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ABSTRACT

With the continuous progress of modern communication technology and the emergence of the 6G
concept, people’s demand for high-quality and widely accessible data transmission is becoming
increasingly intense. Low Earth Orbit (LEO) satellite networks show great attraction due to their
characteristics of global coverage and low latency. Traditional terrestrial routing methods face
significant challenges in adapting to LEO satellite networks due to challenges such as highly dynamic
topologies, resource constraints, and insufficient multi-objective optimization capabilities. Therefore,
developing routing methods suitable for LEO satellite application scenarios is crucial for further
improving network transmission performance and is also one of the key technologies of future 6G.
Compared with traditional algorithms, routing algorithms based on machine learning (ML) are more
intelligent and begin to show obvious performance advantages, and are more suitable for 6G networks.
However, in existing research work, there is a lack of comprehensive analysis content on integrating
ML into LEO satellite network routing tasks. We comprehensively summarize the latest progress
of intelligent routing algorithms based on ML in LEO satellite networks from four aspects: routing
models, design challenges, training and deployment, and future research directions. The aim is to
provide theoretical support for the design of artificial intelligence satellite communication systems

and further promote the innovative development of satellite network optimization technologies.

1. Introduction

Currently, communication network have become essen-
tial infrastructure for daily life and production processes.
Serving as the central hub of information and data transmis-
sion, these networks enable efficient connections, thereby
facilitating global economic, social, and cultural activities.
The growing global connectivity, coupled with the devel-
opment of sixth-generation (6G) mobile communication
standards, has driven the evolution of network technologies,
towards higher bandwidth, wider coverage, and improved
reliability [1]. Nevertheless, the current network infrastruc-
ture primarily depends on terrestrial equipment and optical
fibers. Restricted by terrain, terrestrial base stations can only
cover around 20% of the land area and about 7% of the
Earth’s surface, which is insufficient for achieving uninter-
rupted global coverage [2]. In this context, satellite networks
serve as a valuable complement and alternative to traditional
terrestrial communication networks, offering faster, more
reliable data transmission and wider coverage. Satellite net-
works are classified into Geostationary Orbit (GEO) satel-
lites, Middle Earth Orbit (MEO) satellites, and Low Earth
Orbit (LEO) satellites [3]. Among them, LEO networks
have attracted significant attention due to their advantages,
including lower transmission delay, reduced propagation
loss, lower construction costs, and broader global coverage
capabilities. Therefore, LEO networks have become a focal
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point of interest for both industry and academia, due to their
promising development prospects and significant research
value [4].

In communication networks, routing protocols usually
assist the source node to in finding a suitable path to the
destination node by selecting an efficient next hop from
intermediate nodes [5]. An effective routing scheme effi-
ciently manages data packet transmission, ensuring quick
and reliable delivery to enhance network performance and
efficiency. Fig. 1 illustrates the routing process by using the
LEO satellite network. The user uploads data to the LEO
satellite network via a ground station. The LEO satellite net-
work employs routing algorithms to select the optimal data
transmission path and subsequently transmit the data to an-
other ground station, which then delivers it to the target user.
Traditional routing algorithms have been extensively devel-
oped and refined for terrestrial networks to accommodate
diverse network environments and provide efficient routing
services. However, directly applying these algorithms to
satellite networks poses significant challenges due to the
distinct characteristics of the satellite environment. Satellite
routing involves high mobility, dynamic topology changes,
constrained resources, and unbalanced network loads, which
impose more stringent requirements on routing algorithms.
Therefore, it is essential to develop customized routing
schemes tailored to the unique characteristics of satellite
networks. Such schemes can leverage the advantages of
satellite communication to ensure reliable and efficient data
transmission.

The integration of Space-Air-Ground networks with Ar-
tificial Intelligence (Al) is expected to be a vital aspect of
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Fig. 1: Routing process using the LEO satellite network
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future 6G technology. Currently, Machine learning (ML) is
often characterized as a machine’s capacity to replicate intel-
ligent human behavior, which is the predominant approach
to implementing Al [6]. Network routing is a fundamental
function that ensures the quality of network services. There-
fore, it is crucial to explore intelligent routing methods for
LEO satellite networks that are based on ML. Intelligent
routing algorithms demonstrate superior adaptability to the
dynamics and complexity of satellite communication net-
works in comparison to traditional algorithms. These algo-
rithms can dynamically adjust routing paths, enhance com-
munication efficiency, and optimize system performance
through real-time monitoring, data analysis, and route op-
timization. This achievement is attained by considering
real-time data traffic, network topology, and user demand.
Moreover, intelligent routing algorithms can dynamically
modify routing strategies in real-time to adapt to changes in
network status, various communication environments, and

external interference factors, thereby ensuring communi-
cation quality and stability. The extensive implementation
of intelligent routing algorithms opens up new possibilities
for LEO satellite communication systems, offering crucial
support for achieving more efficient and reliable satellite
communications.

Comparison with state-of-the-art. Satellite networks
are highly likely to be integrated into future 6G networks
to support various high-quality communication needs. This
emerging field has stimulated numerous studies to address
the unique challenges and opportunities brought about by
the development of satellite technology. However, despite
these comprehensive reviews on satellite networks, there
is currently no summary related to the application of ML-
based intelligent routing algorithms in LEO satellite routing.
For example, Shi et al. [7] reviewed state-of-the-art ML
techniques tailored for 6G wireless networks, advocating
for ML methods due to their superior performance, com-
putational efficiency, scalability, and generalizability. Ad-
ditionally, it addresses neural network design, theoretical
tools, implementation issues, and future research directions
to facilitate the practical application of ML models in 6G
networks. Mahboob and Liu [8] discuss the important role of
satellite networks in 6G networks and the unique challenges
they face, proposing the use of Al to address issues such
as latency, Doppler effects, frequent handovers, spectrum
sharing, and resource allocation in satellite networks, sum-
marizing existing research and exploring future research di-
rections. Cao et al. [9] studied the dynamic routing problems
in satellite networks, first introducing the architecture and
development of satellite networks, then analyzing the latest
single-layer and multi-layer dynamic routing schemes, sum-
marizing their advantages, disadvantages, and applications,
and finally discussing potential technologies and future re-
search directions.

In contrast, this paper provides the first systematic re-
view of the key technical challenges and solutions related
to ML in LEO satellite routing, from the perspectives of
ML methods, routing design challenges, and training deploy-
ment. It fills the gap in existing surveys regarding scene focus
and technical depth.

Contributions. We have conducted an in-depth analysis
of the Al-driven network routing solution. In the current
research work, there is no comprehensive analysis content
on integrating ML into the LEO satellite network rout-
ing task, so it cannot provide corresponding guidelines for
researchers. To make up for this shortcoming, we have
paid special attention to the research on how ML methods
can automatically adjust configurations in the complex and
variable LEO satellite scenario to improve network routing
performance. We have also comprehensively analyzed the
deficiencies of existing work and the promising research
directions in the future. The purpose is to provide theoretical
support for the design and optimization of Al satellite com-
munication systems and thereby promote the innovation of
satellite network optimization technologies. Table 1 shows
the differences between our research work and existing work.

Zhenyu Zhu et al.: Preprint submitted to Elsevier

Page 2 of 23



Table 1
Comparison of Existing Intelligent Routing Survey Papers

Reference Shi et al. Mahboob Caoetal.  Our work
[7] and Liu [8] [9]
Satellite Scenes v v v
LEO Satellite Routing Scenes v
Highly Dynamic Network Topology v v v
Massive Service Demands v v v
Uneven Traffic Distribution v v v
Constrained Satellite Resources v v
Deployment Mode v
Network Feature Extraction v v
Network Scalability v v v
Model Decision Robustness v v
Computing Network Convergence v v
Input output

Packet Number
_I_ Traffic Demand

Link Status

Network Topolgy Network Status

—

=

Routing Decision
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Fig. 3: Scheme of DL-based routing model

2. Machine Learning-based Routing Models

Al has brought enormous opportunities to various in-
dustries, prompting an increasing number of network re-
searchers to start focusing on empowering network appli-
cations with AI technology. Among them, routing selection
based on ML is one of the most representative research tasks.
As shown in Table 2, existing routing methods based on
ML can be roughly divided into two categories: algorithms
based on Supervised Learning (SL) and algorithms based on
Reinforcement Learning (RL). The technical principles and
application scenarios of these algorithms will be discussed
in detail in the following text.

2.1. Supervised Learning

SL is one of the ML methods that emerged first. Its core
principle is to train model parameters using labeled input
and output data to accurately fit the mapping relationship
between input and output [25]. Among them, supervised
Deep Learning (DL) methods are known for their strong
capabilities in feature learning and representation learning.
Since DL methods can effectively extract complex feature
patterns from a large amount of previously accumulated
empirical data, they are widely used in task scenarios such
as network environment modeling, traffic load prediction,
and congestion state detection. These scenarios directly or
indirectly promote the intelligent decision-making process
in network routing and are one of the most popular methods
in current intelligent routing tasks. Fig. 3 shows the process
of DL-based routing methods. The DL model can adaptively
generate routing decisions according to the input network
topology and network state information.

The prevalent DL model is the Deep Neural Network
(DNN) [26], which processes input data by forwarding it
from the input layer to the output layer. In this process, the
data undergoes nonlinear transformations in multiple hidden
layers to generate the final prediction results. To improve
the accuracy and performance of the model, DNNs employ
feedback propagation, also known as back-propagation. This
technique entails back-propagating from the output layer to
the hidden and input layers, using the error between the
predicted result and the actual label, and then adjusting
the network parameters to minimize prediction errors. The
integration of feed-forward and feedback propagation mech-
anisms forms the training and inference processes of DNNs.
For example, Barabas et al. [10] proposed a traffic predic-
tion algorithm based on DNN was utilized and embedded
within a routing management system to improve network
performance. Likewise, Hardegen et al. [11] proposed a
traffic classification and routing framework based on DNN,
targeting traffic feature detection and routing decisions.
Through continuous training and evaluation of DNNs using
data streams collected from data centers, the system can
predict vital characteristics of real traffic streams, such as
throughput and duration, and classify these features to aid
routing decisions. These intelligent routing algorithms high-
light the potential of DNNs to revolutionize network routing
technology, triggering further research and exploration into
advanced intelligent routing algorithms.

