time: 0.5 (89 ms Jetson TX2)
Adaptability: 0.5 (12 attack types)
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Interpretability: 1 (Confidence scores and prototypes)
Efficiency: 0.5 (15W consumption)Method: Identifies outliers through learned similar-
ity metrics in feature space. AS-ADS Score: 3.125

Contrastive prototype learning (Li et al. 2024b)Real-Time: 0.5 (33 ms inference)
Adaptability: 1.0 (94.7% cross-attack)

Interpretability: 1.0 (Prototype matching)

Efficiency: 0.5 (2.1GB VRAM)Method: Learns attack-agnostic features through self-
supervised contrastive prototype alignment. AS-ADS Score: 3.75

Statistical anomaly detection (Grosse et al. 2017)Real-Time: 0.25 (Batch processing)
Adaptability: 0.25 (Static models)

Interpretability: 0.25 (Basic scores)

Efficiency: 0.25 (CPU-intensive)Method: Detects outliers through likelihood ratio test-
ing in feature statistics. AS-ADS Score: 1.25

UNICAD framework (Pellicer et al. 2024b)Real-Time: 0.5 (24 FPS pipeline)
Adaptability: 0.75 (Wide range of untrained in digital attacks and +85% Unseen class
identification)

Interpretability: 1 (Prototype based)

Efficiency: 0.5 (§GB VRAM)Method: Unified approach for attack detection, noise re-
duction, and novel class identification. AS-ADS Score: 3.437

Confidence-calibrated OOD (Du et al. 2018)Real-Time: 0.5 (45 ms detection)
Adaptability: 0.5 (82% cross-domain)

Interpretability: 0.5 (Thresholding)

Efficiency: 0.5 (16W edge)Method: Detects out-of-distribution samples through tem-
perature-scaled confidence calibration. AS-ADS Score: 2.5

Robust feature verification (Freitas et al. 2020)Real-Time: 0.5 (28 ms alignment)
Adaptability: 1.0 (97.3% detection)

Interpretability: 1.0 (Semantic maps)

Efficiency: 0.5 (4.3GB model)Method: Verifies predictions through robust part-based
feature alignment. AS-ADS Score: 3.75

Cross-attack bridge defense (Yin et al. 2025)Real-Time: 0.5 (33 ms analysis)
Adaptability: 1.0 (89% cross-backdoor)

Interpretability: 0.5 (Similarity scores)

Efficiency: 0.5 (12% overhead)Method: Links adversarial and backdoor attack patterns
for joint defense. AS-ADS Score: 3.125

Dual-space face defense (Cao et al. 2024)Real-Time: 0.5 (41 ms processing)
Adaptability: 1.0 (95.6% spoof detection)

Interpretability: 1.0 (Error maps)

Efficiency: 0.5 (6.7GB VRAM)Method: Reconstructs face images in spatial/frequency
domains for unified spoof detection. AS-ADS Score: 3.75
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SpecGuard recovery (Dash et al. 2024)Real-Time: 1.0 (15 ms ARM recovery)
Adaptability: 1.0 (92% multi-sensor)

Interpretability: 0.5 (Compliance scores)

Efficiency: 1.0 (15% overhead)Method: Recovers attacked inputs through safety spec-
ification-aware filtering. AS-ADS Score: 4.375

Entropy-based patch defense (Tarchoun et al. 2023)Real-Time: 0.5 (54 ms analysis)
Adaptability: 1.0 (90% patches)

Interpretability: 1.0 (Entropy maps)

Efficiency: 0.5 (2.77% loss)Method: Detects adversarial patches through localized en-
tropy analysis. AS-ADS Score: 3.75

Context-aware patching (Jing et al. 2024)Real-Time: 1.0 (11 ms edge)

Adaptability: 1.0 (96.4% mAP)

Interpretability: 1.0 (Semantic highlighting)

Efficiency: 1.0 (0.9W power)Method: Neutralizes patches through semantic context-
aware masking and inpainting. AS-ADS Score: 5.0

Multi-sensor guard (Han et al. 2024)Real-Time: 1.0 (8 ms fusion)

Adaptability: 1.0 (97.3% cross-modal)

