Page 1 of 39

oNOYTULT D WN =

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

Transactions on Dependable and Secure Computing

A Scheme of Robust Privacy-preserving Multi-Party
Computation via Public Verification

Keke Gai, Senior Member, IEEE, Dongjue Wang, Jing Yu, Member, IEEE, Lichuang Zhu, Senior Member, IEEE,
and Weizhi Meng, Senior Member, IEEE

Abstract—Multi-Party Computation (MPC), as a distributed
computing paradigm, is considered to be a potential solution for
providing privacy-preserving for applications following the client-
server model. However, traditional MPC solutions cannot satisfy
the publicly verifiable requirement of the client-server model.
In this paper, we propose a blockchain-based verifiable MPC
solution using Pedersen’s threshold secret sharing and Lifted
ElGamal encryption. We first build a data distribution method
using Pedersen’s threshold secret sharing and symmetric encryp-
tion to protect the privacy of inputs while ensuring robustness.
Then, we propose a result processing algorithm using Lifted
ElGamal encryption to safeguard the privacy of the outputs.
Finally, we employ non-interactive zero-knowledge proof and
Pedersen commitment to publicly verify the correctness of the
encrypted outputs in the smart contract, enabling the detection of
malicious parties. Theoretical analysis indicates that the proposed
method can publicly verify the correctness of outputs without
revealing plain-text inputs and outputs, which satisfy the privacy-
preserving requirements of the client-server model. Experimental
evaluations have demonstrated that our proposed approach is
efficient while achieving stronger privacy.

Index Terms—Multi-party computation, blockchain, public
verification, robustness, privacy-preserving.

I. INTRODUCTION

RIVACY concern is one of the major restrictions for

temporary data owners to implement collaborative com-
putations, even though merits of data sharing are well known
by the public. As a distributed computation paradigm, Multi-
Party Computation (MPC) is deemed to be an option for
supporting collaborative computations among untrustworthy
parties, as raw data are not directly shared between various
parties [1], [2]. MPC participants can only obtain output results
and intermediate values without releasing their own private
inputs. Implementations of MPC are adopted in a number of
domains, such as electronic auctions [3]-[6], e-voting [7]-[9],
and machine learning [10], [11].

K. Gai, D. Wang and L. Zhu are with School of Cyberspace Science and
Technology, Beijing Institute of Technology, Beijing, 100081, China. Emails:
{gaikeke,3220231818,lichuangz} @bit.edu.cn.

J. Yu is with the Institute of Information Engineering, Chinese Academy
of Sciences, Beijing, China, 100093. Email: yujing02 @iie.ac.cn.

W. Meng is with Department of Applied Mathematics and Computer Sci-
ence Cybersecurity Engineering, Technical University of Denmark, Kongens
Lyngby, Denmark. Email: weme@dtu.dk.

This work is partially supported by the National Key Research and
Development Program of China (Grant No. 2021YFB2701300), National
Natural Science Foundation of China (Grant No. 62372044), National De-
fense Basic Scientific Research program of China under grant number
JCKY2020602B008.

Corresponding author: Jing Yu (yujing02@iie.ac.cn)

—o—o o—o—o —o—o

Server 1 Server 2 Corrupted

L. = O-(-B

=~ =~ =~ =

o—s
Client1 Client2 Clientn Corrupted Data Compute Incorrect
server t Result

Learn inputs Learn outputs

Corrupt execution

Fig. 1: Security threats of applications that follow the client-
server model.

However, in the scenario of the client-server model, im-
plementing MPC schemes encounters restrictions since a
higher-level privacy-preserving scheme is required [12]. Fig.
1 displays potential security threats when applying traditional
MPC schemes in the client-server model, in which servers are
responsible for running MPC protocols and clients provide
servers with data for obtaining outputs. The client-server mode
needs to avoid servers learning plain-text inputs and outputs,
while clients need to verify whether outputs are correct. Thus,
additional protections are required for satisfying the security
requirement of the client-server mode.

Homomorphic encryption is a promising way to implement
privacy-preserving applications [13], [14] in the client-server
model. To preserve the privacy of electricity consumption
data, Zhan et al. [13] proposed a data aggregation scheme
using the EC-ElGamal encryption algorithm with a double
trapdoor decryption mechanism. To prevent the control center
and fog nodes from learning the plain-text input or out-
put, this scheme utilizes homomorphic encryption properties
to perform ciphertext operations, matching the client-server
model’s partial security requirements. However, this scheme
cannot tolerate collusion between the control center and fog
nodes. Furthermore, the control center cannot verify whether
the fog nodes have performed the correct computation. To
address the issue of verifiable computation results, Shen et
al. [14] proposed a verifiable statistical analysis scheme using
threshold homomorphic encryption [15] and Shamir’s thresh-
old secret sharing [16]. The E-commerce platform service
provider can verify the correctness of the computation results
of cloud servers because of the verifiability of threshold
homomorphic encryption. However, when the computational
task fails, the E-commerce platform service provider cannot

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

determine which cloud server submitted the invalid result
share. Moreover, this scheme lacks a public and transparent
platform for result verification. The servers executing the MPC
protocol perform computations independently. It is essential
to verify the correctness of the computation results. It is a
challenge to publicly verify the correctness of computation
results in the client-server model without leaking privacy.

To overcome this challenge, we propose a verifiable MPC
for client-server model, which utilizes the blockchain [17],
[18] as a transparent auditing platform. Blockchain has been
widely used in data auditing [19], [20] due to its transparency,
immutability and scalability [21], [22]. We construct an MPC
protocol using Pedersen’s verifiable threshold secret sharing
[23], supporting addition and multiplication operations while
achieving robustness. Specifically, the threshold parameter
t determines the number of servers required to reconstruct
the shared secret. Therefore, even if up to n — t servers
are malicious, the remaining servers can still reconstruct the
secret. Furthermore, to address privacy leakage concerns in
the computational result verification process, we propose a
privacy-preserving verification algorithm using Lifted ElGa-
mal encryption [24], Pedersen commitment [23], and non-
interactive zero-knowledge proof, which can ensure the cor-
rectness and privacy of the output results. Lifted ElGamal
encryption integrates well with Pedersen commitment because
of the additive homomorphic properties.

The main contributions are summarized as follows.

1) We propose a verifiable and robust MPC method, which
leverages blockchain as a transparent auditing platform.
We store the intermediate values of servers in the
blockchain for traceability of malicious server behavior.
Furthermore, we deploy the verification algorithm in the
smart contract, which enables the automatic detection of
malicious servers to protect the protocol execution.

2) To verify the correctness of results without revealing the
plain-text outputs, we propose a privacy-preserving veri-
fication algorithm. Different from previous schemes, the
proposed algorithm enables clients to identify whether
each server has submitted incorrect output results with-
out leaking privacy, which satisfies the security proper-
ties of the client-server model.

3) Theoretical analysis shows that the proposed method
can achieve more comprehensive privacy protection than
the previous schemes. Experiments demonstrate that the
proposed method is efficient in many ways, including the
computation overhead of clients and the communication
overhead in the result verification phase.

The rest of this paper is organized as follows. Related work
is given in Section II. Preliminaries are given in Section III. In
Section IV, we provide detailed description about the proposed
model. Sections V and VI present the security analysis and
experimental evaluations, respectively. Finally, conclusions of
this work are drawn in Section VIIL

II. RELATED WORK AND COMPARISON

MPC was a crucial cryptography technology that was rele-
vant for addressing data security and privacy. Many research

2

TABLE I: Comparison between the Proposed Scheme and
Related Works

Scheme Adversary Ver. | Rob. | Pol | PoO | Tran.
[13] Semi-honest X X v v X
[14] Malicious | v | v |V | V X
[25] Malicious v v v X v
[26] Malicious v v v X v
[27] Malicious v X v v v
Ours Malicious v v v v v

“Ver.” verifiable. “Rob.” robust. “Pol” privacy of inputs. “PoO”
privacy of outputs. “Tran.” transparent result verification process.

works focused on constructing efficient MPC protocols us-
ing techniques such as garbled circuits and secret sharing.
The application scenarios for secure two-party computation
were limited because of the constraint on the number of
participants. Goldreich et al. [28] proposed an MPC protocol
utilizing the oblivious transfer protocol, which supported both
boolean circuit and arithmetic circuit evaluations, extending
the computation from two parties to multiple parties. Ben-Or
et al. [29] constructed an MPC protocol using the Shamir’s
threshold secret sharing scheme [16]. This protocol utilized the
homomorphic properties of Shamir’s threshold secret sharing
to perform secure computations on shares. However, applying
this research in practical scenarios was challenging due to
algorithmic complexity and efficiency limitations. The emer-
gence of secure multiparty computation frameworks, such as
MP-SPDZ [30], CrypTen [31], Cheetah [32], and Squirrel [33]
had reduced the complexity of protocol development.