Deep Belief Network [27] (DBN) is an advancement
over the conventional DNN. A DBN is structured as a multi-
layer neural network comprising multiple Restricted Boltz-
mann Machines (RBM). The DBN training process consists
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Table 2
The summary of ML-based intelligent routing algorithms

Reference ML Algorithm Type Deployment Mode
[10] DNN SL Centralized
[11] DNN SL Centralized
[12] DBN SL Distributed
[13] CNN SL Centralized
[14] LSTM SL Centralized
[15] GNN SL Centralized
[16] GNN+GRU SL Distributed
[17] Q-Learning RL Centralized
[18] Q-Learning RL Centralized
[19] Q-Learning RL Centralized
[20] DQN RL(DRL)  Centralized
[21] DQN RL(DRL)  Distributed
[22] DDPG RL(DRL)  Centralized
[23] GNN+DQN RL(DRL)  Centralized
[24] GAT+DQN RL(DRL)  Distributed

Key

Routing management through traffic prediction

Assisting routing decisions by categorizing predicted traffic char-
acteristics

Inner routers and edge routers complete the routing process
together

Routing management through traffic prediction

Assisting routing decisions and resource allocation by learning
timing information from network traffic data

Predicting routing by learning the complex relationship between
topology, routing, and input flows

The router interfaces are also considered as topology nodes and
computed routes according to the graph

Selecting paths based on the current network state and updating
the Q-table based on experience and rewards

Adaptively learning the best routing policy based on multiple
optimization objectives

Utilizing the intelligence of RL and the global view provided by
SDN to calculate routes

Enabling efficient routing through two phases: an offline network
construction phase and an online deep learning phase
Combining offline and online policies is used to make globally
optimal routing decisions

Utilizing TE-aware exploration and actor-critic-based prioritized
experience replay, to enhance the optimization of the DRL
framework

MPNN was used for capturing the relationship between links and
flows in the network topology

Utilizing GAT to process network topology and aggregate network
information and make decisions using multiple agents

of two main phases: first, the DBN model parameters are ini-
tialized using RBM. Then, these parameters are fine-tuned
through gradient back-propagation. This divided training
method allows DBN to learn higher-level feature representa-
tions from data more effectively. Mao et al. [12] proposed an
intelligent routing scheme for backbone networks, utilizing
DBN as the basis. In this scheme, routing nodes are cate-
gorized into two types: inner routers and edge routers, both
actively involved in the training of the DBN model. During
packet forwarding, the edge router that receives the packet
computes the forwarding path using these intelligent routing
models. The inner router subsequently forwards the packet
based on the path determined by the edge router, thereby
reducing the need for frequent information exchanges as
commonly seen in traditional routing algorithms. The input
data of each DBN model includes the number of packets re-
ceived by each node within a specific cycle, while the output
data indicates the next hop. Consequently, the edge router
can depend on each DBN model to generate a complete
routing path step-by-step.

Traditional DNN models are limited in their ability
to handle highly sparse and complexly structured data,
which impairs their ability to accurately capture correlations
and patterns. In contrast, Convolutional Neural Networks
[28] (CNNs) are more suitable for handling graphical data

structures. By integrating convolutional and pooling layers,
CNN s can extract local features effectively while preserving
spatial information. This allows CNNs to more efficiently
capture both local patterns and the global structure of net-
work data, demonstrating superior adaptability and gener-
alization capabilities. Modi and Swain [13] proposed an
intelligent routing mechanism based on CNNs, with the goal
of optimizing the calculation of routing paths. This model
utilizes historical traffic data for traffic prediction, allowing
the controller to make more intelligent path combinations
and routing decisions. Consequently, the CNN-based rout-
ing mechanism greatly improves network throughput and
reduces average delay and packet loss, as evidenced by
experimental results. Compared to traditional routing algo-
rithms, this CNN model provides significant enhancements
in overall network performance.

In routing tasks, DNNs and CNNs may face challenges in
effectively handling sequential data. Specifically, tasks such
as extracting path information and predicting traffic based
on historical data often require techniques capable of han-
dling sequential data effectively. Recurrent Neural Networks
(RNNs) [29] are often used in these tasks because they can
capture long-term dependencies in sequences, improving
the accuracy of routing predictions. Among various RNN
variants, Long Short-Term Memory (LSTM) [30] units stand

Zhenyu Zhu et al.: Preprint submitted to Elsevier

Page 4 of 23



out for their exceptional performance. LSTM addresses the
inherent limitation of RNNs in handling long-term depen-
dencies by including a memory cell state in the hidden layers,
preserving long-term information. An example of this is
the intelligent routing algorithm proposed by Schuster et al.
[14], which integrates LSTM with a tree routing protocol.
This approach improves energy consumption and network
performance by taking factors such as neighboring nodes
and distances into account. Moreover, LSTMs decrease end-
to-end delays in routing by effectively learning and com-
prehending timing information in network traffic data. As a
result, they can predict future traffic trends based on histor-
ical data, enabling dynamic routing decisions and resource
allocation in the network.

The rapid movement mode and complex inter-satellite
environment of LEO satellites lead to a tendency for the
satellite network topology to present a highly dynamic non-
Euclidean data structure. Traditional neural networks often
perform poorly when handling non-Euclidean data of this
kind. In contrast, Graph Neural Networks (GNN) [31] pro-
vide a robust solution since they are designed specifically
for handling graph-structured data by efficiently extracting
topological information. GNNs excel at capturing relation-
ships between nodes and the network topology, enabling
the learning and representation of node features, and inte-
grating these features with topological data to enhance the
understanding and processing of routing data. Due to their
parameter-sharing property and ability to utilize the inher-
ent local connectivity in graph structures, GNNs maintain
high parameter efficiency when handling large-scale routing
tasks. Rusek et al. [15] proposed a predictive model based
on GNN that can understand complex interactions among
topology, routing paths, and incoming traffic. This model
produces accurate estimates of average delay and jitter for
source/destination pairs. The ability of GNN to learn and
model graph-structured data enables the model to generalize
across different network topologies, routing schemes, and
varying traffic intensities. Additionally, Geyer and Carle [16]
proposed a distributed intelligent routing algorithm, which
combines GNN with a Gated Recurrent Unit (GRU) [32].
This innovative approach highlights the potential of GNNs in
revolutionizing the handling of non-Euclidean and dynamic
data in satellite network topologies, paving the way for more
efficient and effective routing algorithms.

With the rapid increase in network size and data traffic,
intelligent routing algorithms that utilize SL models show
potential in improving routing performance and making
more accurate and efficient routing decisions. However,
these intelligent routing algorithms often face challenges
related to limited scalability and lack of interpretability. To
tackle these challenges, an encouraging direction for the
future development of intelligent routing algorithms could
involve integrating traditional route optimization techniques
with SL models. This combination can leverage the ad-
vantages of DL models in handling large-scale data and
identifying complex patterns, while also benefiting from

the stability and interpretability of traditional routing algo-
rithms, resulting in more efficient and dependable routing
decisions.

As shown in Table 3, the comparison of SL models
highlights that, in practical applications, the selection of
an appropriate model should align with the task type and
data characteristics. For instance, tasks requiring the pro-
cessing of high-dimensional structured data, such as traffic
prediction, may benefit from the DNN model. In contrast, for
small-sample scenarios, such as distributed routing coordi-
nation, the DBN model, which enhances feature extraction
capabilities through hierarchical pre-training, is better suited
to meet these demands. Additionally, the CNN model excels
in handling spatially correlated data, making it particularly
suitable for tasks like path optimization and regional conges-
tion detection. When addressing time-series data tasks, the
LSTM model demonstrates superior performance due to its
ability to model temporal dynamic variations. Meanwhile,
the GNN model is ideal for routing selection in highly dy-
namic scenarios, especially when processing non-Euclidean
data. Therefore, in practical implementations, the choice of
model should be determined by specific task requirements,
the structural characteristics of the data, and considerations
of computational complexity.

2.2. Reinforce Learning

InRL, an agent learns to maximize long-term cumulative
rewards in a dynamic environment by taking actions that in-
teract with the environment. This process includes the agent
perceiving the current state of the environment, selecting
an appropriate action, receiving feedback in the form of a
reward signal, and adjusting its strategy accordingly.

Q-learning [33] is a classic RL algorithm. It can solve
dynamic decision-making problems in unknown environ-
ments by learning the optimal action-value function (Q). The
essence of the LEO satellite routing task is to make rea-
sonable routing choices under complex network topologies
and dynamic network states, which belongs to the optimal
decision-making problem in a dynamic environment. There-
fore, this kind of method can also provide a feasible new
solution for routing tasks[34]. In the initial stage, Q-learning
was introduced to the packet routing task through the de-
velopment of the Q-routing approach [17]. This method
utilizes a scalar Q-value table to record the optimal path and
corresponding values from each node to the target node, en-
abling nodes to update the table based on the current network
state, experience, and rewards. Through iterative learning,
Q-routing enables network nodes to progressively determine
the optimal routing strategy. Building on this foundation, a
least squares RL-based adaptive routing method was pro-
posed [18]. Prominent features of this technique include its
fast convergence, efficient data utilization, and resilience to
initial settings, rendering it a robust solution for adaptive
routing. Furthermore, subsequent research explored the in-
tegration of Software-defined Networking (SDN) with RL-
based network routing algorithms [19]. By utilizing the SDN
architecture, the RL model takes link state information as
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Table 3
Comparison of supervised learning models

Model Type Core Advantages

Application Scenarios

Literature
Example

Computational
Complexity

Strong feature learning ability, suitable
for high-dimensional structured data
Layer-wise pre-training enhances
DBN feature extraction ability, suitable for

small sample scenarios

DNN

Local feature extraction, suitable for

NN .
¢ spatially related data
LSTM Time series model, captures I.ong—term
sequence state dynamics
GNN Graph construction model, directly

processes non-Euclidean relationships

Flow prediction

Distributed routing
coordination

Route composition
optimization, holding
zone detection
Flow forecasting,
dynamic route

High-speed routing,
cross-link relationships

High (requires multi-layer
continuous training)
Medium (stage-wise

training reduces [12]
complexity)
Medium (convolution
kernels reduces [13]
computational cost)
High (model structure

increases computational [14]

burden)

High (requires large-scale
computing resources)

[10]

adjustment

[15]

an input. This approach leverages the intelligence of RL
and the comprehensive perspective provided by SDN to
pre-compute optimal routes on forwarding devices, thus
improving the overall efficiency and effectiveness of network
routing.

