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Abstract

Molecular electronics is a valuable tool for studying nanoscale thermoelectricity and discover
ing new organic thermoelectric materials that are both low-cost and environmentally friendly.
This thesis describes the theoretical methods used to support this procedure, beginning with
chapters 2 and 3, respectively. I have described the essential equations and methodologies
that drive my work, such as the Schrodinger equation, density functional theory (DFT), and
the SIESTA programs, which is in charge of implementing DFT and solving the underlying
equations. In addition, I explain the single particle transport theory, which is based on the

Hamiltonian and Green's functions, and provide some examples of how it might be applied.

Chapter 4. Therefore, I investigated the transport characteristics of a HATNA series of
single-molecule junctions, which includes molecules that, upon reduction by hydrogen,
change between high and low conductance states, at least in the SAMs.This dynamic
molecular switch can supply all basic logic gates due to its time-domain and voltage-

dependent plasticity, which mimics synaptic behaviour and Pavlovian learning.

Chapter 5. This chapter covers the transport features of stable organic radicals for electrical
devices, which are caused by their half-filled orbitals approaching Fermi energy. Also,
observe the systematic changes that occur when the hydrogen is removed from the OH

groups to generate radicals, and how this affects electrical conductivity.
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Chapter 1

1.1 Thermopower and Molecular Electronics

Molecular electronics is the study of molecular building blocks used to create electrical
components or devices [1]. These electronic elements, such as self-assembled monolayer
(SAM) [2] and single-molecule [3] junctions, have the potential to deliver: logic gates [4],
sensors [5,6], memory [7], and thermoelectric energy with ultralow power requirements and a
device footprint of less than 10nm. They are also interesting a testbeds for room-temperature
quantum features on a molecular scale, such as quantum interference [8] and
thermoelectricity [9, 10]. Aviram and Ratner suggested the first molecular rectifier back in
1974 [11]. Since then a large number of molecules have been studied by changing their
chemical structure, some of which function as fundamental electrical elementary devices,
such as rectifiers [12], conducting wires [13-14], and negative differential resistance devices
[15]. Molecular electronics faces crucial difficulties, such wiring molecules to electrodes
using specific intermolecular interactions to create molecular devices. As a result, a complete

understanding of electron transport between nearby molecules is required.

This thesis will primarily use theoretical and experimental methods to investigate
electrode/molecule/electrode systems. These systems can be experimentally evaluated using
two types of equipment: scanning tunnelling microscopy break junctions (STM-BJ) [16] and
mechanically controllable break junctions (MCBJ) [17]. Such techniques have been utilised
and improved to contact single molecules, graphene-based junctions [18], and silicone-based
junctions [19]. On the other hand, structural problems in 2D hexagonal materials, as predicted
several years ago [20], indicate that their application as electrodes is still in its infancy. For

some time now, gold break junctions have been the preferred technique of contact. Because
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of these limits, many methods of controlling electron transport have been created, including
mechanical gating [21] and electrochemical gating [22].

Single-molecule electronic devices have many problems, which are summarised as follows:
1- The molecules used in the study had a length of about 1-2 nm. Furthermore, electrodes
separated by 1-2 nm, which are usually made of noble metals, are beyond the capabilities of
traditional top-down lithographic processes.

2- The molecule's small dimensions are investigated, as direct manipulation of the molecule
in the nanogap is usually impossible. To position the molecule between electrodes, a
chemical contact between the molecule and the electrode is required.

3- Because electrodes are significantly larger than molecules, it is difficult to place only one
molecule in each functional device.

In addition to these three issues, there are several other key challenges, such as device
stability, homogeneity, yield, and scalability.

Additionally, there has been an important improvement in our knowledge of the
thermoelectrical characteristics of single-molecule junctions [23], partly due to the
observation of high Seebeck coefficient S of order 161uVK™1) for PEDOT: PSS organic
films [ 24]. The sign of the S in fullerenes and nanotubes has recently been discovered to vary
due to pressure, strain, and intermolecular interactions [25]. Many of the quantum interaction
effects discovered and expected in single-molecule junctions are now being scaled up to self-
assembled monolayers (SAM) [26—27], ending in the development of novel thin-film
materials with room-temperature quantum effects affecting transport characteristics. As a
result, these achievements suggest that the area of single-molecule electronics has a bright
future in generating novel functional materials. As examples, references [58-59] provide

recent investigations into the Seebeck coefficient S of anthracene molecules.
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The Seebeck coefficient S for anthracene molecules (with 2SMe anchor groups) and
connectivities 9,10, and 1,5 were negative with values -20 and -33.0 P;{—V, respectively. This
group measured S for the same molecule, but with different anchors (ie with 2SAc anchor
groups), with the same connectivities and obtained a positive S + 12.5 and +16.3 %V,

respectively [26-27].

SAM is a significant part of molecular-scale electronics. Currently, there are three major
global designs for generating ensemble molecular junctions for large-area electrical
measurements: First, metal leads can be formed directly using electron beam/thermal
evaporation or electrochemical deposition. Secondly, electrically conducting
polymers/nanomaterials can be used as electrodes and thirdly liquid metals can be used as
electrode materials.

To create ensemble molecular connections utilising several cutting-edge techniques, there
are multiple techniques available, including liquid metal contact, lift-and-float, nanopore and
nanowell, on-wire lithography, nanoimprint lithography, crossbar or crosswire, self-aligned
lithography, buffer interlayer-based junctions, and on-edge molecular junctions.

In this section, we try to show a simple method for calculating the value of electrical
conductance that results from constructive quantum interference in molecules. When a single
molecule is attached to metallic leads, electrons passing through the molecule from one
electrode to the other can remain phase-coherent even at room temperature [28, 29]. As a
result, there has been a great deal of discussion of quantum interference (QI). This QI can be
used to determining the electrical conductance of individual molecules [30-31]. Thus, both
experiment and theory have focused on describing the conditions for the formation of two
distinct examples of QI, namely constructive or destructive interference. Constructive
quantum interference (CQI) happens when the delocalized energy level of the molecule

coincides. In contrast, destructive quantum interference (DQI) happens when it coincides
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with the energy of a bound state on a pendant moiety [32, 33]. Because the electrode Fermi
energy is often located in the HOMO and LUMO (H-L) gap, molecules inside a junction
rarely show CQI resonances unless the energy levels are controlled by electrostatic,
electrochemical, or mechanical gating. As a result, research have considered the two

conditions CQI and DQI as they are specified or placed at the core of the H-L gap [31,34-37].

1.2 Magic ratio theory

One method of describing the connectivity dependence of QI is to utilise a magic ratio rule
(MRR) based on ‘magic number’ tables. When one electrode is connected to site i and the
other to site i’ of the same molecule, the molecule is assigned the "magic integer" M;;,. Here 1
shall give a comprehensive introduction to this theory, which can help to guide the synthesis
of new molecules. Magic integers (MIs) can represent the complexity of interference patterns
produced by electrons at the centre of the HOMO-LUMO gap. Magic ratio rules (MRR) can
also be used to calculate the conductance ratio. MRR says that "the ratio of conductances of
two molecules is equal to the squares of the ratios of their magic integers." When analysing
the conductances of the aromatic core but using various contacts, the MI's signals are
irrelevant. The MRR can be regarded as an exact formula for conductance ratios of tight-
binding representations of molecules; this is valid in the weak coupling limit, when the Fermi
energy is placed between the H-L gap. In this situation, the magnitude of the H-L gap has no
effect, and it is unaffected by contact asymmetries between the leads and the molecule. The
MRR is particularly simple for a tight-binding, bipartite lattice of similar sites with identical
couplings, when the Ep is at the centre of the H-L gap and the number of odd sites matches
the number of even sites. In this situation, a simple tight-binding Hamiltonian system uses -1
for nearest neighbour couplings and zero for on-site energies.

In general, the mid-gap concept describes how the transmission coefficient at the gap centre

is calculated when the energy of electrons travelling through the core molecule coincides
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with the middle of the HOMO-LUMO gap. This indicates how important and valuable it is to
first consider connectivity when fabricating single-molecule junctions with good electrical
characteristics. In the case of binding molecules to electrodes, high conductivity is preferred.
However, a low conductance is necessary to prevent leakage currents when attached to an
electrostatic gate. The MRR shows that connectivities with both high and low MIs can be
generated using the same molecule.

The analysis of the complete magic number table for a molecular core helps us to figure out
the impact of connection on electrical conductance. As a result, the electrical conductance is
proportional to the item in the magic number table denoted by i. The following is the most
basic application of the magic ratio theory, based on the work Magic Ratios for
Connectivities-Driven Electrical Conductance of Graphene-like Molecule by Y. Geng and
others (9 authors) [38].

Example 1: We want to use the magic ratio theory on a bipartite lattice (benzene ring) with

six atoms [38]. To apply this concept, two connectivities must be selected in the same

2
—p 1 3
—h
e
6 4
5

Figure 1.1 shows a simple bipartite lattice, such as benzene, together with the size of its
magic number. (1,2) ): first connectivity; (1,4) the second connectivity

molecule, such as (1,4) and (1,2) in Figure 1.1.
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Table 1.1: Magic numbers for the benzene ring.

Table 1.2: connectivity table

. . . 2 . .
Table 1.2 shows that the electrical conductance is proportional to (Ml- j) , where i and j
represent the entrance and exit points.

In our example, i and j are (1,2) for the first connectivity and (1,3) for the second
connectivity. As a result, the magic ratio rule (MMR) for the two connectivities (1,2) and

. . G . e
(1,4) predicts that the ratio of the conductance GLZ corresponding to the two connectivities
1,3

can be calculated as:

2
MRR = % = % = oo, In practice, this means that the MRR predicts that G , > G 3.
1,3

18



The following example compares the theory and experiment with the magic ratio theory
described in this publication [38]. Here, an anthanthrene core has been chosen for
investigation. As shown in Figure 1.2, the two connectivities are (1,5") and (7,2’) in this

example.

Molecule2

Molecule1

Figure 1.2: Representation of the researched Anthanthrene core. There are two connectivities

for 1: (1,5'-Red) and 2: (2',7'-Black).

(2 (3|4 |56 |7 |89 ]10 | 11

10 | 3 1 2] 2 303 303 3| -4 1

1| -2(6 212 2 212 212 -4 4
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Table 1.3 shows the magic numbers for the anthanthrene core.

From the above table, the MRR predicts the following conductance ratio corresponding to the
two connectivities

G7,2’ (_9)2

MRR = =
G1,5’ (_1)2

= 81, ( Theoretical value )

Experimentally, it was found that [38]

G7'21 3 10—4.8

=——==179
Gl,5’ 10_67

Which is in remarkable agreement with the MRR prediction.

Magic ratio principles for the symmetric anthracene molecule.
In the following example, I discuss the magic ratio concept for an anthracene core, which
were measured in [26-27]. The same molecule is used, with two different connectivities.

denoted (2, 6)and (3', 7), as shown in Figure 1.3.
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1 " 3

Figure 1.3 shows a representation of the analysed anthracene core. Two connectivities:
(2',6) (black), and (3,7") (red).

Three fused benzene rings make up the polycyclic aromatic hydrocarbon known as the
anthracene core, which is seen in Figure 1.3. Two categories of connectivities within the core
can be seen in the figure; one is indicated in red and the other in black. Although the actual
picture is not shown here, it usually shows the locations and paths of bonds in the chemical

system, emphasising the distinct patterns of connectedness.
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Table 1.4: The connectivity table C;; for the anthracene core (C;oHg).

The connectivity pattern of the anthracene core appears in Table 1.4, indicating which atoms
are connected to one another. In order to help understand the molecular structure and the
connections between the atoms in the anthracene, the table uses 'l' to denote a bond and '0'

for no link.
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Table 1.5: The magic number table M;; for the anthracene core (C;oHg).

In this case, the MRR predicts the following conductance ratio

Gz’,e _ (4)2 _
G3’,7 (1)2

For comparison with experiment, the table below shows experimental results for two studies
of anthracene, with two different anchor groups

MRR = 16.

Theory .
Anthracene (DFT) . S TgEirG: Experimen
Theory G Ref
anchor G : — tal ratios
— ratios Gy
Go
2 SMe(1, 15.8 10.19
1.66e — 4 7.0le—5
9)
2 SMe(1,
1.05e -5 6.88 e-6
5)
2SAc(1,9) | 1.59 — 4 1.28e — 4 [26,27]
15.9 14.22
2SAc(1,5) | 1le—5 9e-6
2Py (1,9) | 09e—4
15.7
2Py (1,5) | 0.57e-5

Table 1.6 shows the magic ratio from the earlier anthracene study.
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1.3 Thesis Outline

In this thesis, the theoretical studies introduce the electrical properties of two-terminal
molecular junctions, with gold electrodes, which generate gold |molecule| gold structures.
Theoretical methods include density functional theory (DFT) and tight binding models
(TBMs). Thus, Chapter 2 presents theoretical concepts of DFT and the implementation used
in this work, primarily via the SIESTA code. The second tool is the quantum transporter code
GOLLUM. In Chapter 3, I provide solutions to Green's functions for infinite and semi-
infinite 1D chains, as well as the transmission coefficient equations used as the theoretical
basis for this code. The charge transport at the single-molecule level is also studied.
Recently, there has been a lot of interest in using quantum interference effects to speed up
charge transmission. In Chapter 4, I study the hexaazatrinaphthylene (HATNA) molecules,
which has been shown to have memristive properties. However, the mechanism involved is
unknown and therefore to elucidate the origin of memristive switching events, I studied the
transport properties of a series of HATNA molecules. In Chapter 5, I study the influence of
quantum interference, which includes both constructive and destructive quantum interference,
providing another dimension to manipulating electron transport through molecules. As
recognised by the MRR, depending on the connection, molecules exhibiting CQI can have
different conductance inside the same molecule. This chapter discusses two different CQIs

based on thiophene dimers.
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Chapter 2

2.1 Density Functional Theory

This chapter provides an overview of the mathematical principles underlying density
functional theory (DFT). Additionally, it introduces the key concepts of the DFT code
SIESTA, which serves as the foundation for electronic structure calculations in this thesis.
The first step in studying electronic transport is to obtain and relax the Hamiltonian structure
of an isolated molecule. The isolated molecule is connected to metallic electrodes for the
purpose of computing its transport parameters. A detailed explanation of the calculation of

transport properties is outlined in the following Chapter.

