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Abstract—Inertial measurement unit (IMU) fingerprinting is a
promising physical authentication technique based on hardware
imperfections produced during sensor manufacturing. This paper
presents a two-stage feature extraction process that combines
feature selection and mapping; the proposed approach is tai-
lored for the lightweight vehicle-to-everything (V2X) application
scenario. Specifically, the selected features are transformed into
images via Gramian angular difference field (GADF), Gramian
angular summation field (GASF), and Markov transition field
(MTF) mappings, as well as feature extraction implemented via
a convolutional neural network (CNN). Owing to the advances
provided by the proposed scheme, a lightweight feature extraction
system achieves satisfactory accuracy levels above 99.10% with
fewer sample data and a short training time. The effectiveness
and robustness of the developed approach were validated under
various driving conditions via 20 IMU sensors, Arduino, and a
Raspberry Pi across 20 vehicles. Additionally, tests conducted
across different deep learning models demonstrated the gener-
alizability of the proposed preprocessing and mapping methods.

Index Terms—IMU fingerprint authentication, vehicle-to-
everything (V2X), lightweight, feature mapping.

I. INTRODUCTION

S Internet of Vehicles (IoV) technology has rapidly

advanced, vehicles are increasingly becoming highly
intelligent mobile information platforms, making vehicle-to-
everything (V2X) communication crucial. These vehicles not
only enable high-speed data exchanges and communications
but also intelligently interact with urban infrastructure, other
vehicles, and even pedestrians, thereby increasing road safety
and traffic efficiency. However, the evolution of the IoV,
along with the maturity of autonomous and driverless driving
technologies, has also introduced several information security
issues, including data breaches, illegal intrusions, and mali-
cious attacks on driving systems, which pose serious threats
to the safety of vehicles and passengers [1]. These challenges
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urgently demand the development of more advanced authen-
tication mechanisms for ensuring the security and continuity
of vehicle communications in the dynamic V2X environment
while accommodating the technological progression from tra-
ditional to automated and assisted driving, thus safeguarding
vehicles and passengers across all driving modes.

Currently, vehicle identity authentication typically employs
several methods: cryptographic authentication, such as public
key infrastructure (PKI) [2] and symmetric key technolo-
gies [3], relies on solving complex mathematical problems.
However, these traditional methods are susceptible to quan-
tum algorithms, which can quickly decrypt these problems,
thereby overcoming existing encryption techniques. Addition-
ally, trust-based authentication is conducted by evaluating the
trust level of devices or users within the network. But trust
relationships are often chained, and if any link in the chain is
attacked or compromised, the entire trust chain may collapse
[4]. There are also biometric or behavioral authentication
methods, such as analyzing the driver’s eye movement [5]
or driving behaviors [6], like turning [7]. As assisted and
autonomous driving technologies become more widespread,
traditional verification methods that only target drivers are
becoming increasingly insufficient for ensuring vehicle safety.
Given the increasing complexity of attacks and the inher-
ent vulnerabilities of traditional cryptographic and biometric
methods in the evolving landscape of vehicular technology,
there is a pressing need to explore authentication systems that
are capable of adapting to advanced threats.

In response to this need, physical unclonable function (PUF)
technology, using inertial measurement units (IMUs) as its
basis, offers a potential solution. This approach leverages
the inherent defects in the manufacturing of IMUs—sensors
integral to modern vehicular systems. These IMU fingerprints
characterized by high unpredictability and uniqueness, are
suitable for generating encryption keys and authentication data
that are difficult to replicate and predict. Additionally, non-
cryptographic techniques based on a physical layer inherently
have advantages in terms of handling delays, computational
loads, and communication overhead. In [8] [9], microelec-
tromechanical system (MEMS) devices were proven to be ef-
fective means of authentication. IMUs, which integrate MEMS
accelerometers, gyroscopes, and magnetometers, are exten-
sively employed in modern automotive technologies. IMUs
are crucial for advanced driver assistance systems (ADASs),
providing accurate positioning and navigation functions that
are crucial for autonomous driving technologies.Notably, the
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integration of IMUs with the Global Navigation Satellite
System (GNSS) is the key to achieving precise localization
in environments with weak or unavailable signals [10] [11].
Our goal is to establish an IMU-based continuous vehicle au-
thentication system that uses physical fingerprint technology to
automatically and continuously monitor vehicle states without
interfering with normal driving operations. This authentication
method, which is based on physical properties, heralds new
possibilities for vehicle safety, indicating the direction of
future vehicle authentication technologies.