In recent years, researchers have been increasingly ex-
ploring the application of Deep Reinforcement Learning
(DRL) techniques in intelligent routing designs, driven by
the rapid advancements in deep learning technology. DRL
combines the strengths of DL and RL, making it an attractive
approach from an algorithmic perspective. In comparison to
traditional RL, DRL methods possess the ability to learn
more intricate strategies, effectively tackling routing opti-
mization problems associated with larger state spaces, exten-
sive decision spaces, and complex optimization objectives.

A classical approach in DRL is DQN [35], where DNNs
are utilized to approximate the estimated Q-function instead
of traditional Q-tables. By training DNNs, DQN can learn
optimal routing policies for routing tasks. This method over-
comes the limitations of traditional Q-value tables, particu-
larly in scenarios involving large state spaces and continuous
action spaces. Yao et al. [20] presented an efficient routing
algorithm based on DQN, specifically designed to tackle the
problem of energy wastage that may not constantly operate
at full capacity. The DQN algorithm improves routing effi-
ciency through a two-phase process: an offline network con-
struction phase and an online deep learning phase. During
training, the algorithm achieves significant energy savings
and load balancing for controllers, showcasing comparable
energy savings while noticeably reducing computation times
compared to traditional solvers and heuristic algorithms.
Furthermore, Su et al. [21] proposed an adaptive energy and
delay-aware routing algorithm based on deep Q-networks.
This approach combines offline and online strategies in the
DQN algorithm to make globally optimal routing decisions.
The algorithm chooses the node with the highest Q value as
the transponder, taking into account the energy consumption
and delay based on the energy and network state of the
nodes during various communication phases. Additionally,

an in-line policy approach can adapt to changes in network
topology and generate new routing decisions if there is a
failure in the current route. This method not only reduces
energy consumption and ensures strict latency constraints
but also prolongs network lifetime, thereby improving over-
all performance in terms of latency and energy efficiency.

In comparison to the value function-based DQN ap-
proach, the Deep Deterministic Policy Gradient (DDPG)
algorithm [36], which is based on policy gradient, is better
suited for managing continuous action spaces and meeting
the requirement for deterministic policies. Unlike DQN,
DDPG directly learns policy functions and can produce
actions without estimating their values. This capability en-
ables DDPG to effectively handle actions that require con-
tinuous adjustment, such as the continuous optimization of
paths in network routing. By offering determined action
choices, DDPG improves the rationality and stability of
routing selection. Xu et al. [22] investigates the utilization
of DRL in the in-domain Traffic Engineering (TE) prob-
lem and suggests a traffic engineering scheme that relies
on DDPG. The algorithm maximizes a utility function to
achieve route completion, utilizes DNNs to understand the
network environment, and employs DDPG to make routing
decisions accordingly. The study introduces two novel tech-
niques, TE-aware exploration and actor-critic-based priori-
tized experience replay, to enhance the optimization of the
DRL framework for TE problems. Moreover, the research
suggests that applying DDPG directly to TE problems does
not result in satisfactory performance and emphasizes the
need for targeted improvements to DDPG to achieve the
desired outcomes.

Given the growing recognition of the high efficiency
of GNNs in managing topology, there has been increased
research interest in integrating GNNs with DRL to tackle
routing problems. As shown in Fig. 4, the fusion strategy
of GNN and DRL primarily involves using GNN to process
and learn graph-structured data to extract network topology
information, which is then fed as input into the DRL algo-
rithm for path selection and decision optimization. In this
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process, GNN employs methods such as GCN to learn rich
structural features from the relationships between nodes and
edges, capturing complex topology changes and dynamic in-
formation. Subsequently, DRL algorithms, such as DQN or
DDPG, leverage these topology features to make intelligent
decisions, learning the optimal strategy through interaction
with the environment. During the training process, DRL
updates the policy based on the network state information
extracted by GNN, optimizing overall performance. The
fusion of these two approaches enables the model to make
efficient decisions and plan in dynamic and highly complex
environments, particularly in scenarios with high-dynamic
topologies, such as satellite networks.

For example, Almasan et al. [23] proposed an archi-
tecture that combines GNN and DRL is proposed to opti-
mize routing in communication networks. This framework,
inspired by Message-Passing Neural Networks (MPNNs),
designs a GNN model tailored to the routing optimization
problem, capturing the relationship between links and traf-
fic in network topology. By utilizing GNNSs, this approach
optimizes route paths efficiently and enhances its generative
capacity on novel network topologies, making it applicable
in various scenarios. To further leverage the graph structure
of network topology, additional studies have utilized the
Graph Attention Network (GAT) [37] in intelligent routing
algorithms. GAT not only preserves global graph structure
information by incorporating the attention mechanism but
also enables weighted processing of neighboring nodes for
each node, thus capturing essential inter-node relationships.
Mai et al. [24] proposed a GAT-based intelligent routing al-
gorithm, which utilizes a Multi-Agent Reinforcement Learn-
ing (MARL) model. This model regards each router as an
independent agent, enabling it to make routing decisions
based on local observations. By adopting this GAT-based ap-
proach, network topological structures are effectively man-
aged, and network information is transferred to assist each
router in extracting representations of its relationships with
neighboring nodes. These relationship representations en-
able routers to make well-informed routing decisions from

their local perspectives, thereby improving their ability to
adapt to dynamic network requirements.

Despite the significant potential of GNN-based DRL
approaches in addressing network topology, there are
still several unresolved issues. Over-smoothing and over-
compression present notable challenges among these issues
[38]. Adversely, these issues can affect the performance
and generative capacity of DRL models. Therefore, future
research should prioritize resolving these challenges to en-
hance the performance and broaden the applicability of DRL
approaches in routing scenarios.

3. LEO Satellite Routing Task Model Design
Challenges

While LEO satellite networks bring new opportunities,
they also face new challenges. As shown in Fig. 5, from
a scenario perspective, the newly developed routing meth-
ods need to comprehensively consider the highly dynamic
network topology, huge service demands, their unbalanced
traffic distribution, and limited satellite resources.

3.1. Highly Dynamic Network Topology

Table 4 provides an overview of the intelligent routing
algorithms that have been developed to address the dynamic
nature of LEO satellite network topology.

On one hand, the rapid movement of LEO satel-
lites brings about highly dynamic topology and link state
changes. Continuous movement will cause the communi-
cation windows between satellites and ground stations to
be continuously activated and closed, resulting in unstable
links. In addition, when satellites pass through polar re-
gions, intentional link interruptions occur, leading to fre-
quent changes in the network topology between satellites.
Therefore, a large number of frequent calculations must
be performed to ensure that routers can adapt to these
changes. These factors contribute to the complexity and
time-consuming nature of router management in LEO satel-
lite networks.

Liu and Wang [39] presented an intelligent routing algo-
rithm specifically designed for LEO satellites to handle their
high dynamics. This algorithm employs a dendritic neural
network in conjunction with the Ant Colony Optimization
(ACO) algorithm to make route choices and monitor the link
status between satellites. During the link status awareness
phase, the algorithm analyses visual constraints between
satellites and periodically assesses the conditions of these
links. In the neural network link quality awareness phase,
the algorithm processes the link state information between
satellite nodes using the dendritic neural network, generat-
ing estimated value matrices for route choices that satisfy
various Quality of Service (QoS) criteria. By integrating
these estimated value matrices with Dijkstra’s algorithm,
the intelligent routing algorithm calculates the initial path
from the source node to the destination node. To handle
the dynamic topology problem, the algorithm adjusts the
calculated path in real-time by continuously monitoring the
satellite network topology.
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Table 4

The summary of solutions to the problem of high dynamic network topology

Reference ML Algorithm Deployment Mode Routing Policy Results
[39] Dendritic Network Distributed Settlr}g Link Achle\{.ed lower end-to-end path delay,
Weights delay jitter, and packet loss rate
. Provide long-term Quality of Service
. . Generating A . . .
[40] Q-Learning Distributed optimization during the routing main-
Next-Hop
tenance process
Using DGCN to capture the dynamic
[41] DGCN Distributed Generating characteristics of LEO ‘sa’.cell-lte net-
Next-Hop works and generate heuristic informa-
tion
. Accelerate the convergence and retain
. . Generating .
[42] Q-Routing Centralized . the strong real-time performance of the
Routing Path . .
Q-routing algorithm
Generatin Improved the problem of long conver-
[43] Q-Learning Distributed & gence time and sometimes falls into
Next-Hop

local convergence

Huang et al. [40] employed a RL method to solve the
routing problem in dynamic topologies. This method con-
sists of three key modules: neighborhood discovery, router
discovery, and router maintenance. The neighborhood dis-
covery module periodically sends "hello" packets to neigh-
boring satellites to exchange node information. Before a
satellite enters orbit, the router discovery module is called
to start the routing strategy model. In this process, the router

maintenance module is responsible for making packet trans-
mission decisions based on the initial Q-table and updating
the above Q-table after changes in network topology and
state information, thus achieving a balance between end-to-
end delay and network traffic cost.

Wang et al. [41] further expanded the ability of LEO
satellite networks to handle dynamic environments. In re-
sponse to the challenges posed by 6G technologies, they
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proposed a scheduling mechanism based on cycle-specified
queuing and forwarding. This mechanism resolves the strict
time constraints of traditional methods through cyclic multi-
queue scheduling, enabling packets to be transmitted within
flexible time cycles and mitigating issues caused by link
instability. At the same time, their proposed learning-
based swarm intelligence method, which combines Dy-
namic Graph Convolutional Networks (DGCN) with Adap-
tive ACO, captures the dynamic characteristics of LEO
satellite networks and generates heuristic information. This
approach enhances the flexibility and adaptability of routing
schedules, effectively addressing the challenges posed by
changes in network topology.

On the other hand, the high dynamics of the LEO
satellite network topology also poses a huge challenge to
the training efficiency of ML algorithms. Intelligent models
must achieve efficient convergence of routing algorithms
within a limited time after topology changes.

To achieve the above goals, the current mainstream
methods can be divided into two categories. The first cate-
gory is to improve convergence performance by minimizing
path calculation time as much as possible, such as intro-
ducing prior knowledge for pre-computation of routing. For
example, Zheng et al. [42] designed an improved Q-routing
algorithm assisted by the Dijkstra algorithm. At this time,
through the simple calculation of the Dijkstra algorithm, pre-
computation can be achieved before the data packet arrives.
Although storing pre-computed routes consumes satellite
storage space, it effectively reduces routing calculation time
and thus speeds up the convergence of the Q-routing algo-
rithm.