2.2 Introduction

DFT is mainly used by chemists and physicists to investigate the ground state of interacting
many-particle systems such as molecules, atoms, and crystals. It is a computational quantum
mechanical technique that transforms one of the non-interacting fermions in an effective field
into a many-body system. Similarly, the electrical properties of many interacting particle
systems can be described as a function of ground-state density [1, 2]. Walter Kohn received
the Nobel Prize in Chemistry in 1998, confirming the importance of DFT. He received the
award for his important contributions to the development of DFT techniques. DFT is an
accurate method that has been used to numerous molecular structures. In addition, a large
number of publications on pertinent literature have been published [1-6], providing
comprehensive explanations of the concepts of density functional theory and its applications.
Density functional theory (DFT) was first introduced by the Thomas-Fermi model in the 1920s,
which outlined the basic steps for utilising wave functions to derive density functionality for

total energy [1, 6-8]. The Almost forty years after Dirac, Hartree, Slater, and Fock's work was
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published, additional advancements were made to the Thomas Fermi model. The Hohenberg-
Kohn theorems and Kohn-Sham techniques then effectively launched the DFT foundation [1,
3, 4, 7-11]. The main objective of this chapter is to provide a brief introduction to density
functional theory as well as an outline of the key mathematical equations used to solve the non-
relativistic many-particles time-independent Schrodinger equation TISE. This is because the
function of electron density can be used to determine the parameters of a many-electron system.
This chapter will present the DFT code 'SIESTA,' which has been extensively used as a

theoretical tool throughout this Ph.D. research to find a technique for structural optimization.
2.3 The Variational Principle and Schriédinger Equation.

The time-independent, non-relativistic Schrédinger equation in equation 2.1,

presents the non-relativistic many-particle system in a methodical way:

Hlpi(FllFZ' ...,FN,Rl, Rz, ""RM = Ellljl(T_‘)l, Fz, ...,FN, Rl' Rz, sy RM (2.1)

H is the Hamiltonian operator of an N-electronic system, M-nuclei is the particle
interaction, 1; is the wave-function of the system's state, and E;(describes the numerical

value energy of the state. The Hamiltonian operator (H) is defined as follows:
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In equation 2.2, i and j represent the N-electrons, n and 7 indicate a run over the M-nuclei in
the system, me and m,, represent the electron and nucleus masses, respectively. Furthermore,
e and Z,, indicate the electron and nuclear charge in the system, respectively, whereas

7, and ﬁn represent the electron and nuclei positions in the system, respectively. The
Laplacian operator is mathematically outlined in a Cartesian coordinate V2 which is given by

the equation below.

, 07 0% 02
Vi=t ozt
According to the image provided by Eq. (2.2), the quantity T, denotes the kinetic energy of
electrons, whereas, denotes the kinetic energy of nuclei in the system. Furthermore, the
following three terms define the Hamiltonian's potential part term U,,, indicates the
appealing in the system, there is electrostatic interaction between nuclei and electrons. The

repulsive parts of the potential are electron- electron (U,,)  and nuclear-nuclear (U,,;,) [1, 3,

6,9, 13].

The Born-Oppenheimer approximation, Since the nucleus of an atom contains 99.9% of its
mass and because the nuclei in the system can be thought of as fixed in comparison to the
electrons, which is also known as the clamped nuclei approximation, can be used in the

analysis.

This means that the nucleus of a hydrogen atom weighs around 1800 times more than the
electron. If the nuclei of the treated atoms are held stable in the given situation, the resulting
kinetic energy sums to zero, indicating that they no longer contribute to the whole wave-
function. As a result of the prior assumption, the Hamiltonian expression of the electron
system lowers the Hamiltonian to a distinct figure, similarly, the electronic Hamiltonian

H,.can be represented in a fixed nuclear representation as [1, 3, 6, 13-15]:
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Where U,,,, is an obtained constant for the system.

The Schrodinger equation for 'clamped-nuclei' is represented in the above system as:

(T, Ty o) o) 127y dFy ... Ty 2.6)

Because the electrons are indistinguishable, the above expression
represents the probability that electrons 1, 2,..., N are found in the
volume elements d7; dr, .....d7y and this probability is unchangeable if

the coordinates of any two electrons (i and j) are swapped [12]:
> o> > > - 2 > o > > - 2

|lp(r1,r2, T Ty ey rN)| = |1/)(r1, [OYRN 7R s P TN)|

(2.7)

Because electrons are fermions with half-spins, the value of Y must be
anti-symmetric with regard to the interchange of spatial and spin

coordinates in any pair of electrons.

1/)(?1,7:)2, ...‘Fi, 7}', ...,FN) = _7./)(171,?2, ...Fi, ‘7}', ""FN) (2.8)

The integral of equation 2.6 over the complete range of all variables
gives one as a logical conclusion of the wave-function's probability

interpretation format.
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This means that the chance of finding the N-electron at any point in

space must be exactly one.
> > - 2 - - -
f ...fll/)(rl,rz,...,T'N)l dT‘1 drz ...dT‘N = 1 (2.9)

A normalised wave-function is one that fits the conditions of equation

2.9).

Because the Schrodinger wave-equation does not have an exact solution,
many theories have been made to achieve this goal, beginning with
Hartree, Hartree-Fock, and many others. A large number of these
theories were founded on a significant theoretical theory known as the
variational principle of the wave-function, which guides analysts on how
to find answers by employing suitable trial wave-functions Y1, [1, 2, 5,
6, 12]. The previous principle is useful in studying the ground state,
however it is not very useful in studying excited states. When a system is
in the state 1., the expected value of energy is given by the

expression:

— flpTriH w;"ri ar
(Errid = (2.10)

The variational concept stated in equation 2.10 indicates that the energy computes as the

expectation value of the Hamiltonian operator from any r,; (that is an upper bound on the

genuine ground-state energy Y;s. Assume that Y r,.; is normalized according to equation 2.9

while P r,;then it equals the ground state ( Yr,; = Pgs). This shows that entity Er,;is

equivalent to the exact ground state energy Es, additionally, we can reconfigure equation 2.10

for the ground state as:

(EGS) = flpc;s H 11’25 dr (2.11)
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We can figure out from normalized ¢ ,; that Er,; > E¢g or E,; = E;s. As a result, the best

choice for Er,;is the one in which Er,; is lowered [3, 4, 6].
2.4 The Hohenberg-Kohn Theorems.

DFT is fundamentally based on Hohenberg-Kohn theorems; in 1964, Hohenberg and Kohn
verified the use of the electron density n( 7 ) to calculate the ground state energy. These

theorems can be explained by two potent assertions.

The first theory: holds that the density of any interacting many particle systems in external
potential V,,.(7) is uniquely defined. Furthermore, this can be computed because it shows
that the density n( 7 ) is used instead of the potential as a basic function uniquely giving a
description of the system, and be stated as the ground state density n;g( 7 ) that is expressly

relied on to establish the potential up to an arbitrary constant [6, 10, 17, 19].

This theorem is supported by two distinct external potentials: V(7 ) (1) and V. (7 ).
The difference between the two is more than a constant, but they provide the same ground
state density ngg( 7). It is clear that the earlier two potentials correspond to different
Hamiltonians, Hext[( 7)] (1) and Hext[(7)] (2), and they give rise to distinct wave-functions

Yexe[ ()] (1) and Pexe[(7)] @) -

Because the ground state of the systems is the same and we follow the variational principle,

there is no wave-function that gives less energy than of Wext[( 7)] (1) for Hext[(7)] (1).
This is written as:

As a result, for non-degenerate ground states with similar ground state densities for the two

Hamiltonians, equation 2.12 is given as:
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By modifying the labels in equation 2.13, we get:

J WayHey Wirydr
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The results of adding equations 2.13 and 2.14 are as follows:
(Ecy) + (E2)) <{E(2)) +(Ex)) (2.15)
The equation (2.15) has a logical contradiction. As a result, the theorem has been confirmed
by reduction ad absurdum. The second theorem provides a variational ansatz for getting the
value for n( 7)), which is used in searching for n( ) that minimizes energy. This also means
that we may specify a general functional expression for the given energy E[n(7)], by
expressing it in terms of the density n( 7). The system's ground state energy (V (7)) is the
global minimum value of this functional, and the density n(7) represents the density of the
system. This minimizes the function and also represents the actual ground state density
ngs( 7). Concerning the second proof, the first theorem informs us that the total energy of

the system is expressed as a function of the density n ( ) and is provided by:
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= zero, for

non-interacting
system

The first two terms of equation (2.16) (Fy_x[n(7)])are kinetic energy (T},,¢)and electron-

electron interaction energy (U,.)which are evaluated as the same for the entire system. As a
result, Fy_g[n(7)] is a universal function that has been uniquely defined as the Holy Grail of
density functional theory [12]. Assuming the system is in the ground state, the energy can be

represented particularly by the ground state density ngg () as:

(Egs) = (E[ngs(M]) = | WesHgsWisdr (2.17)

According to variational principle, the ground state energy that corresponds directly to the
ground state density is the minimal energy, and any alternative density will essentially
produce a greater energy:

(Egs) = (E[ngs(M)])

= [ WioHyWisd? < [ WHW*dF
= (E[n(")]) = (E)

After evaluating the functional Fy_y[n(7)]we may determine the total energy to be
minimized with regard to variations in the density function, as indicated in equation 2.16. It
results in the exact ground state properties of the system that we are pursuing, for most
practical computations, direct minimization does not provide a vivid guide to the ground state

energy as supplied by the Kohn-Sham approach.

2.5 Kohn-Sham Method and Self-Consistent Field SFC.

Kohn and Sham's efforts showed that the Hohenberg-Kohn theory can be applied to both
interacting and non-interacting systems. Density function theory (DFT) is sceptical of

providing a broadening on the interacting many particles problems. The main advantage of
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the non-interactive system over the interacting system is that the ground-state energy of a
non-interacting system may be found with ease. The concept was developed in 1965 by Kohn
and Sham. They discovered that an effective Hamiltonian (He ff) of the non-interacting
system can be substituted for the original Hamiltonian of the system in an effective external
potential V, (¢ (7), They also noted that the system produces the same ground state density as
the original system. The Kohn Sham technique's output is regarded as ansatz, and there is no
clear way for carrying out the computations. However, it is notably simpler to solve than the
non-interacting problem. The Kohn-Sham technique is based on the Hohenberg-Kohn

universal density [6,9,10,20]:

Fy—g[n()] = Tine[n(F)] + Uee [n(P)] (2.18)

The Hohenberg-Kohn functional for non-interacting electrons in a system can be reduced to
calculate only the kinetic energy. Furthermore, the energy function of the Kohn-Sham ansatz
Fx_g[n(7)] is presented with the following mathematical computation, which differs from the
computation evaluated in equation 2.16:

F—s[n(P)] = Tuon[n(F)] + Exar [n(F)] +
J Vexe (AT + Exe[n(P)].

(2.19)

In the non-interacting system, T,,,, represents its kinetic energy, which is different from T;,; for
the interaction system as found in equation 2.16. On the other hand, Ey,, represents the
classical electrostatic energy, also known as the classical self-interaction energy of the electron

gas, and is associated with the density n(7) in the system. The exchange-correlation energy

functional in the system is denoted by the term E,. and is provided by:

Eyart [Tl (‘F)]

Eve[n(P)] = Fy_g[n(®) — 2] “2002 g7 g, — (2.20)

|7 =75l
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The first three terms in equation 2.19 can be easily transformed into a functional form. On the
other hand, this is provided generally without a specific functional form for the E,.. Over the
past few years, many attempts have been made to thoroughly investigate the possibility of
improving the computation of E,.. Currently, the functional properties of a wide variety of
solid-state systems and molecules may be studied and predicted. In addition, the functional
derivatives of the last three variables in equation 2.19 are used to create the effective single

particle potential V, ;¢ (7)

> - OEHare[n(P)] | 0Exc[n(¥)]
Vers (7F) = Vexe (F) + —mt o + =20 (2:21)

In addition, we can use this potential to obtain the single particle's Hamiltonian logically:
Hy—s = Taon + Very (222)

For this Hamiltonian, the Schrodinger equation may be obtained by:

[Tuon + VersWk-s = EWx—s (2.23)

The expression defined by equation 2.23 is known as the Kohn-Sham equation. The ground
state density nX55 (#) corresponds to the ground state wave-function WX Swhose evaluation
minimises the Kohn-Sham functional subject to the orthonormalization requirements

(‘Pi | LP]) = §;;, as established by a self-consistent calculation. Density functional theory
(DFT) makes extensive use of a self-consistent field approach; for example, it is assumed that
Epar " and E, can be precisely calculated. The primary challenge currently is that Ve s f
cannot be estimated until the most suitable ground state density is identified; the actual

density cannot be determined from the Kohn-Sham wave-functions until equation 2.23 is
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solved to obtain the actual value of Vs for a given system. As a result, the circular problem

can be efficiently determined by carrying out a self-consistent cycle, as seen in Figure 2.1.

g_

e
Yes

Figure 2.1: a schematic illustration of the self-consistent DFT cycle.