A. Related Work

1) MEMS hardware fingerprinting technology, especially
methods based on PUFs, has been shown to have significant
efficacy in security validation scenarios involving different
devices, including accelerometers, gyroscopes, magnetome-
ters, pressure sensors, and microphones. Dey et al. [12] first
demonstrated a device authentication method using accelerom-
eters in mobile devices, explicitly establishing the viability
of MEMSs for identity verification applications. Lee et al.
[13] introduced a novel method with a challenge-response
structure for acoustic signal-based MEMS sensor fingerprint
recognition. Shen et al. [14] developed a MEMS fingerprint
technology called MotoPrint, which utilizes vibration motors.
They also created a comprehensive device authentication sys-
tem using MotoPrint, tailored for mobile payment systems.
Abdolinezhad et al. [15] introduced a lightweight circuit based
on MEMS with a piezoresistive bridge functioning as a weak
PUF. The secret keys generated by this system successfully
met the randomness standards set by the National Institute
of Standards and Technology (NIST). Fereidooni et al. [16]
presented AuthentiSense, a scalable and efficient behavioral
biometrics authentication system that is user-agnostic. It lever-
ages MEMS sensors to enable continuous authentication with
a high accuracy of up to 97%. Additionally, Kussl et al.
[17] engineered an innovative in-road sensor system using
MEMS magnetic sensors. This system is capable of identifying
and classifying vehicles by type and model with an overall
classification accuracy exceeding 90%.

These studies not only validate the feasibility of identity
verification but also underscore the significant advantages
and practicality of MEMS hardware fingerprint technology in
identity recognition scenarios. However, MEMS authentication
technologies have seldom been applied in V2X contexts.
Moreover, these systems often face limitations when process-
ing large volumes of data and require extensive signal inputs
and lengthy training periods for rapid response capabilities.
This is particularly true in V2X environments, where such
constraints may limit the practicality of these applications.
Our approach builds on these findings and aims to overcome
these limitations by offering a more lightweight and efficient
solution for V2X scenarios.

2) Appropriately representing signals is crucial for en-
hancing the performance of IMU hardware-based fingerprint
systems. Effectively representing time series signals enhances
not only the discriminative capabilities of the utilized system
but also its adaptability to complex environmental changes.
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Extensive research has explored various signal representation
methods. One commonly used method is the recurrence plot
(RP) technique, which represents time series data points in
the phase space as a two-dimensional image. RPs can reveal
the periodic and aperiodic structures within dynamic systems,
making them particularly effective at recognizing complex
dynamic behaviours [18]. Hatami et al. [19] transformed time
series into 2D texture images via RPs and classified them with
deep CNNs. Their results demonstrated that this method is
competitively accurate. Baldini et al. [20] found that combin-
ing a deep CNN with RP images significantly outperforms
traditional methods based on raw time series dissimilarity. A
spectrogram is another powerful tool that analyses the spectral
contents of signals as their frequencies change over time. Qi
et al. [21] investigated the feasibility of using spectrograms as
a signal representation method for LTE-V2X PLA, achieving
up to 97.30% identification accuracy on thirteen identical and
available RF devices within a short training period. Peralta-
Braz et al. [22] proposed that CNN AlexNet be trained to
identify traffic speed labels from voltage continuous wavelet
transform (CWT) images, efficiently extracting essential fea-
tures from the input image while reducing the utilization of
the number of CWT images.

Despite the significant advancements provided by vari-
ous signal representation methods, these techniques still face
challenges, particularly in practical applications within V2X
environments. First, their adaptability to environmental noise
and dynamic changes remains limited. Second, most methods
demand substantial computational resources, which can limit
them when applied to devices with constrained computational
capabilities. Our work proposes a hybrid signal representation
method, improving accuracy while maintaining computational
efficiency.