A. Blockchain-based Multi-Party Computation

To satisfy the public audit requirements, many researchers
[25], [34]-[36] focused on blockchain, which provided a
transparent platform for MPC. Bentov et al. [34] proposed
a fair MPC model on the Bitcoin network using a mon-
etary penalty mechanism. The claim-or-refund mechanism
contributed to the design of fair protocols and could be
extended to more blockchain systems. Subsequently, Kumare-
san et al. [35] improved upon Bentov’s scheme [34] by
enhancing the efficiency of the computation protocol in a
hybrid model, which reduced the complexity of the claim-
or-refund protocol script. Gao et al. [25] designed a fair
MPC scheme using game theory and smart contracts, which
combined a reputation system with a deposit and penalty
mechanism to ensure fairness. However, this scheme [25] does
not consider the privacy of the output results. In contrast to
the approach of ensuring fairness through monetary penalties,
Choudhuri et al. [36] transformed the fairness problem into a
fair decryption problem and utilized witness encryption and
the blockchain to execute fair decryption processes, which
achieved a fair MPC scheme for general functions. Blockchain
provided a transparent distributed platform, which satisfied
the public audit requirements. When most participants were
dishonest, blockchain-based MPC could ensure the fairness of
transactions [37]. However, executing MPC on a blockchain
platform brought the risk of privacy leaks thanks to its inherent
transparency. To address privacy leakage concerns, Yang et

Page 2 of 39

Page 3 of 39

oNOYTULT D WN =

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

al. [27] utilized zero-knowledge proof techniques to construct
an on-chain verifiable protocol, safeguarding privacy in the
industrial Internet of Things. However, this scheme [27] is
not robust enough to guarantee the normal execution of the
protocol when there are malicious nodes.

B. Homomorphic Encryption-based Multi-Party Computation

Many research works [13], [14], [26] used homomorphic
encryption to construct MPC protocols to satisfy the privacy-
preserving requirements of the client-server model, which
protected data confidentiality. Zhan et al. [13] proposed a
data aggregation protocol using EC-ElGamal encryption for
application in the smart grid, which ensured the confidentiality
of private electricity data. However, this scheme did not
consider the case of malicious fog nodes and could not verify
whether fog nodes were correctly executing the computation.
To achieve verifiability of the computation process, Zhou et
al. [26] proposed an on-chain MPC scheme using homomor-
phic encryption. The computation protocol was automatically
executed by smart contracts, which ensured the verifiability
of the computation process. To preserve privacy during the
data input phase, participants shared their private data using
the additive secret sharing scheme, and the corresponding
secret shares were encrypted with the public keys of various
participants. Similar to the method of Zhou et al. [26], Shen
et al. [14] proposed a data aggregation method by combining
secret sharing and homomorphic encryption, which addressed
issues related to server single points of failure and lack
of verification. However, there were limitations in detecting
malicious server behavior in this method. Furthermore, the
verification process of the method [14] lacks transparency
Both of these methods [14], [26] were unable to verify
the correctness of output results while ensuring the privacy
of the output results. Table I summarizes the comparison
with related works discussed above. We discuss the work
in terms of four metrics, including verifiability, privacy of
inputs, privacy of outputs, and transparency of the verification
process. Verifiability ensures that the output results are correct.
Transparency ensures fairness in the verification process. The
privacy of inputs is a fundamental requirement for MPC. The
privacy of outputs protects the interests of the data requester.

III. PRELIMINARIES
A. Pedersen Commitment

The Pedersen commitment [23] is a non-interactive com-
mitment scheme with excellent hiding, binding, and additive
homomorphic properties. There are three phases used in our
proposed method.

o Setup: Let a cyclic group G of prime order p, where g
and h are generators in the cyclic group G, with their
discrete logarithmic relationship being unknown.

o Commit: The committer selects a random number r €
G and computes the commitment for message m as
¢ = C(m,r) = g™h". Then, the committer sends the
commitment c to the verifier.

e Open: The committer sends message m and random
number 7 to the verifier. Then, the verifier checks whether

Transactions on Dependable and Secure Computing

g™ h" equals c. The verifier refuses the commitment when
they are not equal.

The additive homomorphic property of this method is as
follows:

C(ml,rl) X C(mg,’f‘g) = C(m1 +m2,7‘1 +7’2),
C(m,r)* =C(axm,axr).

(D

B. Pedersen’s Verifiable Threshold Secret Sharing

The Pedersen’s threshold secret sharing [23] is a verifiable
secret sharing scheme, which has additive homomorphism
property. Concretely, the secret sharing scheme is comprised
of three algorithms: secret sharing, secret reconstruction, and
verification of shares.

o Secret sharing: To share a secret s with n participants P,
for i« = 1,2,...,n, the dealer computes a commitment
Ey = C(s,t) and constructs two polynomials F'(x)
s+ P+ +F 2t and G(z) =t + Gro + -+~
G172t 1 of degree t—1 satisfying F'(0) = s and G(0)
t, where t € Z,, is a random number. Then, the dealer
computes s; = F(i), t; = G(i), and E; = C(F},Gy).
Finally, the dealer sends (s;,t;) secretly to P; where i =
1,2,...,n and broadcasts E; where j =0,1,...,t — 1.

o Secret reconstruction: When receiving ¢ shares (s;,t;),
the receiver can reconstruct the secret s:

=0T s @

o Verification of shares: During the secret sharing phase,
participants P; receive their shares from the dealer and
check whether C (si,ti) equals H;;E EY 10 verify the
validity of their secret shares. Furthermore, the receiver
can verify the validity of the shares in the same manner

during the secret reconstruction phase.

=+

C. Lifted ElGamal Threshold Cryptosystem

The Lifted ElGamal threshold cryptosystem is a variant of
ElGamal encryption [24] with additive homomorphic proper-
ties. Specifically, the Lifted ElGamal threshold cryptosystem
is comprised of three parts: key generation, encryption, and
decryption.

o Key generation: Let a prime p and a generator g in the
group Z,. n players Py, P, ..., P, select the private
key s;(i = 1,2,...,n) and compute k; = ¢° mod p
independently. Finally, n parties jointly compute the
public key h =[]/, k; = [, ¢° = g>~i=1 % mod p.

 Encryption: Choose a random number r € Z; and
compute the ciphertext ¢ for message m € Z, as
¢ = Enc(m) = (¢co,c1) = (¢",g™h").

o Decryption: P; computes t; = ¢}’ modp. Then, n
parties jointly compute ¢ = [t = Tl e =
0021'/:1 * mod p and g™ = ¢/t mod p using private key
s;(i = 1,2,...,n). Then, obtain the message m by
querying a discrete logarithm table or solving the discrete
logarithm problem.

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

IV. OUR PROPOSED MODEL
A. Design Goals

To realize the security properties of the client-server model,
it is necessary to ensure that our MPC method satisfies the
following security requirements.

Privacy-Preserving: It is significant to emphasize that
useful information is not leaked during the execution of com-
putations and result verification. The proposed method should
require the servers not to access the raw inputs and outputs.
During the data distribution phase and the data calculation
phase, no single server or subset of servers can collude to
obtain the inputs of clients. Furthermore, the proposed method
needs to ensure that the blockchain nodes and servers cannot
access the original outputs during the result verification phase,
even in the case of collusion.

Verifiability: Ensuring the verifiability of outputs is es-
sential to prevent clients from receiving incorrect results.
The proposed method should be able to verify whether each
output submitted by servers is correct to detect malicious
servers. Furthermore, the proposed method needs to ensure
that the computation results are publicly verifiable, allowing
both clients and servers to obtain verification of the results.

Robustness: In practical applications, assume that there is a
likelihood of failures in computation tasks for offline servers, it
is essential to enhance the robustness to tolerate server failures.
Specifically, the proposed solution needs to be able to tolerate
instances where a portion of the servers are offline during the
data computation or the result processing phase while ensuring
the normal functioning of the protocol. Furthermore, the client
should still be able to reconstruct the correct outputs using the
remaining correct output shares when some malicious servers
submit incorrect output shares.

B. Threat Model

We assume the maximum amount of the malicious servers
is ¢ — 1 out of n total servers, where ¢ is the threshold of
the secret sharing scheme and n < 2¢ — 1. The adversary
can control these ¢ — 1 fixed malicious server nodes during
the task execution phase. Malicious servers try to infer the
original data of the benign servers or cause the failure of the
computation tasks by exchanging information with each other
and submitting incorrect result.