The second category of methods mainly reduces unnec-
essary calculation time by limiting the maximum number
of hops of data transmission. Wang et al. [43] proposed a
method that combines hop limit and dynamic greed rate.
Initially, this method uses Q-learning to train agents so that
they can dynamically adjust routing decisions according
to real-time network states and requirements, thereby ad-
dressing the frequent changes in topology in LEO satellite
networks. To alleviate the problem of excessive data packet
transmission in the initial stage, this method introduces a
strategy of limiting the number of transmission hops. When a
data packet cannot reach the destination within the specified
hop range, the path search attempt will be regarded as a
failure and further exploration will be terminated, thereby
speeding up algorithm convergence. On this basis, in order
to avoid the algorithm falling into the local optimal trap, the
dynamic greed rate strategy is incorporated into this work.
At first, an extremely low greed rate can enable agents to
fully understand the global network topology. As iterations
progress, the greed rate gradually increases and iterates
repeatedly on the previously explored paths to determine the
optimal path.

Despite the relatively effective solutions proposed in the
aforementioned studies to address the routing convergence
problem in high-dynamic topologies, such as precomputed
paths [42] and dynamic greedy rate adjustments [43], two

core limitations remain. First, pre-computation relies on
static historical data, which makes it difficult to adapt to
sudden link failures (e.g., unexpected topology changes
caused by space debris collisions). Second, online training
of RL algorithms incurs significant overhead, potentially
exacerbating the resource burden on the satellite. Future
research should explore lightweight incremental learning
frameworks, such as combining meta-learning to achieve
rapid adaptation across scenarios, or utilizing federated
learning to share local experiences among distributed nodes,
reducing the frequency of global model updates. Moreover,
Spatiotemporal Graph Neural Networks (STGNN) offer new
perspectives for dynamic topology modeling, with their
spatiotemporal attention mechanism further enhancing the
accuracy of link state prediction.

3.2. Massive Service Demands

The evolving field of satellite network research con-
stantly generates large-scale service requirements, with in-
creasingly diverse demands for network transmission tai-
lored to various services. For instance, bidirectional conver-
sational services necessitate extremely low latency, whereas
unidirectional data traffic services require high packet loss
rates and substantial bandwidth [44]. Currently, researchers
have proposed solutions leveraging the specific character-
istics of LEO satellite networks. Nevertheless, as wireless
communication technology advances, user requests continue
to expand and diversify, leading to increased service traffic
and a broader spectrum of services utilizing LEO satel-
lite networks. Consequently, it becomes essential for LEO
satellite routing research to ensure the fulfillment of diverse
service requirements such as minimal delay, adequate band-
width, and optimal throughput in response to user demands.
Addressing the extensive service requirements of satellite
networks demands the development of more flexible and
intelligent routing algorithms capable of adapting to the in-
creasingly varied service needs of users. Table 5 summarizes
the intelligent routing algorithms designed to address the
massive service requirements of LEO satellite networks.

From the perspective of QoS, Wu et al. [45] proposed
a supervised load balancing strategy. By defining QoS in
four dimensions, this strategy can effectively distinguish the
satellite traffic demands of different categories. The intro-
duction of cooperation strategies can provide more accurate
network status information for routing algorithms and other
management strategies. On this basis, Software Defined
Networking is introduced for centralized management of big
data flows to ensure flexible and fine-grained QoS provision.
For example, the data traffic involved in QoS type 1 has strict
requirements for bandwidth, packet loss rate, latency, and
jitter. It usually comes from government or military users,
or high-value applications such as video conferences. In
contrast, QoS type 4 involves traffic with the lowest priority,
such as web browsing and email services. By classifying
these different QoS types, this research can develop a more
accurate link cost model, thereby promoting enhanced QoS
guarantees.
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Table 5

The summary of solutions to the problem of massive service demands

Reference ML Algorithm Deployment Mode Routing Policy Results
. Generating .
[45] SVR Centralized Routing Path Achieves better QoS guarantee
. Generating Optimized the end-to-end delay,
[46] DDQN Distributed Next-Hop throughput, and packet loss rate
Optimized the end-to-end delay,
. Generating throughput, and packet loss rate,
[47] GNN-+DQN Centralized Routing Path and achieved a certain level of
generalization
.. . Generating Improved average throughput and re-
[48] Actor-Critic Centralized Routing Path duced average delay
[49]. [50] DQN Distributed jo:iirgatlgﬁh Fulfilled diverse service requirements
Leverage the processing capabilities
Generatin onboard satellites to optimize the
[51] DDPG Distributed & transmission delay in order to meet the
Next-Hop . .
QoS requirements of delay-sensitive
applications
Can operate efficiently and securely in
. L. Generating complex environments, increasing the
[52] Double Q-Learning Distributed Next-Hop delivery ratio and reducing the average
delay and overhead ratio
[53] D3QN Distributed Generating Reduce packet loss rates when the
Next-Hop system contains malicious nodes

In contrast, currently more studies rely on RL to address
the QoS challenges in satellite networks. For example, Wang
et al. [46] proposed a two-hop state-aware routing strategy
based on DRL. Compared with the hop-by-hop sensing
strategy, it has a larger receptive field and can alleviate some
routing cycle problems. In addition, a more advanced Dou-
ble Deep Q Network (DDQN) RL framework is introduced,
which can effectively improve the decision-making ability
of the routing model and thus ensure a more excellent QoS
performance. Experimental results show that this strategy
has achieved outstanding performance in indicators such as
end-to-end delay, throughput, and packet loss rate. Wang et
al. [47] combined a GNN with stronger network state percep-
tion ability and the DRL method to further optimize the fea-
ture extraction model of satellite network state and achieve
the goal of maximizing long-term average throughput and
minimizing average delay. Magadum et al. [48] proposed a
DRL method based on a behavior-criticism network to guide
network routing decisions. By designing specific state and
action spaces and incorporating relevant QoS parameters
such as packet loss rate, available bandwidth, and delay
into the routing decision-making process, it can effectively
improve the network congestion state and enhance service
quality. Zhou et al. [49] proposed a hierarchical RL satellite
routing method. By designing a hierarchical network archi-
tecture including LEO and MEO, and a regional division
strategy, the convergence and decision-making efficiency of
satellite routing can be effectively improved. On this basis,
Mao et al. [50] further designed a multi-agent collaborative
RL strategy to avoid resource usage conflicts caused by
routing selection among different applications, effectively

generate routing paths for different applications, and com-
prehensively enhance the overall performance of network
services.

In contrast to the approaches mentioned above, another
perspective is to leverage the processing capabilities of satel-
lites to reduce data transmission volume, thereby meeting the
QoS requirements of delay-sensitive applications. Building
on this idea, He et al. [51] proposed an intelligent routing
and resource allocation method based on DRL, which aims
to reduce data transmission volume and improve routing
efficiency by selecting the most suitable transmission path
and utilizing onboard processing capabilities. Specifically,
the proposed DQN-based Intelligent In-Orbit Routing algo-
rithm selects routing paths with good channel conditions,
sufficient energy, and low transmission load to minimize
transmission delay while ensuring the rational allocation
of energy and resources. Furthermore, the paper introduces
a DDPG-based Intelligent Resource Allocation algorithm,
which aims to achieve intelligent and continuous resource
allocation. By considering the interaction between potential
fields and resource states, the algorithm ensures that selected
satellites can process data, further reducing transmission
delays. Extensive simulation results demonstrate that these
methods significantly reduce transmission delay and packet
loss rate, effectively meeting the QoS requirements of satel-
lite networks.

For users who are considering choosing satellite network
services, security is undoubtedly a service requirement that
they are extremely concerned about. Potential threats such
as malicious nodes, attacks, link eavesdropping, and inter-
ference can seriously affect the security and reliability of
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satellite network data transmission. Therefore, formulating
effective solutions to these challenges should also become
a key link in the design of routing algorithms. Zhou et al.
[52] proposed an adaptive routing strategy. By analyzing Q
values, rewards, and discount coefficients, factors that can
represent node and link states such as network congestion
degree and node hop count are modeled, effectively enhanc-
ing the network’s ability to respond to dynamic changes
and attacks. Experimental results confirm that in a highly
dynamic LEO satellite environment, this strategy can sig-
nificantly improve the efficiency and security of routing
tasks. In addition, Song et al. [53] deeply explored the com-
mon security problems in satellite networks and proposed
a trusted and load-balanced routing scheme to deal with
the security threats brought by malicious nodes and attacks.
This scheme uses a multi-agent adversarial Double Deep Q-
Network Learning algorithm (D3QN) to construct a fully
distributed routing protocol, in which decisions are based on
the trust value of nodes. The trust value is evaluated through
the historical behavior and performance of nodes and can
be used as an indicator of its credibility in the satellite
network. Therefore, this scheme can effectively reduce the
impact of malicious nodes and attacks, and at the same time
enhance the network’s adaptability to dynamic changes. On
this basis, in order to further meet the individualized require-
ments of different satellite applications for service quality,
this method introduces a variable delay constraint into the
load minimization objective function, optimizing the load
balancing performance and service quality. Experimental re-
sults show that the proposed routing scheme greatly reduces
the link queue utilization rate and improves the system’s
processing ability for delay-sensitive services. In addition,
it also greatly reduces the packet loss rate, especially in the
case of malicious nodes, thus providing a reliable guarantee
for the safe data transmission of satellite networks.

Despite existing approaches [49, 50] achieving diversi-
fied service demand routing through hierarchical RL and
multi-agent collaboration, their limitation lies in the reliance
on manually defined QoS labels (e.g., bandwidth, latency
thresholds) for service classification, which makes it difficult
to adapt to unknown or hybrid service scenarios (such as
the coexistence of augmented reality and IoT data streams).
In the future, unsupervised or semi-supervised learning
techniques could be incorporated to automatically mine the
latent features of service traffic and design multi-objective
optimization frameworks to dynamically balance routing
based on different service demands. Furthermore, routing
algorithms considering security, such as trust-based methods
[53], often introduce additional computational overhead, po-
tentially affecting system real-time performance. To address
this challenge, future work could explore the deployment of
lightweight security mechanisms, such as combining homo-
morphic encryption and federated learning, to enhance both
security and system efficiency while maintaining real-time
capabilities.