3) In recent years, hardware-based continuous authentica-
tion schemes have garnered increasing attention in the field
of vehicular safety. Mekki et al. [23] developed a driver
identification method that combines smartphone sensors with
the OBD-II protocol, analysing the input data through a CNN
and a recurrent neural network (RNN)/LSTM. This method
was validated on real-world datasets via cross-validation tech-
niques and was implemented within the Linux framework.
Wang et al. [7] introduced a novel driver identification method
that uses sensors in mobile devices to analyse the acceler-
ation and angular velocity changes that occur during turns,
employing a gradient boosting tree (GBT) classifier to achieve
over 98% accuracy. Furthermore, Song et al. [24] proposed a
multifactorial continuous authentication mechanism that uses
facial recognition on smartphones coupled with a Bluetooth
protocol to effectively perform real-time authentication; this
approach offers protection against various attacks. Xun et
al. [6] proposed a method that utilizes automotive diagnostic
tools to collect data on vehicle operation. They then build
a composite model using convolutional neural networks and
support vector domain description, which effectively facilitates
the fingerprint recognition of car drivers. The model has
achieved an identification accuracy of 98.6% for 15 authorized
drivers and has successfully detected unauthorized driving

PLEASE KEEP CONFIDENTIAL



oNOYTULT D WN =

IEEE Intelligent Transportation Systems Transactions Page 4 of 13
3
T T T T T \\\ R \\\ T T T T T T T > T T T \\\
I’ # IMU Sonsor Data \ I’ # Pre-Proscesing | I‘ 1 |I # Authentication |
1 1 ! 1
U e, I I I 1 - -
L \ ! X Feature Select | N i 1 ‘ Trained Classifier ‘ |
Cm e |3 o .
i i 1 Time Domain 1 - s I X 1
: ! ! 1 : Frequency Domain 1 . A | . 1
X : & ce o | | | 1 | & S : X Continues |
Lo ) : | l : |‘ O | | Authenticated :
I Semmmmmmmmmmmmmmeeees g 1 1
1 I I
! —>! Data Normalization | ! !
! I ! »l' I ! I
[} | 1
I I 1
1 | I . 1 Similarl NO
| . 1 | imilarly |
: | : Data Mapping | : . s Netwonl.( ! Calculation 1
1 | | 3 _ 5 ompression | |
| I | #GADF I | AREIRE [ : I
X | | #GADF o TrEPE [ 1
l ! l HMTF o gl |=| | & ' | ﬁ '
I ! I S S ! I
\ / \ / \ 1 \ /
~ ’ ~ 7’ N / N 7’

N ———— N —————

Fig. 1. Diagram of the proposed IMU-based system.

with an accuracy of 98.9% in five cases.

Although these methods have demonstrated high precision
and robustness, they depend on additional hardware or require
specific cooperation from drivers, which could interfere with
driving or limit their applicability when such hardware re-
sources are unavailable. Simultaneously, they still face limita-
tions in adapting to future autonomous driving, where there is
no driver. Our system, in contrast, does not rely on external
hardware or explicit driver interactions, and it more adaptable
to future V2X environments, including autonomous driving.

B. Main Contributions

Based on the above three issues, this paper introduces a
novel continuous authentication system for V2X scenarios that
uses IMU-based fingerprints. The main contributions of this
work are fourfold.

1) We propose a two-stage feature extraction method that
combines feature selection and deep learning to capture IMU
hardware fingerprints. This approach reduces the number of
required training samples and enhances the efficiency of data
processing.

2) We propose a hybrid signal representation scheme that
maps signal features onto a Gramian angular difference field
(GADF), a Gramian angular summation field (GASF), and a
Markov transition field (MTF). This method describes signal
feature structures and variations from multiple perspectives. It
achieves more than 99% authentication accuracy in complex
driving environments.

3) The lightweight concept runs through our entire design
architecture, and it is aimed at enhancing the suitability of
the proposed approach for widespread deployment within real-
world V2X environments. IMU sensors collect less data to
ensure a lightweight input size for the model. A CNN is then
applied to extract features, and through knowledge distillation,
a lightweight student model achieves comparable performance
while reducing complexity. The complexity and efficiency of
our design are measured in terms of its time consumption,

— e ——— = ———— N ——————

memory, number of floating-point operations (FLOPs), and
number of multiply-add (MADD) operations.

4) The authentication system is comprehensively evalu-
ated under various vehicle conditions and in multiple real-
world environments. The experimental results demonstrate that
this system is a highly promising solution for implicit user
authentication, exhibiting robust performance across diverse
environments without disrupting driving operations. To our
knowledge, this study is the first to conduct such an extensive
analysis in a range of practical situations.

