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Hybrid Partitioning and GAN-Driven Dynamic Reconfiguration
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Abstract—This paper presents a structured hybrid grid parti-
tioning framework designed to enhance cyber-physical resilience
and scalability in distribution networks, particularly under high
electric vehicle (EV) penetration and evolving cyber threats.
The framework integrates three tightly coupled layers. First, a
graph-based clustering stage introduces spectral-informed adap-
tive hierarchical clustering (SIAHC), which combines global
spectral features with composite electrical distance metrics to
generate modular, self-sufficient, and topologically coherent sub-
networks, supporting power loss minimisation, voltage stabil-
ity, and topological robustness. Second, an optimisation-based
refinement layer employs the alternating direction method of
multipliers (ADMM) for scalable, distributed coordination across
partitions, ensuring feasibility under power flow and voltage
constraints. Third, a feedback-informed data-driven layer inte-
grates a Bayesian LSTM variational autoencoder (LSTM-VAE)
to forecast cost components and learn clustering parameters, and
a conditional Wasserstein GAN (cWGAN-GP) to simulate adver-
sarial scenarios and enable adaptive fallback control under cyber
intrusions. The framework is validated on IEEE 33-bus and 123-
bus systems with high penetration of EVs, energy storage, and
photovoltaics. Results demonstrate improved clustering quality,
reduced power loss and voltage deviations, fast convergence, and
enhanced cyber-resilience.

Index Terms—Grid Partitioning, Forecasting, Optimisation,
Generative Adversarial Networks, Electric Vehicles

NOMENCLATURE
V , E Set of all buses and electrical edges in the network
T Time horizon (number of time steps)
t Time index
b, b1, b2, bn, bd Bus indices
V t
b , θt

b Voltage magnitude and phase angle at bus b at time t
Vbase, θbase System base voltage and phase angle used for normalisation voltage differ-

ence terms
Vnom Nominal voltage used for reference in voltage stability cost
P t

b1b2
, Qt

b1b2
Active/reactive power flow between buses b1 and b2

P t
bbn

, Qt
bbn

Power flow from neighbouring bus bn to node b

P t
bbd

Active power from node b to downstream bus bd

P gen
b , P load

b Active power generation and load at bus b

P net
b Net power injection at bus b: P gen

b − P load
b

Rb1b2
, Rbbn Resistance of the transmission line between buses

e, st EV and ESS indices
E, ST Total number of EVs and stationary ESSs
x1, x2 EV routing location indices
∆xt

x1,x2,e Routing distance of EV e between locations x1 and x2 at time t
Q Set of all energy storage devices, including ESS and EVs
SoCt

st State of charge of ESS st at time t
P t

ch,st, P
t
dis,st Charging/discharging power of ESS st

P t
ch,e, P

t
dis,e Charging/discharging power of EV e

Pmax,q Maximum power capacity of storage unit q ∈ Q
rtEV Maximum allowable EV routing activity at time t
K, Kp, Krefined Initial cluster set, pth cluster, and final refined cluster set
C A specific cluster (or partition)
P , p Total number of partitions and partition index
Γb1b2

Binary variable indicating active edge between b1 and b2
wb1b2

Edge importance in partitioning cost J5

N (b) Downstream neighbours of bus b
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Sboundary
p Set of boundary buses in partition p used for consensus coordination

ζ ∈ {V, θ, P,Q} Set of physical variables involved in consensus updates
ζp,boundary Boundary variable for partition p
uζ,p Dual variable for variable ζ in partition p
J1, ...,J6 Cost functions
∆J t

6 Deviation in cybersecurity cost at time t due to intrusion
closs, cvolt, cdeg, cop Cost coefficients for power loss, voltage deviation, battery degra-

dation, and ESS
ρdeg, ρop Battery degradation and operational multipliers
ctravel, cch, cdis EV cost terms for travel, charging, discharging
w1, w2, w5 Objective weights in ADMM
wa, wd, wu Weights for cybersecurity cost components
welec, wsync, wself Weights for composite electrical distance
m Index over spectral weights {welec, wsync, wself}
selec, ssync, sself Spectral scores used to compute distance weights
stotal Sum of all spectral scores for normalisation
w341

, w342
, w343

Weights for cost, posterior regularisation, and clustering feasibility
losses in the Bayesian LSTM-VAE

αθ Weighting factor adjusting the influence of phase angle misalignment in J5

β, βc Scaling parameters for global and intra-cluster affinity matrix decay
τsw Binarisation threshold for relaxed switching variables post-ADMM
τvar, τentropy Thresholds for variance and entropy fallback
τpri, τdual Convergence thresholds for ADMM
τmerging, ρpenalty Parameters for AHC merge and modularity preservation
τmin, τmax Lower/upper bounds on merging threshold
τ1, τ2, τ3 Validation thresholds for clustering quality
τc Minimum size threshold for intra-cluster spectral refinement
τcyber Cybersecurity resilience threshold triggering reconfiguration
γk

penalty Penalty parameter at ADMM iteration k
δpenalty Gradient penalty coefficient in cWGAN-GP loss
Cphys Physical plausibility filter for synthetic adversarial vectors
Θ̂

t

cluster Predicted clustering parameters at time t
Θt

used Final clustering parameters deployed at time t
Θt

fallback Fallback configuration used under high uncertainty
Θt,cyber

fallback Cyber-aware fallback clustering parameter set
Θt,updated

used Cyber-aware fallback clustering parameter set
πt

control Current control policy at time t
rkp , r

k
d Primal and dual residuals at iteration k

W,L Affinity matrix and Laplacian
λ2, λ3 Fiedler value and third eigenvalue
∆λ Spectral dispersion across refined clusters (λ3 − λ2)
v⃗2 Fiedler vector
Hspec Spectral entropy
Dcomp, Delec, Dsync, Dself Composite and component distance metrics
Deff

ij Effective merge distance between clusters Ci and Cj with penalty
JPθ Jacobian submatrix
xt Feature or vector for Bayesian LSTM-VAE
ht LSTM hidden state
Ωt Latent representation of system state
ŷt Predicted output vector from Bayesian LSTM-VAE
L34 Composite training loss for Bayesian LSTM-VAE
Lpenalty Gradient penalty term enforcing Lipschitz constraint
LDcyber ,LGcyber Discriminator and generator losses for the cWGAN-GP

R(Θ̂
t

cluster) Penalty for infeasible clustering parameter predictions
k ADMM iteration index
kmax Maximum number of ADMM iterations allowed
Ngate Number of consecutive steps exceeding cyber risk threshold to trigger

reconfiguration
ℓ Temporal window length for LSTM input sequence
ct Conditioning vector for cWGAN-GP at time t
Tres, Tres,min, Tres,max Raw, minimum, and maximum system response delays
vreal,vfake Real and generated intrusion vectors
Rcyber Resilience score
z Latent noise input to GAN generator
ε Random scalar for vector interpolation in gradient penalty
ϵ1, ϵ2 Small constants for numerical stability and threshold increment
εcyber Small constant in resilience score definition to avoid division by zero
dv , dc, dz , dtime, dπ Dimensions of GAN-related vectors, intrusion, conditioning in-

put, latent noise, temporal encoding, and control policy
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I. INTRODUCTION

A. Background and Motivation

THE rapid growth of electric vehicles (EVs) presents
major challenges for distribution networks, due to their

unpredictable and spatially diverse charging behaviour. This
complicates power flow balancing, voltage regulation, and
storage scheduling. Also, the increased connectivity of EVs
and energy storage systems (ESSs) introduces cyber-physical
vulnerabilities like coordinated charging attacks that can dis-
rupt grid stability [1].

Traditional centralised control systems often cannot han-
dle these rapidly changing conditions [2]. Researchers have
proposed a range of robust control strategies, such as sliding
mode control, H∞ control, and backstepping methods, to
enhance resilience and maintain voltage and frequency sta-
bility under uncertain conditions (e.g., communication delays,
cyber disturbances, and faults) [3], [4]. While effective for
local stability and fault tolerance, these strategies typically
rely on fixed system topologies and detailed models, thereby
limiting scalability and adaptability under dynamic conditions.
Multi-agent coordination offers a decentralised alternative,
enabling distributed decision-making across agents such as
generators, loads, and batteries [5]. This supports plug-and-
play operation and fault recovery. However, such methods may
be difficult to scale in fast-changing environments and often
require high communication overhead. Moreover, the emergent
system behaviour can be hard to predict due to decentralised
control. Intrusion detection systems have also been deployed
to strengthen the cybersecurity of microgrids by detecting
anomalies such as false data injection (FDI), denial-of-service
(DoS), or topology tampering [6]. These range from rule-
based and model-based methods to more advanced machine
learning approaches [7]. Although these solutions enhance
threat detection, they rely heavily on data quality and tuning,
and typically react to threats rather than proactively mitigating
vulnerabilities.

In parallel, grid partitioning has emerged as a promising
approach to enhance modularity, fault isolation, and resilience
by dividing large networks into smaller, flexible clusters
that can operate independently or cooperatively during faults
or attacks [8], [9]. A wide range of partitioning methods
have been proposed, each offering distinct strengths and
limitations. Community-based and zone-based clustering are
simple and scalable but often overlook critical electrical or
operational features unless explicitly integrated [10], [11].
Electrical distance-based methods better capture physical net-
work structure but can be sensitive to topological changes
and are computationally intensive [12]. Optimisation-based
techniques are goal-driven, targeting load balancing, loss
minimisation, or resilience, but tend to be model-dependent
and resource-heavy [13]. Spectral and hierarchical clustering
provide scalable, structure-aware partitioning using topological
properties, though they generally are not adaptable to dynamic
conditions unless augmented with data-driven elements such
as real-time measurements or historical load profiles [14]. Ma-
chine learning-based methods have shown potential for real-
time adaptability, but often rely on high-quality labelled data

and function as black boxes, limiting physical interpretabil-
ity [9]. K-means clustering, while fast and straightforward
for similarity-based grouping, does not inherently account for
network topology or electrical constraints unless these are
explicitly encoded [8].

Hence, although each method offers useful capabilities,
none fully satisfies the combined requirements of interpretabil-
ity, adaptability, and cyber-resilience. This motivates the de-
velopment of hybrid approaches that integrate modelling,
optimisation, and learning to support scalable and resilient grid
operation under uncertainty.

B. Related Work

Several hybrid partitioning frameworks have been pro-
posed that integrate structural modelling with optimisation
or learning. However, few explicitly address cyber-resilience
or enable real-time reconfiguration, particularly in distribu-
tion systems with high EV penetration. Some approaches
incorporate electrical distance metrics alongside optimisation
to balance physical realism and operational efficiency. For
example, [15] employs Louvain clustering based on voltage
sensitivity, followed by flow-based refinement to improve
modularity. While structurally effective, real-time adaptability
and cyber-physical resilience are not incorporated. A dynamic
partitioning approach in [16] focuses on optimally operat-
ing a centralised shared energy storage system using multi-
objective optimisation and decision-making. It supports real-
time adaptability, but it does not offer learning mechanisms
or address cyber-resilience and structural interpretability. To
support adaptive reconfiguration and cyber-aware operation,
[17] proposes a cloud-edge framework that combines deep
learning with partitioning rules to respond to abnormal load
behaviour. However, it does not explicitly model cyber threats
or preserve physical interpretability, limiting its utility in
resilience-oriented scenarios.