All blockchain nodes and clients are considered semi-honest
nodes. We assume that clients and blockchain nodes will not
collude with each other. In the proposed method, the client is
the data owner and only participates in the data distribution
and result decryption phases. We do not consider the case
where the client submits false input data. The client follows
the execution of the protocol but may attempt to infer input
data from other clients. During the decryption phase, the semi-
honest client decrypts the result according to the protocol
process. The goal of malicious servers is to obtain raw inputs
and outputs or make the client receive incorrect results. (i) t—1
malicious servers decrypt and exchange input data shares to
reconstruct the client’s original input data when receiving the
input data. (ii) £ — 1 malicious servers may exchange interme-
diate values of the computation process to obtain information

4

Blockchaln
Verify

- _ _ @
a/-%é\ !ﬂ—’. correctnes\s/ > d&
Ne__» "

outputs
(] -

Encrypted Smart

outputs contract

Submit
encrypted
outputs

Distribute
shares

@ Shares @ Shares @ Shares
Generate
shares n n n
= = =

Client 1 Client 2 Clientn
___________________________________ §-----
Decrypt 4—6 = © -
outputs —v 8 =
Outputs Encrypted outputs Client

Fig. 2: The system model.

related to the raw inputs or output results during the data
calculation and result processing phases. (iii) n — ¢t malicious
servers may perform incorrect calculations or result processing
and submit incorrect results to the blockchain. (iv) n — ¢
malicious servers may choose not to perform computations
and not submit results to hinder protocol execution.

C. Model Overview

As shown in Fig. 2, our system model consists of three types
of entities: clients, servers, and the blockchain. Their roles are
described as follows.

Clients: The clients are data owners and task requesters
in our model, which split the data using the secret sharing
scheme. When the computation task is completed, the clients
receive the encrypted outputs from the blockchain and decrypt
them using the private key to obtain the raw outputs.

Servers: The servers are responsible for executing computa-
tions, which act as intermediate nodes between the clients and
the blockchain. After completing the computation, the servers
encrypt the outputs using the public key of the clients and
submit them to the blockchain.

Blockchain: The blockchain serves as a transparent au-
dit platform responsible for verifying the correctness of the
outputs in our model. In particular, the feature of automatic
execution by smart contracts ensures that the audit process is
not susceptible to disruption.

The workflow of the proposed method is described as
follows. First, clients and servers initialize system parameters
and key pairs. Next, clients split and distribute data to servers

Page 4 of 39

Page 5 of 39

oNOYTULT D WN =

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

using the secret sharing scheme. The servers verify the validity
of data shares and perform computational tasks. servers use the
clients’ public key to encrypt the computation result shares and
submit them to the blockchain. The smart contract verifies the
correctness of the computation result shares without revealing
the original shares. Finally, the clients obtain the validated
encrypted computation result shares from the blockchain. The
clients use the private key to decrypt the output result shares
and reconstruct the raw output result. The general process
of the model is divided into the following phases, including
share generation and distribution, share computation, result
processing and verification, and result decryption.

1) Share generation and distribution: Clients possess the
input data and need to distribute this input to servers with
computational capabilities. To preserve the privacy of input
data, it is crucial to ensure that servers cannot learn the raw
inputs. Clients first need to split the input data into multiple
shares corresponding to each respective server. Then, clients
need to send the shares to the corresponding servers through
a secure channel.

We employ the Pedersen’s secret sharing scheme [23] to
achieve the splitting of inputs. The core of secret sharing is
to partition a secret into multiple random values so that the
original secret remains undisclosed. Additionally, we employ
commitments to ensure the validity of secret shares, preventing
any tampering with the shares during the transmission process.
The process of generating secret shares takes place in plaintext
space. We need to avoid transmitting shares over a public
channel because multiple secret shares can be used to recon-
struct the raw inputs. We assume each client has negotiated a
symmetric key with servers to simulate a secure channel when
sharing the secret (see Section IV-D2). The secret generation
and distribution phases aim to enable servers to obtain valid
shares of inputs.

2) Share computation: Servers perform the corresponding
computations on these shares when obtaining valid shares of
inputs. We focus on addition and multiplication operations on
the shares, ensuring the verifiability of the computations.

For addition operations, servers can perform the same
operation on the corresponding shares due to the additive
homomorphic property of the shares. Each server performs
computations locally without the need for interaction. For mul-
tiplication operations, we need to utilize beaver triples [38] to
facilitate the computation of the shares. We assume that servers
possess multiple sets of valid triples before executing tasks.
During the computation process, servers need to exchange
intermediate data to reconstruct intermediate values. Since the
intermediate values do not reveal any information related to the
inputs, we can use a public channel to transmit intermediate
data (refer to Section IV-D3).

3) Result processing and verification: To ensure clients
obtain the correct results, we need to verify the correctness of
the computation results. Furthermore, we utilize blockchain as
a platform for result verification to enhance the transparency
of the verification process. However, the public transparency
of the blockchain leads to the risk of leaking output results.
Servers need to encrypt the raw output results to ensure the
confidentiality of the output.

Transactions on Dependable and Secure Computing

We employ the Lifted ElGamal algorithm [24] to encrypt
the output results because Lifted ElGamal possesses additive
homomorphic properties similar to Pedersen commitments
[23] (see Section IV-D4). Then, servers submit the encrypted
output results to the blockchain. The smart contract verifies
the correctness of the output results using the Pedersen com-
mitment values of the output result shares (see Section IV-D5).
The result processing and verification phases aim to enable the
correctness and privacy of the computation results.

4) Result decryption: After completing the result verifica-
tion, clients retrieve the verified encrypted output result shares
from the blockchain. Then, clients collaboratively decrypt the
output result shares using the private key and reconstruct the
raw output results employing the reconstruction algorithm of
the secret sharing scheme.

Since Pedersen’s secret sharing scheme is a threshold secret
sharing scheme, clients only need to collect a sufficient number
of shares that meet the threshold to recover the output results.
Additionally, the correctness of each share is verified, ensuring
that the recovered output results are correct (refer to Section
IV-D6).

D. Model Design

The workflow of the proposed method is shown in Fig.
3. The notations and their descriptions are shown in Tablell.
We assume there are m clients C;(i = 1,2,...,m) and n
servers S;(i = 1,2,...,n) in our model, where each client
Ci(i = 1,2,...,m) has private data z;(i = 1,2,...,m).
Multiple clients require the result of a function involving
addition and multiplication, computed using their private data.
Initially, clients divide their private data using the secret
sharing scheme and transmit the corresponding shares to the
servers. Subsequently, servers execute computations on the
shares, attributable to the additive homomorphic properties
inherent in the shares. For multiplication operations, servers
convert these into addition operations utilizing multiplication
triples. Upon completion of the computation, servers encrypt
the output result shares using the clients’ public key and
subsequently submit these to the blockchain for verification.
Next, smart contracts verify the correctness of the output result
shares, ensuring no disclosure of information regarding the
plain-text output results. Clients then retrieve the verified and
encrypted output result shares from the blockchain. Finally,
clients reconstruct the plain-text output results by decrypting
the shares with their private key.

1) System Initialization: Let p and g be two large primes
and ¢|p — 1, where g be a generator of cyclic group G with
order q. The p and g are public parameters stored on the
blockchain. Each client C; and server S; has negotiated a
symmetric key K; ;(i = 1,2,...,m,j = 1,2,...,n), used
to establish a secure channel for transmitting shares. Then,
clients jointly generate the key shares of Lifted ElGamal
encryption according to the discrete-log based Distributed
Key Generation (DKG) protocols [39]. The share s; € Z;
of the Lifted ElGamal private key is obtained by running
the DKG protocol between clients. Subsequently, all clients
computes k; = g° mod p independently. Finally, all clients

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

Phase I: Share generation and distribution

Phase I1: Share computation

6

Phase I1I: Result processing and verification

M S0 e B

; Encrypted
Client1 Data Share shares shares

=gl B

Clientn Data Share

Encrypt

Encrypt | shares

\\\ Encrypted Blockchaln
— — —> —b result shares -
FH 6 a < : > <: } gr I /- -} \ .I

Server 1 ENCIyPted pecrynt verify

a*ﬁ*@*@

Encrypted | Servern EMCTYPted pecrypt Verify
shares

.o
Compute esult @ Proof
process Smart

- -
contract

). Encrypted
;F 1. resultshares \ =

Compute Result
process

@ Proof Commnmen/ \
=] Correctness %\.

s

@ Verified
result shares

= g

\Verified
Cllent result shares Decrypt shares Reconstruction Result

Phase IV: Result decryption

venflcatlon
Encrypted / Verlfled
result shares/v @ result shares
Consnstency

Erany verification

Fig. 3: The workflow of the proposed method.