The rest of the paper is organized as follows. Section II
provides an overview of the system design and discusses the
signal collection and preprocessing steps. Section III intro-
duces the mapping processing of feature. Section IV details
the employed deep learning strategies. Section V provides the
experimental results. Section VI shows the generalizability
of the proposed method to other DL models. Section VI
discusses the limitations and future work. Finally, Section VIII
concludes the paper.

II. SYSTEM OVERVIEW AND DATA PREPROCESSING

In this section, we describe the System architecture, threat
model and how to collect data for our system, preprocess the
collected data, and then map the obtained feature data.

A. System Architecture

As mentioned before, this paper aims to build a lightweight
IMU-based system for V2X environments by focusing on
three issues of training data dependency, feature mapping, and
model complexity. As shown in Fig. 1, the process includes
data acquisition, preprocessing, network compression, and
authentication stages. The data acquired from the IMU are
processed through cubic spline interpolation, feature selection,
and normalization before being mapped in image represen-
tations that help extract high-quality identity features. These
representations are then processed through a CNN feature
extraction module to authenticate and classify vehicles. To
adapt to real-world applications, such as by reducing the
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computational costs imposed on a roadside unit (RSU), the
original CNN model is compressed via knowledge distillation,
enabling a less computational student model to perform simi-
larly to the teacher model. In the authentication phase, the RSU
receives new data from the IMU sensors of the vehicle. The
trained compressed classifier within the RSU then classifies
these data, ensuring the reliability of the vehicle categorization
process. Authentication tasks typically begin by checking the
metric calculations concerning IMU fingerprints, followed by
applying preset thresholds for admission judgement purposes.
During classification, a classifier such as a softmax classifier
is directly employed as the task head, selecting the candidate
with the highest probability as the final prediction.

B. Threat Model

To explore potential security risks our system may en-
counter, focusing primarily on random, Spoofing and im-
personation attacks. We assume that all vehicle IMUs are
registered beforehand, which precludes attackers from com-
promising the registration phase. Consequently, attackers must
rely on impersonation strategies to pass the authentication
system.

Random Attacks: Lacking familiarity with legitimate driving
patterns, attackers attempt to interact directly with RSUs or
legitimate vehicles using IMUs of their own vehicl.

Spoofing Attacks: The attacker try to generate time-series
signals resembling legitimate ones to perform the spoofing
attack.

Impersonation Attacks: Before initiating assaults on RSUs
or legitimate vehicles, attackers carefully observe and mimic
the driving behaviors of legitimate vehicles. In some scenarios,
they might install unauthorized IMUs to covertly collect
dynamic vehicle data, which they then exploit to orchestrate
attacks.

C. Data Acquisition

In the automotive industry, IMU sensors are typically placed
near the centre of the coordinate system of a vehicle to
better reflect the overall status of the vehicle. In our work,
to more closely mirror real-world conditions, we positioned
the IMU sensors near the centre of the vehicle as well. All
the sensors were the same model from the same manufacturer
(LSM9DSI1, STMicroelectronics). They were installed in 20
different vehicles (15 gasoline vehicles and 5 electric vehicles).
Data began to be collected from these sensors as soon as
vehicle ignition occurred.

D. Data Preprocessing

Signal data preprocessing consists of two main steps: 1)
feature selection and 2) a data normalization process.

Feature Selection: IMU sensors provide a 3xn matrix
representing the data collected over a period, where x, Yy,
and z correspond to readings derived from the three axes of
each sensor. We segment these raw data into various sliding
windows, computing the root sum of squares (RSS) for the
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accelerometer, gyroscope, and magnetometer readings within
each window as follows:

I(k) = \/T2(k) + I2(k) + I2(k). (1)

Given that the sampling intervals are not uniform, the derived
values are not equally distant, complicating the frequency-
domain feature extraction step. To address this issue, we
employ cubic spline interpolation to create equidistant data
points for I(k).

The features we construct include both time-domain and
frequency-domain features. Time-domain features are used
to analyse signal characteristics over time, detecting time-
related properties that might include critical unique identifiers
provided by the sensors. Compared with time-domain features,
frequency-domain features are better suited for extracting
information about the frequency components and their be-
haviours within the sensor signals, dynamically revealing the
contributions and distributions of these components. For each
time window, we construct 21 statistical features, including
10 time-domain and 11 frequency-domain features in Table
I, yielding a total of 63 features per window across all three
Sensors.