Several recent hybrid partitioning frameworks incorporate
spectral or hierarchical techniques to exploit underlying net-
work structure. For instance, [18] proposes a bi-objective
method that combines spectral clustering with weighted con-
sensus to balance active power and voltage controllability. It
integrates multiple partitions via consensus strategies, but it
does not offer interpretability, real-time adaptability, or cyber-
resilience. In [19], a hierarchical spectral clustering approach
uses a Laplacian derived from admittance or power flow data
and applies unsupervised clustering based on eigenvectors
to generate multilevel dendrograms. This method is scalable
and interpretable through spectral embedding but assumes
static topologies and does not support dynamic operation
or cyber-physical robustness. The framework in [20] guides
clustering using structural indicators (e.g., electrical coupling
and modularity) along with rule-based boundary adjustment,
but it remains limited to static scenarios without provisions
for cyber-aware adaptation. In [21], spectral graph clustering
is used for intentional islanding by minimising inter-island
power imbalance with a weighted Laplacian matrix. While op-
erationally sound and structurally grounded, it is not designed
for learning-based adaptation or resilience to cyber threats.
Spectral feature extraction via singular value decomposition
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TABLE I
COMPARISON TABLE: HYBRID PARTITIONING METHODS IN POWER GRID APPLICATIONS

Ref. Partitioning method Hybrid components CP stress
testing

Key features
and limitations

Opt. Learn. Adapt.

[16] Dynamic optimisation-based partitioning for shared
energy storage allocation

✓ ✗ ✓ ✗ Optimises storage sharing with adaptive partitioning; no
clustering, learning, or cyber-physical aspects.

[17] Cloud-edge framework combining DL-based operation
with partitioning

✓ ✓ ✓ ✗ Deep learning with edge-side rules; adaptable under
abnormal loads; no structural interpretability

[18] Spectral clustering with weighted consensus
aggregation for bi-objective partitioning

✓ ✗ ✗ ✗ Balances active power and voltage control; no learning,
adaptability, and physical interpretability

[19] Hierarchical spectral clustering via normalised
Laplacian with admittance and power flow weights

✓ ✗ ✗ ✗ Multi-scale clustering preserving internal structure; no
adaptive dynamics

[20] Hierarchical partitioning via structural indicators and
modularity heuristics

✓ ✗ ✗ ✗ Incorporates physical structure and boundary adjustment
logic; no learning and cyber-physical adaptability

[21] Spectral graph clustering using weighted Laplacian to
minimise power imbalance

✓ ✗ ✗ ✗ Structurally grounded and operationally sound; static
design with no learning or adaptive control

[22] Spectral feature extraction via singular value
decomposition with affinity propagation clustering

✓ ✗ ✗ ✗ Combines spectral embedding and unsupervised
refinement; no adaptability or cyber-awareness

[23] Agglomerative hierarchical clustering via
full-dimensional electrical distance matrix

✓ ✓ ✗ ✗ Models wind uncertainty and volatility; interpretable via
sensitivity metrics; no explicit cyber resilience

This
paper

SIAHC partitioning with ADMM optimisation and
LSTM-VAE learning

✓ ✓ ✓ ✓ Hybrid and cyber-resilient with structural modelling,
learning, and adaptive reconfiguration

Abbreviations: Opt. = Optimisation; Learn. = Learning-based; Adapt. = Real-time adaptation; CP = Cyber-physical; DL= Deep learning

is combined with affinity propagation clustering and iterative
validation in [22]. Despite its unsupervised optimisation and
structural grounding, it functions offline and does not offer
adaptive or cyber-resilient operation. A reactive voltage par-
titioning method is introduced in [23] that incorporates wind
power uncertainty using agglomerative hierarchical clustering.
It enables dynamic reconfiguration and maintains physical
interpretability via sensitivity-based metrics by constructing a
full-dimensional electrical distance matrix over forecast inter-
vals. However, it does not explicitly address cyber-resilience.
Table I provides a comparative summary of these methods.

C. This Work: Contributions and Scope

This paper presents a structured hybrid grid partitioning
framework designed to enhance modularity, cyber-physical
resilience, and adaptive operation in distribution networks. The
framework comprises three complementary components:

First, a novel graph-based clustering method called
“spectral-informed adaptive hierarchical clustering (SIAHC)”
is introduced. It integrates global spectral properties with
composite electrical distance metrics to generate modular,
synchronised, and self-sufficient sub-networks. The process
involves three stages: (i) spectral pre-analysis for parame-
ter initialisation, (ii) adaptive hierarchical clustering (AHC)
guided by physical and operational constraints, and (iii) spec-
tral refinement to enhance intra-cluster resilience and stability.

Second, an optimisation-based refinement stage uses the al-
ternating direction method of multipliers (ADMM) to enforce
operational constraints. It decomposes the global problem into
parallel subproblems (one per partition) and ensures consis-
tency through consensus on boundary variables. Switching
variables are relaxed during iterations and binarised afterward
to aid convergence under nonlinear conditions. Unlike mixed-
integer programming, ADMM enables scalable, modular op-
timisation aligned with the pre-defined grid structure [2].

Third, a data-driven adaptation layer improves decision-
making under uncertainty by learning from EV mobility,
storage dynamics, and cyber threat signals. It integrates two

models: (i) a Bayesian LSTM-VAE for forecasting clustering
parameters and operational costs based on temporal trends,
and (ii) a conditional Wasserstein GAN with gradient penalty
(cWGAN-GP) to simulate cyber-physical intrusion scenar-
ios (e.g., FDI, DoS). These models support cyber-resilient
operation by informing dynamic reconfiguration and refin-
ing clustering weights and fallback policies. Although such
architectures have been used for forecasting and anomaly
detection, this work uniquely couples a Bayesian LSTM-VAE
with an offline-trained cWGAN-GP to actively drive cyber-
aware clustering adaptations.

To the best of the authors’ knowledge, no existing work
integrates graph-based clustering, distributed optimisation, and
learning-based resilience testing within a feedback-informed
framework that could enhance cyber-physical resilience of EV-
intensive distribution systems.

The remainder of this paper is organised as follows: Sec-
tion II formulates the cost function and operational constraints.
Section III details the proposed hybrid grid partitioning frame-
work. Section IV presents case study validations and com-
parisons with state-of-the-art methods. Section V discusses
limitations and directions for future work, and Section VI
concludes the paper.

II. COST FUNCTIONS AND CONSTRAINTS

High EV penetration poses several challenges, including in-
creased power losses, voltage instability, complex scheduling,
and greater cyber-physical vulnerability. To address these, the
proposed framework adopts a modular design with six distinct
cost components, each targeting a specific operational goal.
Rather than combining them into a single weighted objective,
these components are optimised separately across different
layers, supporting scalability, modularity, and resilience.

1) Transmission loss cost (J1): quantifies resistive trans-
mission losses within the distribution network [13]:

J1 = closs

T∑
t=1

∑
b1,b2∈V
b1<b2

Rb1b2

(P t
b1b2

V t
b1

)2

+

(
Qt

b1b2

V t
b1

)2
 , (1)
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where closs is the cost coefficient for power loss, T is the time
horizon, and V is the set of network buses. Rb1b2 denotes
the resistance between buses b1 and b2. The condition b1 <
b2 ensures that each pair of buses is considered only once
to avoid double-counting in symmetric configurations. P t

b1b2
,

Qt
b1b2

denote the active and reactive power flows at time t.
2) Voltage deviation penalty (J2): penalises deviations of

bus voltage magnitudes from its nominal value:

J2 = cvolt

T∑
t=1

∑
b∈V

(
V t
b − Vnom

Vnom

)2

, (2)

where cvolt is the cost coefficient for voltage deviations, V t
b is

the voltage at bus b at time t, and Vnom is the system’s nominal
voltage.

3) Stationary ESS cost (J3): models the costs associated
with stationary ESS:

J3 = ρopcop + ρdegcdeg

ST∑
st=1

T∑
t=1

(
P t

ch,st + P t
dis,st

)
, (3)

where the total number of ESS units is denoted by ST , with
each unit st operating at charging and discharging power levels
P t

ch,st and P t
dis,st at time t, respectively. The operational cost

includes a scaled fixed term, ρopcop, for short-term usage (e.g.,
maintenance, standby losses), and a degradation cost, ρdegcdeg,
reflecting long-term wear based on energy throughput, where
cdeg denotes the per-unit battery replacement cost.

4) EV scheduling cost (J4): models the operational ex-
penses associated with EVs as mobile energy storage units,
incorporating travel, charging, and discharging costs across
time and space:

J4 =

E∑
e=1

T∑
t=1

(
ctravel∆xXt

x1,x2,e
+ cchP

t
ch,e + cdisP

t
dis,e

)
, (4)

where E is the number of EVs, and ∆x is the distance between
locations x1 and x2. The binary variable Xt

x1,x2,e ∈ {0, 1}
indicates whether the eth EV travels between these points at
time t. The coefficients ctravel, cch, and cdis are the costs per
unit distance, charging energy, and discharging energy, respec-
tively. P t

ch,e and P t
dis,e represent the charging and discharging

power of the eth EV at time t.
5) Grid partitioning and reconfiguration cost (J5): pro-

motes efficient and secure grid operation by penalising incon-
sistencies in voltage and phase angles across reconfigurable
transmission lines:
J5 =

∑
b1,b2

Γb1b2wb1b2

(
(Vb1 − Vb2 )

2

V 2
base

+ αθ
(θb1 − θb2 )

2

θ2base

)
, (5)

where Γb1b2 ∈ {0, 1} is a binary decision variable indicating
whether the link between buses b1 and b2 is active, and wb1b2

reflects the importance of that connection. Vbase and θbase are
normalisation constants for voltage and phase, respectively,
while αθ scales the weight of phase misalignment.

6) Cybersecurity cost (J6): quantifies the operational risk
introduced by cyberattacks and the system’s ability to detect
and mitigate such threats:

J6 = wa(FPR− ADR) + wdT̂res + wuFNR, (6)

where ADR, FPR, and FNR denote the anomaly detection
rate, false positive rate, and false negative rate, respectively,
all normalised to [0, 1] for balanced scaling. These metrics are

defined as: ADR = TP/(TP + FN), FPR = FP/(FP + TN),
and FNR = FN/(FN + TP) = 1 − ADR, where TP,
FP, TN, and FN denote true positives, false positives, true
negatives, and false negatives, respectively. T̂res ∈ [0, 1]
represents the normalised response delay between attack
occurrence and effective mitigation, computed as T̂res =
(Tres − Tres,min)/(Tres,max − Tres,min), where Tres is the raw
measured delay, and Tres,min, Tres,max define the expected op-
erating range. The weights wa, wd, and wu prioritise detection
accuracy, response speed, and reduction of undetected threats,
respectively.