3.3. Uneven Traffic Distribution

LEO satellite networks experience a severely imbal-
anced traffic distribution, particularly in high-latitude and
densely populated regions. The primary cause of this phe-
nomenon is the uneven distribution of satellites and ground
gateway stations, which leads to the coexistence of over-
loaded areas and relatively idle ones. Moreover, due to
the high-speed movement of satellites, these heavily loaded
coverage areas can swiftly shift from one satellite to another.
Such an unbalanced network load gives rise to network
congestion and performance degradation, thereby exerting
an adverse impact on communication quality and user expe-
rience. Consequently, it is essential to study and implement
effective load balancing techniques to optimize the utiliza-
tion of satellite network resources and enhance network
performance and stability. Table 6 presents an overview of
intelligent routing algorithms designed to address the issue
of uneven service distribution in LEO satellite networks.

On one hand, researchers concentrate on extracting more
accurate traffic patterns from the perspective of feature
modeling. For instance, Kato et al. [54] have achieved net-
work load balancing by leveraging deep learning technology,
especially in satellite networks handling multi-source and
multi-destination data transmissions. In such networks, the
selection of efficient path combinations is of utmost impor-
tance for maximizing network performance and preventing
congestion. This study utilizes CNN to model, select, and dy-
namically adjust path combinations based on real-time traffic
patterns. This approach enables the network to adapt flexibly
to diverse transmission requirements, effectively avoiding
congestion and improving the overall performance of the
network. In response to the limitations of traditional neural
networks in modeling network topology data, He et al. [55]
proposed a novel method that combines the GNN structure
with the DDPG approach. This method, known as "message-
passing DRL", allows GNN to more precisely perceive the
network load state through information exchange during the
message passing process. As a result, this method can make
more effective use of network environment information to
achieve load balancing and performance optimization of
network traffic.

On the other hand, more intelligent traffic scheduling
models have been further developed. Dong et al. [56] pro-
posed a load balancing routing algorithm based on DQN.
This algorithm models the satellite traffic load scheduling
process as a Markov decision process and utilizes the DQN
strategy to realize the dynamic adjustment of traffic load
scheduling. Experimental results demonstrate that this algo-
rithm can reduce congestion occurrence rate, successfully
achieve network load balancing, and thus obtain better rout-
ing performance. Huang et al. [57] introduced an intelli-
gent multi-path traffic scheduling method based on DDPG,
aiming to enhance autonomous and efficient communication
in LEO satellite networks. This method employs enhanced
pheromones to describe the changing state of network traffic,
which facilitates the timely identification of traffic overload
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Table 6

The summary of solutions to the problem of uneven traffic distribution

Reference ML Algorithm Deployment Mode Routing Policy Results
[54] CNN Centralized Gen'eratmg Achieved satellite traffic balance
Routing Path
Obtains better performance by improv-
. Setting Link ing the overall load balancing perfor-
[55] GNN+DDPG Centralized Weights mance, reducing the end-to-end delay,
and improving the utility of the network
[56] DQN Distributed Generating Reduces queue utilization a?nd conges-
Next-Hop tion to achieve load balancing
S Generating Adaptive Traffic Scheduling and Re-
[57] DDPG Distributed Next-Hop duced Network Load
. Offloads the scheduling tasks into the
. _ Generating . .
[58] Q-Learning Distributed accessing loT nodes, realizes fast con-
Next-Hop . .
gestion control, and improves QoS
Generatin Effectively optimizes average latency,
[59] Q-Routing Centralized . g packet arrival rate, and network load
Routing Path L . .
balancing in dynamic environments
Achieves low computational complex-
Generatin ity in dynamic environments with fre-
[60] GAT Centralized g quent service requests, while maintain-

Routing Path . . .
outing Fat ing high service acceptance and load

fairness

paths in dynamic network topologies. On this basis, the ad-
vanced DDPG framework is utilized to achieve better traffic
load scheduling optimization compared to DQN, ensuring
the system’s adaptability to the complex LEO network envi-
ronment and thereby improving the overall communication
efficiency and performance.

It is noteworthy that in LEO satellite networks, high
latency and high interruption probability of data trans-
mission are inevitable. To alleviate these problems, some
studies have proposed the concept of Delay Tolerant Net-
works (DTN). However, DTN requires sufficient storage
resources to ensure the store-and-forward process, and the
storage capacity of satellite networks is limited, making it
prone to congestion and service quality degradation due
to traffic overload. To address this issue, Wang et al. [58]
proposed a fast congestion control algorithm called "Fi-
nite Greedy". This algorithm integrates the use of multi-
hop packet-switched links into DTN opportunistic routing
through an incomplete information game mechanism and
RL. By migrating the scheduling task to each satellite node,
the Finite Greedy algorithm achieves fast congestion control,
thereby enhancing network efficiency and stability.

Apart from the uneven traffic distribution caused by the
distribution of users, the rapidly moving LEO satellites can
also disrupt the balance of traffic load, leading to addi-
tional deterioration of network performance. Therefore, the
decision-making model needs to converge quickly to adapt
to these dynamic network requirements. Considering the
continuous satellite movement and the evolving user require-
ments, the demands for network transmission also frequently
change. Therefore, the routing decision model needs to
rapidly converge to align with these dynamic network needs.

Ding et al. [59] proposed an enhanced learning satellite rout-
ing algorithm aiming for rapid convergence. This method
conceptualizes each satellite node as an intelligent entity that
can jointly perceive and quickly understand the changes in
network link states in a distributed architecture and adap-
tively adjust its forwarding strategy through local updates to
accommodate the dynamic changes in link configurations.
Experimental results show that this algorithm significantly
reduces the average latency, improves the packet arrival rate,
and achieves effective network load balancing, demonstrat-
ing its excellent performance.

In the face of the challenges posed by dynamic network
changes and frequent service requests, it is crucial to ensure
service continuity and reasonable resource allocation while
maintaining low computational complexity. To address the
issues of load imbalance and service interruptions caused by
the dynamic variations in satellite orbits, propagation delays,
and wireless environments in LEO networks, He et al. [60]
designed a hierarchical RL approach based on GAT. Re-
garding the load balancing problem, the paper takes into ac-
count the dynamic characteristics of LEO satellite networks,
such as satellite orbit changes and frequent service requests.
The authors employ a greedy mechanism for embedding
Virtual Network Functions (VNFs) and propose a Tabu
search algorithm to optimize the migration of VNFs, thereby
ensuring service continuity and equitable load distribution.
The GAT-based low-complexity RL method proposed in this
paper effectively achieves low computational complexity in
dynamic environments with frequent service requests, while
maintaining high service acceptance and load fairness.

Existing solutions have made some progress in address-
ing the issue of uneven traffic distribution in LEO satellite
networks, but certain limitations remain. For instance, [54]
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employs deep learning techniques to extract network traffic
patterns and utilizes CNNs for path selection and dynamic
adjustment. While these methods can flexibly accommodate
multi-source, multi-destination data transmission, they typ-
ically rely on static network topologies and historical traffic
data, which poses challenges in responding to the dynami-
cally changing network environment (such as frequent posi-
tional shifts between satellites). Moreover, existing solutions
often focus on traffic load balancing but may not account
for the rapid fluctuations in user demands and network
conditions, leading to suboptimal convergence times for
decision-making models. Future optimization could involve
the development of more adaptive algorithms that integrate
multiple intelligent techniques with real-time satellite and
traffic data to enhance load balancing, reduce latency, and
improve system stability. These methods should be designed
with scalability and low computational complexity in mind
to efficiently handle the high dynamics and frequent service
requests inherent in LEO satellite networks.

3.4. Constrained Satellite Resources

Properly resolving the issue of limited satellite resources
is of utmost significance for ensuring the reliable operation
and realizing the sustainable development of satellite com-
munication systems. At the current level of hardware devel-
opment, satellite resources, encompassing aspects such as
energy, communication resources, computing resources, and
storage capacity, all face numerous limitations, which have a
severe impact on the performance and reliability of satellite
communication systems. Considering that satellites mainly
rely on solar panels to provide energy during operation, the
instability of energy supply (due to multiple factors such as
weather conditions, time, and the satellite’s location) poses a
challenge to the reliability of satellite communication. There
is an urgent need to optimize energy management strategies
to extend the service life of satellites and ensure the stable
operation of the entire system. In addition, satellites are also
greatly constrained in terms of communication resources,
computing resources and storage capacity. These limiting
factors seriously hamper the efficiency and performance
of satellite communication systems, especially in situations
where a large amount of data needs to be processed, and
this hindrance is particularly evident. Therefore, when de-
signing and operating satellite routing algorithms, effective
strategies and technical means should be combined to over-
come these resource limitations and thereby enhance the
performance and reliability of the system. Table 7 provides
a brief overview of intelligent routing algorithms developed
to address the resource-constrained problem in LEO satellite
networks.

Solution to energy supply and usage issues: Shi et al.
[61] designed a routing scheme based on RL and set the
remaining energy and bandwidth utilization as routing con-
straints. However, this method only takes remaining energy
as one of the constraints and does not give priority to
reducing the overall energy consumption of satellites. Under
this premise, Lyu et al. [62] proposed a dynamic routing

strategy. By combining the Lagrange multiplier method with
RL, they achieved the minimization of packet transmission
delay under the constraint of overall energy consumption.
Y H et al. [63] proposed an event-driven DRL method,
which expands the granularity of performance optimization
to event-driven and further improves the energy usage rate
of satellite systems.

Solution for resource optimization (communication,
computing and storage). Qiu et al. [64] used DRL methods to
jointly manage and allocate network, cache and computing
resources between satellites and ground users, aiming to
solve the problem of resource optimization. On this basis,
Wang et al. [65] integrated GNN into the satellite resource
management strategy, effectively improving the modeling
ability of complex heterogeneous resources. While ensuring
a further increase in satellite resource utilization, better QoS
performance is achieved.

Joint optimization solution for resources and energy. Al-
though the aforementioned resource optimization methods
have made certain progress in resource utilization and net-
work performance, they have not fully addressed the impact
of energy expenditure on satellite systems. To overcome this
limitation, Liu et al. [66] proposed a high-energy-efficiency
routing protocol based on DQN. This protocol takes into
account the energy level and aging rate of satellite batteries
while optimizing resources, thereby achieving effective re-
source management over a longer time interval. In addition,
Wang et al. [67] also proposed a dynamic laser interstellar
link scheduling algorithm. This algorithm combines multi-
agent DRL technology with compressed sensing technology
to reduce the energy expenditure in communication, storage,
and computing processes.