Data Normalization: To address the scale disparities among
features and enhance the accuracy and learning efficiency of
the model, we normalize the extracted features. Utilizing the
min-max normalization method, each feature is scaled to a
range of [0, 1]. The transformation formula is as follows:

Y= x — min(x) )

max(x) — min(x)

where X represents the original feature value and y is the nor-
malized value. All normalized sensor data are then represented
as Inorm = [I

Anorm? Ignorm ’ Imnorm}'

III. FEATURE MAPPING

The GADF and GASF schemes are techniques for trans-
forming time series data into 2D images [25]. A GADF
constructs an image by calculating the cosine of the angu-
lar differences between two normalized time series points,
whereas a GASF does so by calculating the cosine of their
angular sums. These angles, 0; and 6;, represent the angles
of any two points in the input time series (encoded in polar
coordinates), and each sequence value is mapped to an angle
to ultimately form a matrix. The mathematical expressions for
the GADF and GASF techniques are as follows:

/

GADF (i, ) = cos (arccos \/%
k=1
3)
!/
arccos | ——d )

[N 2
D k=1 Tk
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TABLE I
CNN STRUCTURE OF THE STUDENT MODEL

Domain category Feature Name

Description

Mean

Standard deviation
Time-domain feature ..
Average deviation
Skewness
Kurtosis
RMS amplitude
Minimum
Maximum
Energy

Energy entropy

I
W=7 Dimq T

o= \/% Zili(zi — p)?
AD = % 25, |oi —
Skew = L N | (zizs)?

o

Kun = L3, (254) 3

o

RMS = /L 3N 2
Min = min(z1,x2,...,ZN)
Max = max(z1,Z2,...,ZN)

E= Zi\; a3

2
2

Entropy = — Zivzl pilog(p:) where p; = 3=

Spec. standard deviation

Spec. skewness

Frequency-domain feature )
Spec. kurtosis

Spectral crest
Spec. centroid
Rolloff
Flatness
Smoothness
Irregularity-K
Irregularity-J
Peak valley ratio

— 1 N ) 2
Ospec = \/ﬁ Zizl(X’L — Mspec)
3
N X; — fspec
SkeWspec = % Ei:l (zi“\w)

OTspec

4
_ 1 N X — Kspec
Kurtgpee = § D iny spec -3
Crest = max(X1,X9,...,Xn)
Hspec

_ XN A
¢= EiN:l1 X
where  Sr_ X; > 085N X;
exp(F S, log(X5))
% EzN:1 X

Smooth = 3"V 1 | X, — 2Xi 41 + Xiso|
N-1 |X;—X;
Irreg-K = Ei:ll %
Irreg-J = Zf\;l | X — Xit]

_ max(X;,Xs,...,.XN)
PVR = min(Xq,Xo,..., Xn)

Rolloff = f,

Flatness =

x!
/ Nl 2 +
Zk:l x;c
“)

/

Y Zszl x;ﬁz )

Where 2 and z; are the normalized data points of the time
series, IV is The total number of data points in the time series,
and YN 24” is the sum of the squares of the normalized
data points, the square root of which is used for further
polar coordinate transformation. GADF and GASF mappings
present distinguishable textural and shape features in GAF
images derived from different IMU devices, as shown in Figs.
2(a) and (b).

An MTF maps images by considering the Markov transition
properties of time series, specifically by quantifying time series
data into a certain number of discrete states and then calculat-
ing the probability matrix of state transitions [26]. This method
effectively encodes the dynamic transition characteristics of
time series into images. A visualization of an MTF is shown
in Fig. 2(c). To construct an MTF from a one-dimensional
signal, we begin by discretizing the processed sequence data
into quantized state spaces. This involves dividing the value
range of the time series into () equal-frequency bins, with each
data point z; being assigned to a specific bin g; on the basis
of its value. Each bin g; represents a discrete state within the
Markov model. Then, a ) x @ transition matrix W as:

GASF(i,j) = cos (arccos

arccos

(¢) MTE.