TABLE II: Notations in the Proposed Method

Notation Definition
G A cyclic group
) A prime in the G
q The order of G
g A generator of G
m The number of clients
n The number of servers
C} The identity of client ¢
S; The identity of server ¢
h The public key of Lifted ElGamal cryptosystem
Si The private key share of Lifted ElGamal cryptosystem
K The symmetric key negotiated by the client ¢ and server j
t The threshold of the Pedersen’s secret sharing scheme
T; The private data of client ¢

jointly compute the public key h = [\, k; = [[_, ¢° =
g2i=1% mod p, which is a generator of the cyclic group G
of order ¢ and is stored on the blockchain. Furthermore, to
guarantee the normal operation of multiplication, the client
will generate the required multiple ¢ — 1 degree polynomials
to submit to the blockchain. After initialization, the blockchain
stores the public parameters {p,g,h} and multiple ¢ — 1
degree polynomials. Each client C; possesses Lifted ElGamal
keys h,s; and symmetric keys K ; corresponding to each
server. Each server S; possesses symmetric keys K; ; for each
corresponding client.

2) Secret Sharing-based Data Distribution: To ensure the
confidentiality of the data distribution process, we combine
Pedersen’s verifiable threshold secret sharing [23] with sym-
metric encryption to achieve the distribution of the client’s
data. Each client C;(i = 1,2,...,m) computes the commit-
ment for their data x; as E; o = C(x;,7;) = ¢"*h™ mod p,
where 7; € G is a randomly chosen blinding factor. Then,
each client C; formulates two ¢ — 1 degree polynomials

t—1
+ Fig1xt,

+ G2t)

Gl(.’E) :Ti+Gi71"E+°"

where F; ; and G, (t = 1,2, ...,
two polynomials of degree ¢ — 1.

Next, the client C; computes s; ; = F;(j), ti; = G;(j), and
Eio = C(Fi4,Gio) = gFeh®ie, where j = 1,2,...,n
and a = 1,2,...,t — 1. Each client C; broadcasts E; (o =

t — 1) are the coefficients of

0,1,...,t —1) and encrypts s; ; and ; ; as follows:

Sij = ETLC(KZ‘7]‘7 Si7j>7f,j = Enc(Ki,j, ti7j>- 4)

Finally, the client C; sends {5;;,t;;} to servers. Upon
receiving the encrypted shares {S;;,¢;;}, servers use the
symmetric key K; ; to decrypt and obtain the original shares
{s, i t;]} Each server S; checks whether g%iih'i equals
H EJ to verify the validity of shares. Furthermore, the
chents generate the multiplication triples (a,b,c) required
for the computational tasks. For each share a;,b;,c;(i =
1,2,...,n) of the multiplication triple, the client randomly
selects blinding factors 7,,,7p,,7., to generate its Peder-
sen commitments c,,, Cp,,Cc;, Which are submitted to the
blockchain. Subsequently, the client encrypts the shares of the
multiplication triple using the symmetric key corresponding to
the server and transmits them to the respective server.

3) Data Computation: Servers perform computations ac-
cording to the task function after receiving and verifying
their shares. Zhou et al. [26] introduced homomorphic encryp-
tion technology to perform computations on encrypted shares
within smart contracts, enabling on-chain computation but at
the expense of reduced computational efficiency. Additionally,
this approach poses a risk of data leakage, as it necessitates
decrypting encrypted shares during multiplication operations.
To address this issue, off-chain computation is employed to
enhance computational efficiency and reduce the risk of data
leakage. The computation protocol supports both addition and
multiplication operations. For addition operations, each server
can independently perform them locally without interaction.
Multiplication operations necessitate the use of beaver triples
[38] for computation. Our method does not address the ef-
ficiency of generating Beaver triples, as these triples can be
generated in advance by a trusted third party. It is assumed
that the servers already possess a sufficient number of verified
multiplication triple shares (a,b,c), where ¢ = a x b. The
addition operation of two private data points, s,+5g, is used as
an example to demonstrate this process. Each server performs
the calculation locally and obtains a result share z; following
the addition operation.

ZZ‘:Sa’i—‘rSB}i,i:l,Q,...,’n. (5

Page 6 of 39

Page 7 of 39

oNOYTULT D WN =

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

For constant multiplication operations, consider the example
of ¢ X s, with the calculation process detailed as follows:

Zi =CX 8q4,0=1,2,...,n. (6)

For addition operations involving a constant and private
data, the example of ¢ + s, is taken, with the calculation
process outlined as follows:

zi=c+38q,i,t=1,2,...,n. @)

The above process describes an addition operation that does
not require interaction, owing to the property of additive ho-
momorphism. However, for multiplication operations, servers
are unable to operate independently and require interaction.
Considering the calculation of s, X sz as an example, the
process is as follows. Initially, each server locally calculates
and broadcasts shares of s, —a and sg — b.

di = Sa.i —ai,i = 1,2,...,%,
{ €i2857i—bi,i:1,2,...,n. (8)
To detect malicious behavior on the server, server S;(i =
1,2,...,n) need to submit d; and e; to the blockchain.
Subsequently, each server reconstructs d and e using the
secret reconstruction algorithm, and computes the secret shares
of d x e based on the client’s predetermined ¢ — 1 degree
polynomials stored in the blockchain. Specifically, d X e is split
according to the sharing algorithm of Pedersen’s verifiable
secret sharing scheme using the t—1 degree polynomial stored
in the blockchain.
Finally, the result share for s, X sg is calculated by each
server as follows:

zZi=citexa;+dxb;+(dxe),i=1,2....n. (9

4) Lifted ElGamal-based Result Processing: To protect the
privacy of the outputs, we should avoid the leakage of the raw
results during the correctness verification process of the client-
server model. For existing solutions [26], if employing smart
contracts for output results verification, servers must submit
the original output shares to the smart contract. The blockchain
nodes and servers can access the output shares and reconstruct
the output result, a consequence of the transparency of smart
contracts, leading to the exposure of the computed result.
To ensure confidentiality, Lifted ElGamal encryption [24] is
employed to process the output results prior to performing cor-
rectness verification. Following the final computation round,
each server obtains an output result share of k (e.g., k = 256)
bits, denoted as z;(i = 1,2,...,n). To protect the privacy of
the output result share, we split the output result share into
multiple values. Specifically, each server S; divides the k-bit
output result shares z; into p-bit (e.g., p = 32) groups, yielding
k/p groups v;(j =0,1,....k/p—1).

Zi = V0 + 1 X 2P 4 vy, x 2027 (10)

Following the partitioning, each server encrypts these parti-
tions using the clients’ Lifted ElGamal public key. Specifically,

Transactions on Dependable and Secure Computing

each server S; selects random number I1,l2,...,lx/p—1 €
(1,p— 1) and computes Iy as follows:

l():?"*(ll X2p+12 X 22p+"'+lk/p_1 X2(k/p71)p)
mod(p — 1),

1D

where 7 is the blinding factor associated with the Peder-

sen commitment value of the output result share z;. The

server calculates the blinding factor r for the Pedersen com-

mitment of z; using a similar operation to that used for

the raw data shares. Server S; encrypts the partitioned val-

ues v;(j = 0,1,...,k/p — 1) of the output result share

z; using the client’s public key pk = h and random

numbers [;(j = 0,1,...,k/p — 1), resulting in ciphertext

zZ; = (Cga C&)v (C?, Cll)v sy (C]S/pflv C}i/pfl)- SPeCiﬁcally,

the partition values v;(j = 0,1,...,k/p—1) are encrypted as
follows:

{ Oy =¢".j=01...k/p-1, (12)

C; =g%h,j7=0,1,....k/p—1,

where g and h are two generators of Z*, which are the
same parameters utilized in the data distribution phase. Fi-
nally, the servers submit the encrypted output result share
Z; to the blockchain. The encryption process is detailed as
Alg. 1. To ensure clients can decrypt and obtain the correct
result in subsequent steps, ciphertext consistency verification
is performed. Each server S; must prove that C’? = gl
and C} = g"7h's of the encrypted partition values (C5,C})
where j € {0,1,...,k/p — 1}. For each set of encrypted
partition values (C?,C’}), it randomly chooses aj,b; € Z3,
and computes

Ag = gb
Ajl = g% hbi

Hj = Hash (C9,C, A%, AL g.h) |. (13)

dj =a; + vaj

fj = bj + Hjl;
Then, the A9, A}, d;, f; are submitted to the blockchain. The
smart contract computes H; = Hash (C9,C}, A9, A}, g, h)
and verification is performed as

fi L p00H;
P
g%nti = Ajl.le 7,

If the verification fails, the protocol is aborted. Otherwise, the
verification for result correctness is further performed.