Existing resource optimization schemes, such as those
presented in references [66, 67], have improved resource
utilization through model compression and energy consump-
tion constraints. However, these designs are often limited to
a single resource dimension (e.g., energy or computation)
and fail to fully account for the coupled effects of multi-
resource joint optimization (e.g., the trade-off between com-
munication energy consumption and computational load).
Future research should focus on developing cross-domain
joint optimization models that comprehensively consider the
interdependencies between multiple resources, particularly
in satellite networks with limited resources and diverse de-
mands. A promising research direction is to use game theory
to model the inter-satellite resource competition. Through
game-theoretic models, the impact of different resource al-
location strategies on the entire system can be effectively
analyzed, leading to the identification of optimal resource
configuration solutions.

4. Training and Deployment of LEO Satellite
Routing methods

As LEO satellite intelligent routing algorithms attract
increasing attention, how to effectively train and deploy
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Table 7

The summary of solutions to the problem of constrained satellite resources

Reference ML Algorithm Deployment Mode Routing Policy Results
Generatin Achieve the lowest delay under the
[61] Q-Learning Centralized . g premise of ensuring the remaining en-
Routing Path . e
ergy and bandwidth utilization
Generatin Minimizes average packet latency while
[62] A3C Distributed g maximizing energy efficiency and re-
Next-Hop .
ducing packet loss rates
Long-term optimization of energy per-
[63] DDPG Centralized Traffic Prediction formance while .satlsfylng end-to-end
latency constraints for each data
stream
Optimization Enabling management and coordina-
[64] DQN Centralized resources tion of network, cache, and computing
allocation resources
Generatin maximize the utilization of network
[65] GNN+DQN Centralized . 8 resources while guaranteeing the re-
Routing Path . ..
quirement of transmission delay
[66] DQN Distributed Generating Ability to_ effectively manage energy
Next-Hop consumption over the long term
[67] DQN Distributed Link Scheduling Significantly reduce energy consump-

tion and communication delays

them has become a crucial link in subsequent practical
applications.

4.1. Training Methods
4.1.1. General Training Process

This section describes the conventional training process
of ML-based intelligent routing algorithms, which generally
follows a structured pipeline comprising three core phases:
data preparation, model optimization, and operational de-
ployment. The initial stage involves systematic collection
and preprocessing of multi-dimensional historical network
data, including but not limited to temporal link state met-
rics, traffic distribution patterns, and topological evolution
characteristics. Through rigorous data cleansing, tempo-
ral synchronization, and spatial normalization procedures,
this phase establishes a reliable foundation for subsequent
algorithmic development by ensuring data integrity and
temporal-spatial consistency.

In the model optimization phase, SL and RL paradigms
demonstrate distinct methodological approaches. SL mod-
els rely on labeled historical datasets containing input fea-
tures and corresponding optimal routing decisions, perform-
ing offline optimization by minimizing prediction errors
through loss functions. This approach leverages explicit
supervision signals to adjust model parameters via back-
propagation, with regularization techniques like Dropout
preventing overfitting to historical patterns. In contrast,
RL frameworks adopt an environment-driven optimiza-
tion strategy, where policy networks progressively develop
routing strategies through iterative interactions with sim-
ulated satellite network environments. This paradigm em-
phasizes long-term reward maximization through carefully
designed exploration-exploitation mechanisms, with stabi-
lization techniques like prioritized experience replay and

soft target network updates being commonly adopted to
enhance training convergence.

The validation process necessitates comprehensive eval-
uation across diverse simulated scenarios to assess opera-
tional robustness. Test cases typically incorporate extreme
network conditions such as polar region occlusion events,
intermittent inter-satellite link failures, and burst traffic pat-
terns. Notably, SL validation primarily focuses on static per-
formance metrics, while RL evaluation extends to dynamic
adaptation measurements under evolving network states.

Finally, the model is deployed. After training, the model
is deployed to the actual satellite network. During deploy-
ment, it may be necessary to fine-tune the model to adapt
to the dynamic changes in the real-world environment. Ad-
ditionally, once deployed, the model should continuously
monitor network performance and perform online learning
and updates based on new network state data to maintain its
effectiveness and adaptability.

4.1.2. Model Partitioning Technique

The training of LEO intelligent routing algorithm mod-
els is highly resource-intensive, and conducting this training
directly within the satellite network can lead to inefficiencies
due to the network’s limited resources. To address this issue,
the model partitioning technique offers a viable solution.
Decomposing the model into different components allows
for the delegation of complex training tasks to be handled
by ground center clouds. The remaining parts of the training
tasks are executed within the LEO satellite system. This
approach not only improves the efficiency of resource uti-
lization but also reduces response delays.

Model parallelism and data parallelism are two prevalent
model partitioning techniques employed to enhance com-
putational efficiency and resource utilization in distributed
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systems. Parallel methods enable the system to fully ex-
ploit all distributed computing resources, thereby expediting
analysis and computation. In model parallelism [68], the
model is divided into multiple sub-models, each of which
is assigned to a different computational node. Each node
is responsible for processing one part of the model, and
to maintain global consistency, information exchange and
synchronization among nodes are necessary during training.
Conversely, data parallelism [69] entails replicating the same
model across multiple computational nodes and distributing
different batches of data to each node for training purposes.
Additionally, Huang et al. [70] introduced a pipelined paral-
lelism approach, ideal for handling a series of interdepen-
dent tasks. In this approach, tasks are decomposed into a
sequence of consecutive computational stages, where each
stage roughly requires an equal execution time. These stages
are then connected sequentially, forming a unified pipeline.
As a task progresses through the pipeline, its stages are
executed in parallel across different processing units. Upon
the completion of a stage, the resulting data is passed to the
next processing unit, thereby maintaining a constant flow of
processing.

With the continuous expansion of satellite networks, the
complexity of training intelligent routing algorithms is grad-
ually increasing. Therefore, the use of model segmentation
techniques is expected to play an increasingly significant
role in the development of intelligent routing algorithms for
LEO satellites. In response to these escalating challenges,
future research should not only account for the actual com-
putational demands associated with training routing models
but also adopt more flexible and efficient training methods.
Such adaptive approaches are essential to meet the growing
data processing requirements inherent in expanding satellite
networks.

4.2. Model Deployment
4.2.1. Centralized Deployment

In a centralized deployment, a centralized controller is
responsible for obtaining the global state and making routing
decisions. All compute, storage, and network resources are
consolidated in a single location or data center and are
managed and maintained by this centralized controller. This
architectural approach simplifies the complexity of network
management and maintenance, thereby enhancing the con-
trollability and manageability of the system. As shown in
Fig. 6(a), by collecting and analyzing global state informa-
tion, the centralized controller can optimize the utilization
of network resources, achieving effective load balancing of
traffic and enabling fine-grained routing decisions. More-
over, centralized deployment facilitates the unified man-
agement and implementation of security policies, thereby
ensuring network security and reliability. The algorithms
mentioned in this section are summarized in Table 8.

SDN is a flexible network architecture that facilitates
centralized deployment of intelligent routing algorithms,
offering numerous theoretical possibilities. SDN employs a
layered approach, decoupling the data plane from the control
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plane of the network. This separation is achieved through
network function virtualization, enabling the network to
transcend hardware limitations and to be customized accord-
ing to business needs for efficient orchestration and resource
reconfiguration. As a result, SDN realizes fast and flexible
network organization. In the data plane, satellites only need
to perform straightforward data forwarding and hardware
configuration functions, thereby reducing their processing
load. Conversely, the control plane is capable of obtaining a
global view of the network and continuously monitoring the
status of network devices. This capability allows for fine-
grained network management, improved routing decisions,
and QoS assurance. Consequently, the entire network ben-
efits from enhanced management, efficient resource alloca-
tion, and optimized performance. Furthermore, many SDN
controllers incorporate modular design principles, allowing
for the addition or removal of specific modules according
to architectural designs and business requirements, thereby
ensuring excellent system scalability [80].

Bao et al. [81] introduced traditional SDN techniques
into satellite networks, proposing the concept of Software-
Defined Satellite Network (SDSN). In the SDSN framework,
GEO satellites function as the control plane, MEO and
LEO satellites serve as the data plane, and ground stations
act as the management plane. In this configuration, the
control plane is responsible for receiving commands from
the management plane, transmitting them to the data plane,
monitoring the real-time status of the satellite network,
and sending feedback information back to the management
plane. Despite its advantages, the inherently dynamic nature
of satellite networks presents significant challenges to the
SDSN control architecture. To address these challenges,
integrating ML methods has been proposed as a solution
for smarter and more adaptive network management and
routing optimization. ML techniques can analyze and learn
from network traffic, topology, and performance data, allow-
ing the SDSN to adapt to changing network environments
and requirements. Consequently, combining ML methods
with SDSN architectures offers promising prospects for the
future. Tu et al. [71] explores the integration of SDN and
DRL to tackle dynamic network topology and link traffic
sensing issues in satellite networks. Specifically, this ap-
proach employs the DDPG algorithm for route optimization.
The DDPG algorithm enables routing decisions based on
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Table 8

The summary of routing algorithms of different deployment models

Reference Deployment Mode ML Algorithm Characteristics
Explores the integration of SDN and DRL to tackle
[71] Centralized DDPG dynamic network topology and link traffic sensing issues
in satellite networks
Model a general double-layer satellite network into the
[72] Centralized DQN SDSN structure to manage the network in a centralized
paradigm
Utilizes neural network training to discern the
. Chebyshev neural . S
[73] Centralized transmission patterns of data streams, which in turn
network . .
predicts routing paths
Presented an integration of SDN, CNN, and fuzzy logic
[74] Centralized CNN to propose an innovative multi-task routing algorithm
that relies on fuzzy CNNs
[75] Distributed RL . proposgd a dlstn.buted angula.r routing alg.orlthm in
time-varying dynamic LEO satellite constellation networks
Proposed a distributed routing algorithm based on
[76] Distributed MARL MARL, mobile and node agents work together to realize
a distributed routing decision process
[77] Distributed DQN Introduced spatial Iocatlo.n |nforr.n.at|on as a foundation
for routing decisions
Proposes a decentralized flow-centric DRL approach,
[78] Distributed DDQN shifting the focus from routing individual packets to
entire traffic flows
[79] Hybrid GNN--DQN Decouple the complexity of cross-domain routing

decisions employing hierarchical control

real-time link states, effectively addressing the challenges
presented by dynamic changes in satellite network topology
and link states. To enhance the ability to perceive contextual
relationships between data streams, the method incorporates
a neural network design that includes LSTM and fully con-
nected layers. Experimental results demonstrate that this
approach significantly improves end-to-end throughput and
reduces delay. Furthermore, it exhibits superior performance
in adapting to continuously changing data flows and link
states. Wei et al. [72] proposed an intelligent and reliable
routing framework based on centralized DRL, which further
extends the routing optimization methods under the SDSN
architecture. This framework aims to enhance the efficiency
and reliability of packet transmission in LEO satellite net-
works, particularly in highly dynamic and unstable space
environments. By employing centralized management, the
approach fully leverages the advantages of the SDSN archi-
tecture, enabling dynamic adjustment of routing decisions,
adaptation to network topology changes, and ensuring high
reliability even in the case of frequent link disruptions.