Fig. 2. Comparison among the GADF/GASF/MTF plots derived from four
different devices.

w1 Wiz - W1Q
w21 W22 - W2Q

W = ) . : (%)
wE1r w2 o WQE

where each element w;j denotes the relative frequency of
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Fig. 3. Experimental environments and devices within vehicles.

transitioning from state ¢; to state g;.

The MTF M is subsequently defined as a T x T matrix, with
each element mt derived from the transition frequencies w;j
based on the bins g; and g; to which the time points x5 and
x4, respectively, belong.

wij | ¥1 € g3, T € Gj
wij | X2 € g3, T € Gj

wij | T € qi,T1 € g5
wij | T2 € g3, %1 € ¢

wij | T € ¢i, TT € G
(6)

wij | T € ¢i, 71 € g5

IV. CNN-BASED IMU FINGERPRINTING

Deep learning models that provide authentication via IMUs
have shown excellent performance but often involve slow
processing steps and high resource usage rates, limiting their
practical V2X applications. In the previous section, we dis-
cussed the feature extraction capabilities of MTF, GADF, and
GASF, which form the basis of our approach. To further
address the challenges of computational overhead, we apply
model compression techniques in this chapter to enhance the
efficiency of our CNN architecture. Specifically, we apply
model compression techniques to overcome these challenges
and reduce the imposed computational overhead via a teacher-
student network setup.

First, we use a complex CNN-based feature extractor as
our teacher network for extracting features from IMU sensor
data. The teacher model is crafted as a deep network with
an input image size of 49x49x3, initiating with convolutional
layers that have 8 channels and progressively increasing to 256
channels. Each convolutional layer includes batch normaliza-
tion and a rectified linear unit (ReLU) activation layer and
selectively utilizes max pooling to reduce the dimensions of
features. In contrast, the student model listed in Table II starts
with convolutional layers possessing 8 channels, eventually
reaching 32 channels. Other models include a fully connected
layer that outputs dimensions for predetermined classifications.
To integrate the information derived from MTF, GADF, and
GASF, each mapping is processed through separate branches
in our CNN architecture. These branches handle the unique
properties of each data representation, ensuring that the net-
work can extract and learn from each’s nuances. Post-feature
extraction, the one-dimensional feature vectors from each
branch are amalgamated. This is done through an addition
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TABLE I
CNN STRUCTURE OF THE STUDENT MODEL

INPUT: 49x49x3

Layer Activation  Filter/Stride/Padding  Dimension
Conv_2D  BN+ReLu 3x3/1/1 49x49x8
Pool - 2x2/2/- 24x24x8
Conv_2D BN+ReLu 3x3/1/1 24x24x16
Pool - 2x2/2/- 12x12x16
Conv_2D ReLu 3x3/1/1 12x12x32
FC - - 20

layer that combines the vectors Un;rr, UgADF, UgAsF into
a single comprehensive feature vector: ﬂ(n) = UgaDpF +
UaasF + Unrrr. The combined feature vector then feeds into
a subsequent layer which further processes the information
for the final classification task, leveraging the strength of the
compressed, yet richly informative feature set provided by the
teacher-student architecture.

The student network is guided through a loss function to
extract task-relevant information from the input features as
follows:

- ~ 12
u |7 -5 7,5
DL=Y at——s+(l-a)r =7 (D
=1 T’; To HSO

The loss function for the neural network model is struc-
tured in two distinct parts. The first component calculates
the squared Euclidean distance between each layer of the
teacher and student networks, providing a quantitative measure
of their differences. The second component evaluates the
cosine similarity at the final layer, measuring the alignment
between the directional outputs of the teacher and student
models. The overall formula integrates these two divergent loss
calculation methods, employing a parameter « to balance their
contributions to the total loss. Given a teacher network 7" and
a student network S, where M is the number of intermediate
KD layers in the teacher network, the parameter « is used to
balance the contributions of these networks to the total loss,
and T;, and §0 are the output layers of the model. In this work,
we set M to 0.3 and « to 0.7.