5) Blockchain-based Result Verification: To ensure the cor-
rectness of the output results, the validity of each server’s
submitted share is verified in the smart contract. While the
transparency feature of smart contracts facilitates result ver-
ification, it also introduces the risk of privacy leakage. To
address this issue, we designed an algorithm for verifying
the correctness of encrypted output results using the additive
homomorphic properties of Lifted ElGamal encryption and
Pedersen commitment.

After receiving encrypted output result shares from the
server, commitments of the raw data shares are retrieved by
the smart contract from the blockchain. Specifically, the smart
contract can calculate the Pedersen commitment of each raw

ZKPoC =

(14)

oNOYTULT D WN =

55

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

8

Algorithm 1 Outputs Encryption Algorithm using Lifted
ElGamal Cryptosystem

Algorithm 2 Outputs Verification Algorithm using Lifted
ElGamal Cryptosystem

Require: The generator g of Z, the public key h of lifted
elgamal algorithm, the blinding factor 7, the partition
values 2 =vg + v X 2P + -+ +vp/p_1 X 2(k/p=1)p

Ensure: Encrypted output share z

1: ll, lg, ey lk/pfl (E (1,p — 1),
2l ¢ 1= (1 x2P+15x 2%+ 1,y x 2/P=DP) mod
(p— 1);

3. for i< 0to k/p—1do

4 OV« gl

5. Cl <« gvUihli;

6: end for

72 {(C8.C1), (€9,61) o (Cprs Chipn) |
8: return %;

data share based on the broadcast value of the data distribution
phase. Subsequently, the smart contract executes the similar
operations on the initial commitments as on the data shares to
obtain the commitment of output result shares. As an example
of the operation on data x and y, where x;,y;(i = 1,2,...,n)
represent the data shares of x and y. For the addition operation
x + y, the commitment is calculated as follows:

Cay = Cgy; X Cy;, 8 =1,2,...,n. (15)

For the multiplication operation = X y, the commitment is
calculated as follows:

Czy = Cey X Cq. X cbdi X C(de),t =1,2,...,n. (16)

i

Furthermore, verifying the intermediate values d and e
during the multiplication operation is essential. In this process,
the smart contract needs the client to provide blinding factors
of the Pedersen commitment. The verification process is as
follows:

? ?

Cp; = Ca; X Cd;,Cy; = Cp; X Ceyrt = 1,2,...,n. (17

Finally, the smart contract obtains the Pedersen commitment
¢, corresponding to the output result share.

The smart contract verifies whether the raw output result
share matches the Pedersen commitment value using the
encrypted output result shares z;. The verification process is
as follows:

2 2P 2(k/p—1)p

¢z =Cox O X xCpppy (18)
Specifically, the correctness of the ciphertext verification is
ensured by the additive homomorphic properties of Lifted
ElGamal encryption. The completeness of Eq. (18) can be
easily checked by Eq. (19).
1z(k/ p—1)p
k/p—1

2P 2
— gvohlo % (gvlhll) X oeee X (g”k/p—l hlk/p—l)
vo+v1 X2P 4+ Fvg sp 1 ><2<k/p71)phl0+ll><2p+"'+lk/p71 x2(k/p=1)p

2P
CixCi x---xC

(k/p—1)p

=9
=g*h" =c,, mod p
(19)

Require: The commitment value c, corresponding to the
output result share, the encrypted output result share
= {(C8.08) . (€0.C1) s (Cpons Gy

Ensure: T'rue or False

1. ¢, « 1,
for i<~ 0tok/p—1do
¢, x C’}me;
end for

if ¢, = c, then

return True;
else

return False;
end if

R A A o

The verification process of the results is detailed in Alg. 2. If
the verification succeeds, the calculation result of the server
is correct. Otherwise, the server is malicious.

6) Result Decryption: After completing the result verifica-
tion, clients retrieve encrypted output partition values from the
blockchain. Subsequently, clients decrypt the partition values
using the private key s;. Specifically, the decryption process
for the encrypted result partition values proceeds as follows:

=117, C9% m
{ tjv_ HZ1:1 C5 od p, 0,

C!
g% = <+ mod p.

J
Then, clients calculate the partition values v;(j =
0,1,...,k/p—1) of the output result share through querying
a discrete logarithm table. The clients recover the raw output
result share as follows:

2z = vy +v1 X 2P+..._~_Uk/p71 % 2(k/p=1)p Q1)

Finally, clients reconstruct the output result z by employing
the secret sharing reconstruction algorithm.

Y I = (22)

F
i=1 iyt Y

V. SECURITY ANALYSIS
A. Property Analysis of ZKPoC

Theorem V.1. If the ciphertext {C]O, C}} is obtained by
encrypting the message v; with the randomly blinding factor
l;, the smart contract will pass the verification of the ciphertext
consistency. That is, the ZKPoC is complete.

Proof. To verify the consistency of the ciphertext C;-) =
gl and le = gYhl, the servers computes and sends
{A9 A%, d;, f;} to the blockchain, where AY = g%, A} =

b R
gajhbj, dj = aj -I-Hj’Uj, fj = bj +Hjlj, and aj,bj — Z; If
C’? =g and C’} = g¥7hls, the smart contract computes

H; = Hale(C?,C},A?,A},ga h),

gli = gbitHili = gbi x (glJ‘)H-77

gdjhfj — gaj+vajhbj+Hjlj — gajhbj X (gvjhlj)Hj'
(23)

Page 8 of 39

Page 9 of 39

oNOYTULT D WN =

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

Therefore, the verification Eq. (14) holds. In other words,
the servers have passed the ciphertext consistency verification
and the ZKPoC is complete. O

Theorem V.2. If the ciphertext {CJQ, le} is not the result of
encrypting the message v; with the randomly blinding factor
l;, the smart contract will fail the verification of the ciphertext
consistency. That is, the ZKPoC is sound.

Proof. 1t is assumed that there exists the ciphertext C;») = gli
and C]1 = ¢"ih%, where vl U ¥id Z%. The smart contract
obtains {A9, A}, d;, f;}, where A = ;, A =g%hb, dj =
a; + Hj’Uj, fj = bj + Hjlj, and a]‘,bj — Z; If U; 75 vj and
l;- # 1;, the smart contract first computes Eq. (23). Then

,) H; v
AVCO™ = gt x () # gt x (g)",
ALCH = granbs x (gt £ g hbs x (g nt)™.
(24)
Therefore, the verification equation does not hold, and the
server cannot pass the verification. That is, the ZKPoC is
sound. O

Theorem V.3. If the participating entities except the server
cannot learn the plaintext message v; encrypted in the cipher-
text {C9,C}}, the ZKPoC is zero-knowledge.

Proof. Suppose there exists a Probabilistic Polynomial-Time
(PPT) adversary A, and let g,h be two generators of cyclic
group G with order p where h = g%, s € Zj,. For the plaintext
message v, the A can learn that d; = a; + H;v; and C’; =
g¥ihli. Since a; is a randomly chosen number by the server,
the PPT adversary .4 cannot learn v; from d;. For C]l, the A
has

Cj= gY g%l = g%l mod p. (25)

Without loss of generality, let z; = v; + sl;. If the A wants
to learn v;, x; = indy (9™’ mod p) needs to be calculated.
However, Pr[A(g,¢") = x;] < negl(\) due to the Discrete
Logarithm Problem (DLP) is hard. Thus, it is impossible for
A to learn z; in PPT. Furthermore, even if A learns z;, it
cannot learn v; as l; is random. Therefore, the ZKPoC is
zero-knowledge. O

B. Confidentiality and Privacy-Preserving

The proposed method ensures that servers cannot learn
the raw input data of clients to protect the privacy of the
input data. The clients split private inputs into secret shares
using the Pedersen’s verifiable secret sharing scheme. Each
secret share is a random value, which does not reveal private
inputs. Then, the clients encrypt different secret shares using
a symmetric key negotiated with the server. Each server
can only decrypt and obtain a single share. The Pedersen’s
verifiable secret sharing [23] is a (¢, n) threshold secret sharing
scheme with a threshold ¢, which means that only when ¢
or more secret shares are combined can the original data be
reconstructed. It is impossible to recover the private input data
when ¢t — 1 colluding participants among the n computation
nodes. Furthermore, Pedersen’s verifiable secret sharing re-
quires computing the commitment values of the polynomial

Transactions on Dependable and Secure Computing

coefficients during the data distribution phase. The security
of the Pedersen commitment scheme [23] relies on the DLP,
which has excellent hiding and binding properties. In the
Pedersen commitment generation phase, introducing random
blinding factors provides information-theoretic security for
hiding commitment values. For the same data, using different
blinding factors will generate different commitment values,
which ensures that the commitment values do not reveal any
meaningful information about the inputs. Consequently, the
proposed method is effective in resisting collusion attacks from
servers and preserving the privacy of inputs.