According to figure 2.1, the first stage in the study is to create the pseudo-potential, which
reflects the electrostatic interaction between valence electrons, nuclei, and core electrons in a
system. The next stage is to create the necessary basis set to be plugged in, choosing a kinetic

energy cutoff; this phase is specifically meant to expand density functional values.
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Obviously, if the density of the system is known, the energy functional may be fully
computed. An initial estimate is defined as a trial electronic density ninitial () Ag a result, the

initial guess can be used to determine the following amount:
G = EHart [ninitial (F)] + Exc [ninitial (773)] (224)

The effective potential Vs and the parameters are determined. The effective

a6
dn initial (7
Verr potential is used to solve Kohn-Sham equation 2.23, which gives an outline for a
solution to the electron Hamiltonian. The Hamiltonian is obtained, and then diagonalized to
get the eigenfunctions and the new electron density, n™" (#). The term n"*¥ (¥) is closer to
true ground state and has been validated. If the new updated electron density n™% (¥) is
discovered to agree numerically with the starting density n™™%! (7) used to construct the
Hamiltonian at the start of the SCF cycle, where one ends at the conclusion of the loop, then
this will satisfy the condition of self-consistency. After that, we stop the operations and
compute all of the required converged quantities, such as the electronic band structure,
density of states, and total energy. On the other hand, if the new density n™V (#) differs from
the original density n™™! (#), a new input density must be created, starting a new SCF cycle.
It then follows once more that in order to compute the density and confirm its self-
consistency, a new density-dependent Hamiltonian must be constructed [3, 17, 23]. By using
the Kohn-Sham technique, it is clear that a complex system with several bodies may be
accurately mapped onto a set of basic non-interacting equations, provided that the exchange
correlation functional is known. It should be noted that the exchange-correlation functional is

not specifically defined, that require the use of approximate values.
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2.6. The Exchange-Correlation Potential.

The DFT is a fairly reliable and proven method for analysis, although it still requires an
estimate for the kinetic energy functional and the exchange-correlation functional in terms of
density for the system being studied. A significant amount of effort has been directed into
finding reliable expressions for these kinds of functionals. The most commonly utilised
exchange-correlation functional approximations are the more complex Generalised Gradient
Approximation (GGA), which incorporates the derivative of the density, and the Local
Density Approximation (LDA), which is primarily dependent on the density. This GGA is

semi-local because it includes environmental information.
2.7. Local Density Approximation (LDA).

According to Kohn-Sham theory, the functional E, . parameter could be determined in a
homogeneous electron gas to approximate the many body particle problem in a less

complicated system [11].

Kohn-Sham's research shown that the functional E,. at point 7 may be represented as acting
in a uniform density by slowly but systematically changing the system's density. In addition,

the E,.. functional is given by a uniform electron gas E9™ [n(#)] with a density n(7).

In general, systems that have been dominated by electron-electron interactions cannot be
accurately described by the local density approximation (LDA). However, LDA implies that
the density is constant in the local region around any particular location. The example below
shows the expression for ELPA[n(#)] ,which represents the local density approximation
(LDA).

Exn@)] = [ Ex™ [n(®In@dr (2.25)
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The exchange-correlation energy EXS™ [n(#)] can be divided into two parts: This is the result
of adding together the exchange energy E2°™ [n(7)] and the correlation energies

ElRome [n(#)]; this can be found individually. The exchange-correlation energy ERS™ [n(7)]
can be calculated in the following manner:

Exe™ [n(P)] = EZ°™ [n(P)] + EL™ [n(7)] (2.26)
The exchange term can be obtained analytically and can be found in different academic
books:[6,12].

ER™ [n()] = —2 (@)U3 (2.27)

T

The correlation energy for the system, represented as (E?"mo [n(F)]) cannot be calculated
analytically. However, it can be accurately determined using numerical methods. The most
common and accurate method was conducted by Ceperly and Alder (CA) utilising quantum
Monte-Carlo simulations. Multiple interpretations of the Monte Carlo data exist. One notable
example is the calculation performed by Perdew and Punger (PZ), who fitted the numerical
data into an analytical formula and produced [25,26].

E™ [n()] =

—0.048 + 0.031In (r,) — 0.01167, + 0.002In (r,) ifr, <1 (2.28)

0.1423 .
- ifr, > 1
(1+1.9529,/15+0.33347,

The equation above is calculated for values of ry > 1 and values of ry < 1. Where the 7,
represents the average radius of the electrons in a homogeneous electron gas. r, defined as

1/3
(ﬁ) . While it is a well-known and powerful functional, the local density approximation

(LDA) is simple to use and accurate for materials like graphite and carbon nanotubes where

the electron density won't change rapidly. A significant error is predicted for atoms with d
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and f orbitals. The band gap in semiconductors and insulators is often not accurate with a
considerable error within the range of 0.5 to 2eV or 10-30%. This is only one example of
the many problems with the above functional to a reasonable amount. For the reasons

mentioned above, it is highly appropriate to use better functional [25, 27, 28].

2.8. Generalized Gradient Approximation (GGA).

Although the systems are in reality non-homogeneous, the local density function (LDA)
treats all systems as units of homogenous systems. To constructively take this into account,
one can go beyond the LDA and expand it by including the density derivative into the
exchange correlation functional. The gradient and higher spatial derivatives of the total

charge density are the most practical ways of achieving this.

Le. (|Vn(®)|, |V*n(®)|, ...)

Higher spatial derivatives are used to evaluate the total charge density in the approximation

layout.

The functional mentioned above is referred to as the generalized gradient approximation
(GGA). Since there is a clear formulation for the exchange part of the functional in this case,
numerical analytic methods must be employed to determine it along with the correlation
contributions. In the generalized gradient approximation (GGA), there are many
parameterizations available for the exchange-correlation energies, exactly as there are for the

local density function (LDA) [29-32].

In this section, we will look at the proposed functional suggested by (PBE) Perdew, Burke,
and Ernzerhof [29]. The parameterization provided has two different expressions, the

exchange ES%4[n(7)] is the first expression and presented by:

EZMIEL A )] = [ n()EL™ [n(@)]F(s)dF (2.29)
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Additionally,

K

E(s)=1+Kk— Wrs?n

where the enhancement factor can be calculated by F,(s), k = 0.804,u = 0.21951,s =

4kr—F

|Vn(7)/2ksn(7)| indicates the gradient in density that is dimensionless, kg = , and

Ao
_ (a2/m/3

kT—F - \/TS )

wavenumber.

where 75 is the local Seitz radius and is the Thomas-Fermi screening

The correlation energy EZ¢4[n(#)] is the following expression.

The correlation energy ES%4[n(7)] can be written as follows:

EESAIn@)] = [ (E™ [n()] + x[n(P)])d? (2.30)
xn@®] = Syin (14002 ),

EE™ (@] _,
e Y

A=

< I

Where: y = (1 —In (2)/n%,t = |Vn(#)/2kr_pn(¥)| is an additional dimensionless density
gradient,

B =0.066725,and ap = ——.

LDA and GGA are the two most desirable and often utilised methods for estimating
exchange-correlation energies in the DFT. Similarly, there are various more functionals that
predominate in LDA and GGA. In the illustration, it is technically accurate that there is no
strong theory supporting the validity of these functionals. It is computed by testing the

functional for various materials across a wide range of systems and then comparing the

findings to provable empirical data for similar situations.
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2.9. SIESTA.

All calculations in this thesis were carried out using the DFT implementation in the SIESTA
code. The computations are utilised to obtain a relaxed geometry for the researched structures
as well as to investigate their electrical characteristics. The SIESTA acronym, which refers to
"Spanish Initiative for Electronic Simulations with Thousands of Analogues," is commonly
used. The SIESTA concept is a self-consistent density functional theory (DFT) approach that
relies on a Linear Combination of Atomic Orbital Basis set (LCAOB) and norm-conserving
pseudo-potentials to produce consistent results for the computations [33—40]. Using SIESTA,
there are essentially two ways to carry out density function theory (DFT) simulations. The first
involves solving the Kohn-Sham equations using the conventional self-consistent field
diagonalization method, while the second involves directly minimising a modified energy
functional [36]. This section is meant to describe some of the SIESTA's components and how

they are implemented in the provided code.
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Chapter 3

3.1 Single Particle Transport Theory

Once the density functional theory notion for the electronic structure of an isolated molecule
has been explained, the next step is to connect the isolated molecule to semi-infinite leads and
then calculate the probability of transmission through the system from one electrode to the
other. The explanation can be expanded by employing the Green's function scattering
equation. In this discussion, I will explore the techniques that use scattering theory and
Green's function methods. These methods explain the electrical and thermoelectric

characteristics of nanoscale systems located between two metallic electrodes.
3.2 Introduction

Single-particle transport theory is the main numerical technique used to explore various
molecular geometrics. It involves a thorough examination of electronic characteristics [1].
The primary objective of molecular electronics is to understand the electronic structure of
molecular junctions. The molecule is linked between electrodes, and the movement of charge
occurs across the molecule in a phase-coherent manner. The interaction between the lead and
molecule is fairly weak compared to the binding strengths within an electrode and between
molecules. A primary challenge in molecular electronics is the method of attaching the
molecule to metallic or other electrodes in order to investigate its electrical characteristics. A
scattering process occurs due to the transfer of movement between the electrode and the
molecule, as well as between the molecule and the electrode. The scattering mechanism that
arises from the electrode and the molecular bridge can be accurately explained by employing
a complete formalism based on Green's function. In this chapter, this discussion will focus on
the derivation of the Landauer formula, followed by an explanation of the process for a

retarded Green's function that is applicable to a one-dimensional tight-binding chain. The
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Green's function is directly related to the transmission coefficient by breaking the periodicity

of the lattice at a single link, which creates the scattering area.
3.3 The Landauer Formula

To explain transport phenomena, the Landauer formula, [1-4], is utilised. This formula is
valid for ballistic mesoscopic systems in which the energy of an electron is preserved and is
relevant for phase coherent systems, where a single wave function sufficiently describes the
flow of electrons. This leads to a formula that relates the conductance of the system to the S-
matrix of a scattering region connected to two semi-infinite leads. This chapter will cover the

method used to compute such transmission properties.

Left lead Scattering Right lead

Left contact Right contact

uL uR

Figure 3.1: A contact-linked mesoscopic scatterer, where y; and pzrepresent the chemical

potential in the left and right lead, respectively.

where r is the amplitude of the reflected wave due to an incoming left wave, and t is the
amplitude of the transmitted wave. When the temperature is zero (T = 0 K) and there is no

scattering region, the current 61 due to left travelling electrons in an energy interval §E =81=

]

e vgdén, where 6n = a—: OE is the number of left-moving electrons per unit length in the

energy interval §E, whereas vg represents their group velocity. If reservoirs emit both left
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and right-moving electrons, the net current is transported by electrons in the energy range §E
= uL — uR.

This schematic shows a conceptual structure of an experimental or measuring system with
contacts, leads, and magnetic areas, which is intended to help in the analysis of magnetic and

electrical interactions within the device.

For uR and uL are not equal because the current flows from left to right or up, or the

opposite. So the potential shouldn't be equal.

In the above structure, a wave will be transmitted to the right with probability T = |£|? and
reflected with probability R = |#]?,when an incident wave i™ collides with the scatterer from
the left. The incident electrons must either be reflected or transmitted, resulting in the

conservation of probability, which for single-channel leads is expressed as T+R=1.

To understand the formula's essential concepts, imagine a mesoscopic scatterer coupled to
two contacts that serve as electron reservoirs and are formed by two ideal ballistic leads, as
illustrated in Figure 3.1. The reservoirs [3] contain all inelastic relaxation processes. These
reservoirs have variable chemical potentials, allowing electrons to move from the left to the
right. In the case of a single open channel, the electric current generated by the chemical

potential difference at zero temperature:
U \3E (uL — uR) (3.1

where, ¢ is the electronic charge, vy is the group velocity, and dn/ JE is the density of states

(DOS). When the system is defined as one-dimensional, we can write:

on odndk odn 1l

9E ~ 9KJE ~ KR 3:2)

— (3.3)



. . . . o . ok .
Equation 3.3 is one-dimensional since it defines the group velocity as v = %ﬁ’ the equation

can be expressed as follows, where a spin factor of two is added.