To ensure the stability, safety, and resilience of networked
distribution systems with integrated EVs, the proposed op-
timisation framework incorporates several key operational
constraints. These include: (i) power balance, enforcing local
active power consistency at each bus via Kirchhoff’s Current
Law; (ii) voltage limits, keeping bus voltages within safe oper-
ating ranges; (iii) line flow limits, preventing thermal overloads
in transformers and lines; (iv) storage dynamics, modelling
state-of-charge (SoC) evolution for stationary ESSs and EVs;
and (v) network radiality, preserving tree-like topologies by
prohibiting cycles during cluster merging. These constraints
are mathematically formulated as [13]:



P
gen
b +

∑
q∈Qb

P t
dis,q − P load

b −
∑

q∈Qb

P t
ch,q =

∑
n∈N (b)

P t
bn, b ∈ V,

∑
bn

(
P t
bbn
−Rbbn

(P t
bbn

)2 + (Qt
bbn

)2

(V t
b )

2

)
=

∑
bd∈N (b)

P t
bbd

,

Vmin ≤ V t
b ≤ Vmax, ∀b ∈ V,

Pmin
b1b2

≤ P t
b1b2

≤ Pmax
b1b2

, Qmin
b1b2

≤ Qt
b1b2

≤ Qmax
b1b2

,

SoCt+1
q = SoCt

q +
ηch,qP

t
ch,q

cq
−

P t
dis,q

ηdis,qcq
, ∀q ∈ Q,

0 ≤ SoCt
q ≤ 1, 0 ≤ {P t

ch,q , P
t
dis,q} ≤ Pmax,q , ∀q ∈ Q,

|ECi∪Cj
| < |VCi∪Cj

|, ∀Ci, Cj .
(7)

where P t
bbn

and Qt
bbn

are the active and reactive power flows
between buses at time t, and V t

b is the voltage magnitude at bus
b. Also, P gen

b and P load
b are the generation and load powers,

respectively. The set N (b) includes the downstream neigh-
bours of bus b, and Rbbn is the resistance of the corresponding
line. Voltage limits are specified by Vmin and Vmax, while line
flow limits are given by P

min /max
b1b2

and Q
min /max
b1b2

. For the set
Q = QESS ∪QEV, which includes both stationary and mobile
storage units, the SoC for each device q ∈ Q evolves according
to efficiency parameters ηch,q and ηdis,q , and storage capacity
cq . Charging and discharging power levels, P t

ch,q and P t
dis,q , are

constrained by the maximum limit Pmax,q . Finally, to maintain
a radial network structure, any two candidate clusters Ci and
Cj being merged must satisfy |ECi∪Cj | < |VCi∪Cj |, where E
and V are the sets of electrical edges and buses, respectively.
It ensures loop-free connectivity and prevents the formation
of isolated subnetworks. Notably, two complementary power
balance constraints are considered: one ensures nodal energy
balance at each bus, while the other accounts for resistive
line losses, enhancing the accuracy of voltage drop and power
dispatch estimates.
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III. PROPOSED HYBRID PARTITIONING FRAMEWORK

To manage the growing complexity of networked distribu-
tion systems, driven by high EV and ESS integration and rising
cyber-physical threats, a scalable, adaptive, and resilient hybrid
partitioning framework is proposed. Unlike traditional static
graph- or rule-based methods, this approach integrates three
synergistic layers within a feedback-informed architecture.

The process begins with a graph-based clustering layer that
partitions the network into modular, self-sufficient subsystems
based on electrical coupling, dynamic synchrony, and local
self-sufficiency metrics. Intra-cluster spectral analysis is then
used to prune weak connections and stabilise voltage profiles,
indirectly supporting the minimisation of cost objectives J1

(power loss), J2 (voltage stability), and J5 (reconfigura-
tion cost). Next, an optimisation layer refines each cluster,
treating partitions as autonomous agents that minimise local
costs while coordinating with neighbouring clusters at shared
boundaries. This decentralised strategy preserves network
structure and enforces voltage and flow constraints, thereby
jointly minimising J1, J2, and J5. To maintain adaptability
and resilience under uncertainty, the final layer introduces
a data-driven coordination mechanism. It dynamically tunes
clustering parameters using forecast models and simulated
stress tests, proactively assessing system robustness and trig-
gering fallback reconfiguration when resilience thresholds are
breached. This directly targets cost objectives J3 (stationary
ESS), J4 (EV scheduling), and J6 (cybersecurity resilience).

Fig. 1 presents the workflow of the proposed hybrid frame-
work. Each stage is broken down into its most critical decision
blocks, data exchanges, and feedback mechanisms. For clarity,
the flowchart focuses primarily on high-level transitions and
does not include lower-level checks, internal flags, or itera-
tive subroutines. These additional implementation details are
discussed in the following sections.

A. Step 1: Graph-based clustering

The clustering process follows a three-step SIAHC ap-
proach: (i) spectral pre-analysis to extract global structural fea-
tures and initialise parameters, (ii) constraint-aware adaptive
hierarchical clustering (AHC) based on a composite electrical
distance metric, and (iii) intra-cluster spectral refinement to
split weakly connected clusters and improve modular stability
and resilience. Therefore, the proposed SIAHC uses spectral
features both as a prior to initialise the AHC and as a posterior
to validate and refine the results to ensure that the clustering
is not only physically grounded and modular but also robust
against internal fragility. The complete clustering workflow is
presented in Algorithm 1. Although spectral analysis precedes
hierarchical clustering in implementation, AHC is described
first here to clarify its parameterisation, which is subsequently
guided by the spectral properties of the Laplacian.

1) Adaptive hierarchical clustering (AHC): The AHC algo-
rithm is guided by a composite electrical distance metric Dcomp

b1b2
which combines static electrical coupling, dynamic synchrony,
and local energy self-sufficiency:

D
comp
b1b2

= welecD̃
elec
b1b2

+ wsyncD̃
sync
b1b2

+ wselfD̃
self
b1b2

, (8)

1 Build graph matrices, compute spectral 
features, and partition buses using sign of 

Fiedler vector 

Calculate clustering weights:
Set merging threshold:   

YES

NO

Initialise cluster set and 
compute composite distance

Merge clusters
YES

NO

ST
EP

 1
-1

ST
EP

 1
-2

Effective merge distance

STEP 1: GRAPH-BASED CLUSTERING

All metrics (ECI, 
ICS, SSI) OK?

NO

YES

For each cluster, compute local 
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Fig. 1. Proposed hybrid grid partitioning and resilience framework

where welec, wsync, and wself are weights tuned based on
spectral properties of the Laplacian (computed in subsec-
tion III-A2).

Let the unnormalised electrical distance between two buses
b1 and b2 be defined as:

Delec
b1b2

= J∗
Pθ(b1, b1)− J∗

Pθ(b1, b2)− J∗
Pθ(b2, b1) + J∗

Pθ(b2, b2), (9)

where J∗Pθ is the Moore-Penrose inverse of the active
power–phase angle Jacobian submatrix, computed as J∗Pθ =(
J⊤PθJPθ

)−1
J⊤Pθ [12].

The normalised electrical distance is extracted from:

D̃elec
b1b2

=
Delec

b1b2
−Delec

min

Delec
max −Delec

min

, (10)
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Algorithm 1 SIAHC for graph-based partitioning
1: Inputs: (V, E); constraints; ρpenalty; τc; Θt

used from Step 3 (Section III-C)
2: Output: Krefined = {K1, . . . ,KP}, each with boundary set Sboundary

p

Step 1-1: Spectral pre-analysis
3: Compute W,L, λ2, λ3, v⃗2, ∆λ, Hspec
4: Partition V into Groups A and B using the sign of v⃗2

5: if Θt
used is available then

6: (welec, wsync, wself, τmerging, ρpenalty)← values from Θt
used

7: else
8: Compute weights welec, wsync, wself
9: Set merging threshold: τmerging ← 1/(λ2 + ϵ1)

10: end if
Step 1-2: Adaptive hierarchical clustering

11: Initialise K ← {Cb}b∈V
12: Compute Dcomp

b1b2
(using current weights)

13: valid ← False;
14: Enable options: greedy ← True, use_ANN ← True
15: while not valid do
16: merged ← True
17: while merged do
18: merged ← False
19: Identify pair (Ci, Cj) with minimum Dcomp

ij

20: if Ci, Cj belong to opposite Fiedler groups then
21: Deff

ij ← Dcomp
ij + ρpenaltyij

22: else
23: Deff

ij ← Dcomp
ij

24: end if
25: if Deff

ij < τmerging and constraints satisfied then
26: Merge: Ci ← Ci ∪ Cj , update K,
27: merged ← True
28: else
29: merged ← False
30: end if
31: end while
32: Evaluate clustering using ECI, ICS, SSI
33: if All metrics satisfy thresholds then
34: valid ← True
35: else
36: if greedy then
37: Preserve validated clusters and incrementally refine unstable ones
38: else
39: Reset: K ← {Cb | b ∈ V}
40: Re-compute Dcomp

b1b2
if weights changed

41: end if
42: Update merging threshold: τmerging ← τmerging + ϵ2
43: end if
44: end while

Step 1-3: Intra-cluster spectral refinement
45: Krefined ← ∅
46: for each cluster C ∈ K do
47: Construct local matrices WC , LC

48: Extract λ(C)
2 and Fiedler vector v⃗(C)

2
49: refined ← False
50: if λ(C)

2 < λmin and |C| ≥ τc then
51: Partition C into Subgroups Sub1, Sub2 via sign of v⃗(C)

2

52: Compute new values λ
(Sub1)
2 , λ(Sub2)

2
53: if Both improved and constraints satisfied then
54: Add Sub1, Sub2 to Krefined
55: refined ← True
56: end if
57: end if
58: if not refined then
59: Add C to Krefined
60: end if
61: end for
62: return Krefined −→ Step 2 (Section III-B);
63: ECIt, ICSt, SSIt, λ̄2, ∆̄λ, |Krefined|, τmerging −→ Step 3-1 (Section III-C1)

where Delec
min and Delec

max are the minimum and maximum
values of Delec

b1b2
computed across all bus pairs. Similarly, the

normalised synchronisation distance is computed as:

D̃
sync
b1b2

=
1− Cov(θb1 (t),θb2 (t))

σb1
σb2

−D
sync
min

D
sync
max −D

sync
min

, (11)

where Cov(θb1(t), θb2(t)) is the covariance of voltage angle
time series and σb1 , σb2 are their respective standard devia-

tions. Finally, the normalised self-sufficiency distance D̃self
b1b2

is computed as:

D̃self
b1b2

=

∣∣∣∣(P
gen
b1

−P load
b1

P
gen
b1

+P load
b1

)
−
(

P
gen
b2

−P load
b2

P
gen
b2

+P load
b2

)∣∣∣∣−Dself
min

Dself
max −Dself

min

, (12)

Given a candidate clustering K, the clustering objective
minimises the intra-cluster composite distances:

min
K

∑
C∈K

∑
b1,b2∈C
b1<b2

D
comp
b1b2

, (13)

Aside from improving modularity, minimising intra-cluster
composite distances enhances cyber-resilience by creating
compact, well-isolated clusters. This helps contain disruptions
locally and reduce inter-cluster exposure.