Interpretability: 0.5 (Consistency reports)

Efficiency: 1.0 (4.2W SoC)Method: Ensures cross-sensor consistency for robust auto-
motive perception. AS-ADS Score: 4.375

Physics-consistency check (Yu et al. 2024)Real-Time: 1.0 (9 ms checks)

Adaptability: 1.0 (94% cross-domain)

Interpretability: 0.5 (Violation scores)

Efficiency: 1.0 (3% CPU boost)Method: Verifies physical plausibility of sensor inputs
through kinematic checks. AS-ADS Score: 4.375

Certified patch defense (Xiang et al. 2022)Real-Time: 1.0 (18 ms masking)
Adaptability: 1.0 (83.9% certified)

Interpretability: 1.0 (Mask proofs)

Efficiency: 0.5 (45.1 mAP)Method: Provides certified robustness through double-
masking with formal guarantees. AS-ADS Score: 4.375

Formal control certification (Yang et al. 2023)Real-Time: 1.0 (22 ms certification)
Adaptability: 1.0 (Unseen perturbations)

Interpretability: 0.5 (Stability margins)

Efficiency: 0.5 (35% overhead)Method: Certifies control stability under adversarial
perturbations via Lyapunov analysis. AS-ADS Score: 3.75

Demasked segmentation (Zhang et al. 2022c)Real-Time: 1.0 (27 ms inference)
Adaptability: 1.0 (89% cross-task)
Interpretability: 0.5 (Confidence maps)
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e Efficiency: 0.5 (8.2GB VRAM)Method: Certifiably robust semantic segmentation
through masked smoothing. AS-ADS Score: 3.75

Patch detection-completion (Liu et al. 2022)Real-Time: 0.5 (143 ms pipeline)
Adaptability: 1.0 (91% patches)

Interpretability: 1.0 (Completion vis)

Efficiency: 0.5 (6.3W edge)Method: Jointly detects and completes adversarial patches
in object detection. AS-ADS Score: 3.75

Aerial object defense (Chen and Chu 2023)Real-Time: 0.5 (77 ms processing)
Adaptability: 0.5 (68% robustness)

Interpretability: 0.5 (Region highlighting)

Efficiency: 0.5 (4.8GB VRAM)Method: Hardens aerial detection against adversarial
object injections. AS-ADS Score: 2.5

LiDAR robustness scaling (Lu and Radha 2023)Real-Time: 1.0 (14 ms processing)
Adaptability: 1.0 (97% cross-sensor)
Interpretability: 0.5 (Saliency maps)
Efficiency: 1.0 (2.1W LiDAR)Method: Scales adversarial robustness for LIDAR detec-
tion through density-aware processing. AS-ADS Score: 4.375

Road sign defense (Shibly et al. 2023)Real-Time: 0.5 (89 ms ADAS)
Adaptability: 0.5 (73% robustness)

Interpretability: 0.5 (Attention maps)

Efficiency: 0.5 (11W power)Method: Protects road sign recognition through spatial at-
tention hardening. AS-ADS Score: 2.5

Diffusion purification (Nie et al. 2022)Real-Time: 0.25 (2.3s/image)
Adaptability: 0.5 (68% purification)

Interpretability: 0.5 (Process vis)

Efficiency: 0.25 (24GB VRAM)Method: Purifies inputs through multi-step diffusion
denoising. AS-ADS Score: 1.875

Trajectory prediction hardening (Zhang et al. 2022b)Real-Time: 0.5 (33 ms prediction)
Adaptability: 0.5 (65% robustness)

Interpretability: 0.5 (Uncertainty bounds)
Efficiency: 0.5 (8.7GB model)Method: Improves trajectory prediction robustness
through uncertainty-aware training. AS-ADS Score: 2.5

Dynamic 3D modeling (Wang et al. 2024b)Real-Time: 1.0 (12 ms modeling)
Adaptability: 1.0 (96% cross-modal)

Interpretability: 0.5 (Consistency reports)

Efficiency: 1.0 (3.2W edge)Method: Enables robust perception through dynamic neural
feature modeling. AS-ADS Score: 4.375