2e 2e?
6l = n (U — ug) = Tav (3.4)

The voltage in this case, OV, represents the potential chemical difference. From equation 3.4,
it is obvious that in the absence of a scattering region, the conductance of a single open
channel is equal to %, which is about 77uS and the corresponding resistance is elz , 18
approximately 12.9kQ. When the system includes a scattering area, a part of the current is

reflected with a probability R = |#|?, while another part is transmitted with a probability T =

|£]%. The current that will move to the scatterer on the right side of the lead is:

Sl="T6V »—=""T (3.5)

2
Equation 3.5 is the Landauer formula for conductance, G = (2%) T(Er), in which the

transmission coefficient is evaluated at the Fermi energy Ex[5]. Then, in 1985, Buttiker
extended the Landauer formula to include more than one open channel. In this case, the
transmission coefficient can be substituted by the total of all transmission amplitudes
representing electrons that travel from the left to the right contact. Equation 3.5 of the

Landauer formula for several open channels becomes:

sl

2e? 2 2e?
5 =6=F E |t /] — Trace (tth) (3.6)
ij

Here, G is the electrical conductance and ¢; ; is the amplitude of transmission representing

scattering from the j™ channel of the left lead to the i channel of the right lead. By
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combining the transmission and reflection amplitudes, the scattering S matrix involving the

electron from the left lead and the right lead can be represented as follows:

s=(" ") (3.7)

where, r and t describe electrons arriving from the left, whereas r'and t’ indicate electrons
coming from the right. In equation 3.8 7, ¢,r" and t’ are considered as complex matrices that

satisfy SS* = I for many open channels due to conservation.
3.4 Thermoelectric Coefficients

The Seebeck, Peltier, and Thompson effects established connections between heat, current,
temperature, and voltage around the turn of the nineteenth century [1]. The Seebeck effect is
the creation of electrical current due to a temperature difference, whereas the Thompson and
Peltier effects describe the cooling or heating of a current-carrying conductor [6]. A more
general mechanism involves a temperature difference (AT) and a theoretical voltage drop
(AV) in the system, resulting in the flow of heat currents and charge. The generalised
Landauer-Biittiker equations for heat (Q), charge (I), and currents within the linear basis and
temperature regimes will be used to derive expressions for the thermoelectric coefficients of a
device with two terminals. The system consists of a scattering zone that connects to two
leads, which in turn connect to a pair of electron reservoirs. These reservoirs are generated
using the chemical potential y; and ug, temperature T, and Ty, and the Fermi distribution

function [6]:
E—pp\ 7t
ﬁ@)=<1+e@“> (3.8)
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Assuming that the reservoirs and leads are connected so that scattering does not occur at
their interface, it may be stated that the central scattering area is the source of all scattering
effects. The right moving charge current of a single k-state issuing from the left reservoir can
be defined in terms of the number of electrons per unit length n, the Fermi distribution f;, the

group velocity vy, and the scattering zone's transmission coefficient T(E).

I = nevg(E()T(E (k) fL(E(K)) (3.9)

Thus, the total charge current can be calculated from the right moving states by summing all

positive k states and then converting the result into the integral form, where n = 1/L for the

. _ 10E(k)
electron density and v, = o

It = VLOEWK) 1opaonyr Bk = [ 26T (E)F, (E)dE 3.10
(=2 etnoge TEWAE) = [ TT@R®E @)

Similarly, we get the following for left moving states:

I = [77 2 T(E) fz (E)dE (3.11)

Thus, the total current can be expressed as follows:

2e (1t
=r == Te6R®E - fuEds (3.12)

The above equation is Landauer-Bttiker formula at finite temperatures.

A comparable derivation for the identical system's heat current (alternatively, energy current)
can be provided by beginning with the relation ¢ = Env, rather than = nev,. The final result

is similar to the previous results, but it includes two more energy terms:

56



2 [+
0=0"-0" =7 | TGN - kLB - E - ) fulB))dE

Where,

2
fL(E) — il +e kB T+A2T JI ,fL(E) _ |1 + ekB(T+AT)J

HL—#+

-1
st ot
|,

Ap

,HR=M——

2 2

Buttiker, Imry, Landauer, and others [7-10] establish a relationship between the electric
current (I) and heat current (Q) in a system, and the voltage difference (AV) and temperature
difference (AT) in the linear response regime. The thermoelectric coefficients G, L, M, and K

are related to both electric currents, temperature, and potential differences [1 and 11-12].
I\ (G L\ AV
(Q) B (M K) (AT) (3.13)

The Onsager relation describes the relationship between the thermoelectric coefficients L

and M in the absence of a magnetic field:

M=—LT (3.14)

In equation 3.14, T represents temperature. The following relations can be expressed by
rearranging these equations and using the measurable thermoelectric coefficients, electrical

resistance R = 1/G, thermopower S = —AV /AT, Peltier coefficient, and thermal constant k:

57



(3.15)

>
<<
N————
|
Q=TI
=~
<
N
3"‘
N—
Il
Ve
= =
|
=
N—
N
Ep—x
N——

The thermopower S can be defined in terms of the voltage AV caused by a temperature

differential AT in the absence of an electrical current.

S=— (%)Izo - Gi (3.16)

In the absence of a temperature differential, the Peltier coefficient Il refers to the heat

transported purely by the charge current.

(7),.5
m= (= =—=-ST (3.17)
AT=0 G

Finally, in the absence of an electric current, thermal conductance k is defined as the heat

current due to temperature drop:

k=— <AQT)1=O - — (1 + SZkGT> (3.18)

Therefore, assessing the values of S or IT offers valuable information about the system's

capacity to function as a heat-driven current generator or a current-driven cooling device.

In addition, the thermoelectric figure of merit, ZT[13,14], can be defined based on these

measurable thermoelectric coefficients:

S2GT
T = P (3.19)
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In classical electronics, the ZT is determined by computing the highest induced temperature
difference created by an applied electric current in the presence of Joule heating. Consider a
current-carrying conductor that is located between two heat baths T, and Ty, as well as

electrical potentials V and Vj.

The thermoelectric figure of merit is obtained by calculating the conductor's greatest induced
temperature differential caused by an electrical current. We can obtain the following from

equation (3.13) by defining (Q) as the gain in heat from bath L to bath R:

Q =II — kAT (3.20)

The left bath cools while the right bath heats as a result of this heat transfer, increasing AT.

The sum of Joule heating can be computed with the proportional formula Q ; = RI?, which

takes into account both the electrical resistance and the square of current. This Joule heating
influences the temperature differential created by heat transfer, therefore in the steady state

casc:

R

where R /2 represents the total of the internal and external resistances that are parallel.

The difference in temperature becomes:

1 RI?
AT = (11 = —- (3.22)

The temperature difference-current relationship is represented by equation 3.15.

The derivative of equation 3.16 can determine the maximum temperature (AT):
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aAT_n—IR_O 223
ol k (3.23)

To determine the greatest AT, we place [ = I[I/R and substitute equation 3.17 into the

equation 3.23.

112 S?2T72%@G
(AT)max = m = 2k (3.24)
AT S2GT 1
( ;max == =3 (3.25)

This shows that ZT is a dimensionless number which describes the 'efficiency' of a molecular

device.

3.5 Theory of electron transport

To study electron transport, it is necessary to understand the transmission probability, which

is related to the conductance G at the Fermi energy E using the Landauer formula [15,16].

G = GoT(Ep) (3.26)

The electric conductance is shown by equation 3.26. G is described as a function of the

. 2e? . .
Fermi energy and quantum conductance as G, = %, where e is the electron charge and h is

the Planck's constant. T (E)is also known as the transmission coefficient as a function of

energy, and it can be defined as the probability that an electron with energy E will transfer
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from one electrode to the other. This refers to the scattering formalism shown in the graphic

below.
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Figure 3.2 shows a representation of the transport mechanism. It shows the combination of

mathematical structures. This mechanism has two categories of probability, R and T.

This schematic shows wave scattering in a system that consists of a core scattering zone
connected to two leads—Ieft and right. The incoming waves (t’' on the left and outgoing
waves on the right) approach the scattering zone, where they interact and are partly reflected
and transmitted. The outgoing waves (1’ on the left and transmitted on the right) leave from

the scattering zone, carrying information about the encounter.

The fundamental idea shown here is the scattering matrix Sm, which connects the incoming
and outgoing waves mathematically. In particular, it describes the way the scattering zone
reflects and transmits waves, with parameters and possibly denoting things like transmission

and reflection coefficients. This setting is crucial in quantum physics and wave mechanics,
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and it is used to study how particles or waves behave when they encounter localised
disturbances or barriers. It has applications in electronic transmission, optics, and other wave-

based systems.

)2+ |#?=1T+R=1

3.6 Scattering Theory

3.6.1 A one dimensional (1-D) linear crystalline lattice

To illustrate the calculation of the scattering matrix for a simple one-dimensional structure, |
now provide a simple and straightforward overview of the method that used prior to
presenting a generalized methodology [1]. A basic tight-binding model in periodic systems is
proposed to provide a qualitative perspective on electronic system calculations. Each atom
has a single atomic orbital of energy €, and a inearest neighbour coupling or hopping element

—Y, as shown in Figure 3.3.

-y =Y Y -Y Y
- 00 +
[ <]
80 80 80 80 80
e L1 Z Z+1 ose

Figure 3.3: A tight-binding model of a (1-D) periodic lattice with energy sites and hopping

elements is used to label our atoms.

This figure represents a range extending from negative infinity to positive infinity, with

specific points at Z-1, Z, and Z+1 on a number line or axis. This suggests an emphasis on
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discrete states or places within a system, which are most often related to transitions,

differences, or interactions between neighbouring states at these points.

The notation and arrangement imply an examination of how qualities or quantities change or
relate between these discrete points, which is frequent in models involving summations,
probabilities, or physical states in domains such as quantum physics, statistical mechanics,

and signal processing.

—y represents a negative boundary or limit, while € is a small quantity used to analyse minor

changes or mistakes in the system.

The Hamiltonian H describes the system as follows:

—00
& —rv O 0 0
=Y & -y 0 0
H = 0 -y & -y O
0 0 -y & -V
0 0 0 -y &
0 -y

Then, the Schrodinger equation is utilised to obtain Z row of the Hamiltonian.

oW, —VYWz41 —VY¥z1 = EYy (3.27)

P, = ek (3.28)
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where 1, represents the wave function of this system on site z, which satisfies the

Schrodinger equation 3.27.

By substituting a plane wave in equation 3.28 into equation 3.27, we obtain the dispersion

relation stated in equation 3.30. We assume that y = y*.

E = ¢y — 2ycos (k) (3.29)

In this context, the wave number is represented by the quantum number (k), while the wave
function is related to the retarded Greens function, which is denoted g(z, z") and satisfies the

following equation:

(E - H)g(Z:Z’) = 6(2,2') } (3 30)

—v9(z—=1,2)+(E —&)g(z,z) —yg(z+1,2") = §,,
where §,,, = 1,ifz=2",and §,, = 0,if z # z'.

The Green's function g(z,z") of a system is defined to be the amplitude at the position z
created by an an incoming wave at point z'. This excitation would generate two waves that
pass across the locations of excitation. Figure 3.3 displays the values of their amplitudes B

and D.
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Moving to the left Moving to the right

Figure 3.4. A representation of the retarded Green's function of an infinite lattice in one
dimension. By exciting the point at z = z’, the outgoing wave propagates in both the left and

right directions. The amplitudes of these waves are B and D, respectively.

The outgoing waves with amplitudes B and D are shown in Figure 3.4 as they move away

from the excitation point. Thus, the two waves can be expressed as follows:

Dez 7> 7'
! - 31
Be kz 5 < 7' (3:31)

9(z,z") = {

The fact that the equation 3.31 match the equation 3.30 at all positions, except at point z = z’

are not met, where the Green's function must be continuous.

[9(z,2)]Len = [9(2, 2")]rign (3.32)
Be~ikz' = peik?’ (3.33)
B = g2k’ (3.34)
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Now, we get the following:

9(z,z") (3.35)
Deikz — Deikz’eik(z—z’) 7> 7
- De2ikz' pg2ikz’ — Deikz'eik(z'—z) — Deikz’eik(z’—z) 7> 7 (3.35)

It is obvious that the exponent of the complex number is consistently positive, so the simpler

expression can be defined as:

g(z,z") = Dek?' giklz'~2| (3.36)
Furthermore, this equation must satisfy the Green's function, (E — H)g(z — z') = 852"
8,,, =Eg(z,2") —eg(z—2)+vg(z+ 1,2 )+vg(z—-1,2") (3.37)

Therefore, the solution at z=z' is obtained as follows:

1=(E—-¢)9(z,z)+yg(z+1,2")+yg(z—1,2") (3.38)
— Deikz’[(E _ EO)]eik|z—z| + yeik|z+1z| + yeik|z—1z| (3.38)

When we solve it for De*# ', we obtain:

Dot = (E— &) +ye +ye

= (E —g) +ye* +ye* +ye k + ye ik

= yelk — ye~ik

Using the group velocity hv, = 2y sin(k) , we may express the Green's function for a one-

dimensional chain as:
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1 .
R A ik|z—z'|
9°(z,z")=—e (3.40)
thg

Several solutions to this problem have been presented in the literature [4, 17, 19]. We used
the retarded Green's function g% (z,z") to solve the problem in the equation above. However,

the advanced Green's function g#(z, z") provides an alternative answer.

-1 . i .
A "N — —ik|z=z'| — "~ ,-ik|z—2'| 3.41
g(z,z") v, e v, e (3.41)

We can state that the retarded Green function represents the outgoing waves from an
excitation point (z = z "), while the advanced Greens' function represents the two entering
waves that disappear at the excitation point. Thus, the retarded Green's function will be

employed for simplicity. We then remove the R from the formula, which becomes g(z,z") =

g% (z,2"), [1].