As shown in Step 1-2 of Algorithm 1, the AHC procedure
proceeds through five main stages: initialisation, modularity-
aware merging, iterative merging, validation, and termination.
During initialisation, each bus b ∈ V is treated as an individual
cluster Cb, and a composite electrical distance matrix Dcomp

b1b2
is computed using three spectral-informed weights: electrical
proximity (welec), dynamic synchrony (wsync), and local self-
sufficiency (wself). These weights, along with the initial merg-
ing threshold τ

(0)
merging, are derived from spectral pre-analysis in

Step 1-1. To discourage premature or physically implausible
merges, a modularity-preserving penalty ρpenalty is applied if
candidate clusters originate from opposite sides of the Fiedler
split. In such cases, the effective merge distance is computed
as Deff

ij = Dcomp
ij + ρpenaltyij .

In each iteration, the algorithm merges the pair of clusters
with the lowest effective distance Deff

ij , provided it is below
the threshold τmerging and the resulting subgraph remains
sparse. An optional use_ANN flag accelerates merging via
approximate nearest neighbour search.

Following merging, validation is performed using three met-
rics: (1) electrical cohesiveness index (ECI), which measures
intra-cluster compactness, (2) inter-cluster separation (ICS),
which assesses distinctiveness between clusters, and (3) self-
sufficiency index (SSI), which evaluates energy autonomy
within each cluster:

ECI = 1−

∑
b1∈V

∑
b2∈N (b1)

D
comp
b1b2∑

b1,b2∈V
D

comp
b1b2

, ICS =

∑
b1∈V

∑
b2 /∈N (b1)

D
comp
b1b2∑

b1,b2∈V
D

comp
b1b2

,

SSI = 1−

∣∣∣∣∣ ∑b∈C
P net
b

∣∣∣∣∣∑
b∈C

(
|P gen

b |+ |P
load
b |

) .
(14)

Acceptable clusters must satisfy the thresholds ECI ≥ τ1,
ICS ≥ τ2, and SSI ≥ τ3. If a cluster fails validation, the
merging threshold τmerging is adjusted, and cluster assignments
may be revised using nearest-neighbour reassignment. Mean-
while, the greedy termination logic governs the algorithm’s
response to persistent validation failure. If the greedy flag
is disabled, the algorithm resets all clusters to singletons and
restarts the process. If enabled, it retains validated clusters and
continues refining only the unstable ones.
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2) Spectral pre-analysis and parameter initialisation: Be-
fore hierarchical clustering begins, a spectral pre-analysis
is performed to extract global structural features from the
network graph and initialise the key parameters for AHC
(i.e., the distance weights (welec, wsync, wself) and the adaptive
merging threshold τmerging).

The distribution network is represented as a weighted
undirected graph (V, E). Each edge is weighted by electrical

proximity as Wb1b2 = exp

(
−

Dcomp
b1b2

β2

)
, where Wb1b2 is the

affinity between buses b1 and b2, and β is a positive scaling
parameter that controls the decay of similarity with distance.
The corresponding Laplacian L = D−W is constructed, and
its spectral decomposition yields three critical indicators: (i)
the Fiedler value λ2 which represents algebraic connectivity
(ii) the spectral gap ∆λ = λ3 − λ2, indicating modular
separation, and (iii) the spectral entropy Hspec, capturing the
uniformity of energy distribution in the spectrum.

A preliminary partition is obtained via the sign of the Fiedler
vector v⃗2 to separate buses into two groups as: A = {b ∈ V |
v⃗2(b) ≥ 0} and B = {b ∈ V | v⃗2(b) < 0}.

These spectral quantities inform the initial parameter set-
tings for AHC via the following qualitative mappings:


∆λ large ⇒ ↑ welec (emphasise modularity)

λ2 low ⇒ ↓ τmerging (limit premature merges)

λ2 low ⇒ ↑ wsync (emphasise synchrony)

Hspec high ⇒ ↑ wself (promote self-sufficiency)

To formalise these heuristics, let us define:

selec = ∆λ, ssync =
1

λ2 + ϵ1
, sself = Hspec, (15)

which are normalised to obtain weights wm = sm/stotal, where
m ∈ {elec, sync, self} and stotal = selec + ssync + sself.

The spectral entropy is computed as Hspec =

−
∑|V|

ν=2 λ̃ν log λ̃ν , where λ̃ν denotes the normalised
eigenvalue magnitude. The initial merging threshold is also
derived from spectral properties as τ

(0)
merging = 1/(λ2 + ϵ1),

where ϵ1 is a small regularisation constant to avoid division
by zero. It should be noted that these parameters guide the
initial clustering behaviour, but they are not fixed and are
adaptively updated in Step 3.

3) Spectral refinement for intra-cluster stability: After
initial clustering via AHC, a spectral refinement stage is
applied to strengthen intra-cluster connectivity and modular
stability. Each cluster C ∈ K is treated as a subgraph with
its own Laplacian LC = DC − WC , where the affinity
matrix WC is computed using intra-cluster composite elec-
trical distances, scaled by a local decay parameter βc as

W
(C)
b1b2

= exp

(
−

Dcomp
b1b2

β2
c

)
.

The cluster’s algebraic connectivity is assessed via its
Fiedler value λ

(C)
2 . If λ(C)

2 < λmin and the cluster size satisfies
|C| ≥ τc, the cluster is bisected into two subgroups based on
the sign of v⃗(C)

2 :Subgroup Sub1 =
{
b ∈ C | v⃗(C)

2 (b) ≥ 0
}
,

Subgroup Sub2 =
{
b ∈ C | v⃗(C)

2 (b) < 0
} (16)

Algorithm 2 ADMM-based operational refinement
1: Inputs: Refined partitions Krefined = {Kp}Pp=1; initial normalised state

variables (ζ̃0
p,boundary,Γ

0
p); initial penalty parameter γ0

penalty; dual variables
{ũ0

ζ,p}ζ∈{V,θ,P,Q}; convergence thresholds τpri, τdual; maximum iterations kmax;
threshold τsw ∈ (0, 1)

2: Output: Final operational states (ζ∗
p , Γbin

p , ζ̃∗
p,boundary) for all Kp ∈ Krefined; cost

values (J ∗
1 , J ∗

2 , J ∗
5 )

3: converged ← False
4: k ← 0 ▷ Initialise iteration counter
5: while not converged do
6: for all Kp ∈ Krefined (in parallel) do
7: Solve relaxed local subproblem for continuous states

(V k+1
p , θk+1

p , Pk+1
p , Qk+1

p ) and relaxed switching variables Γk+1
p ∈ [0, 1]

using Eq. (19)
8: end for
9: for all ζ ∈ {V, θ, P,Q} and p = 1 to P do

10: Update consensus variables and dual variables using Eq. (20)
11: end for
12: Compute primal and dual residuals (rkp , r

k
d)

13: Update penalty parameter γk
penalty

14: if ∥rkp∥ ≤ τpri and ∥rkd∥ ≤ τdual then
15: converged ← True
16: else if k ≥ kmax then
17: converged ← True ▷ Force termination (non-converged)
18: else
19: k ← k + 1
20: end if
21: end while

22: for all Kp ∈ Krefined do
23: Project relaxed switching states: Γbin

p = I[Γ∗
p ≥ τsw]

24: end for
25: return (ζ̃∗

p,boundary)
[1:2] −→ Step 3-2 (Section III-C2);

26: (J ∗
1 , J ∗

2 , J ∗
5 ) −→ Step 3-1 (Section III-C1)

The split is accepted only if both resulting sub-clusters
exhibit improved algebraic connectivity and remain compliant
with operational constraints. Clusters smaller than the thresh-
old τc are exempt from refinement unless they violate these
constraints.

The main output of this step is the refined cluster set
Krefined = {Kp}Pp=1. For each refined cluster Kp ∈ Krefined,
the set of boundary buses is defined as:

Sboundary
p ← {b1 ∈ Kp | ∃ b2 /∈ Kp such that (b1, b2) ∈ E} , (17)

i.e., the buses in Kp that are directly connected to nodes in
other clusters. These sets are finalised and used in Step 2 to
enforce inter-cluster consensus constraints during distributed
optimisation.

B. Step 2: Optimisation-based operational refinement

This step focuses on optimising operational performance by
performing distributed optimisation over the refined partitions
Krefined generated in Step 1. The global coordination objective
aggregates partition-level costs across the network as:

min
{V t

p ,θtp,P
t
p,Q

t
p,Γp}

P∑
p=1

(w1J1,p + w2J2,p + w5J5,p) , (18)

subject to several operational constraints (detailed in sec-
tion II). The weights w1, w2, w5 serve as empirically tunable
multipliers used to adjust the importance of each objective.

Each partition Krefined = {Kp}Pp=1 operates as an in-
dependent optimisation agent. The coordination problem is
solved using an ADMM-based algorithm (Algorithm 2), which
allows parallel solving of local subproblems while maintaining
consistency at shared boundaries. Its decision variables include
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voltage magnitudes and phase angles (V t
p , θ

t
p), active/reactive

powers (P t
p, Q

t
p), and switching states Γp:

(V k+1
p , θk+1

p , Pk+1
p , Qk+1

p ,Γk+1
p ) =

arg min
Vp,θp,Pp,Qp,Γp∈[0,1]

[
w1J1,p + w2J2,p + w5J5,p

+
γk

penalty

2

∑
ζ∈{V,θ,P,Q}

∥∥∥ζ̃p,boundary − ˜̄ζk + ũk
ζ

∥∥∥2 ],
(19)

where ζ̃ = ζ/ζbase denotes the normalised form of each elec-
trical variable ζ ∈ {V, θ, P,Q}. Coordination across clusters
is enforced at the boundary buses Sboundary

p , which connect
each refined partition Kp to neighbouring clusters. At these
interfaces, consensus is achieved by enforcing ζp,boundary = ζ̄,
ensuring inter-cluster consistency of shared state variables.
The variable penalty parameter γk

penalty is updated adaptively at
each iteration to balance convergence between primal and dual
residuals (rkp , r

k
d). If the primal residual dominates, γk

penalty is
increased, and if the dual residual is larger, it is decreased.
When the two are balanced within a given threshold, the
penalty remains unchanged.

After solving the local subproblems, consensus and dual
variables are updated via averaging:

˜̄ζk+1 =
1

P

P∑
p=1

(
ζ̃k+1
p,boundary + ũk

ζ,p

)
,

ũk+1
ζ,p = ũk

ζ,p +
(
ζ̃k+1
p,boundary −

˜̄ζk+1
)
.

(20)

The procedure iterates until residuals fall below predefined
thresholds or maximum iterations are reached. After con-
vergence, the relaxed switching decisions Γ∗p ∈ [0, 1] are
projected to binary decisions via a thresholding operation as:
Γbin
p = I[Γ∗p ≥ τsw], where τsw ∈ (0, 1) and I[·] denotes

the indicator function, returning 1 if the condition inside the
brackets is true.

Each cluster returns its final operational states ζ∗p , binary
switching decisions Γbin

p , and consensus-aligned boundary
variables ζ̃∗p,boundary. These are used to compute the cost
components J ∗1 ,J ∗2 ,J ∗5 , which serve as inputs to Step 3-
1 for forecasting. Meanwhile, the first two components of the
boundary variables, (ζ̃∗p,boundary)

[1:2], are passed to Step 3-2 to
support resilience assessment under adversarial stress testing.