The limited storage resources in satellite networks con-
strain the storage of SDN streaming tables, necessitating
efficient storage solutions. This challenge has prompted re-
searchers to investigate various approaches. Liang et al. [73]
addresses the escalation of Ternary Content Addressable
Memory (TCAM) space consumption by flow tables in
SDSN. The study highlights that the increasing complexity
of flow table entries and the associated lookup and match-
ing processes result in diminished routing and forwarding
efficiency, thereby failing to meet the diverse requirements

of modern applications. To tackle this issue, they propose
a Chebyshev neural network-based intelligent routing archi-
tecture for SDSNs. This architecture utilizes neural network
training to discern the transmission patterns of data streams,
which in turn predicts routing paths. By replacing traditional
flow tables with a neural network, the approach not only con-
serves TCAM storage space but also enhances the routing
and forwarding efficiency of data streams.

Wang et al. [74] presented an integration of SDN, CNN,
and fuzzy logic to propose an innovative multi-task rout-
ing algorithm that relies on fuzzy CNNs. Considering the
dynamic nature of satellite networks, this approach utilizes
the GEO satellite and ground computing center as a unified
SDN control plane. The responsibilities of the GEO satellite
involve collecting load data in each cycle to create a mul-
tidimensional matrix, while the ground computing center
captures historical traffic data using the GEO controller for
training and updating the CNN model. Subsequently, the
GEO satellite employs the trained CNN model for route
planning and transmits the data stream to the LEO satellite.
Moreover, recognizing that the CNN’s decision-making may
sometimes conflict with user requirements, this method in-
corporates fuzzy inference to evaluate the task requirements.
This integration improves the CNN’s output efficiency and
guarantees the assignment of optimal paths.

4.2.2. Distributed Deployment
Compared to the centralized deployment method, the
distributed deployment approach offers superior parallelism,
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reliability, and scalability. As shown in Fig. 6(b), in a cen-
tralized deployment, all routing decisions and management
tasks are handled by a central controller. This centralized
design poses risks such as a single point of failure and makes
it challenging to support large-scale networks. In contrast,
distributed routing protocols distribute the decision-making
tasks across multiple nodes within the network. Each node
can independently execute routing algorithms, ensuring that
the failure of a single node does not compromise the overall
network operation, thus enhancing system reliability and
robustness. The distributive nature of these routing protocols
allows nodes to communicate and collaborate effectively,
enabling faster responses to changes within the network.
By executing routing decision tasks in parallel, distributed
protocols can swiftly adjust routing paths, thereby improv-
ing both the adaptability and performance of the network.
Additionally, the distributed deployment method provides
excellent scalability. As the network expands, new routing
nodes can be flexibly incorporated to accommodate the
growing network size and adapt to changing environmental
conditions.

In time-varying dynamic satellite networks, global cen-
tralized computation is nearly impossible to implement. As
a result, an increasing number of studies use distributed
operations when designing satellite routing algorithms. Si-
multaneously, angle computation has become an essential
factor in the design process. Park et al. [75] proposed a
routing algorithm based on distributed angular computation,
employing a Markov Decision Process (MDP) for discrete-
time sequential decision-making in time-varying LEO satel-
lite networks. Through this approach, the authors introduced
the MDP-based Distributed Angular Routing algorithm to
achieve seamless routing in LEO satellite networks. This
algorithm calculates the angular differences between the
source and destination and pursues geometrically straight-
line routing in orbital coordinates, ultimately improving data
transmission efficiency. The distributed routing algorithm
enables efficient data transfer through distributed decision-
making while avoiding the challenges posed by centralized
computation. By utilizing real satellite data, such as Two-
Line Elements (TLEs), in realistic environments, experi-
mental results show that the proposed algorithm outper-
forms others in routing success rate, reward convergence,
and throughput, further demonstrating the effectiveness of
the distributed angular routing algorithm in LEO satellite
networks.

Many researchers in ML-based LEO intelligent routing
algorithms have opted for MARL to achieve a distributed
deployment approach. This approach allows each agent to
gather local observations and make hop-by-hop routing de-
cisions based on those observations. The complete routing
process is accomplished through the collective effort of
all agents, enabling the distributed deployment of routing
algorithms. Gao et al. [76] proposed a distributed routing
algorithm based on MARL. In this algorithm, mobile and
node agents work together to realize a distributed routing

decision process. First, mobile agents are designed to tra-
verse the entire satellite network, where forward agents are
responsible for path exploration and data transmission from
the source node to the target node, simulating the process of
packet hop-by-hop movement, collecting network path and
traffic information, as well as selecting the next hop node.
The forward agent generates the reverse agent after reaching
the target node and moves along the path opposite to that
of the forward agent; the reverse agent, on the other hand,
updates the routing information of the intermediate nodes,
interacts with the cache, compares the information and up-
dates the routing information in the process of returning
from the target node to the source node, in order to realize
the dynamic updating of the paths and the maintenance of
the network state. Secondly, node agents are generated by
each satellite node and are responsible for managing the
local routing information and the information in the cache.
When the reverse agents return to the intermediate nodes, the
node agents interact with them. The node agents compare the
information in the cache with the information carried by the
reverse agents, select the more efficient of them, and update
the local routing information. This process is carried out
in a distributed manner, where each node agent handles its
own task independently, with no global scheduling or central
node. Through the distributed collaboration of mobile and
node agents, the algorithm realizes the routing management
of satellite networks, which can effectively adapt to changes
of network topology and fluctuations of traffic.

However, traditional distributed deployment methods
often heavily depend on local information and communica-
tion between neighboring nodes, leading to limited routing
decisions. To overcome this limitation, Xu et al. [77] intro-
duced spatial location information as a foundation for rout-
ing decisions, enhancing traditional distributed deployment
methods. Spatial location information enables intelligence to
have a more precise understanding of the relative positions
of satellites, thereby improving the effectiveness of routing
path selection. By incorporating the spatial arrangement of
satellites, unnecessary long routing paths are avoided, result-
ing in enhanced data transmission efficiency. Implemented
through MARL, each satellite serves as an agent that only
needs to perceive the spatial location and queue states of its
neighboring nodes within one hop, effectively reducing the
high communication overhead and information collection
delays associated with global information collection.

Furthermore, Liu et al. [78] proposed a decentralized
flow-centric DRL approach, shifting the focus from tradi-
tional packet-level routing to flow-level routing. Similar to
other distributed approaches, this method enables decision-
making by treating each satellite as an independent agent.
However, it differs by locally defining traffic flows, which
reduces computational and communication overhead, allow-
ing each satellite to perform routing decisions solely for its
local traffic without relying on global information. Through
this distributed architecture, the approach effectively avoids
the high communication costs associated with centralized
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methods, enabling each satellite to independently route traf-
fic based on locally defined flow information. This not only
enhances the flexibility and adaptability of routing decisions
but also ensures high throughput and low latency in dynamic
network environments, thereby achieving efficient flow man-
agement in low-Earth orbit satellite networks.

4.2.3. Comparison and Analysis

There are significant differences between distributed and
centralized Al routing algorithms in terms of architecture
design, performance, and applicable scenarios. This sec-
tion compares the two from various dimensions, such as
decision-making criteria, scalability, robustness, and com-
munication overhead, regarding to the high dynamics and
resource constraints of LEO satellite networks (as shown
in Table 9), and analyzes their adaptability in practical
applications.

In LEO satellite networks, the design differences be-
tween distributed and centralized Al routing algorithms
directly impact their performance and suitability for various
scenarios. Centralized algorithms rely on global network
state information for routing decisions, typically managed
by a ground control center or high-altitude satellites (such
as GEO or MEO). This architecture can generate globally
optimal paths based on complete topology and traffic infor-
mation, avoiding local suboptimal issues. Additionally, it is
efficient in model training and parameter updating, making it
particularly suitable for offline training of large-scale DRL
models. However, its core drawback is the risk of a single
point of failure. If the central node fails, it may lead to the
collapse of routing across the entire network, which poses a
significant threat to the high-reliability requirements of LEO
satellite networks. Furthermore, frequent synchronization of
global state information must be completed via the satellite-
ground link, which may cause decision delays in bandwidth-
limited and high-latency environments. Additionally, the
limited computational resources of satellite platforms make
it difficult for centralized architectures to support the scal-
ability requirements of large-scale constellations (such as
Starlink). As a result, it is better suited for relatively static
topologies in short-term scenarios (such as equatorial region
coverage windows) or lightweight models for online infer-
ence tasks (e.g., traffic prediction).

In contrast, distributed algorithms enable autonomous
decision-making by satellites through multi-agent collabo-
ration, where each satellite relies on local information (e.g.,
neighboring node states and link quality) to generate routing
strategies. This architecture inherently provides high robust-
ness. Even if a local link is interrupted or a satellite fails,
the network can maintain connectivity through dynamic path
adjustments, making it especially suited for high-dynamic
topologies (such as frequent link switches in polar regions).
At the same time, the distributed architecture reduces the
need for global data exchanges between satellite-ground or
inter-satellite communications, significantly lowering com-
munication overhead, and it supports the scalability re-
quirements of constellations with thousands of satellites.

However, its limitations lie in the incompleteness of local
information, which may lead to path redundancy or load
imbalance. Additionally, training multiple agents requires
addressing complex issues such as policy consistency and
credit allocation, increasing the difficulty of algorithm de-
sign and resource distribution. For instance, under resource-
constrained satellite platforms, distributed models need to
store and update parameters at each node, which imposes
higher requirements on storage and computing capabilities,
potentially limiting the real-time deployment of complex
models such as GNNS.