The complexity of a model is a critical metric for assess-
ing its feasibility in practical applications. This complexity
is measured through several key indicators: the number of
FLOPs, the number of MADDs, and the overall memory
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requirements. The number of FLOPs represents the number
of floating-point operations required to execute a single in-
ference process, serving as a reliable gauge of the inference
efficiency of a model. Models with fewer FLOPs demand less
computational resources and consequently take less time to
process data. MADDs often assess the computational complex-
ity of networks. Models with a high MADD counts typically
incur greater computational expenses and may require more
robust hardware to function efficiently. Memory requirements
indicate the total amount of storage needed for a model to
operate, including its parameters, activation values, and other
transient data used during computations. Models with high
memory demands may face challenges when operating on
devices with limited resources. The performance achieved in
terms of system overhead is shown in Sections V-H.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

The scenes of vehicle and RSU authentication and the
device for an on-board unit (OBU) to collect and send data
from the IMU sensors are shown in Fig. 3. This device
included three main components: 1) IMU sensors. A total of 20
IMU sensors were installed and distributed across 15 gasoline
vehicles and 5 electric vehicles, and they were positioned near
the centre of each vehicle. 2) An Arduino device connected to
the IMU sensor to capture real-time data. 3) A Raspberry Pi 4b
connected via USB to the Arduino to process the data, convert
them into GASF/GADF/MTF images, and transmit them via
WiFi to our assumed RSU for vehicle authentication.

The features five driving scenarios: starting the ignition
(stationary), driving straight and turning at speeds of 0-30
km/h, driving straight at 30-60 km/h, and driving straight at
60-90 km/h. The experimental period spanned more than nine
months (from September 2023 to May 2024) for exploring
the effects of IMU sensor ageing and varying temperature
conditions. To further test the robustness of the proposed
approach under various driving conditions, such as uphill,
downhill, miry, and bumpy roads, we collected sensor data
in this external scene and conducted vehicle authentication
directly on a workstation because our current experimental
scene could not satisfy all these conditions. In each scene,
approximately 200 data packets were collected per device.

The assumed RSU was a laboratory workstation with an
Intel 14th Core i7KF CPU and an NVIDIA GeForce RTX
4070TiS GPU. All models were implemented using Python
3.7 and utilized the Adaptive Moment Estimation (Adam)
optimizer with a learning rate of 10~*. The mini-batch size
was set to 32. For the dataset division, data was randomly
allocated into a 70% training set and a 30% test set.

B. Performance Metrics

With respect to classification, we measured the performance
of the proposed method with a confusion matrix, accuracy,
and the F1 score. By definition, accuracy is calculated as

TP4TN :
Accgracy = m, whlch represents the pro-
portion of correctly predicted vehicle samples out of the

total number of vehicle samples. The F1 score, defined as

7
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Fig. 4. Confusion matrices produced under different experimental steps;
overall accuracies: (a) 76.4%, (b) 86.9%, (c) 92.5%, and (d) 99.1%.

Fl = 2 x Drecisionxrecal
. precision-recall ?
precision and recall.

For authentication purposes, the receiver operating charac-
teristic (ROC) curve assesses the ability of a classifier system
by plotting the true-positive rate (TPR) against the false-
positive rate (FPR) under threshold settings. The area under
the ROC curve (AUC) measures the area covered by the ROC
curve, with values ranging from 0.5 to 1. The equal error
rate (EER) is a common judgement metric in which the false-
positive rate equals the missing rate (1-TPR). A higher AUC
value and a lower EER indicate a model with stronger

represents the harmonic mean of

C. Ablation Experimental Design

To evaluate the impact of each experimental step on the
results, we designed corresponding ablation studies. 1) We
bypassed the preprocessing and mapping stages for signals
collected from the IMU sensors, adapting the network archi-
tecture to fit one-dimensional signals. 2) We omitted either the
preprocessing step or the mapping step independently. 3) Last,
we retained the preprocessing step and utilized a GADF for
signal mapping.

The confusion matrix derived from the results shown in
Fig. 4 shows that compared with bypass preprocessing and
mapping or the lack of preprocessing, the accuracies were
76.4%, 86.9%, and 92.5%, respectively. The experiment that
included preprocessing and mapping achieved a significantly
higher accuracy of 99.1%. These findings demonstrate that our
design approach can effectively attain enhanced vehicle clas-
sification performance. Furthermore, achieving higher classi-
fication accuracy not only advances our capabilities in vehicle
identification but also mitigates potential threats from spoofed
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Fig. 6. Comparison among the actual performances of three different schemes.

or unauthorized access, thereby strengthening the security of
V2X communications through more precise authentication of
vehicle identities

D. Performance Achieved Under Different Vehicle Conditions

This subsection evaluates the performance of our authentica-
tion scheme under various driving scenarios, including vehicle
ignition, driving at different speeds, and turning.