See Tables 11 and 12.
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Table 11 Summary and classification of adversarial defense mechanisms

Type Mechanism Description & Limitations  References
advantages
Proactive Adversarial Includes adver-  High Goodfellow et al. (2014); Madry et al.
Training sarial samples compute (2019); Tramér and Boneh (2019);
in training; cost; lim- Wong et al. (2020); Tramér et al.
improves model ited to known (2017); Rozsa et al. (2016); Chen and
robustness attacks Lee (2021); Shen et al. (2021); Xie
etal. (2019); Wang et al. (2024a)
Proactive Input Applies resizing, May distort ~ Xie et al. (2017a); Liao et al. (2018); Li
Pre-Processing  smoothing or clean inputs; et al. (2024a); Shu et al. (2021); Reyes-
augmentation; less effective  Amezcua et al. (2024); Naseer et al.
reduces perturba- on adaptive  (2018); Hu et al. (2023b); Zhang et al.
tion impact attacks (2024); Shibly et al. (2023); Nie et al.
(2022); Zhang et al. (2022b); Wang
et al. (2024b); Lou et al. (2023)
Proactive Model Ensemble Combines Higher infer-  Xie et al. (2017b); Engstrom et al.
multiple models” ence latency; (2019); Liao et al. (2018); Xu et al.
outputs; diversi-  greater re- (2017); Bhagoji et al. (2017); Bui et al.
fies weaknesses  source use (2021); Tramer et al. (2017); Deng and
Mu (2023); Mani et al. (2019); Lu et al.
(2023); (2023); Chen et al. (2024a);
Huang et al. (2021); Zhao et al. (2024b)
Proactive Model Adds constraints May reduce  Szegedy et al. (2013); Kannan et al.
Regularization  or penalties cleanaccu-  (2018); Drucker and Cun (1992); Ross
during train- racy; limited and Doshi-Velez (2018)
ing; improves adversarial
generalization gains
Proactive Model Uses soft- Distilled Hinton et al. (2015); Papernot et al.
Distillation label transfer to  model un- (2016c¢); Carlini and Wagner (2017b);
a smaller model; derperforms  Goldblum et al. (2020); Costa et al.
enhances certain  on clean (2024)
robustness data; narrow
defense scope
Proactive  Provable Leverages formal Very high Ehlers (2017); Katz et al. (2017);
Defenses verification to compute; Tjeng et al. (2017); Raghunathan et al.
certify robustness limited (2018); Cohen et al. (2019); King
bounds scalability to  and Wang (2019); Hong et al. (2024);
large models  Lecuyer et al. (2019)
Proactive Certification &  Applies formal Computation- Gowal et al. (2018); Tjeng et al.
Verification methods to verify ally demand- (2017); Muravev and Petiushko (2022);
model resilience; ing; may Lecuyer et al. (2019); Xiang et al.
builds trust not reflect (2022); Yang et al. (2023); Zhang et al.
real-world (2022c¢)
inputs
Reactive  Detection-Based Flags or rejects ~ False posi- Guo et al. (2019a); Angelov and Soares
suspicious inputs  tives; attacker (2021); Goodfellow et al. (2014); Car-
via statistical can evade lini and Wagner (2017a); Grosse et al.
tests or auxiliary  detection (2017); Feinman et al. (2017); Xu et al.

models

(2017); Gupta et al. (2020); Sabokrou
et al. (2024); Soares et al. (2022); Gong
et al. (2023); Abdu-Aguye et al. (2020);
Hussain and Hong (2023); Li et al.
(2024b); (2023); Yu et al. (2024); Liu
et al. (2022); Chen and Chu (2023); Lu
and Radha (2023)
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Table 11 (continued)