To balance the advantages of both architectures, some
studies have proposed hierarchical hybrid solutions. As an
example, Li et al. [79] presented a hierarchical DRL routing
method that incorporates a reward mechanism based on
pheromones. This mechanism aims to improve collaboration
during the training phase of distributed intelligence. The
proposed method utilizes a hybrid approach that combines
centralized and distributed strategies. It accomplishes this by
dividing the network into subdomains, with each subdomain
having both upper and lower-level agents. The upper-layer
agents are responsible for making cross-domain routing de-
cisions. They utilize pheromones at connection points to fa-
cilitate collaborative routing among neighboring upper-layer
agents. In contrast, the lower layer agents concentrate on
optimizing intra-domain routing. They achieve this by em-
ploying GNNs to exchange messages and distribute network
state information, enabling appropriate intra-domain routing
decisions. This hybrid approach, which combines central-
ized and distributed methods, facilitates the acquisition of
global network information, leading to more comprehensive
and accurate routing decisions. Additionally, it significantly
reduces network load and management burden, while also
providing scalability. Overall, the choice of algorithm should
be based on the specific requirements of the scenario: cen-
tralized algorithms are suitable for short-term static topolo-
gies and lightweight models, while distributed algorithms
are better suited for high-dynamic environments and large-
scale networks. Hybrid architectures offer a compromise for
complex scenarios, but their engineering implementation
still requires further exploration of cross-layer coordination
mechanisms and standardized interface designs.

5. Future LEO routing Research Directions

5.1. Network Feature Extraction

With the continuous exploration of the potential of
GNNSs in network feature extraction, a series of intelligent
routing algorithms based on these networks have emerged.
Despite the advancements achieved through these stud-
ies, GNNs continue to confront challenges such as over-
smoothing and over-compression, particularly in the con-
text of large-scale LEO satellite networks. These issues
hinder the routing model’s capacity to accurately capture
and model the satellite topology, thereby diminishing the
decision-making performance of the model. To address
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Table 9
Comparison of the two deployment models

Comparison Dimension

Centralized Routing Algorithm

Distributed Al Routing Algorithm

Decision Dependence
Robustness
Communication Range
Computational Load
Scalability
Typical Technologies DQN, DDPG

Application Scenarios
pplicatt I models

Global network state
Low (depends on central node)
High (requires full network communication)
Focused on the central node

Limited (suitable for small-scale networks)

Quiet or short-term stability, lightweight

Local node state
High (node self-tolerance)

Low (depends on local communication)
Distributed to each satellite node
Strong (supports ultra-large model

constellation)
MARL, distributed GNN

High dynamic extension, large-scale networks

these challenges, methods such as multi-scale GCN, self-
attention mechanisms, and sparse graph techniques can be
employed to enhance feature extraction efficiency and model
performance. Therefore, enhancing the structure of GNNs
with these methods to better accommodate satellite routing
tasks may represent a pivotal direction for future research.

5.2. Network Scalability

The long-term expansion of the LEO satellite network
requires careful consideration of scalability to accommodate
future growth. This involves addressing challenges such as
large-scale satellite deployment, network congestion, and
dynamic changes in network topology. Distributed routing
control strategies have emerged as a promising solution due
to their flexibility and fault tolerance. These architectures
can better manage scaling and frequent topology changes,
ensuring network stability and reliability.

To tackle scalability challenges, emerging technologies
like network slicing, SDN, and ML should be integrated
into routing strategies. These technologies can optimize
resource allocation and enhance routing decisions. Addi-
tionally, distributed routing should be designed to quickly
adapt to satellite failures and topology changes, ensuring
continuous network operation even in the event of node
failure or network disruption.

Therefore, developing flexible, fault-tolerant distributed
routing systems that can incorporate these technologies is
crucial for the sustainable growth of LEO satellite networks
and remains a key area for future research.

5.3. Model Decision Robustness

The topology of the satellite network undergoes peri-
odic dynamic changes due to factors such as atmospheric
disturbances and satellite orbital adjustments. These shifts,
combined with the intrinsic properties of inter-satellite
links—such as short link establishment times and dynamic
distance variations—complicate network stability. Addition-
ally, future satellite networks will face increasingly complex
challenges, including natural factors like optoelectronic in-
terference and energy constraints, as well as human-induced
threats such as military strikes. High maintenance costs and
long repair cycles further exacerbate the persistence of satel-
lite failures, making network resilience a critical concern.

A key aspect of robustness lies in topology adapta-
tion speed, which measures the time required for a routing
algorithm to regain stable performance after a topology
change. Faster adaptation ensures timely decision-making
and minimizes disruptions. Another crucial metric is mali-
cious node tolerance, which quantifies the percentage of ad-
versarial nodes the network can withstand while maintaining
acceptable communication performance. Higher tolerance
enhances network security and reliability, ensuring stable
operations even under adversarial conditions.

To improve these robustness aspects, advanced strategies
such as adversarial training and attention-based models can
enhance the resilience of routing decisions against decep-
tive attacks. Additionally, self-healing routing protocols,
inspired by biological immune systems, enable networks
to recover from node failures through dynamic topology
reconstruction and multipath redundancy. By integrating
these techniques, future LEO satellite networks can achieve
greater robustness, ensuring efficient, adaptive, and secure
routing in the face of dynamic changes and complex threats.

5.4. Computing Network Convergence

Computing network convergence refers to the integra-
tion of communication networks and computing networks
to enable unified management and collaborative operation
of communication and computing resources. This advance-
ment allows communication devices and computing devices
to function synergistically, optimizing the integration of
computing resources and communication channels for more
efficient data processing and transmission. The development
of LEO satellite technology has significantly enhanced com-
puting capabilities, offering increased resources and broader
application scenarios for computing network convergence.
LEO satellites can serve as communication relay stations
while also undertaking portions of computing tasks, thus
supporting both communication and computation in a uni-
fied manner.

To address the challenges posed by limited on-board
computational resources, future research should focus on
lightweight models, such as micro-GNNs generated through
knowledge distillation, combined with hardware accelera-
tors like FPGA deployments, to enable millisecond-level
response times for routing decisions. Moreover, cross-layer
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optimization and task offloading, such as offloading remote
sensing data processing tasks from satellites, should be
considered. Designing multi-objective optimization models
to balance communication latency and computational energy
consumption will be critical for enhancing the efficiency
of satellite networks. Therefore, incorporating on-planet
computing power into LEO satellite routing algorithms and
optimizing the synergy between communication and com-
putation are key areas for future research.

5.5. Generative Artificial Intelligence

Generative Artificial Intelligence (GenAl) is a type of
Al technology that can generate new data based on existing
data or models. Unlike traditional Al systems, GenAl learns
the distribution and structure of data to create entirely new
content, including text, images, audio, synthetic time-series
data, and more. Currently, an increasing number of studies
are applying GenAl to the field of network optimization, but
research related to LEO intelligent routing algorithms re-
mains limited. Through self-learning and reasoning, GenAl
can generate more flexible, intelligent, and high-quality
routing strategies in the dynamically changing LEO net-
work environment. As the number of satellites increases
and technologies mature, GenAl is expected to become one
of the key technologies in future LEO satellite intelligent
routing algorithms, providing more efficient and reliable
solutions for global satellite communications and internet
connectivity.

Moreover, the full potential of GenAl has yet to be fully
explored. One promising direction is the dynamic generation
of routing protocols. Leveraging GenAlI’s sequence genera-
tion capabilities, such as those of Diffusion models, adaptive
routing rules can be generated in real-time for handling
scenarios like sudden traffic surges or topology changes,
replacing traditional predefined protocols. This ability to
dynamically create routing strategies in response to rapidly
changing network conditions could significantly enhance the
flexibility and responsiveness of LEO satellite networks.

5.6. Suitability for Practical Application Scenarios

While ML-based intelligent routing algorithms have
demonstrated significant theoretical advantages, their prac-
tical deployment must align closely with the diverse re-
quirements of real-world LEO satellite network applications.
Future research should focus on evaluating the adaptability
of these algorithms in scenarios such as satellite internet
services, disaster emergency communications, and global
IoT coverage. For instance, in satellite internet services,
urban areas often demand high throughput, whereas remote
regions prioritize link stability. Dynamic routing strategies
should be designed to balance load distribution and en-
hance fault tolerance. In disaster emergency communica-
tion scenarios, damage to ground infrastructure may disrupt
satellite-ground communication links, leading to network
topology instability. To address this, RL techniques can be
integrated to enable rapid rerouting and efficient disaster
recovery. Moreover, practical deployment faces constraints

such as limited onboard computing resources and the la-
tency sensitivity of satellite-ground coordination. To mit-
igate these challenges, engineering techniques—including
model compression, edge computing, and inter-satellite co-
operative computing—should be leveraged to reduce algo-
rithmic complexity. Additionally, establishing high-fidelity
simulation platforms and onboard prototype testing environ-
ments will be essential for validating algorithm robustness
in complex conditions, such as Doppler shift and channel
fading. Furthermore, optimizing the compatibility of cross-
domain heterogeneous networks (e.g., interconnecting with
terrestrial 5G/6G networks and high-altitude platforms) and
developing standardized evaluation metrics will be critical
for bridging the gap between theoretical validation and real-
world engineering deployment. Through scenario-driven
technological iterations and rigorous validation, ML-based
intelligent routing algorithms are expected to provide effi-
cient and reliable foundational support for global communi-
cation, emergency response, and IoT applications.

6. Conclusion

Developing routing methods tailored for LEO satellite
application scenarios is of crucial significance for further en-
hancing network transmission performance and constitutes
one of the key technologies in future 6G. Compared with
traditional algorithms, routing algorithms based on ML are
more intelligent and start to exhibit obvious performance
advantages, making them more suitable for 6G networks.
However, in existing research works, there is a dearth of
comprehensive analysis content on integrating ML into LEO
satellite network routing tasks. We comprehensively sum-
marize the latest progress of intelligent routing algorithms
based on ML in LEO satellite networks from four aspects:
routing models, design challenges, training and deployment,
and future research directions. The objective is to provide
theoretical support for the design of artificial intelligence
satellite communication systems and further promote the
innovative development of satellite network optimization
technologies.
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