Moreover, the proposed method implements correctness
verification of the output results using non-interactive zero-
knowledge proof, Lifted ElGamal encryption [24] and Peder-
sen commitment [23]. The proposed correctness verification
algorithm does not reveal the raw output results. Once the
computation is completed, the servers split the output result
shares and encrypt them using the Lifted ElGamal public key
of clients. The security of Lifted ElGamal encryption ensures
that the encrypted output result shares do not reveal the raw
output result shares. Furthermore, the smart contract performs
correctness verification of the results using the encrypted
output result shares and commitment values, which do not
disclose meaningful information about the raw output result
shares. Then, the clients retrieve the encrypted output partition
values from the blockchain and decrypt the partition values
using the private key. The blockchain nodes and the servers
are unable to decrypt the output result shares or reconstruct the
output result. Consequently, the proposed method is effective
in preserving the privacy of outputs.

C. Verifiability

The proposed method ensures the public verifiability of
computation results, which detects malicious behavior by
servers. The clients compute Pedersen commitment values
for polynomial coefficients during the data distribution phase,
which are submitted to the blockchain. To obtain commit-
ment values corresponding to the computed results, the smart
contract can perform operations on Pedersen commitments
similar to those applied to secret shares thanks to additive
homomorphism. Furthermore, the smart contract offers the
advantages of automated execution and public transparency.
Performing output result verification within the smart contract
provides public verifiability for computed results. During the
multiplication computation phase that relies on multiplication
triples, servers are required to submit intermediate data to
the blockchain. Smart contracts can verify the correctness by
opening commitment values to prevent servers from tampering
with intermediate data. During the output result verification
phase, the proposed method utilizes ZKPoC and the addi-
tive homomorphic property of Pedersen commitment [23] to
achieve correctness verification of the output results. Further-
more, the proposed outputs verification algorithm relies on the
DLP. Given the hardness of the DLP, the proposed algorithm
is sound.

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

D. Robustness

The proposed method exhibits robustness and can tolerate
malicious behavior or offline status of servers. The proposed
method utilizes Pedersen’s verifiable (¢,n) threshold secret
sharing scheme [23] to construct a secure multiparty com-
putation protocol, where the threshold ¢ implies that ¢ secret
shares are required to recover the original secret. During
the data distribution phase, the proposed method can tolerate
t — 1 malicious servers colluding to recover the original data.
Any t — 1 server cannot correctly restore the Lagrange inter-
polation polynomial to recover the correct data. During the
data computation and result verification phases, the proposed
method can tolerate the malicious behavior or offline status
of up to n — t servers. We assume that there are n — ¢
malicious servers that have submitted incorrect computation
result shares. During the result verification phase, the smart
contract will detect incorrect computation results and trace
them back to the specific malicious servers. Furthermore,
the client can reconstruct the original output result using the
remaining correct ¢ shares. Consequently, the proposed method
ensures the continued execution of the protocol in the case
of n — ¢ servers acting maliciously or going offline. The
proposed method is robust and can resist the collusion of ¢ —1
malicious servers in the data distribution phase and n—t offline
or collusion of malicious servers in the data computation
and result verification phases, where ¢ is the threshold for
Pedersen’s verifiable secret sharing and n < 2t — 1.

V1. PERFORMANCE EVALUATION
A. Experimental Setup

The performance evaluation of our proposed method mainly
focused on the following metrics. 1) Computation Overhead:
The time of performing the cryptographic operations by each
entity. 2) Communication Overhead: The communication size
of each entity in the workflow. 3) Response Time: The runtime
from start to completion for a successful computational task.

We conducted experiments to show the overhead of each
entity in our proposed method. All experiments were executed
in a PC with Intel Core i9-13905H @2.60 GHz and 32.00
GB RAM. The virtual machine ran 64-bit Ubuntu 22.04.2
LTS, OpenJDK 11.0.19, and Hyperledger Fabric v2.4.4. We
communicated with the blockchain network using Hyperledger
Fabric Gateway v1.0.1 and ran chaincode using Java.

B. Computation Overhead

The computation overhead referred to the runtime of each
entity in the proposed method, which involved the runtime of
various cryptographic operations, such as symmetric encryp-
tion and decryption, commitment generation, and verification.
Table III shows the notations of related cryptographic opera-
tions.

Table IV shows the computation overhead of each entity
in the proposed method, where the numbers of clients and
servers are m and n respectively. Since our proposed method
didn’t take into account the generation of beaver triple [38],
we didn’t consider the extra cost of multiplication.

10

TABLE III: Notations of Cryptographic Operations

Notation Definition
Tse AES encryption runtime
Tsq AES decryption runtime
Tey Commitment generation runtime
Tsp Polynomial generation runtime
Tss Secret share generation runtime
Tsr Secret share reconstruction runtime
Tso Secret share verification runtime
Tee Lifted ElIGamal encryption runtime
Ted Lifted ElIGamal decryption runtime
Trp Result partition operation runtime
Troy Result verification operation runtime
Tac Share computation runtime
Tee Commitment computation runtime
T.p ZKPoC generation operation runtime
T ZKPoC verification operation runtime

TABLE IV: Computation Overhead of Each Entity

Entity Computation overhead

Client 2Tsp + n(Tss + Tse) + t(Teg + wTeq) + Tsr

Server m(Tsd + Tsv) + Tdc + Trp + w(Tee + sz)
Blockchain Tee + n(wWlzy + Tro)

Then, the servers performed computational tasks on the
shares. During the result processing phase, the server split
and encrypted the output results, which involved a result
partition operation, w Lifted ElGamal encryption operations,
and w ZKPoC generation operations, where w is the partition
value number. Then, the smart contract needed to execute the
verification operation on the output results, which involved a
commitment computation operation, nw ZKPoC verification
operations, and n result verification operations. Finally, the
client needed to decrypt and reconstruct the output results,
which involved tw Lifted ElGamal decryption operations and
a secret share reconstruction operation.

Furthermore, we analyzed the impact of key length on
computational overhead. In this experiment, the performance
evaluation metric was the runtime of each server for various
key lengths in each phase of the proposed method. The com-
putation overhead did not include network request latency and
the time spent on blockchain consensus. Fig. 4 illustrates the
runtime of the result processing and verification phases with
Lifted ElGamal key lengths of 64 bits, 128 bits, 256 bits, 512
bits, and 1024 bits. When the key length of Lifted ElGamal
was increased from 64 bits to 1024 bits, the time for the
encryption phase of the computation result increased from 3.88
ms to 10.06 ms, and the time for the ciphertext verification
phase increased from 4.79 ms to 13.17 ms. As the key length
increased, the time overhead of Lifted ElGamal encryption
grew, which corresponded to an increase in the computation
time for both the result processing and verification algorithms.
Increasing the key length could enhance the security of the
scheme but might reduce the overall performance of the
scheme. In practical applications, a balance should be struck
in setting the key length, ensuring both safety and efficiency.

The advantage of our method using verifiable threshold
secret sharing was its resistance to the collusive attack of
the server and its significant robustness. We evaluated the
computation overhead associated with collusion resistance and

Page 10 of 39

Page 11 of 39

oNOYTULT D WN =

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

14 4|] processing phase|------------coomooooo.
1 \EZ7] verification phase %
2 e L
A0 10,080/
[%2]
£
© 8- 749 - -
-g 1 6.71 6.55
= *Z
g1 5_7;7”’556’2 - -- -
] 479
o) aee 418 . N B I
2 -+ - - - - — L
0 T T
64 128 256 512 1024

Key Length (bit)

Fig. 4: The runtime of the result processing and verification
phases with various Lifted ElGamal key lengths.

Y
S
=
S

>

o uonendwod
Y
3
(=3
3
=)

-
(5}
=
S
>

(SW) pesuiaN
-
=Y
=Y
=
2

@
1=

=Y

53

Fig. 5: The computation overhead for resisting collusion.

robustness. We considered collusion between servers involved
in the computation, as described in the threat model. The
collusion resistance coefficient, denoted as p = %, was used
to represent the robustness of the method, where ¢ was the
threshold of the secret sharing scheme, and n was the total
number of servers participating in the computation. According
to Table IV, the average computation overhead 7T, of clients
was

Te = 2T6p + n(Tss + Tse) + np(Tog + wTeaq) + Tsr. (26)

Fig. 5 illustrates the effects of the collusion resistance coeffi-
cient p and the number n of servers on clients’ computation
overhead. From Fig. 5, we found that the effect of collusion
resistance coefficient p increased on computation performance
increased with the size of n. To mitigate the computational
overhead on the clients, it was necessary to keep the number
of deployed servers relatively small when high robust perfor-
mance was needed.