C. Step 3: Data-driven learning and adaptive reconfiguration
for cyber-physical resilience

Steps 1 and 2 of the proposed framework generate struc-
turally modular and operationally optimised partitions based
on physics-aware clustering (via SIAHC) and distributed op-
timisation (via ADMM). However, these steps are based on
statically tuned parameters (i.e., welec, wsync, wself, τmerging, and
ρpenalty), which may not remain optimal under dynamic grid
conditions. Moreover, some operational costs (e.g., J3 for
storage, J4 for EV scheduling, and J6 for cyber resilience)
cannot be easily modelled with static optimisation.

To address these limitations, Step 3 develops a data-driven
coordination layer. This layer adaptively updates clustering
parameters using historical data as well as learnt cost forecasts
and simulated cyber-physical disruptions. Step 3 consists of
two interconnected modules:

1) Step 3-1: Data-driven learning of clustering parame-
ters: This step forecasts storage and mobility costs J3 and
J4 using a Bayesian LSTM-VAE trained on historical data.
Based on these forecasts, it predicts clustering parameters (i.e.,
welec, wsync, wself, τmerging, and ρpenalty). These parameters are
then used in Step 1.

The input vector at time t captures the dynamic relationship
between storage behaviour, EV mobility, current clustering
configuration, and recent cost values:
xt =

[ ∑
q

SoCt
q,

∑
q

P
t
ch,q,

∑
q

P
t
dis,q︸ ︷︷ ︸

EV/ESS

,
∑

x1,x2,e

∆x
t
x1,x2,eX

t
x1,x2,e︸ ︷︷ ︸

EV routing distance

,

J ∗
1 , J ∗

2 , J ∗
5︸ ︷︷ ︸

Lagged costs (Step 2)

, ECIt, ICSt, SSIt, λ̄2, ∆̄λ, |Krefined|, τmerging︸ ︷︷ ︸
Clustering parameters (Step 1)

]
,

(21)

where λ̄2 = 1
|Krefined|

∑
C∈Krefined

λ
(C)
2 is the average Fiedler

value and ∆̄λ = 1
|Krefined|

∑
C∈Krefined

(
λ
(C)
3 − λ

(C)
2

)
. As shown,

EV and ESS operations are also taken into account, influencing
the stationary cost J3 and EV cost J4.

The input sequence {xt,1, . . . ,xt,ℓ}, defined over a temporal
window of length ℓ, is processed by a Bayesian LSTM
encoder to model temporal dependencies and encode grid
behaviour with uncertainty awareness. To account for posterior
uncertainty, multiple latent samples are drawn via Monte Carlo
sampling and passed through the decoder. The final prediction
is obtained by averaging the decoded outputs over all samples
and consists of two parallel multi-layer networks:

ŷt =

ŵt
elect, ŵt

sync, ŵt
self, τ̂ tmerging, ρ̂penalty

t︸ ︷︷ ︸
ŷ
(1)
t =Θ̂

t
cluster

, Ĵ t
3 , Ĵ t

4︸ ︷︷ ︸
ŷ
(2)
t

 ∈ R7 (22)

The Bayesian LSTM-VAE is trained using the composite
objective L34 that balances cost prediction accuracy, posterior
regularisation, and clustering feasibility:

L34 = w341

(∣∣∣∣∣ Ĵ t
3 − J t

3

J̄3

∣∣∣∣∣+
∣∣∣∣∣ Ĵ t

4 − J t
4

J̄4

∣∣∣∣∣
)

+ w342KL
(
qϕ(Ωt | ht) ∥N (0, I)

)
+ w343 · R(Θ̂

t
cluster)

(23)

where w341 , w342 , and w343 are weights that control the trade-
off between cost prediction accuracy, latent space regulari-
sation, and feasibility of the clustering parameters. Normal-
isation is applied over the training dataset DT (e.g., J̄3 =

1
|DT |

∑
t J t

3 ). The second term adds a Kullback–Leibler (KL)
divergence between the learnt latent posterior qϕ(Ωt | ht),
which models the distribution of latent variables Ωt given the
encoded input history ht, and a standard normal prior N (0, I).
This acts as a regulariser and helps the model learn structured,
uncertainty-aware representations. The third term R(Θ̂

t

cluster)
applies a soft penalty on the predicted clustering parameters:

ŵt
elect, ŵt

sync, ŵt
self ≥ 0, ŵt

elect + ŵt
sync + ŵt

self ≤ 1,

τmin ≤ τ̂ tmerging ≤ τmax, 0 < ρ̂penalty
t ≤ ρmax

penalty.
(24)

The model parameters are trained using stochastic gra-
dient descent to minimise the loss in Eq. (23). Once
training is complete, the model operates over rolling win-
dows of real-time data, forecasting both the cost compo-
nents (Ĵ t

3 , Ĵ t
4 ) and the clustering parameters as Θ̂

t

cluster =
[ŵelec, ŵsync, ŵself, τ̂merging, ρ̂penalty].
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To ensure safe operation under uncertainty, a fallback
mechanism is employed. The predicted configuration is only
accepted if (i) the variance of the clustering weights remains
below a threshold τvar, and (ii) the entropy of the latent
posterior remains below τentropy. If either condition is violated,
a conservative fallback Θt

fallback is used:

Θt
used =

{
Θ̂

t
cluster, if both uncertainty checks are satisfied,

Θt
fallback, otherwise.

(25)

The fallback configuration Θt
fallback reuses the most recent

parameter set that successfully passed the uncertainty checks.
Finally, Θt

used is sent to Step 1-1 for adaptive spectral partition-
ing. Also, the predicted clustering weights (ŵelec, ŵsync, ŵself)

and the cost estimates (Ĵ t
3 , Ĵ t

4 ) are sent to Step 3-2, where
they help test the system’s resilience to simulated cyberattacks.
For simplicity, static parameters (e.g., merging threshold and
merging penalty) are excluded since they do not fluctuate as
much in the short term.

2) Step 3-2: Cyber-physical resilience testing and adaptive
reconfiguration: The Bayesian LSTM-VAE in Step 3-1 fore-
casts operational and mobility-related EV/ESS costs (J3,J4)
and informs clustering decisions under dynamic conditions.
However, cyber-physical threats often involve rare (or un-
known) attack patterns that are not captured in historical data.
To address this, Step 3-2 uses a cWGAN-GP to generate di-
verse and physically plausible cyberattack scenarios (e.g., FDI,
DoS, and topology tampering) to assess system robustness
under adversarial stress. These scenarios are used to evaluate
the impact on the cyber-resilience objective J6 and trigger
fallback reconfiguration, if necessary.

The cWGAN-GP comprises a generator Gcyber(·) and dis-
criminator Dcyber(·), both conditioned on the real-time opera-
tional state vector ct ∈ Rdc that encapsulates the most cyber-
vulnerable features of the microgrid:

ct =

[ ∑
x1,x2,e

∆xt
x1x2,e

Xt
x1,x2,e︸ ︷︷ ︸

EV routing

, ŵt
elec, ŵt

sync, ŵt
self︸ ︷︷ ︸

Clustering weights (Step 3-1)

,

Ṽ ∗,t
b1

, θ̃∗,tb1
, . . . , Ṽ ∗,t

bNb
, θ̃∗,tbNb︸ ︷︷ ︸

2Nb consensus boundary bus values (Step 2)

, tt

]⊤
,

(26)

where the full set of boundary buses is given by Sboundary =⋃
p S

boundary
p and the total number of unique boundary nodes

is Nb = |Sboundary|. These boundary values are included in the
input because they are especially sensitive to cyber-physical
disruptions and help capture how the system might react under
attack. The temporal vector tt ∈ Rdtime includes time-related
information like hour-of-day or season. All features in ct are
standardised using historical data. The total number of input
features is dc = 1 + 3 + 2Nb + dtime.

To train cWGAN-GP, the discriminator Dcyber maximises the
difference in predicted scores between real and fake intrusion
vectors, while the generator Gcyber aims to fool it. A gradient
penalty is used to enforce Lipschitz continuity and improve
convergence. The loss functions are defined as [24]:



LDcyber = Evfake

[
Dcyber(vfake, ct)

]
− Evreal

[
Dcyber(vreal, ct)

]
+ δpenalty · Eṽ

[(∥∥∇ṽDcyber(ṽ, ct)
∥∥
2
− 1
)2]︸ ︷︷ ︸

Gradient penalty (Lpenalty)

LGcyber = − Ez
[
Dcyber(Gcyber(z, ct), ct)

]
, (27)

where vfake = Gcyber(z, ct) ∈ Rdv is a synthetic intrusion
vector, generated from latent noise z ∼ N (0, I) ∈ Rdz and
the current conditioning vector ct ∈ Rdc . The interpolated
vector ṽ used for the gradient penalty is formed as ṽ =
εvreal +(1−ε)vfake, where ε ∼ U(0, 1) is a scalar drawn from
the continuous uniform distribution on [0, 1]. The operator
Ex[·] denotes the mean value taken over the distribution of
the random variable x.

Once trained, the generator Gcyber can produce a wide
range of intrusion vectors vfake. To ensure realism, each
generated vector is passed through a physical plausibility
check Cphys(vfake, ct), which verifies whether the operational
constraints in Section II are met. Only vectors with Cphys = 1
are retained for downstream testing.

Verified adversarial scenarios are used to evaluate changes
in the cyber-resilience cost J6. To avoid overreacting to
transient spikes in cyber risk from random GAN outputs, an
adaptive gating mechanism is introduced. Reconfiguration is
triggered only if the cyber risk increment ∆J t

6 exceeds a
threshold τcyber for at least Ngate consecutive time steps:

∆J t
6 =

∣∣∣J t,perturbed
6 − J t,nominal

6

∣∣∣
=
∣∣∣wa [∆(FPR− ADR)] + wd ∆T̂res + wu ∆FNR

∣∣∣ , (28)

If ∆J t
6 > τcyber, the system activates an adaptive reconfig-

uration policy.
Θ

t,updated[1:3]
used ← Θ

t,cyber[1:3]
fallback , (29)

where Θ
t,cyber[1:3]
fallback is a predefined cyber-aware clustering pa-

rameter subset selected from historical worst-case scenarios to
ensure safe system operation under suspected cyber threats. It
must be noted that Step 3-1 forecasts the full clustering pa-
rameters Θt

cluster for use in Step 1-1, but Step 3-2 overrides the
first three components by issuing the fallback set Θt,cyber[1:3]

fallback ,
which is then forwarded to Step 1-1 for reconfiguration.

A potential control policy vector πt
control ∈ Rdπ can be

defined to encode real-time operational settings that influence
resilience and cost:

πt
control =

 rtEV︸︷︷︸
EV routing

limit

, P t
ch,q︸ ︷︷ ︸

EV/ESS charging
setpoint

, P t
dis,q︸ ︷︷ ︸

EV/ESS discharging
setpoint

, tt
⊤

, (30)

where rtEV controls the allowable EV routing intensity. If
adversarial stress testing reveals elevated cyber risk, Step 3-2
triggers a fallback control policy πt

fallback that constrains these
parameters to conservative values selected from a predefined
library based on historical worst-case scenarios.