3.6.2 Semi-infinite one-dimensional lattice

-‘Y 'Y -Y _Y -y

. 900 00
80 80 SO SO 80
wsene Zo-3 Zo -2 Zo -1 Zo
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Figure 3.5 shows a tight-binding model for a semi-infinite one-dimensional lattice. This

system consists of energy site &, and hopping elements (-y). Sites labelled zo, Zo-1, Zo-2,Z0-3,

In this figure shows the function's behaviour or transformation over multiple z regimes,
particularly at large magnitudes (+), showing asymptotic tendencies and probable

singularities or unique points. Zo, may represent a particular point of interest (a pole, zero, or

region where the function's behaviour is examined).

Shifts or translations along the complex plane or real line (zo, Zo-1, Zo-2,Z0, Zo-3...)

demonstrate the function's behaviour at nearby places.
Gamma (y) is a fixed value or parameter in mathematical models that has a specific purpose.

Epsilon (¢) is a small positive value that measures how close a function is to a specific limit

or value.

First, we want to satisfy the boundary condition. This will be achieved by introducing an

additional plane wave component with a new amplitude [1]:

1 o
g(z,2") = —-elz=2'| 4 pe~iklz=2] (3.42)
ithy,

By applying the condition g(z,z,) = 0,z < z’, wehere

1 . .
Z,7y) = elk(zo—z) +Ae—lk(zo—z)
9(z, z) ihv,
yields

_1 .
A =——¢?k(z-2) (3.43)
thy,
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Putting this back into Green's function allows us to find:

ik(z'-z) _ 1

lhvg

g(Z,Z’) — 1 e ezik(z—zo)e—ik(z’—z)
thy,

Next, we consider the second condition, which states that any point beyond (z, — 1) is not
influenced by a source in the chain. Therefore, if z > z'and z = z,, it is predicted that

g(z,,2) = 0. Based on this condition, we get:

1 . ' ; '
9(z9,2) = ——e*(z0-2") _ ge~ik(z0-2") (3.44)
thg
1 ) ,
A= _WeZLk(ZO—Z ) (345)
g

When we substitute this back into Green's function, we get:

1 Jik(z-2z") _ Y _2ik(zo-2") ,—ik(z-2")
ihvg € ihvg € ° € (3'46)

9(z,z') =

The following is written to summarize these two equations:

( 'h1 [eik(z=2") — gik(2z0-2-2")] 7 > 7'
nv,
g(Z,Z,) — 19 » . ’ (347)
ihv [eik(z'=2) — gik(220-2-2")] 7 < 5’
l
g

Additionally, it is possible to express the previous equation as:
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’ 1 . ! . o ©
9(z,z") = . [etla=2| — gik(220-2-2")] = g | 4 w20,

(3.48)
g

3.6.3 Scattering in one dimension (1-D)

In this section, we will provide a simple example, the surface Green's function is computed

at the point z = z, — 1. Therefore, the surface Green's function can be stated as follows [1]:

g(zog—1,zy— 1) (3.49)

— [eik|zo—1,zo—1| _ eik(220—20+1—zo+1)]

= T, (3.49)

Now, we simplified this form to obtain:

1 .
g(zo— 1,2y — 1) = —— — 2isin (k)e' (3.50)
thy,
2isin (k) . etk
90— 1,2 = 1) = o) i

“2ipsin()C Ty (3->1)

3.6.4 One-dimensional (1-D) Scattering Using Green's Functions

Scattering
Region

<
|
=]
I
-

o
¢
’

-

Y
> — @

€o €o €o €o

400

£O 80
Figure 3.6: shows a tight binding model of two semi-infinite leads with site energy &, and

couplings —yconnected through a hopping element -a.
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The scattering region is restricted between —y and +y, while the regions outside stretch to
infinity. In the core region between —y and +y, the scattering interaction takes place, whilst
the propagation zones unaffected by scattering are represented by the area between —co and

—y and between +y and +oo.

Scattering Region: The area where particles or waves are scattered.
The left region (—oo to —y) represents the domain where particles or waves originate

or transit before reaching the scattering centre.

The scattering zone, located between —y and +vy, is where scattering interactions occur.

The right region ranges from +y to +oo, and represents the area where particles or waves
emerge after scattering.

In this case, we have two semi-infinite one-dimensional leads, both equal with &, on-site
potential and —y hopping elements. When the leads are decoupled (a = 0), the total Green

function is obtained, which is defined as [1];

ek
— 0

g=|"7 I (3.52)

\» -5

Given that we possess two semi-infinite leads that are not connected, we may express
Green's function as g = (E — h;)~! where h;is the Hamiltonian of these two leads. Thus, we

have generated an infinite matrix for finding this Hamiltonian h4, as follows:
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. 0 0 O
& —y 0 0
— 0

hl = 0 —y 80 )/ (353)
0 0 =y & -V
o 0o 0 o0 .

By linking the two leads with a hopping element, the Hamiltonian for the complete system is

H = hy + hgy, where h, denotes the coupling parameters.

hy = (2 ) (3.54)

We now apply Dyson's equation to generate the Green's function for the coupled system:

G=(E—H)'=(E—h, —hy)™? (3.55)

G=(g "' —h)™ (3.56)

The solution would be the following:

— 14 \ (0 «a
G=| \ eik) (o) (3.57)
0 -
\ 7
1 —ye a

We will now compute the Greens' function as defined in equation (3.58) and use it in the
Fisher Lee relation to get the transmission amplitude (t*) and reflection amplitude (7).
The scattering amplitudes of the scattering problem are determined by the Fisher Lee relation,

which is related to the Green's function of the same issue.
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The components of Green's function can be determined from equation (3.58), which allows
for the definition of transmission and reflection coefficients. When two waves with
amplitudes B and D are sent outward from the source (the excitation point), one wave is
directed away from the scatter while the other is directed towards the scatter. Thus, two

waves are represented by Green's function: one is a reflected wave or left wave
(De‘iklZ_Z'| + Breiklz_z’l) and the other is a transmitted wave or right wave (Bre ik|Z_Z’|). In
this example, t represents the transmitted right wave and 7 represents the reflected left wave,
with arrows pointing in the amplitude directions.

ye~ik

1+r= —ihvg 7,

e g (3.59)

ik

t = ihv, yzef‘f—k_az (3.60)

Now, we compute the transmission and reflection probability as follows:

T =|t|?and R = |r|?

Finally, the conductance of the system can be computed using the Landauer formula ¢ =

GoT(Ep).
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Chapter 4
Exploring Quantum Interference in Hexaazatrinaphthylene (HATNA) Molecules

4.1 Motivation

To achieve molecular-scale electrical processes beyond the von Neumann bottleneck, new
forms of multi-functional switches are required that imitate self-learning or neuromorphic
computing by dynamically switching between different operations based on their history.
This chapter is motivated by the experimental work of ref. [1], in which hexaazatrinaphthylene
(HATNA) molecules were reported to show memristive behaviors. However, the mechanism
behind is unclear and no theory of transport through such molecules has been presented in the
literature. Furthermore, the experiments of [1] were performed on self-assembled monolayers
(SAMs) and it is not clear if their observed behaviour can be replicated in a single-molecule
junction. I therefore investigated the transport properties of a HATNA series of single-
molecule junctions, which at least in the SAMs [1] includes molecules that switch between
high and low conductance states upon reduction by hydrogen. Because of its time-domain
and voltage-dependent plasticity, this dynamic molecular switch mimics synaptic behavior
and Pavlovian learning and can supply all of the basic logic gates. This multifunctional
switch could form a basis for molecular-scale hardware that can be used in solid-state
devices, opening the way for dynamic complicated electrical actions contained within a

single ultra-compact component.

4.2 Introduction

Motivated by brain energy efficiency and the growing demand for miniaturized electronics,
there is a push to create devices that mimic the dynamic character of neurons and synapses in
order to create trainable, adaptive computing networks or new hardware for deep learning for
many kinds of applications such as pattern recognition, classification, or non-von Neumann

neuromorphic computation [2-5]. Neuromorphic computing simulates synaptic plasticity in
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electronic devices. Such processes are currently carried out utilizing advanced, energy-
inefficient silicon-based circuits with enormous footprints, or mesoscale permissive devices
based on ferroelectric [6] or phase change materials [7], filaments, or dopant migration [1, 3,
8]. In this context, molecular switches are interesting because to their intrinsic small size; but
molecular switches are currently static, which means they switch between fixed on and off
states (e.g., magnetic, redox, or conformational states) [9-11]. We present a dynamic
molecular switch at a tunnel junction that remembers its history, with the switching
probability and on/off state values changing on a continuous basis. This dynamic switch
successfully simulates synaptic behavior and Pavlovian learning, as well as all two-terminal
logic gates required for deep learning by using the junctions' time-domain plasticity. These
functions are given inside a single molecular layer (2.4 nm thick), which is smaller than a
neuron synapse (~ 1 — 10um ) by at least three orders of magnitude and thinner even than the
synaptic gap (20-40 nm) by an order of magnitude. This dynamic nature represents a new
kind of molecular switches that operate far outside of equilibrium, opening the way for

molecular-scale neuromorphic computing.

One of the goals of neuromorphic electronics is to create computing systems in which
training occurs at the hardware level. There is currently no molecular hardware available for
this purpose. Unlike chemical switches previously investigated, biological switches, such as
synapses, are dynamic and operate far outside of thermodynamic equilibrium [12,13],
allowing them to be trained. Synapses transmit information in the form of an action potential
from a presynaptic neuron to a postsynaptic neuron through the synaptic gap, which is
regulated by a combination of excitatory and inhibitory neuronal inputs. Synapses can be
strengthened or weakened based on their activity by combining different processes with
different time constants, such as fast depolarization and slow diffusion of Ca?* and

neurotransmitters [15]. This results in synaptic plasticity, enabling pulse pair facilitation and
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depression with spike rate and timing dependent plasticity. To simulate synapses at the
molecular level, we combined quick electron transfer (similar to action potentials and
depolarization processes) with slow proton coupling limited by diffusion (similar to the role

of Ca%* or neurotransmitters).

4.3. Studied Molecules

As discussed in [1], the HS-C10-HATNA molecules are made up of a 5,6,11,12,17,18-
hexaazatrinaphthylene (HATNA) terminal that passes through six successive proton-coupled
electron transfer (PCET) stages to generate a dynamic covalent N—H bond. Within a SAM,
molecules can exist in a range of oxidation and protonation states, showed as Hn-HATNA,

where n ranges from 0 to 6.

0H 2H 4H 6H

Figure 4.1. Molecules studied in this chapter, with zero Hs, two Hs, four Hs and six

Hs attached to the nitrogen atoms (shown in blue).
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4.4. Transmission coefficient T (E)

As noted in chapter 3, the transmission coefficient T(E) is an important measure for
determining the electron transport properties of molecular junctions generated by HS-C10-
HATNA molecules on gold substrates. T(E) represents the probability that an electron with
energy E will pass through the molecular junction. The energy-dependent behavior of T(E)
gives information on the junction's conductance characteristics at various bias voltages,
including negative differential resistance (NDR) and hysteresis. The transmission coefficient
T(E)) in dynamic molecular switches based on HS-C10-HATNA is impacted by factors such
as the molecule structure, oxidation state, protonation state, and the presence of certain
electronic states within the molecular energy levels. Changes in T (E) can be connected with
the switching behavior of molecular junctions, where transitions between multiple states
(e.g., 0H, 2H-1, 2H-2, 4H-1, 4H-2, 6H) lead to differences in the electron transport
characteristics. We can learn more about the mechanisms driving the conductance switching
and hysteresis seen in the molecular junctions by examining the energy-dependent
transmission coefficient T (E) in conjunction with other parameters like the density of states
and molecular orbitals. This understanding is critical for creating and optimizing molecule-
scale devices with specific electronic functions, as well as for future applications in

nanoelectronics and molecular computing.

4.5. Frontier orbitals

The frontier orbitals of isolated HS-C10-HATNA molecules in different protonation states
are critical in influencing their electronic characteristics and reactivity. These frontier
orbitals, which include the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO), control the molecule's ability to take or donate
electrons, engage in charge transfer reactions, and interact with other molecules or surfaces.

Understanding the distribution and energy levels of these frontier orbitals is critical for
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predicting the molecule's behavior in many settings and applications, including molecular
electronics, catalysis, and sensing. Computational approaches such as density functional
theory (DFT) can be used to investigate the frontier orbitals of HS-C10-HATNA molecules,

providing information about their electronic structure and reactivity.

4.6. DFT calculations.
Note that when adding two hydrogens to the nitrogens, they can either be added to a branch

connected to an anchor group, as in the molecule denoted 2H-1 in Figure 4.3, or to a branch
which is not connected to a pendant group, as in the molecule denoted 2H-2 in figure 4.6.
Therefore in what follows, I shall examine the properties of six molecules, denoted OH, 2H-1,
2H-2, 4H-1, 4H-2, and 6H. Clearly the junctions formed from OH, 2H-2, 4H-2, and 6H are
symmetric, whereas junctions formed from 2H-1, and 4H-1 are asymmetric. According to
Breit-Wigner formula, for a symmetric molecular junction we will expect the transmission
coefficient on resonance to equal 1, whereas for an asymmetric molecular junction, we expect
the transmission coefficient on resonance to be less than one. In what follows, we shall see

that this behaviour indeed is found within DFT calculations.

Fermienergy-------=-o-co---sooooo oo

OH 2H 4H 6H
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Figure 4.2 Schematic of energy level change after reducing by adding two H, four H and six

H.