Type Mechanism Description & Limitations  References
advantages
Reactive  Denoising & Uses autoen- Possible Meng and Chen (2017); Vincent et al.
Reconstruction  coders/GANs information  (2008); Lempitsky et al. (2018); Liao
to remove loss; imper- et al. (2018); Samangouei et al. (2018);
perturbations; fect recovery  (2018)
reconstructs clean
inputs
Unified Unified Defense Integrates Moderate Pellicer et al. (2024b); Du et al. (2018);
Frameworks detection, noise ~ compute Freitas et al. (2020); Cao et al. (2024);
reduction, and overhead; Dash et al. (2024); Tarchoun et al.
novel-class iden- complex (2023); Jing et al. (2024); Han et al.
tification in one  integration;  (2024); Yu et al. (2024)

pipeline; adaptive

to known and
unknown attacks

limited large-
scale testing

Table 12 Comparative overview of adversarial robustness datasets/platforms relevant to autonomous sys-

tems, including simulation tools and real-world data
Dataset Domain Scenario(s) Relevance  Use
(References) to AS
MNIST Lecun Handwritten Baseline testing, digital adver-  Low Testing classifier
et al. (1998) digits sarial examples vulnerability
CIFAR- Small objects, Digital adversarial attacks, classi- Low Small-scale
10 Krizhevsky  digital images fier benchmarks adversarial
(2009) robustness
ImageNet Deng Large-scale Digital adversarial attacks, Moderate Pretraining, digi-
et al. (2009) digital images corruptions tal attack transfer,
accuracy drop
ImageNet- Perturbation-aug- Corruptions, robustness Moderate Benchmark for
P Hendrycks mented ImageNet evaluation perturbation
et al. (2021) robustness
COCO, Object detection  Adversarial patch attacks, digital Moderate mAP degradation
xView Liu detection under localized
et al. (2022) attacks
AD- Scene segmenta- Certified patch detection, Moderate Certified ac-
E20K Zhang tion (digital) segmentation curacy, visual
etal. (2022¢) overlap
DOTA Xia Aerial images, Patch attacks, adversarial High UAV surveillance
et al. (2018) object detection detection robustness
Mapillary Traf- Real-world traffic Physical adversarial attacks High Traffic sign
fic Sign Poggi scenes (signs) robustness, AV
and Mattoccia testing
(2017)
Robust- Digital, standard- ~ Digital adversarial attacks (vari- High Model bench-
Bench Croce  ized benchmark ous datasets) marking for
et al. (2020) adversarial
robustness
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Table 12 (continued)

Dataset Domain Scenario(s) Relevance  Use
(References) to AS
SafeBench Xu Simulation Adversarial scenarios, hostile ~ High Closed-loop AV
et al. (2022) (CARLA) agents (vehicles/pedestrians) safety, collision
rate, completion,
rule violation
CARLA- Simulation Physically-realizable patches on  High Multi-task driving
GeAR Nesti (CARLA) vehicles, adversarial scenarios (segmentation,
et al. (2022) detection), mloU,
mAP, depth error
Robust- Simulation White-box input/feature perturba- High Steering error,
E2E Jiang etal. (CARLA), E2E tions, corruptions lane keeping,
(2024) driving success rate under
attack
DCI Data- Simulation + Physical patches, weather/angle  High mAP drop, detec-
set Zhang et al. rendering, vehicle variations tion under physi-
(2023) detection cal attacks
DD-Robust- Digital dataset ~ Digital adversarial attacks, distil- Moderate Robustness of
Bench Wu distillation lation robustness distilled datasets
et al. (2025)
Car Hack- Real (CAN logs) Spoofed/malicious CAN bus High In-vehicle intru-
ing Kang et al. messages sion detection,
(2021) false alarm rate
V2X-Sim Li Simulation LiDAR spoofing, anomaly injec- High Detection
et al. (2023); (LiDAR/V2X) tion, cooperative attacks rate, anomaly
Zhao et al. precision/recall
(2024b)
KITTI-Adv/  Real+Synth, sen- Sensor blinding, vision fusion,  High mloU, mAP
Blind, STF Lou sor fusion uncertainty estimation under blinding or
et al. (2023) fusion attacks
DAIR- Real-world coop- Malicious contributor, V2X patch High Detection ac-
V2X Zhao erative AV attacks curacy for V2X
et al. (2024b) fusion, anomaly
detection
Google Street Real images, Time-inconsistent, physical Moderate—  Historical adver-
View Etim and street scenes perturbations High sarial analysis,

Szefer (2024)

sign recogni-

tion, detection
accuracy
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