IV. VERIFICATION AND CASE STUDIES

This study employs the IEEE 33-bus distribution system
from the MATPOWER dataset repository [25]. To model
EV charging demand in the 33-bus network, static charging
stations are assigned to Buses 9, 17, and 32, with baseline
charging loads of 30 kW, 50 kW, and 60 kW, respectively.
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Dynamic depot-level EV load profiles are superimposed using
the NREL commercial fleet charging dataset [26], mapped to
Bus 9 for peak demand stress, Bus 17 for moderate flexibility,
and Bus 32 for low-power overnight charging. To simulate
mobility-aware EV storage, the VISTA travel dataset [27] is
used to generate 100 individual EV agent behaviours, mapped
randomly across buses 2–33 and scheduled dynamically based
on availability windows. Complementing the mobile EV
agents, three fixed battery ESS are installed at Buses 7, 19,
and 29 with rated capacities of 30 kWh, 40 kWh, and 35 kWh,
respectively (with peak hours 17:00–21:00, up to 200 kW
power capability). To evaluate the impact of these components
on system stability, Fig. 2a illustrates voltage magnitudes
over time at several critical buses. Three photovoltaic (PV)
generators are also integrated at Buses 5, 11, and 24. To
evaluate the scalability of the proposed framework, simulations
are extended to the IEEE 123-bus distribution system. Six
static EV charging stations are installed at Buses 15, 30, 45,
65, 85, and 100, each assigned depot-level load profiles from
the NREL commercial fleet dataset. In addition, 300 mobile
EV agents are synthesised using the VISTA travel behaviour
dataset and randomly mapped across Buses 2–123. Five fixed
ESS units, with capacities ranging from 45 to 70 kWh, are
also deployed at Buses 12, 38, 52, 76, and 91. In addition,
four PV generators are integrated at Buses 25, 50, 70, and 90.
As illustrated in Fig. 2b, the IEEE 123-bus network exhibits
significantly greater voltage variability than the 33-bus case,
with some nodes (e.g., Bus 65) experiencing drops as low as
0.60 p.u. and standard deviations up to 0.057 p.u, emphasising
the need for scalable coordination in systems with high EV,
ESS, and PV penetration.

1) SIAHC performance: As shown in Fig. 3a, Step1-
2 generates six initial clusters via AHC, based on a
composite distance metric combining electrical proximity
(welec=0.2630), dynamic synchronisation (wsync=0.1121), and
local self-sufficiency (wself=0.6218). A conservative merging
threshold (τmerging=0.0598) and moderate separation penalty
(ρpenalty=0.2) are applied to preserve structural integrity and
intra-cluster coherence. In Step1-3, spectral refinement is
applied to each cluster. If a cluster’s algebraic connectivity
λ
(C)
2 falls below the threshold λmin= 0.07 and the cluster size

|C| ≥ τc=4, it is partitioned along the Fiedler vector v⃗(C)
2 . As

illustrated in Fig. 3b and summarised in Table II, two of the
six initial clusters (2 and 4) are refined, resulting in a total
of eight validated clusters. The final solution demonstrates
strong clustering quality with ECI=0.8406, ICS=0.9445, and
SSI=0.7089, confirming that Step 1-3 effectively improves
internal connectivity.

K-means clustering is applied to the same composite dis-
tance matrix to serve as a benchmark against SIAHC. Since
K-means assumes Euclidean space, classical multidimensional
scaling is used to project the non-Euclidean distances into
two dimensions. To ensure a fair comparison, the number of
clusters is fixed to match SIAHC’s final count (|C| = 8). As
shown in Fig. 3c, K-means fragments topologically coherent
areas such as buses 14-17, due to its limited topological and
structural awareness. K-means achieves higher inter-cluster
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Fig. 2. Comparison of temporal voltage profiles at selected critical buses with
EVs, ESS, and PVs. (a) Voltages for IEEE 33-bus. (b) Voltages for IEEE 123-
bus.

separation (ICS=0.9587), but it underperforms on electrical
cohesion (ECI= 0.7224) and self-sufficiency (SSI=0.5862). In
terms of execution time, K-means runs significantly faster
(nearly 10× faster), but it sacrifices physical interpretability.

To evaluate scalability, SIAHC is applied to the IEEE 123-
bus system. As shown in Fig. 4a, Step1-2 produces 21 initial
clusters based on a composite metric (welec=0.2405, wsync =
0.1373, wself=0.6222), using τmerging=0.044 and ρpenalty=0.15.
Clusters larger than 10 (|C| ≥ τc=10) with poor spectral
connectivity (λ2 < 0.04) are further refined via Fiedler
vector partitioning (see Table II). This process results in 25
final clusters (Fig. 4b), with improved validation metrics:
ECI=0.8871, ICS=0.9263, and SSI=0.7924. K-means is also
applied using the same composite matrix, with |C| = 25. As
depicted in Fig. 4c, K-means captures certain local groupings
but causes fragmentation in topologically complex regions.
Despite a slightly higher ICS = 0.9412, it shows lower
cohesion (ECI = 0.7528) and self-sufficiency (SSI = 0.6121).
Although K-means achieves slightly higher separation, SIAHC
provides better cohesion and self-sufficiency, resulting in more
meaningful and system-aware clusters.

2) ADMM performance: Fig. 5a illustrates the time-series
trends of the three weighted cost components (i.e., power
loss J1, voltage deviation J2, and reconfiguration J5), over
a 24-hour horizon. All three costs rise and fall in tandem,
peaking around 18:00, which shows how network congestion
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Fig. 3. Clustering results on the IEEE-33 bus system. (a) Initial clusters K obtained from AHC. (b) Refined clusters Krefined after applying spectral refinement.
(c) Clusters obtained from K-means clustering in embedded space. (cluster colours represent group membership; colour indices may differ between subplots.)
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Fig. 4. Comparison of clustering results on the IEEE-123 bus system. (a)
Initial clusters K obtained from AHC. (b) Refined clusters Krefined after
spectral refinement. (c) Clusters from K-means clustering in embedded space.

TABLE II
CLUSTER REFINEMENT RESULTS

(REFINEMENT THRESHOLDS τc = 4, λmin = 0.07 FOR IEEE-33 AND
τc = 10, λmin = 0.04 FOR IEEE-123)

System Init Size λ2 Refined? New ID(s) New size(s) % Preserved

IEEE-33 1 1 NaN No 1 1 100
2 14 1.50× 10−4 Yes 2, 3 7, 7 50, 50
3 3 3.70× 10−14 No 4 3 100
4 13 6.41× 10−7 Yes 5, 6 7, 6 53.85, 46.15
5 1 NaN No 7 1 100
6 1 NaN No 8 1 100

IEEE-123 1 1 NaN No 1 1 100
2 11 1.32× 10−4 Yes 2, 3 5, 6 45.5, 54.5
3 11 9.21× 10−5 Yes 4, 5 6, 5 54.5, 45.5
4 3 2.88× 10−3 No 6 3 100
5 9 7.02× 10−6 No 7 9 100
6 6 1.43× 10−6 No 8 6 100
7 8 4.11× 10−2 No 9 8 100
8 12 3.54× 10−7 Yes 10, 11 6, 6 50, 50
9 2 1.87× 10−5 No 12 2 100

10 4 3.12× 10−4 No 13 4 100
11 7 8.25× 10−12 No 14 7 100
12 13 5.03× 10−5 Yes 15, 16 7, 6 53.85, 46.15
13 4 2.61× 10−2 No 17 4 100
14 5 3.40× 10−6 No 18 5 100
15 5 7.80× 10−7 No 19 5 100
16 5 6.21× 10−5 No 20 5 100
17 5 9.16× 10−4 No 21 5 100
18 1 NaN No 22 1 100
19 2 4.87× 10−6 No 23 2 100
20 1 NaN No 24 1 100
21 8 2.78× 10−8 No 25 8 100

affects system-wide performance. The dominance of J5 is
expected, given the configured weights and penalty settings
(Γ = [10, 10, 10], w = [10, 8, 12], and αθ = 0.8), which
strongly penalise mismatches across the three reconfigurable
lines ((3,8), (12,14), and (20,25)). Fig. 5b shows the cost
incurred by each cluster before and after ADMM coordination.
Without coordination, some clusters, particularly clusters 5
and 6, exhibit higher relative costs due to their size (or local
load conditions). Once ADMM is applied, all clusters benefit
from coordinated optimisation, with cost reductions most
visible during peak hours. Fig. 5c compares cost transitions
across four coordination stages: (i) no clustering, (ii) unrefined
clustering using AHC (6 clusters), (iii) refined clustering via
spectral refinement (8 clusters), and (iv) coordinated optimi-
sation via ADMM. The comparison confirms that clustering
alone yields minimal improvement, refinement enhances clus-
ter cohesion, but it is the final ADMM-based coordination that
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drives substantial cost reduction.
To address the impact of using different ADMM variants,

Fig. 6a compares the performance of the conventional ADMM
(fixed penalty) with other ADMM variants, all applied after
the same SIAHC-based partitioning. As shown, the variable
penalty ADMM used in this work (red line) achieves the
lowest overall cost across most of the 24-hour horizon. Other
ADMM variants also perform well during specific intervals.
The convexified ADMM from [2] (pink line), which was de-
signed for PV coordination, performs strongly between 11:00-
14:00 h when PV generation is active (left inset). The smooth-
consensus ADMM from [16] (blue line), which was designed
for ESS coordination, shows a slight advantage during peak
hours (≈ 18:00-20:00 h), when storage dispatch is most active
(right inset).

The ADMM-based approach in this paper demonstrates
reliable and fast convergence across all evaluated scenarios.
As shown in Fig. 6b, the dual residual decreases rapidly,
with the variable penalty ADMM (red curve) reaching the
predefined threshold (τdual = 10−3) by iteration 28, faster
than all other methods. With simplified load conditions and
fewer active constraints, the convergence is even faster and
the primal residual decreased from 2.1 × 10−1 to below
10−4 within 8 iterations, with the dual residual meeting its
threshold by iteration 14. In comparison, smooth-consensus
ADMM (from [16]) converges moderately fast, while both
fixed penalty ADMM and convexified ADMM (from [2])
exhibit slower convergence and more residual oscillations. The
inset plot (iterations 15-45) depicts these differences more
clearly, with the proposed approach showing the smoothest
and steepest residual drop. These results show the advantage
of adjusting the penalty parameter during the process. It
starts at γ0

penalty = 10.0 and gradually drops to about 0.15
by the time the algorithm converges. In addition, the use
of convex relaxation for switching states and warm-started
variable initialisation in this paper helps maintain stability and
ensures smooth decay of residuals. Fig. 6c offers a broader
estimated comparison of the four ADMM variants across eight
key criteria. The variable penalty ADMM shows consistently
strong performance, especially in convergence speed, residual
smoothness, and final objective value. Fixed penalty ADMM
stands out for its simplicity and low communication over-
head, making it appealing for lightweight implementations.
Smooth-consensus ADMM performs well in terms of residual
smoothness and communication efficiency. The convexified
ADMM outperforms others in terms of final objective value
and memory usage.