First, I compared the transport property of OH and 2H to investigate the influence of

reduction by two hydrogen atoms in two positions.
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Figure 4.3. (a) the geometries of OH and 2H-1 within a junction. (b) Transmission curves of
OH and 2H-1.

These show how distinct elements of the molecule or system are linked or interact with one
another across different energies. They depict the system's electrical structure as well as the
pathways that electrons can take inside it. Essentially, they help in our understanding of
bonding, potential electronic states, and how the molecule's structure effects its conductive
qualities. These represent the probability or efficiency of electrons moving through the
system at certain energies. They are critical for knowing how well a molecule or device
conducts electrons, showing high transmission (efficient conduction) and low transmission
(barriers or resistance). These curves are critical for assessing electronic transport qualities

and prospective performance in electronic applications. In the transmission curve that
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introducing these two hydrogens and I'm pointing at the hydrogens gives the red curve that
decreases the transmission coefficient of the Fermi energy. Introducing the two hydrogens
definitely decreases the electrical conductance in a couple of orders of magnitude, which is a
clear memristive effect. And then I'll also notice that the transmission resonances of the blue

curve go to one, whereas the transmission resonance of the red curve does not go to one.

1 r
%ﬁ Ef=-4.018 ev OH with anchors g Ee3.77 8V

LUMQ=-3,261 &V HOMO=-4.887 &V LIMO=3.058 eV
HOMO=-5.355 eV TEEbiE SHERiE

q
LUMO+1=-2.854 eV ‘ .
HOMO-1=-5.364 eV

#‘ LUMO+2=-2.853 eV HOMO-1=-4.989 eV LUMOH=2.670 eV

HOMO-2=-5.428 eV
HL gap= 2.094 eV HL gap= 1.829 eV

Figure 4.4. Wavefunctions of OH without and with anchors.

The molecular orbitals are investigated, with a particular emphasis on the highest occupied
molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and related
orbitals. different wavefunctions represent the probability distributions of electrons in various
orbitals, which are critical for understanding the molecules' electrical characteristics,
reactivity, and optical behaviour. The energies of these orbitals; the wavefunctions
themselves are not shown or described in detail. In general, wavefunctions can be represented

as spatial distributions that show the most probable locations for electrons. These
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wavefunctions' symmetry and form have an impact on how molecules interact and take part
in chemical reactions. Results indicate that the type of anchoring group has a substantial
impact on the electrical structure of the molecule, as well as its potential uses in domains

such as photovoltaics and catalysis.
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Figure 4.5: wavefunctions of 2H-1 with anchors

The transmission function in Figure 4.3 shows that making a transition from OH to 2H-1 by
adding the hydrogen reduces the conductance. Also, comparing the HOMO-LUMO gaps in
figures 4.4 and 4.5 shows that HOMO -LUMO gap shrunk upon adding the hydrogen. Note
that OH is symmetric, since it is unchanged if rotated by 180° about the vertical axis. That
means that the HOMO and LUMO resonances of the transmission curve should equal to 1
unless there's a degeneracy. However, 2H-1 is not symmetric and therefore as mentioned
earlier, one expects that the transmission resonance will not equal 1 for the red curve.

Consequently, as shown in Figure 4.3, even though the HOMO-LUMO gap of 2H-1 is
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smaller than that of OH, which normally increases the conductance, the conductance of 2H-1
goes down compared to that of OH. As shown in Figure 4.4 and 4.5, this is also partly due to

the decreased magnitude of the LUMO and LUMO+1 on the two anchors after reduction.
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Figure 4.6. (a) the geometries of OH and 2H-2 within junction. (b) Transmission curves of OH
and 2H-2.
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Figure 4.7. Wavefunctions of 2H-2 with and without anchors.

The molecule of 2H-2 with anchors is symmetric, so as shown in Figure 4.6, the transmission
coefficient of the red curve on resonance is equal to one. Again we find that the HOMO-

LUMO gap is reduced by introducing hydrogens. This may be expected, because typically, if
we increase the size of a system, then the gap between the energy levels is decreased. In other
words, if the orbitals are more delocalized then I will expect that decrease in the gap between

energy levels.

According to the orbital product rule since the HOMO and the LUMO products have the
same sign, DQI is predicted. This is evident in the red curve of Figure 4.6, but not the blue
curve. For the latter, the LUMO is almost degenerate with the LUMO+1 and therefore the

product rule cannot be applied.

I compare the transport properties of OH and 4H to investigate the influence of reduction by

four hydrogen atoms in two positions.
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Figure 4.8. (a) the geometries of OH and 4H-1 within junction. (b) Transmission curves of OH
and 4H-1.
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Figure 4.9. Wavefunctions of 4H-1 with anchors.

From Figure 4.8, the red curve in the transmission coefficient on resonance is not equal to 1
because 4H-1 is not a symmetric molecule. In contrast, OH, is symmetric as mentioned above

and therefore its transmission function is equal to 1 on resonance.
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Upon adding two hydrogens to OH, the LUMO becomes the HOMO, because two electrons
have been added. Similarly for 4H-1, since 4 electrons have been added to the molecular

orbitals, the LUMO +1 of OH becomes the HOMO of 4H-1.

Since the HOMO and LUMO products on the left side of Figure 4.9, have the same sign, DQI
is predicted. For the right side of this Figure which is with the anchor group, the HOMO and

LUMO also have the same signs and DQI is predicted, as is evident in the red curve of Figure

4.8.

I shall now examine the properties of 4H-2, which is shown in Figure 4.10 below.

OH

4H-2 4.5 A 05 a 0.5 1

Figure 4.10. (a) the geometries of OH and 4H-2 within junction. (b) Transmission curves of
OH and 4H-2.
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Figure 4.11. Wavefunctions of 4H-2, without and with anchors.

Since both OH and 4H-2 are symmetric molecules, the red and blue curves in Figure 4.10
reveal that, as expected, the transmission coefficients of both molecules on resonance are
equal to 1. Again since 4 electrons are added to the molecular orbitals, so I would expect the

LUMO +1 of OH to become the HOMO of 4H-2.

From Figure 4.11, HOMO and LUMO products have different signs, so the orbital product

rule predicts CQI.

Finally, I compared the transport properties of OH and 6H to investigate the influence of

reduction by six hydrogen atoms in two positions.
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Figure 4.12. (a) the geometries of OH and 6H within junction. (b) Transmission curves of OH
and 6H.
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Figure 4.13. wavefunctions of 6H with anchors.

In Figure 4.12, since both molecules are symmetric, both curves possess transmission coefficients

reaching 1 on resonance. Furthermore, the orbital products of the HOMO and LUMO have the

opposite signs and therefore CQI is predicted. Since 6 electrons have been added, the LUMO
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+2 of OH becomes the HOMO of 6H, the LUMO+1 of OH becomes the HOMO -1 of 6H, and the

LUMO of OH becomes HOMO -2 of 6H.

Molecular
names

OH

2H-1
2H-2

4H-1
4H-2

&H

Table 4.1.

Molecules without anchor Molecules with anchor

HOMO

-5.355

-3.830

-3.820

-3.399

-3.397

-3.350

LUMO

-3.261

-2.887

-2.897

-2.832

-2.829

-0.965

HL gap

2.094

0.943

0.923

0.567

0.568

2.385

HOMO

-4.887

-3.617

-3.639

-3.244

-3.329

-3.370

LUmMmo

-3.058

-2.797

-2.726

-2.711

-2.745

-0.947

HL gap

1.829
0.82
0.913

0.533

0.584

2.423

HOMO LUMO gaps for the molecules mentioned before.
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4.7. Conclusions

Ref [1] presented a dynamic molecular switch measuring only 2.4 nm that easily simulate
synaptic plasticity, Pavlovian learning, and can be set to perform all logic gates. It was
claimed that the dynamic creation of N-H bonds driven by PC-ET drives the switching
probability between high and low conduction states. It was suggested that the high
conductance state for 2H-1 or 2H-2 was promoted by the presence of a mid-gap state in the
middle of the HOMO-LUMO gap of the OH molecule. Such a state is clearly present in the
red curves of Figures 4.6 and 4.3, as indicated by the presence of additional transmission
resonances near E — Er = —1eV, which are not present in the blue curves. In their
description, it is suggested that this state mediates electron hopping through the HATNA
core. However, in the single molecule junctions modelled here, symmetry plays a role, which
causes the conductance of 2H-1 to be lower than that of OH, while the conductance of 2H-2 is
found to be comparable to that of OH. In other words, the conductance jump seen in the
SAMs of [1] upon adding two hydrogens is not predicted to occur in a single molecule
junction. In the SAM-based experiments of [1], the conductance is decreased upon adding 4
or 6 hydrogens and this same behaviour is found in Figures 4.10 and 4.12, where the red
curve at the Fermi energy is much lower than the blue curve. This suggests that the strategy
of adding or removing hydrogen atoms can lead to large on-off ratios in single-molecule
junctions, although up to 6 hydrogens may be needed to achieve attractive on-off ratios. For
the future, it would be of interest to see if these predictions for the contrasting behaviour of

single molecule junctions can be observed experimentally.

92



4.8. Bibliography

[1]1Y. Wang, Q. Zhang, H. P. A. G. Astier, C. Nickle, S. Soni, F. A. Alami, A. Borrini, Z.
Zhang, C. Honnigfort, B. Braunschweig, A. Leocini, D. Cheng Q1i, Y, Han, E. del Barco D.
Thompson, and C. A. Nijhuis, ' Dynamic molecular switches with hysteretic negative
differential conductance emulating synaptic behaviour,' Nature Materials vol. 21, pp. 1403-

1411, Dec. 2022

[2] Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, and A. Salleo, ‘Organic
electronics for neuromorphic computing’, Nat Electron, vol. 1, no. 7, pp. 386-397, Jul. 2018,

doi: 10.1038/s41928-018-0103-3.

[3]J. Zhu, T. Zhang, Y. Yang, and R. Huang, ‘A comprehensive review on emerging
artificial neuromorphic devices’, Applied Physics Reviews, vol. 7,no. 1, p. 011312, Feb.

2020, doi: 10.1063/1.5118217.

[4] N. K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia, and J. Joshua Yang, ‘Emerging
Memory Devices for Neuromorphic Computing’, Advanced Materials Technologies, vol. 4,

no. 4, p. 1800589, Apr. 2019, doi: 10.1002/admt.201800589.

[5] S. T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman, G. Polino, P.
Scognamiglio, L.Cina, A. Salleo, Y. van de Burgt, and F. Santoro, ‘A biohybrid synapse
with neurotransmitter-mediated plasticity’, Nat. Mater., vol. 19, no. 9, pp. 969-973, Sep.

2020, doi: 10.1038/s41563-020-0703-y.

[6] S. Oh, H. Hwang, and I. K. Yoo, ‘Ferroelectric materials for neuromorphic computing’,

APL Materials, vol. 7, p. 091109, Sep. 2019, do1: 10.1063/1.5108562.

93



[7] L. Wang, S.-R. Lu, and J. Wen, ‘Recent Advances on Neuromorphic Systems Using
Phase-Change Materials’, Nanoscale Res Lett, vol. 12, no. 1, p. 347, May 2017, doi:

10.1186/s11671-017-2114-9.

[8] Q. Wan, M. T. Sharbati, J. R. Erickson, Y. Du, and F. Xiong, ‘Emerging Artificial
Synaptic Devices for Neuromorphic Computing’, Advanced Materials Technologies, vol. 4,

no. 4, p. 1900037, Apr. 2019, doi: 10.1002/admt.201900037.

[91 W. Xu, S.-Y. Min, H. Hwang, and T.-W. Lee, ‘Organic core-sheath nanowire artificial
synapses with femtojoule energy consumption’, Sci Adv, vol. 2, no. 6, p. e1501326, Jun.

2016, doi: 10.1126/sciadv.1501326.

[10] I. Ratera and J. Veciana, ‘Playing with organic radicals as building blocks for functional
molecular materials’, Chem. Soc. Rev., vol. 41, no. 1, pp. 303-349, 2012, doi:

10.1039/C1CS15165G.

[11] R. Klajn, ‘Spiropyran-based dynamic materials’, Chemical Society Reviews, vol. 43, no.

1, pp. 148-184, 2014, doi: 10.1039/C3CS60181A.

[12] D. Bléger and S. Hecht, ‘Visible-Light-Activated Molecular Switches’, Angew Chem Int

Ed Engl, vol. 54, no. 39, pp. 11338-11349, Sep. 2015, doi: 10.1002/anie.201500628.

[13] A. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, and T. M. Hermans,
‘Non-equilibrium supramolecular polymerization’, Chem. Soc. Rev., vol. 46, no. 18, pp.

5476-5490, Sep. 2017, doi: 10.1039/C7CS00121E.

[14] S. A. P. van Rossum, M. Tena-Solsona, J. H. van Esch, R. Eelkema, and J. Boekhoven,
‘Dissipative out-of-equilibrium assembly of man-made supramolecular materials’, Chem.

Soc. Rev., vol. 46, no. 18, pp. 5519-5535, Sep. 2017, doi: 10.1039/C7CS00246G.

[15] M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience: Exploring the Brain.

Wolters Kluwer, 2016.

94



[16] J. C. Eccles and A. K. Mclntyre, ‘Plasticity of Mammalian Monosynaptic Reflexes’,

Nature, vol. 167, no. 4247, pp. 466—468, Mar. 1951, doi: 10.1038/167466a0.