Transactions on Dependable and Secure Computing

TABLE V: Specific Interactions of Each Entity

Communication direction
Each client — n servers

Transmitted message
2n AES ciphertexts
2n signatures
t Pedersen commitments

w Lifted ElGamal ciphertexts
w proof of ciphertext consistency

tw Lifted ElGamal ciphertexts
tw values of the decryption process

Each server — Blockchain

Blockchain — Each client
Each clients — m — 1 client

TABLE VI: Communication Overhead of Each Entity

Entity Communication overhead

2n(L(AC) + L(Sig)) + tL(Comm)
+tw(L(EC) + L(DV))

2m(L(AC) + L(Sig)) + mtL(Comm)
+w(L(EC) + L(Proof))

Cost (Byte)

Each client 7240

Each server 3956

TABLE VII: Comparison of Communication Overhead

Method Proof size (Byte)
BCTV14a [40] (bn128) 312
BCTV14a [40] (mnt4) 384
BCTV14a [40] (mnt6) 424
Groth16 [41] (bn128) 137

Groth16 [41] (mntd) 169
Groth16 [41] (mnt6) 209
GMI17 [42] (bn128) 137
GMT17 [42] (mntd) 169
GMI17 [42] (mnt6) 209
RVEV [43] 160
Ours 128

SAO UONEDIUNWWOD
= @
58 8 8
3 = k=3 IS
2 2

(oWka) peat
2
S}

Fig. 6: The communication overhead for resisting collusion.

C. Communication Overhead

Table V shows the details of each entity’s specific interac-
tions. Let L(AC) denoted the lengths of an AES ciphertext,
L(Proof) denoted the lengths of a ZKPoC, L(Sig) denoted
the lengths of a signature, L(Comm) denoted the lengths of a
Pedersen commitment, L(EC) denoted the lengths of a Lifted
ElGamal ciphertext, L(DV) denoted the lengths of a temporary
value of the decryption process, respectively. Similar to esti-
mating computation overhead, we did not consider the extra
cost of multiplication. According to Table V, the communi-
cation overhead of each client was 2n(L(AC) + L(Sig)) +

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

107 107

12

12000

- #- Key Length = 64 bits

—%— Key Length = 128 bits]|
—0— Key Length = 256 bits|
—a— Key Length = 512 bits|

- #- Key Length = 64 bits

—%— Key Length = 128 bits]|
—0— Key Length = 256 bits 10000 (H—o0— Key Length = 256 bits| -~~~ x a-A* -1
—A—Key Length =512 bits|___________________ .

- - Key Length = 64 bits
—>%— Key Length = 128 bits|

—4— Key Length = 512 bits|

Runtime (ms)
Runtime (ms)

B0 I O P U T T T T SO TS SR SO B P03 P S S TP B

8000 [--- A

6000

Runtime (ms)

4000 [

2000 s

4 6 8 10 12 14 16 18 20 22 24 26 28 30 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of Servers

(a) Total computational task

Number of Servers

(b) Result processing and verification

-
I TP T S R SO R SR B
8 10 12 14 16 18 20 22 24 26 28 30

Number of Servers

(c) Result decryption

Fig. 7: The runtime with various numbers of servers and Lifted ElGamal key lengths.

3000 [-- m- Key Length = 128 bits|- -~ -----------—--————--—4 3000 |- = -
[-%—Key Length = 192 bits
[-o—Key Length = 256 bits ,//)

2400

(us,
)]

1800

Runtime
B
8
?\
]
.
.
.
w
"
.
L1
[
Runtime

1200

wnn®
'
4
L
3

;'pj/;' b s{f){,r"

e Sun

P S S S S A S R R
4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Clients

46 B A0 12 14 16 16 20 22 24 26 28 30
Number of Servers

(a) Secret sharing-based data dis-

tribution

(b) Shares verification

Fig. 8: The runtime with various numbers of servers and clients
and AES key lengths.

tL(Comm) +tw(L(EC) + L(DV')) and that of the server was
2m(L(AC) + L(Sig)) +mtL(Comm) +w(L(EC) + L(Proof)),
where m, n, w, t were the number of clients, the number of
servers, the number of partition values, the threshold of secret
sharing, respectively.

During the data distribution phase, each client needed to
split the input data using the Pedersen’s threshold secret
sharing scheme and encrypt the shares using AES symmetric
encryption. Then, each client sent the following information
to the servers: two AES ciphertexts, two signatures, and ¢
Pedersen commitments. During the result processing phase,
each server needed to submit the following information to the
blockchain, including w Lifted ElGamal ciphertexts and w
zero-knowledge proofs. Finally, during the result decryption
phase, each client must retrieve the encrypted output result
shares from the blockchain, including fw Lifted ElGamal
ciphertexts. Additionally, for collaborative decryption, each
client must reveal the temporary values generated during the
decryption process to all other clients, including tw values of
the decryption process. Since the value of n was usually not
very large, and the growth rate of each client’s communication
overhead was linear with the increase in n, the communication
overhead required by each client was acceptable to each
client. The communication overhead of each server was not
dependent on n, but was related to the number of partition
values w and the number of clients m. With a suitable key
length, the server’s communication overhead was acceptable.

Table VI shows the communication overhead of each entity
with 5 clients, 10 servers, and 8 partition values.

Furthermore, we evaluated the communication overhead
of the zero-knowledge proof protocol in the method. For
comparison, we used the zk-SNARKSs [40]-[42] scheme as
our baseline, which was implemented using the libsnark! with
the elliptic curve bnl28, mnt4, and mnt6. Then, we imple-
mented the RVEV [43] algorithm to compare communication
overhead, which was used to verify whether two commitment
values correspond to the same message. Table VII shows the
communication overhead of different zero-knowledge proof
schemes. From Table VII, we found that our method had the
minimum communication overhead.

We evaluated the communication overhead for realizing
resist collusion, denoted as L.. According to Table VI, the
average communication overhead L. of clients is

L. = 2n(L(AC) + L(Sig)) + npL(Comm)

+npw(L(EC) + L(DV)). @D

Fig. 6 illustrates the effects of the collusion resistance coeffi-
cient p and the number n of servers on clients’ communication
overhead. From Fig. 6, the client communication overhead
increased as the collusion resistance coefficient. The smaller
the number of servers, the lower the growth rate of client
communication overhead. In addition, by comparing Fig. 5 and
Fig. 6, we found that the influence of the collusion resistance
coefficient on computation overhead was more significant than
that on communication overhead.

D. Response Time

To comprehensively understand the factors influencing per-
formance, we conducted experiments to assess the impact
of various server quantities on overall system performance.
In this experiment, we evaluated the overall performance of
the proposed method using the total response time of the
computational task, which included the time elapsed from
system initialization until the client obtained the computation
results.

Total response time included the running time of each phase
of the method, network request latency, and time overhead

Uhttps://github.com/scipr-lab/libsnark

Page 12 of 39

Page 13 of 39

oNOYTULT D WN =

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

associated with blockchain consensus. In addition, the gen-
eration process of multiplicative triples was not simulated in
the experiment. Fig. 7a illustrates the total response time of
the computational task with server quantities of 3 to 30. The
increase in the number of servers resulted in an increased
verification overhead for smart contracts, consequently leading
to an increase in the overall response time of the system. In
addition, to analyze the most expensive stages in the proposed
method, we evaluated the runtime of the different phases under
various numbers of servers. Fig. 7b and Fig. 7c illustrate
the runtime of the result processing and verification phase
and the result decryption phase under various numbers of
servers, respectively. In the experiment shown in Fig. 7c, each
client will decrypt all result shares and reconstruct the plain-
text result by selecting multiple result shares that satisfy the
threshold. From the Fig. 7b and Fig. 7c, it is observed that
under the same number of servers and key length, the runtime
of the result decryption phase is significantly lower compared
to the time consumed in the result processing and verification
phase. The clients with limited computational capacity can
adequately meet the performance requirements of the result
decryption phase. Moreover, we evaluated the impact of AES
key length on data distribution and the verification of shares.
Fig. 8a and Fig. 8b illustrate the runtime of the secret sharing-
based data distribution and verification of shares under various
AES key lengths.

VII. CONCLUSIONS

In this paper, we proposed a blockchain-based verifiable
MPC method, which provides privacy-preserving and public
verification for applications following the client-server model.
Specifically, we utilized blockchain as a transparent and
trustworthy platform for verifying outputs. To protect input
privacy and data ownership, we constructed a data distribution
method that combines Pedersen’s threshold secret sharing and
symmetric encryption. Then, we constructed an output result
processing algorithm using the Lifted ElGamal encryption to
prevent the leakage of plain-text outputs. Furthermore, lever-
aging the additive homomorphic property of Pedersen com-
mitment and zero-knowledge proof techniques, we proposed
a privacy-preserving output verification algorithm capable of
publicly verifying the correctness of outputs without disclosing
the plain-text outputs. Theoretical analysis showed that the
proposed method satisfied the privacy-preserving requirements
of the client-server model and demonstrated feasibility. Exper-
iments demonstrated that the proposed method was efficient
in the computation overhead of clients and the communication
overhead in the result verification phase.