The proposed ADMM-based coordination method is de-
signed to scale efficiently with network size. As the number of
clusters increases, convergence iterations and execution time
grow but remain manageable due to localised, neighbour-
to-neighbour communication patterns. In the IEEE-33 bus
case, the algorithm converged in 28 iterations with a total
execution time of 32.3 seconds, demonstrating fast and stable
performance. This is owing to adaptive penalty tuning, con-
vex relaxation of discrete control variables, and warm-started
initialisation. For the more complex IEEE-123 system, which
contains over three times as many clusters, convergence is

achieved in 116 iterations with an execution time of 203.6
seconds.

3) Clustering parameter learning via Bayesian LSTM-VAE:
The Bayesian LSTM-VAE model predicts cost components
related to stationary energy storage and EV mobility (Ĵ t

3 , Ĵ t
4 ),

while simultaneously outputting an optimal set of clustering
parameters (Θ̂

t

used), which guide the downstream process. As
shown in Fig. 7, the model demonstrates strong predictive
capability for key clustering weights (ŵelect, ŵsync, ŵself) that
govern affinity matrix construction. This confirms the model’s
ability to approximate clustering behaviour in a data-driven
and interpretable manner.

The prediction accuracy for cost components J3 and J4 is
assessed via root mean squared error (RMSE) and normalised
mean absolute error (nMAE) over the full test horizon, and
the results are presented in Table III. RMSE indicates strong
accuracy, while higher nMAE reflects the influence of small
true values amplifying normalised errors.

TABLE III
PREDICTION ACCURACY FOR ESS AND EV SCHEDULING COSTS

Metric J3 (Storage) J4 (EV scheduling)

RMSE 0.9725 1.0286
nMAE 1.0203 1.0985

4) Cyber-physical resilience via cWGAN-GP: To evaluate
the resilience of the proposed GAN-aware control frame-
work, extensive simulations are conducted on the IEEE-33
and IEEE-123 distribution systems under varying levels of
EV penetration and adversarial attack intensity. Cyber threats
are generated using a trained cWGAN-GP model, which
produces stealthy and coordinated perturbations to voltage
and power setpoints at randomly selected buses, mimicking
FDI attacks. To construct the resilience heatmaps shown in
Fig. 8, test scenarios are defined across combinations of EV
penetration levels and attack intensities (i.e., numbers of buses
compromised). For each scenario, a series of Monte Carlo
simulations is performed as follows: the cWGAN-GP gener-
ates perturbations, the partitioned control scheme responds,
and the system’s voltage profiles are recorded. A constraint
violation is registered if the voltage magnitude at any bus
exceeds the safety range (Vmin ≤ V t

b ≤ Vmax). The fraction
of control clusters with at least one violation is computed and
averaged across 10 trials to ensure statistical robustness. The
resulting heatmaps illustrate the system’s vulnerability surface,
where darker regions indicate a higher proportion of clusters
violating voltage constraints. The dashed boundary indicates
the fallback threshold, empirically defined as the point where
more than 5% of clusters exhibit voltage violations, triggering
reconfiguration. Within this boundary, the system remains
stable without intervention, while crossing it signals the onset
of systemic stress. Results show that in the IEEE-33 system,
constraint violations rise significantly beyond 7 attacked buses
and 22% EV penetration (see Fig. 8a). In contrast, the IEEE-
123 system tolerates up to 22 simultaneous attacks and 40%
EV penetration with minimal disruption (see Fig. 8b). This
demonstrates the advantages of larger system scale, greater
control granularity, and a more complex topology in absorbing
adversarial disturbances.



IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. XX, NO. X, XXXX 2025 13

C
os

t v
al

ue
 (w

ei
gh

te
d 

co
st

 u
ni

ts
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (h)
0 5 10 15 20

J1:: Power loss
               J2::Voltage deviations

          J5:: Reconfiguration

(a)

J 1
+J

2+
J 5

 (w
ei

gh
te

d 
co

st
 u

ni
ts

)

0.4

0.5

0.6

Time (h)
0 5 10 15 20

0

0.1

0.2

Cluster 1 (Pre.)
Cluster 1 (Post)
Cluster 2 (Pre.)
Cluster 2 (Post)
Cluster 3 (Pre.)
Cluster 3 (Post)
Cluster 4 (Pre.)
Cluster 4 (Post)
Cluster 5 (Pre.)
Cluster 5 (Post)
Cluster 6 (Pre.)
Cluster 6 (Post)
Cluster 7 (Pre.)
Cluster 7 (Post)
Cluster 8 (Pre.)
Cluster 8 (Post)

0.3

(b)

J 1
+J

2+
J 5

 (w
ei

gh
te

d 
co

st
 u

ni
ts

)

1.5

2

2.5

Time (h)
0 5 10 15 20

0

0.5

1

Total system cost (No clustering)
Sum over clusters (Unrefined, 6)
Sum over clusters (Refined, 8)
Sum over clusters (Post-ADMM)

(c)
Fig. 5. The impact of ADMM-based optimisation on cost trends across coordination stages and time. (a) Weighted cost components over time. (b) Per-
cluster cost comparison before and after ADMM coordination. (c) Cost transitions for: no clustering, AHC clustering, refined clustering, and ADMM-based
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To determine an appropriate threshold for triggering fallback
reconfiguration (τcyber), a sensitivity analysis is conducted
(Fig. 9). As τcyber increases, fallback activations become
less frequent (Fig. 9a), but the deviation ∆J 6norm (Fig. 9b)
grows post-attack. The average cost J̄ 6 (Fig. 9c) shows
a minimum near τcyber ≈ 0.28, balancing system stability
and responsiveness. Detection metrics in Fig. 9d–9e show
expected behaviour: increasing the threshold reduces the FPR
but raises the FNR. These opposing effects are summarised
by a customised resilience score Rcyber, which is defined as:

Rcyber =
ADR− FPR

T̂res +∆J norm
6 + εcyber

, (31)

where εcyber > 0 avoids division by zero. This score integrates
detection accuracy (captured by high ADR and low FPR in
the numerator), control responsiveness (penalised by response
delay), and post-fallback stability (penalised by the residual
cost deviation) into a single metric. A higher Rcyber indicates
a more resilient system that not only detects attacks reliably
but also responds swiftly and stabilises effectively. As can be
seen from Fig. 9f, it apeaks near τcyber ≈ 0.28, confirming it
as the most balanced and effective threshold.

Fig. 10 shows the normalised deviation in the cybersecurity
cost ∆J norm

6 under adversarial perturbations. The dashed blue
line represents the raw signal, while the solid black curve
is the smoothed version used for detection. The fallback
policy Θ

t,cyber[1:3]
fallback is triggered whenever ∆J norm

6 exceeds the
optimal threshold τcyber = 0.28 (green dashed line). Two attack
intervals (around t = 35−45 and t = 55−65) are detected,
prompting fallback responses. Blue markers indicate invalid
operating points observed during these disturbances. After
each fallback activation, the system quickly stabilises, with
the post-fallback mean (magenta line) converging near 0.035.

Fig. 11 illustrates the cyber anomaly detection performance
of the cWGAN-GP across three major attack categories: FDI,
DoS, and topology manipulation. These categories are defined
as: (i) FDI involves the injection of false voltage or power
setpoints, (ii) DoS represents communication delays or block-
ing between control agents, and (iii) topology tampering (or
manipulation) refers to falsified reports of line-switching states
or network connectivity. The ADR remains consistently high,

ranging from 88% (DoS) to 95% (topology), demonstrating
the model’s strong ability to identify malicious behaviour. FPR
and FNR remain low, especially under topology manipulation
(FPR = 0.05, FNR = 0.03), demonstrating precise detections.
The results confirm the discriminator’s robustness and the
framework’s capacity for a timely, accurate fallback response.

A quantitative summary of cyber-resilience indicators is
presented in Table IV. The average response delay following
attack detection T̂res is 2.1 time steps, and 5 reconfiguration
events are triggered in total, confirming the responsiveness
of the fallback mechanism. The low post-fallback deviation
of ≈ 0.035 further demonstrates the stabilising impact of the
control policy.

TABLE IV
RESILIENCE AND CYBERSECURITY RESPONSE METRICS.

Metric Value Interpretation

ADR 0.94 High detection quality
FPR 0.06 Low alert noise
FNR 0.03 Few missed intrusions
T̂res 2.1 steps Fast fallback action
Triggered reconfigs 5 System adaptivity
Post-fallback mean 0.035 Stabilised cost

To further evaluate the effectiveness of the proposed GAN-
aware resilience framework, a comparative analysis is con-
ducted against two representative hybrid methods from Table I:
the cloud-edge framework in [17] and the dynamic parti-
tioning strategy for shared storage in [16]. These approaches
reflect partial alignment with the proposed framework through
their use of data-driven detection and distributed optimisa-
tion, respectively. In [17], deep learning is integrated with
partitioning rules to support reconfiguration under abnormal
load behaviour. However, it does not explicitly model coor-
dinated cyber threats or maintain structural interpretability,
thereby limiting its applicability in adversarial scenarios. The
method in [16] focuses on optimal storage allocation using
multi-objective optimisation and decision-making, supporting
adaptability under renewable variability but assuming nominal
conditions without any cyber-physical threat modelling or
recovery logic. In contrast, the proposed framework integrates
cWGAN-based adversarial modelling, LSTM-based forecast-
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cyberattacks. (a) IEEE 33-bus system results. (b) IEEE 123-bus system results.
(darker regions indicate higher vulnerability.)

ing, and ADMM-driven partitioned control. This combina-
tion enables proactive adaptation and resilience assessment
under evolving threat and load dynamics. Its performance is
quantified using the resilience score Rcyber defined in Eq. 31.
Values for [17] and [16] are estimated based on their design
assumptions and reported behaviour. As shown in Fig. 12, the
proposed framework achieves a higher score across varying
EV penetrations. It preserves high resilience up to the dropp-
off threshold of 35% EV penetration before a controlled
decline, due to built-in anticipation and fallback logic. This
nonlinear trend shows that the framework can handle moderate
stress using forecasting and reconfiguration, until it reaches the
limit of its control capacity. The framework in [17] achieves
a moderate resilience score of approximately 0.12, which
reflects its support for adaptive reconfiguration but without
fallback or post-attack recovery. The framework in [16],
which does not implement any detection or reconfiguration
mechanisms, maintains a flat and low score throughout. As
EV penetration increases, [17] exhibits a steady linear decline,
while [16] shows no significant change due to its fixed control
design.