[17] J. L. Segura, R. Juarez, M. Ramos, and C. Seoane, ‘Hexaazatriphenylene (HAT)
derivatives: from synthesis to molecular design, self-organization and device applications’,

Chem. Soc. Rev., vol. 44, no. 19, pp. 6850-6885, Sep. 2015, doi: 10.1039/C5CS00181A.

[18] R. Wang, T. Okajima, F. Kitamura, N. Matsumoto, T. Thiemann, S. Mataka,and T.
Ohsaka ‘Cyclic and normal pulse voltammetric studies of 2,3,6,7,10,11-
hexaphenylhexazatriphenylene using a benzonitrile thin layer-coated glassy carbon
electrode’, Journal of Physical Chemistry B, vol. 107, no. 35, pp. 9452-9458, Sep. 2003, doi:

10.1021/;p0305281.

[19] M. L. Perrin, R. Frisenda, M. Koole, J. S. Seldenthuis, J. A. Celis Gil, H.Valkenier, J. C.
Hummelen, N. Renaud, F. C. Grozema, J. M. Thijssen, D. Dulic, and H. S. J. van der Zant,

‘Large negative differential conductance in single-molecule break junctions’, Nat

Nanotechnol, vol. 9, no. 10, pp. 830-834, Oct. 2014, doi: 10.1038/nnano.2014.177.

[20] A. Migliore and A. Nitzan, ‘Irreversibility and Hysteresis in Redox Molecular
Conduction Junctions’, J. Am. Chem. Soc., vol. 135, no. 25, pp. 9420-9432, Jun. 2013, doi:

10.1021/ja401336u.

[21] F. Schwarz, G. Kastlunger, F. Lissel, C. Egler-Lucas, S. N. Semenov, K. Venkatesan,
H. Berke, R. Stadler, and E. Lortscher, ‘Field-induced conductance switching by charge-state
alternation in organometallic single-molecule junctions’, Nature Nanotech, vol. 11, no. 2, pp.

170-176, Feb. 2016, doi: 10.1038/nnano.2015.255.

[22] A. R. Garrigues, L. Yuan, L. Wang, E. R. Mucciolo, D. Thompon,E. Del Barco, and C.

A. Nijhuis, ‘A Single-Level Tunnel Model to Account for Electrical Transport through

95



Single Molecule- and Self-Assembled Monolayer-based Junctions’, Sci Rep, vol. 6, no. 1, p.

26517, May 2016, doi: 10.1038/srep26517.

[23] A. Aukauloo, ‘Proton-Coupled Electron Transfer. A Carrefour of Chemical Reactivity
Traditions. RSC Catalysis Series. Edited by Sebastido Formosinho and Moénica Barroso.’,

Angewandte Chemie International Edition, vol. 51, Sep. 2012, doi: 10.1002/anie.201205397.

[24] A. Migliore, N. F. Polizzi, M. J. Therien, and D. N. Beratan, ‘Biochemistry and Theory
of Proton-Coupled Electron Transfer’, Chem. Rev., vol. 114, no. 7, pp. 3381-3465, Apr.

2014, doi: 10.1021/cr4006654.

[25] J. M. Mayer, ‘Understanding hydrogen atom transfer: from bond strengths to Marcus

theory’, Acc Chem Res, vol. 44, no. 1, pp. 3646, Jan. 2011, doi: 10.1021/ar100093z.

[26] S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, and W. D. Lu, ‘Experimental
Demonstration of a Second-Order Memristor and Its Ability to Biorealistically Implement
Synaptic Plasticity’, Nano Lett., vol. 15, no. 3, pp. 2203-2211, Mar. 2015, doi:

10.1021/acs.nanolett.5b00697.

[27] Z. Wang, S. Joshi, S. E. Savel'ev, H. Jiang, R.Midya, P. Lin, M. Hu, N. Ge, J. Paul
Strachan, Z. Li, Q,Wu, M. Barnell, G. Lin Li, H. L. Xin, R. Stanley Williams, Q. Xia, and J.
Joshua Yang, ‘Memristors with diffusive dynamics as synaptic emulators for neuromorphic

computing’, Nature Mater, vol. 16, no. 1, pp. 101-108, Jan. 2017, doi: 10.1038/nmat4756.

[28] N. J. Smelser and P. B. Baltes, Eds., International Encyclopedia of the Social and

Behavioral Sciences. Elsevier, 2001.

[29] Y. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. J.
Marinella, A. A. Talin, and A. Salleo, ‘A non-volatile organic electrochemical device as a

low-voltage artificial synapse for neuromorphic computing’, Nature Mater, vol. 16, no. 4, pp.

414-418, Apr. 2017, doi: 10.1038/nmat4856.

96



[30] H.-C. Ruiz Euler, M. N. Boon, J. T. Wildeboer, B. van de Ven, T. Chen, H. Broersma,
P. A. Bobbert, and W. G. van der Wiel, ‘A deep-learning approach to realizing functionality

in nanoelectronic devices’, Nat. Nanotechnol., vol. 15, no. 12, pp. 992-998, Dec. 2020, doi:

10.1038/s41565-020-00779-y.

[31] M. Kathan, F. Eisenreich, C. Jurissek, A. Dallmann, J. Gurke, and S. Hecht, ‘Light-
driven molecular trap enables bidirectional manipulation of dynamic covalent systems’, Nat

Chem, vol. 10, no. 10, pp. 1031-1036, Oct. 2018, doi: 10.1038/s41557-018-0106-8.

[32] P. Chakma and D. Konkolewicz, ‘Dynamic Covalent Bonds in Polymeric Materials’,
Angew Chem Int Ed Engl, vol. 58, no. 29, pp. 9682-9695, Jul. 2019, doi:

10.1002/anie.201813525.

[33] B. J. Cafferty, A. S. Y. Wong, S. N. Semenov, L. Belding, S. Gmur, W. T. S. Huck, and
G. Whitesides, ‘Robustness, Entrainment, and Hybridization in Dissipative Molecular
Networks, and the Origin of Life’, J Am Chem Soc, vol. 141, no. 20, pp. 8289—8295, May

2019, doi: 10.1021/jacs.9b02554.

[34] G. Ashkenasy, T. M. Hermans, S. Otto, and A. F. Taylor, ‘Systems chemistry’, Chem.

Soc. Rev., vol. 46, no. 9, pp. 2543-2554, May 2017, doi: 10.1039/C7CS00117G.

97



Chapter 5

Single-Molecule Conductance Enhancement in Stable Diradical Molecules

5.1. Introduction

In this chapter, I further pursue the strategy of using the attachment or detachment of
hydrogen atoms to switch the electrical conductance of single molecule. However, in contrast
with the molecules of chapter 4, I consider molecules which form diradicals when hydrogen
atoms are removed. Stable organic radicals are gaining attention, because of their special
electrical features, especially their half-filled orbitals that are near the Fermi energy. These
features make them attractive options for electronic device applications, because organic
radicals can increase electrical conductivity. The thiophene fused dimer core, which has a
skeleton with many substituent sites that can be tuned for optical, electrical, and spin
properties, provides a perfect platform to make stable radicals. The following study aims to
examine the charge transport features of a series of such thiophene dimer derivatives, with a
special emphasis on stable radicals. The potential of radicals in single-molecule electronics
and other functional devices is being realized, and this research is seen as a major step in that
direction. Quantum interference provides an additional dimension to manipulate electron
transport through molecules, including constructive quantum interference (CQI) and
destructive quantum interference (DQI). As highlighted by magic number theory, depending
on connectivity, CQI can lead to difference conductances within one molecule. In this
chapter, two difference CQIs are discussed based on the thiophene dimers shown in Figures
5.1 and 5.2, denoted CQI-H and CQI-L, corresponding to displays of CQI with higher
conductance and lower conductance respectively. In what follows, the effect of diradicals on

the conductance of CQI-H and CQI-L is studied using DFT combined with GOLLUM.
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5.2. Studied molecules

The following molecules will be investigated. As indicated in the figures, these form series of
related molecules, which may exhibit either CQI-L and CQI-H and which may be either
neutral molecules or neutral radicals. The latter are created by removing two hydrogen atoms

from the two OH groups shown below.
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Figure 5.1: Studied diradical molecules and their corresponding neutral molecules. (CQI-H-

radical -CQI-H-singlet-CQI-H-triplet).

When the above molecules are placed between gold electrodes to form a single-molecule
junction, they attach to the electrodes via the thio-methyl groups (coloured blue as a guide to
the eye). In what follows, their transport properties will be compared with those of the

molecules below, which have

alternative connectivities to electrodes.
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The CQI-H radical is a very unstable chemical that has an unpaired electron. There are two

states in which it can exist:
Singlet molecules: There is no net spin in the molecule and all of the electrons are coupled.

Triplet molecules : The molecule has a net spin of one due to the parallel spins of two

unpaired electrons.
These conditions have an impact on the radical's actions and responses. Triplet states,
particularly in processes involving light, can result in distinct reactions, although singlet

states often have lower energies.
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Figure 5.2: Studied diradical molecules and their corresponding neutral molecules. (CQI-L-

radical-CQI-L1-radical-CQI-L-singlet-CQI-L-triplet).

For both sets of molecules, they could adopt singlet or triplet spins configurations. The

potential spin occupancies for the diradicals are shown below.
These compounds contain hydroxyl and sulphur groups in various electronic states:

They include radical forms, which are typically very reactive and have unpaired electrons.
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The singlet state has paired electrons, which increases the molecule's stability.
The triplet state contains unpaired electrons, which makes the molecule more reactive.

In general, the figure shows different forms of comparable sulfur-containing compounds in a

range of energy states.
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Figure 5.3: Schematic shows two spin states for diradical molecules.

According to this graphic, an atom or molecular system's energy levels and state transitions

are represented.

The notations "down" and "up" are likely to correspond to electron spin orientations (spin-
down and spin-up), whereas "singlet" and "triplet" indicate specific spin states determined by

electron pairing.
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This graphic shows the energy hierarchy and potential transitions between singlet and triplet
states, emphasising the ways in which electrons might change between these states according

on energy considerations and spin orientations.

5.3. Results and discussion
Case 1: CQI-H

As shown in Figure 5.9, the HOMO and LUMO products of CQI-neutral have t different
signs and therefore CQI is predicted. This is further confirmed by the transmission function
indicated by the blue curve in Figure 5.4b, where no dip appears inside the HOMO-LUMO
gap as. In terms of its diradical counterpart, the two unpaired electrons sitting on the two
oxygen atoms can have the same spin or different spins, namely, they can be singlets or
triplets as shown in Figure 5.3. These two cases are therefore considered in this chapter. The
transmission coefficient of the singlet case is also plotted in Figure 5.4b, with spin up and
spin down channels almost identical due to the symmetric character of this molecule. The two
peaks near the Fermi level correspond to the SOMO (singly occupied molecular orbital) and
the SUMO (singly unoccupied molecular orbital) respectively. The room temperature
conductance is plotted in Figure 5.5, which shows an increased conductance compared with
its neutral counterpart near the Fermi energy. I further carried on the calculation with a
triplet spin state and plot the transmission curves in Figure 5.6. The two unpaired electrons on
oxygens occupy the two energy levels indicated by the two red peak below Fermi energy.
Figure 5.7 shows that a bigger conductance enhancement is observed, due to the presence of
more resonances near the Fermi energy. The spin densities of the singlet and triplet diradicals
within junctions are displayed in Figure 5.8, where the spin up and spin down are indicated

by red and blue respectively.
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Figure 5.4: (a) the geometries of CQI-H-radical and CQI-H-singlet within junction. (b)their

transmission curves.

The Figure shows how different energy levels in the system are related and how easily
electrons can travel through at various energies. The transmission curves indicate the areas
where electrons can move easily, while the connection curves show the relationships between

states. They work together to help understand the electronic behaviour of the system.
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Comparison of conductance
Log G/Gy

CQI-H-radical CQI-H-singlet

-3.7 -2.6

E-Ep" (eV)

Figure5.5: CQI-H-radical and CQI-H-singlet room temperature conductance for stable

radical where the purple one is the average of spin up and spin down transmission.

This figure compares the logarithmic conductance (log G/Go) of various molecule structures,
particularly through molecular mechanics and E-DFT (Density Functional Theory extended)
computations. This graphic shows the simplicity of the electrical conductivity of several
substances. It demonstrates that the energy state and structure of the molecule determine its

conductance, with radicals and singlet states showing different conductance values.
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Figure 5.6: (a) the geometries of CQI-H-radical and CQI-H-triplet within junction. (b) their
transmission curves.

This graphic shows how the different spin and radical configurations occupy distinct places

across the energy spectrum, as well as the relative energies of these states.

It helps in understanding the stability, electronic transitions, and excited-state characteristics

of CQI-H.
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Comparison of conductance
Log G/Gg

CQI-H-radical CQI-H-triplet
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Figure 5.7: CQI-H-radical and CQI-H-triplet room temperature conductance for stable radical which

the purple one is the average of spin-up and spin-down transmission.
This chart compares the electrical conductance (log G/Go) of various molecular states or
configurations. The horizontal axis indicates energy in electron volts (eV), while the vertical

axis shows the logarithm of the conductance ratio (log G/Go).