REFERENCES

[1] D. Feng and K. Yang, “Concretely efficient secure multi-party computa-
tion protocols: survey and more,” Security and Safety, vol. 1, p. 2021001,
2022.

[2] Y. Lindell, “Secure multiparty computation,” Communications of the
ACM, vol. 64, no. 1, pp. 86-96, 2020.

[3] E.-O. Blass and F. Kerschbaum, “Borealis: Building block for sealed
bid auctions on blockchains,” in Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, 2020, pp. 558—
571.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Transactions on Dependable and Secure Computing

L. Liu, M. Du, and X. Ma, “Blockchain-based fair and secure electronic
double auction protocol,” IEEE Intelligent Systems, vol. 35, no. 3, pp.
31-40, 2020.

T. D. Nguyen and M. T. Thai, “A blockchain-based iterative double
auction protocol using multiparty state channels,” ACM Transactions on
Internet Technology, vol. 21, no. 2, pp. 1-22, 2021.

B. David, L. Gentile, and M. Pourpouneh, “Fast: Fair auctions via secret
transactions,” in International Conference on Applied Cryptography and
Network Security. Springer, 2022, pp. 727-747.

R. Kiisters, J. Liedtke, J. Miiller, D. Rausch, and A. Vogt, “Ordinos:
A verifiable tally-hiding e-voting system,” in 2020 IEEE European
Symposium on Security and Privacy. 1EEE, 2020, pp. 216-235.

V. Cortier, P. Gaudry, and Q. Yang, “A toolbox for verifiable tally-hiding
e-voting systems,” in European Symposium on Research in Computer
Security. Springer, 2022, pp. 631-652.

E. Zaghloul, T. Li, and J. Ren, “Anonymous and coercion-resistant
distributed electronic voting,” in 2020 International Conference on
Computing, Networking and Communications. 1EEE, 2020, pp. 389—
393.

Y. Miao, Z. Liu, H. Li, K.-K. R. Choo, and R. H. Deng, “Privacy-
preserving byzantine-robust federated learning via blockchain systems,”
IEEE Transactions on Information Forensics and Security, vol. 17, pp.
2848-2861, 2022.

M. Rathee, C. Shen, S. Wagh, and R. A. Popa, “Elsa: Secure aggregation
for federated learning with malicious actors,” in 2023 IEEE Symposium
on Security and Privacy. 1EEE, 2023, pp. 1961-1979.

M. Rivinius, P. Reisert, D. Rausch, and R. Kiisters, “Publicly account-
able robust multi-party computation,” in 2022 [EEE Symposium on
Security and Privacy. 1EEE, 2022, pp. 2430-2449.

Y. Zhan, L. Zhou, B. Wang, P. Duan, and B. Zhang, “Efficient function
queryable and privacy preserving data aggregation scheme in smart
erid,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 12, pp. 3430-3441, 2022.

H. Shen, G. Wu, Z. Xia, W. Susilo, and M. Zhang, “A privacy-preserving
and verifiable statistical analysis scheme for an e-commerce platform,”
IEEE Transactions on Information Forensics and Security, vol. 18, pp.
2637-2652, 2023.

Z. Xia, X. Yang, M. Xiao, and D. He, “Provably secure threshold paillier
encryption based on hyperplane geometry,” in Information Security and
Privacy: 21st Australasian Conference, ACISP 2016, Melbourne, VIC,
Australia, July 4-6, 2016, Proceedings, Part Il 21. Springer, 2016, pp.
73-86.

A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

H. Zhong, Y. Sang, Y. Zhang, and Z. Xi, “Secure multi-party com-
putation on blockchain: An overview,” in Parallel Architectures, Algo-
rithms and Programming: 10th International Symposium, PAAP 2019,
Guangzhou, China, December 12—14, 2019, Revised Selected Papers 10.
Springer, 2020, pp. 452-460.

K. Gai, J. Guo, L. Zhu, and S. Yu, “Blockchain meets cloud computing:
A survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,
pp. 2009-2030, 2020.

G. Tian, Y. Hu, J. Wei, Z. Liu, X. Huang, X. Chen, and W. Susilo,
“Blockchain-based secure deduplication and shared auditing in de-
centralized storage,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 6, pp. 3941-3954, 2021.

Y. Miao, K. Gai, L. Zhu, K.-K. R. Choo, and J. Vaidya, “Blockchain-
based shared data integrity auditing and deduplication,” IEEE Transac-
tions on Dependable and Secure Computing, 2023.

X. Jia, Z. Yu, J. Shao, R. Lu, G. Wei, and Z. Liu, “Cross-chain virtual
payment channels,” IEEE Transactions on Information Forensics and
Security, vol. 18, pp. 3401-3413, 2023.

Y. Zhang, X. Jia, B. Pan, J. Shao, L. Fang, R. Lu, and G. Wei,
“Anonymous multi-hop payment for payment channel networks,” IEEE
Transactions on Dependable and Secure Computing, vol. 21, no. 01, pp.
476-485, 2024.

T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Annual international cryptology conference.
Springer, 1991, pp. 129-140.

T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469-472, 1985.

H. Gao, Z. Ma, S. Luo, and Z. Wang, “Bfr-mpc: a blockchain-based fair
and robust multi-party computation scheme,” IEEE access, vol. 7, pp.
110439-110450, 2019.

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON XXX, VOL. XX, NO. XX, XXXX 202X

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

J. Zhou, Y. Feng, Z. Wang, and D. Guo, “Using secure multi-party
computation to protect privacy on a permissioned blockchain,” Sensors,
vol. 21, no. 4, p. 1540, 2021.

Y. Yang, J. Wu, C. Long, W. Liang, and Y.-B. Lin, “Blockchain-
enabled multiparty computation for privacy preserving and public audit
in industrial iot,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 12, pp. 9259-9267, 2022.

O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, 2019, pp. 307-328.

M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation,” in
Providing sound foundations for cryptography: on the work of Shafi
Goldwasser and Silvio Micali, 2019, pp. 351-371.

M. Keller, “Mp-spdz: A versatile framework for multi-party computa-
tion,” in Proceedings of the 2020 ACM SIGSAC conference on computer
and communications security, 2020, pp. 1575-1590.

B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “Crypten: Secure multi-party computation meets
machine learning,” Advances in Neural Information Processing Systems,
vol. 34, pp. 4961-4973, 2021.

Z. Huang, W.-j. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure Two-Party deep neural network inference,” in 31st USENIX
Security Symposium, Aug. 2022, pp. 809-826.

W.-j. Lu, Z. Huang, Q. Zhang, Y. Wang, and C. Hong, “Squirrel: A
scalable secure Two-Party computation framework for training gradient
boosting decision tree,” in 32nd USENIX Security Symposium, Aug.
2023, pp. 6435-6451.

I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in Annual Cryptology Conference. Springer, 2014, pp. 421—
439.

R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan, “Improvements
to secure computation with penalties,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 406-417.

A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an unfair world: Fair multiparty computation from public
bulletin boards,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 719-728.

S. Wu, J. Li, F. Duan, Y. Lu, X. Zhang, and J. Gan, “The survey on the
development of secure multi-party computing in the blockchain,” in 2021
IEEE Sixth International Conference on Data Science in Cyberspace.
IEEE, 2021, pp. 1-7.

D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Advances in Cryptology—CRYPTO’91: Proceedings 11. Springer,
1992, pp. 420-432.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” Journal of Cryp-
tology, vol. 20, pp. 51-83, 2007.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in 23rd
USENIX Security Symposium, 2014, pp. 781-796.

J. Groth, “On the size of pairing-based non-interactive arguments,”
in Advances in Cryptology—EUROCRYPT 2016: 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35.
Springer, 2016, pp. 305-326.

J. Groth and M. Maller, “Snarky signatures: Minimal signatures of
knowledge from simulation-extractable snarks,” in Annual International
Cryptology Conference. Springer, 2017, pp. 581-612.

Y. Cheng, J. Ma, Z. Liu, Y. Wu, K. Wei, and C. Dong, “A lightweight
privacy preservation scheme with efficient reputation management for
mobile crowdsensing in vehicular networks,” IEEE Transactions on
Dependable and Secure Computing, vol. 20, no. 3, pp. 1771-1788, 2023.

Page 14 of 39