V. LIMITATIONS AND FUTURE WORK

The proposed framework demonstrates strong empirical
performance, but several important limitations remain open for
future work. Although the ADMM-based coordination enables
parallel solution of local subproblems, it does not overcome
the non-convexity inherent in AC power flow and operational
constraints. Classical ADMM does not offer formal conver-
gence guarantees in such settings. To address this, convex
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Fig. 9. Sensitivity analysis of cyber-physical resilience metrics versus the cybersecurity threshold τcyber. (a) Fallback activations. (b) Post-fallback deviation.
(c) Average resilience cost. (d) False positive rate. (e) False negative rate. (f) Resilience score.
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relaxation is applied to binary switching variables, and an
adaptive penalty update is used to stabilise residuals. How-
ever, convergence remains heuristic, and future work should
explore more robust non-convex optimisation techniques such
as proximal-ADMM or semidefinite programming to improve
theoretical guarantees. Also, the resilience layer primarily
addresses cyber-physical threats (e.g., FDI attacks) but does
not currently consider other types of disturbances, such as
hardware faults or communication failures. Besides, resilience
metrics like detection accuracy, fallback delay, and cost devia-
tion are only assessed in post-simulation analysis, rather than
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Fig. 12. Comparisons: resilience score Rcyber vs EV penetration.

being incorporated directly into real-time optimisation. Inte-
grating such metrics into the control layer could support more
proactive and adaptive system responses. Additionally, the
current EV model treats vehicles as mobile storage units with
fixed availability profiles. This abstraction enables tractable
partitioning and control but overlooks user behaviour and
mobility patterns, which could significantly affect operational
decisions. More realistic, behaviour-driven EV models will
be considered in future work. Finally, although the proposed
architecture achieves effective coordination under a centralised
model, where clustering and fallback actions are handled
by the distribution system operator, it relies on system-
wide information and does not employ real-time inter-cluster
communication. Each partition operates semi-independently,
which limits decentralised adaptability. A promising future
direction is to investigate peer-to-peer or decentralised archi-
tectures in which clusters can autonomously share local state
and negotiate reconfiguration decisions, improving scalability,
responsiveness, and resilience under practical communication
constraints.

VI. CONCLUSIONS

This paper presents a structured hybrid partitioning and
coordination framework to improve the operability and cyber-
physical resilience of distribution networks under dynamic
conditions. The proposed pipeline integrates spectral graph
clustering, distributed ADMM-based optimisation, Bayesian
forecasting, and generative adversarial stress testing to enable
real-time control, reconfiguration, and cybersecurity awareness
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at scale. Simulation results on the IEEE 33-bus and 123-bus
systems validate the framework’s effectiveness. The SIAHC
clustering method with spectral refinement yields modular,
self-sufficient partitions that maintain topological integrity
and outperform conventional techniques such as K-means in
electrical cohesion and interpretability. The variable-penalty
ADMM scheme supports efficient, stable optimisation, signifi-
cantly reducing power losses, voltage deviations, and reconfig-
uration costs, particularly during peak conditions, while main-
taining scalability. The Bayesian LSTM-VAE model enables
cost-relevant clustering parameters forecasting with high accu-
racy (RMSE < 1.03), supporting adaptive partitioning. Mean-
while, the cWGAN-GP-based cyber-resilience layer identifies
vulnerability thresholds and simulates stealth attacks. When
triggered, the fallback mechanism restores system stability
rapidly (within 2.1 time steps on average), with post-attack
cost deviation remaining below 0.035. Resilience heatmaps
and sensitivity analyses confirm the framework’s robustness
across varying cyberattack intensities and EV penetration
levels. Compared to other hybrid methods, it consistently
achieves superior composite resilience scores.

ACKNOWLEDGMENTS

The work is supported by the U.K. Leverhulme Trust grant RPG-
2023-107.

REFERENCES

[1] S. Jena and N. P. Padhy, “Cyber-Secure Global Energy Equalization in
DC Microgrid Clusters Under Data Manipulation Attacks,” IEEE Trans.
Ind. Appl., vol. 59, no. 5, pp. 5488-5505, 2023.

[2] Y. Chai, L. Guo, C. Wang, Z. Zhao, X. Du and J. Pan, “Network Partition
and Voltage Coordination Control for Distribution Networks With High
Penetration of Distributed PV Units,” IEEE Trans. Power Syst., vol. 33,
no. 3, pp. 3396-3407, May 2018.

[3] S. K. Panda and B. Subudhi, “A Review on Robust and Adaptive Control
Schemes for Microgrid,” J. Mod. Power Syst. Clean Energy, vol. 11, no.
4, pp. 1027-1040, July 2023.

[4] F. Mohammadi et al., “Robust Control Strategies for Microgrids: A
Review,” IEEE Syst. J., vol. 16, no. 2, pp. 2401-2412, 2022.

[5] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-
Based Distributed Coordinated Control and Optimization in Microgrid
and Microgrid Clusters: A Comprehensive Overview,” EEE Trans. Power
Electron., vol. 33, no. 8, pp. 6488-6508, 2018.

[6] D. M. Manias et al., “Trends in Smart Grid Cyber-Physical Security:
Components, Threats, and Solutions,” IEEE Access, vol. 12, pp. 161329-
161356, 2024.

[7] J. Ye et al., “A Review of Cyber–Physical Security for Photovoltaic
Systems,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 4,
pp. 4879-4901, Aug. 2022.

[8] S. M. Miraftabzadeh, C. G. Colombo, M. Longo and F. Foiadelli, “K-
Means and Alternative Clustering Methods in Modern Power Systems,”
IEEE Access, vol. 11, pp. 119596-119633, 2023.

[9] M. Massaoudi, M. Ez Eddin, A. Ghrayeb, H. Abu-Rub and S. S. Refaat,
“Advancing Coherent Power Grid Partitioning: A Review Embracing
Machine and Deep Learning,” IEEE Open Access J. Power Energy, vol.
12, pp. 59-75, 2025.

[10] M. Mao, Z. Wu, D. Xu, J. Xu and Q. Hu, “Community-Detection-Based
Approaches for Distribution Network Partition,” CSEE J. Power Energy
Syst., vol. 10, no. 5, pp. 1965-1976, Sept. 2024.

[11] A. R. D. Fazio, C. Risi, M. Russo and M. D. Santis, “Coordinated
Optimization for Zone-Based Voltage Control in Distribution Grids,”
IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 173-184, 2022.

[12] G. Pierrou, H. Lai, G. Hug and X. Wang, “A Decentralized Wide-Area
Voltage Control Scheme for Coordinated Secondary Voltage Regulation
Using PMUs,” IEEE Trans. Power Syst., vol. 39, no. 6, pp. 7153-7165,
Nov. 2024.

[13] Y. Bansal, R. Sodhi, S. Chakrabarti and A. Sharma, “A Novel Two-
Stage Partitioning Based Reconfiguration Method for Active Distribution
Networks,” IEEE Trans. Power Del., vol. 38, no. 6, pp. 4004-4016, Dec.
2023.

[14] R. J. Sánchez-Garcı́a et al., “Hierarchical Spectral Clustering of Power
Grids,” IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2229-2237, Sept.
2014.

[15] J. Ge, Z. Wu, J. Xu, and Q. Hu, “A two-stage flow-based partition
framework for unbalanced distribution networks,” CSEE J. Power Energy
Syst., pp. 1–11, 2023.

[16] J. Li, Z. Fang, Q. Wang, M. Zhang, Y. Li and W. Zhang, “Optimal
Operation with Dynamic Partitioning Strategy for Centralized Shared En-
ergy Storage Station with Integration of Large-scale Renewable Energy,”
J. Mod. Power Syst. Clean Energy, vol. 12, no. 2, pp. 359-370, March
2024.

[17] R. Wang et al., “A Cloud-Edge Intelligence-Based Optimization Method
for Distribution Network Partitioning and Operation Considering Simu-
lation Inaccuracy,” IEEE Trans. Power Syst., pp. 1-13, Jan. 2025.

[18] Y. Wang, L. Lebovitz, K. Zheng and Y. Zhou, “Consensus Clustering
for Bi-objective Power Network Partition,” CSEE J. Power Energy Syst.,
vol. 8, no. 4, pp. 973-982, July 2022.

[19] R. J. Sánchez-Garcı́a et al., “Hierarchical Spectral Clustering of Power
Grids,” IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2229-2237, Sept.
2014.

[20] X. Xu, F. Xue, S. Lu, H. Zhu, L. Jiang and B. Han, “Structural and
Hierarchical Partitioning of Virtual Microgrids in Power Distribution
Network,” IEEE Syst. J., vol. 13, no. 1, pp. 823-832, 2019.

[21] J. Wu, X. Chen, S. Badakhshan, J. Zhang and P. Wang, “Spectral Graph
Clustering for Intentional Islanding Operations in Resilient Hybrid Energy
Systems,” IEEE Trans. Industr. Inform., vol. 19, no. 4, pp. 5956-5964,
April 2023.

[22] M. Ez Eddin, M. Massaoudi, H. Abu-Rub, M. Shadmand and M.
Abdallah, “Optimum Partition of Power Networks Using Singular Value
Decomposition and Affinity Propagation,” IEEE Trans. Power Syst., vol.
39, no. 5, pp. 6359-6371, Sept. 2024.

[23] X. Zhang et al., “Reactive Voltage Partitioning Method for the Power
Grid With Comprehensive Consideration of Wind Power Fluctuation and
Uncertainty,” IEEE Access, vol. 8, pp. 124514-124525, 2020.

[24] S. Li, H. Xiong and Y. Chen, “DiffCharge: Generating EV Charging
Scenarios via a Denoising Diffusion Model,” IEEE Trans. Smart Grid,
vol. 15, no. 4, pp. 3936-3949, July 2024.

[25] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MAT-
POWER: Steady-State Operations, Planning, and Analysis Tools for
Power Systems Research and Education,” IEEE Trans. Power Syst., vol.
26, no. 1, pp. 12–19, Feb. 2011.

[26] National Renewable Energy Laboratory. (2021). Fleet Depot Charging
Profiles Dataset. NREL Data Catalogue., [Online]. Available: https://data.
nrel.gov/submissions/162.

[27] Y. Wu, S. M. Aziz, M. H. Haque, “Travel Datasets for Analysing The
Electric Vehicle Charging Demand in a University Campus,” Data in
Brief, Vol. 54, p. 110335, 2024.

https://data.nrel.gov/submissions/162
https://data.nrel.gov/submissions/162

	Introduction
	Background and Motivation
	Related Work
	This Work: Contributions and Scope

	Cost functions and constraints
	Transmission loss cost ( J1 )
	Voltage deviation penalty ( J2 )
	Stationary ESS cost ( J3 )
	EV scheduling cost ( J4 )
	Grid partitioning and reconfiguration cost ( J5 )
	Cybersecurity cost ( J6 )


	Proposed Hybrid Partitioning Framework
	Step 1: Graph-based clustering
	Adaptive hierarchical clustering (AHC)
	Spectral pre-analysis and parameter initialisation
	Spectral refinement for intra-cluster stability

	Step 2: Optimisation-based operational refinement
	Step 3: Data-driven learning and adaptive reconfiguration for cyber-physical resilience
	Step 3-1: Data-driven learning of clustering parameters
	Step 3-2: Cyber-physical resilience testing and adaptive reconfiguration


	Verification and case studies
	SIAHC performance
	ADMM performance
	Clustering parameter learning via Bayesian LSTM-VAE
	Cyber-physical resilience via cWGAN-GP


	Limitations and Future Work
	Conclusions
	References