The CQI-H-radical has a significantly lower conductance value (about -3.7) than the CQI-H-
triplet (around -1.5). Negative values indicate that the conductance is lower relative to the
reference conductance (Go), with considerable changes depending on whether the molecule is

in a radical or triplet state.
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Figure 5.8: (a) the spin density for CQI-H-singlet within a junction. (b) the spin density for

CQI-H-triplet within a junction.

LUMO=-1.629 eV

HOMO=-4.097 eV

Ef =-2.285 eV

HOMO-1= -4.562 eV HLgap=-2:000¢ LUMO#+1= -1.174 eV

Figure 5.9: Frontier molecular orbitals of CQI-H-radical studied molecule with its
eigenvalues obtained from DFT, where red represents positive and blue indicates negative

regions of the wave functions.

Figure 5.9 shows that the orbital products of the HOMO and LUMO of CQI-H-radical have

opposite signs and so the CQI is predicted.
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The spatial distribution of electrons is defined by wavefunctions that correspond to HOMO,
LUMO, and other orbitals. These distributions affect the molecule's interactions with light,
other compounds, and electric fields. Indicating the energy of the highest occupied electrons
is the HOMO level at -4.097 eV. The energy at which electrons can be excited is indicated by
the LUMO at -1.629 eV. The HOMO-LUMO gap of 2.468 eV represents the energy required

for electronic excitation.

HL gap Spin down

=0.54 eV 3

HL gap spin up .

=0.549 eV J Ef=-4.254 eV
Ry

Spin down
i
ﬁ s - 9
HOMEO-3=-5.001 eV HOMO-2=-4.886 &V HOMO-1= -4.845eV HOMO=-4.525 eV LUMO=-3,985 &V LUMO+1=-2.195 eV
Spln up
-
:,.,,‘
HOMO-3=-5.016 eV HOMO-2=-4.889 eV HOMO-1=-4.831 eV HOMO= -4.526 eV LUMO=-3.977 eV LUMO+1=-2.186 eV

Figure 5.10: Frontier molecular orbitals of CQI-H-singlet studied molecule with its
eigenvalues.

Figure 5.10 shows the frontier molecular orbitals of the CQI-H-singlet diradical molecule, along with
its eigenvalues. In this case, the amplitude of the spin up and spin down LUMOs are negligibly small

on at least one end of the molecule, and therefore, the product rule cannot be applied.
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Figure 5.11: Frontier molecular orbitals of the CQI-H-triplet studied molecule with its eigenvalues

Figure 5.11 shows the frontier molecular orbitals of the CQI-H-triplet diradical, along with its
eigenvalues. In this case, the orbital products of the HOMOs and LUMOs of both the up and down

spins have opposite signs and therefore the product rule predicts CQI for the spin-up and down

transmission functions.
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Case 2: CQI-L

In this section, the molecules with alternative connectivities shown in Figure 5.2 are studied. For CQI-
L, as shown in Figure 5.18, the HOMO and LUMO products have different signs and therefore the
product rule predicts CQI. The transmission functions for this molecule and for the non-radical CQI-
L1-radical are plotted as the blue and brown curves in Figure 5.12(b). Clearly CQI-L1-radical is
predicted to have a significantly higher conductance than CQI-H-radical. In the case of the diradical
counterpart, the two unpaired electrons sitting on the two oxygen atoms can have the same spin or
different spins, namely, they can be singlets or triplets as shown in Figure 5.3. The transmission
coefficient of the singlet case is plotted in Figure 5.14b, with spin up and spin down channels almost
identical due to the symmetric character of this molecule. The room temperature conductance is
plotted in Figure 5.15, which shows an increased conductance compared with its radical counterpart
near the Fermi energy. I carried out the calculation for a triplet spin state and plotted the transmission
curves in Figure 5.16(b). The two unpaired electrons on oxygens occupy the two energy levels
indicated by the two red peaks around Fermi energy. A bigger conductance enhancement is observed

due to more resonances near Fermi energy.
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Figure 5.12:(a) the geometries of CQI-L-radical and CQI-L1-radical within junction. (b) their
transmission curves.

This Figure shows a comparison of the electronic energy levels and characteristics of two
radicals, CQI-L and CQI-L1. The energy values are displayed in electron volts (eV) to
demonstrate the changes in electronic states. The data contains particular energy points for
each radical, demonstrating how their electronic structures change, which might affect their
chemical reactivity and stability. The figure probably highlights the impact of various
computational techniques, such E-EDFT, in determining these energy levels, offering

information about the electrical properties of these radical species.

Comparison of conductance

Log G/G,
CQI-L-radical CQI-L1-radical
-6 -3
-8 .
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Figure 5.13: CQI-L-radical (blue curve) and CQI-L1-radical (red curve) room temperature

conductance for stable radical.
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This Figure shows how the conductance (ability to conduct electricity) of various radical
molecules changes according to their energy level. As energy increases, conductance
decreases, implying that particular molecules conduct better at specific energies. It utilises a
particular calculating approach known as E-EDFT to compare various radicals and how their

electronic structures affect their capacity to conduct electricity.
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Figure 5.14:(a) the geometries of CQI-L-radical and CQI-L-singlet within junction. (b) their

transmission curves.

Increased conductance occurs when molecular states become energetically suitable for

electron tunnelling, such as when energy levels approach the Fermi level.

Conductance decreases occur as these states move away or energy gaps expand, restricting

electron movement.
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Figure 5.15: CQI-L-radical (blue curve) and CQI-L-singlet (purple curve) room temperature

conductance.

This Figure compares the conductance (measured as log G/Go) for two different states: the
radical state and the singlet state. The graph shows how conductance increases with energy
(in eV). It indicates that conductance changes depending on the state, with significant

differences between the radical and singlet states over the energy range.
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Figure 5.16:(a) the geometries of CQI-L-radical and CQI-L-triplet within junction. (b) their

transmission curves.

CQI-L-radical: A radical state that often has an unpaired electron, making it reactive and
important in electron transfer activities. CQI-L-triplet-up and CQI-L-triplet-down are triplet

states with two unpaired electrons and parallel spins ("up" and "down" states).

The transition between different states (such as from CQI-L-radical to triplet states) and their
corresponding energies affect the conductance in the figure. When building molecular
electronic components, the system's conductance—whether high or low—is determined by its

arrangement and energy alignment.

114



Comparison of conductance
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Figure 5.17: CQI-L-radical and CQI-L-triplet room temperature conductance for the stable

diradical.

The purple curve of the diradical is an average of spin-up and spin-down conductance.

The electrical conductance, represented by the log of G divided by Go (log G/Go), is
compared for different states or configurations in this Figure. The conductance value of the
CQI-L-radical is about -6, and the conductance value of the CQI-L-triplet is about -2.9. This
shows that the conductivity in the radical state is much lower than that in the triplet state. The
difference indicates that the radical reduces conductance, most likely due to shifts in spin or

electrical structure between the radical and triplet forms.
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HLgap =2.5 eV

Figure 5.18: Frontier molecular orbitals of CQI-L-radical studied molecule with its eigenvalues.

The orbital ends of HOMO and LUMO have the opposite signs as shown in Figure 5.18, so

CQI is predicted.

HOMO The wavefunction represents the highest energy molecular orbital containing
electrons at ground state. Its wavefunction has a certain symmetry and distribution of electron

density, which determines how the molecule contributes electrons during chemical reactions.

The LUMO wavefunction represents the lowest energy, unoccupied molecular orbital. Its
wavefunction tells where the molecule is most likely to take electrons, which influences its

ability to perform specific reactions or excitations.
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Figure 5.19: Frontier molecular orbitals of CQI-L1- radical studied molecule with its
eigenvalues.

The two ends of the above HOMOs and LUMOs have different signs and therefore the
product rule predicts CQI.

The HOMO and LUMO wavefunctions represent the spatial distribution of electrons in those
orbitals, providing information about the molecule's electrical behaviour, reactivity, and

optical features.

The HOMO wavefunction indicates the location of electrons with the maximum energy.

The LUMO wavefunction indicates where electrons would travel if they were stimulated.
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Figure 5.20: Frontier molecular orbitals of CQI-L-singlet studied molecule with its eigenvalues.

In both spin-up and down of the orbital ends the HOMOs and LUMOs have the opposite

signs as shown in Figure 5.20, so the CQI is again predicted.

This Figure describes the electrical structure, focusing on the spin-dependent energy levels.
Spin splitting affects the distribution of electrons across energy levels, which affects material

properties such as magnetism and conductivity.

The 0.653 eV gap between the spin-up and spin-down states suggests strong spin
polarisation, which can influence electrical features such as magnetic moments and spintronic

behaviour.
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Figure 5.21: Frontier molecular orbitals of CQI-L-triplet studied molecule with its eigenvalues.

The orbital products of both spin-up and spin-down HOMOs and LUMOs have opposite

signs as shown in Figure 5.21, so the CQI is predicted.

The figure shows the energy levels that correspond to the system's spin-up and spin-down
states. It provides the energies of several molecular orbitals, particularly the HOMO (highest
occupied molecular orbital) and LUMO (lowest unoccupied molecule orbital).

For spin-up, the LUMO is at -4.083 eV, and orbitals such as HOMO-1 and HOMO have
energies of about -4.854 eV and -4.506 eV, respectively.

For spin-down, the energies of the corresponding orbitals, HOMO-3 and HOMO-2, are
around -5.039 eV and -4.860 eV, respectively. The HL gap (~0.423 eV) between spin-up and
spin-down states indicates spin polarisation in the system. This gap indicates that the two spin
states are energetically separated, which influences the material's electrical and magnetic

properties.

119



5.5 Conclusion

In conclusion, the study shows that the creation of stable organic diradicals can lead to a large
conductance enhancement in single-molecule junctions. As shown in Figures, 5.13, 5.15 and 5.17 a
conductance increase of between 2 and 3 orders of magnitude can be expected upon removal of two
hydrogen atoms. These results indicate that the ability to attach and detach hydrogen atoms leads to
new strategy for high performance single-molecule switches with attractive on-off ratios. This gives
new options for the development of advanced electrical devices, particularly in spintronics and
molecular electronics, where distinctive features of radicals can be used for new applications. The
stability of these radicals under ambient situations contributes to their potential for practical

application in future electrical systems.
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Chapter 6

Conclusion and Future Work
6.1 Conclusion

This thesis has focused on the following chapters:

Chapter 1 provides a general overview of molecular electronics, thermoelectricity, and the
thesis outline. Chapter 2 provides general ideas of DFT code SIESTA, which is employed to
all the electronic structure computations in this thesis. In the stimulation study, I extracted
and relaxed the Hamiltonian of an isolated molecule before connecting it to metallic
electrodes to calculate transport properties. Chapter 3 covers single-particle transport theory,
which includes the Landau formula, thermoelectric coefficients, and scattering theory.
Chapter 4 This research describes a dynamic molecular switch capable of simulating synaptic
behavior and completing complicated computational tasks, paving the path for future
advances in neuromorphic computing and adaptive electronics.

Chapter 5 in this study indicates that stable organic radicals improve single-molecule
conductivity. The results show that the unique properties of diradicals can be exploited to
create new electrical switches with attractive on-off conductance ratio of between 2 and 3
orders of magnitude. These radicals are stable under ambient conditions, making them

suitable for future electrical systems.
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6.2 Future Work

The research in chapter 4 suggests several recommendations for future work, one of which is
to investigate the possibility of incorporating these dynamic molecular switches into more
sophisticated circuits and systems to explore their potential in neuromorphic computing
further. Additionally, I can focus on improving the performance and stability of these
switches, along with examining their scalability for actual applications in electronic devices.
Future studies could include the creation of new substances or configurations to improve the
efficiency and efficacy of molecular switches in replicating synaptic behaviour.

Chapter 5: The suggested future work in this chapter includes additional research on the
stability and performance of stable organic radicals in diverse environments, especially under
ambient circumstances. Develop stable radicals that can keep their properties outside of
controlled laboratory environments. The possibility of investigating various molecular
configurations and substituents to maximise charge transport characteristics and improve the
performance of single-molecule electrical devices, including spintronics and thermoelectric
applications. For both the HATNA molecule in chapter 4 and the diradicals in chapter 5, the
on-off conductance ratio is sensitive to the position of the Fermi energy and therefore it
would be of interest to vary Ep, either by change the anchor groups, (to eg thiol) or by
varying the electrode materials. In the literature, a wide range of electrode materials have
been explored, including graphene [12], silicene [13] and platinum [14]. For the purpose of
increasing on/off conductance ratios, it may also be of interest to consider using one
superconducting and one normal-metal electrode, so that charge transport is mediated by
Andreev reflection [15-17]. This may be particularly fruitful, because recent studies have
shown that CQ and DQI features persist and on-off ratios are enhanced by the presence of a
superconducting electrode [18,19]. Finally, as well as studying the role of hydrogenation on

Seebeck coefficients, it would be of interest to determine if such changes modify the thermal

127



conductance of diradical and easily reduced molecules such as HATNA. Recently, single-
molecule thermal conductances have been computed by adapting techniques used to model
phonon transport in disordered wires [20] and shown to be in excellent agreement with
experimental thermal conductance measurements [21]. Investigating the effects of external
stimuli such as light or magnetic fields on the molecules, creating molecules with various
conductance states to improve data storage, evaluating the molecules' long-term stability, and
researching the effects of environment and temperature on performance. Additionally,
studying spin and thermoelectric properties, enhancing production techniques for scalability,
and investigating integration with materials like graphene can all contribute to the

advancement of useful applications.
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