In a real V2X environment, authentication and connection
with the RSU should begin once the vehicle ignition occurs.
Therefore, verifying whether successful authentication can oc-
cur before the vehicle is mobile is crucial. Notably, the ignition
processes of gasoline vehicles cause significant vibrations due
to their engines, whereas electric vehicles, powered by electric
motors, do not induce such noticeable vibrations. We collected
IMU data from 20 vehicles, including 15 gasoline and 5
electric vehicles. We closely monitored the three axes of the
IMU sensor: X-axis (longitudinal vibration), Y-axis (lateral

vibration), and Z-axis (vertical vibration). Figure 5, shows the
variations in the X, Y and Z axis values of the accelerometer
during the startup of different types of vehicles. Since electric
vehicles produce significantly lower vibrations during startup,
especially along the X and Y axes, this could lead to weakened
signals in these two directions, further affecting the accuracy
of the authentication process. Therefore, it is important to
investigate whether reliable authentication can still be achieved
for electric vehicles, despite these lower vibration levels.

As shown in Fig. 6(a), gasoline and electric vehicles
yielded high accuracy, indicating that even the fewer vibrations
induced by the startup processes of electric vehicles were
sufficient for the system to capture IMU hardware fingerprints.
This ensured secure authentication with the RSU as soon as
the vehicles started up. Fig. 6(b) shows the authentication
process during vehicle turning, which achieved average AUC
rates above ninety-eight percent. Figs. 6(c)-(e) show that the
average AUC of the system classification results decreased
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with increasing speed, with a notable reduction at approxi-
mately 90 km/h. The severe conditions show that the perfor-
mance hierarchy is a triple>dual>single hierarchy. Moreover,
for dual-channel setups, the MTF method outperformed the
combination of the GADF and GASF, likely owing to the
conceptual similarity between the GADF and GASF.

Although the best performance was achieved with the triple
representation at approximately 90 km/h, the results were
still unsatisfactory under real-world conditions. This suggests
that high-speed driving is a major obstacle to perturbation
performance. To address this issue, we utilized IMU sensor
traces collected at high speeds of 90 km/h to retrain the model,
as shown in Fig. 6(f), where the average AUC of the system
returned to above ninety-eight percent. This change even
impacted the vehicle classification accuracy achieved in the
30-60 km/h range, with significant improvements, Specifically,
the AUC with the triple representation improved from 0.976 to
0.995, and the EER dropped to below 0.03. This demonstrates
the robustness of our system across multiple driving scenarios
with minimal additions to the training set.

E. Performance Achieved in an External Environment

This subsection examines how different external environ-
ments influence the IMU authentication performance achieved
in vehicles. Experiments were conducted at a speed of ap-
proximately 30 km/h under four types of road conditions,
namely, uphill, downhill, miry, and bumpy, and the results are
displayed in Fig. 7.

At a constant speed, uphill, downhill, and miry roads did not
significantly affect the vehicle classification results. However,
when running on unusually bumpy roads, the model trained
on smooth roads exhibited a slight decrease in recognition
accuracy (approximately 88%). Accordingly, if traces from
bumpy roads were combined with traces from flat sections
for hybrid training, the system could still classify all vehicles
with no less than 98% accuracy. This indicates that the
road conditions themselves do not affect vehicle classification.
Additionally, before the vehicles left the factory, their manu-
facturers performed whole-vehicle stress relief procedures on
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Fig. 8. Performance comparison between our approach and other schemes
with different training data.

bumpy roads, and we could obtain the related IMU data in
this phase before conducting training.

F. Performance Achieved with Various Training Samples Sizes

In the context of classification problems, deep learning ap-
proaches have demonstrated effectiveness with fewer training
samples than those of traditional machine learning methods
[27] [28]. To prove the reduced dependency of our approach on
labelled data, we used both our dataset and a publicly available
dataset, the HMOG dataset [29]. This dataset included data
collected from 100 participants via 10 Samsung Galaxy S4
smartphones equipped with accelerometers, gyroscopes, and
magnetometers. In our experiments, which focused on device
classification verification, we amalgamated various poses for
the individual devices and randomly extracted samples across
11 different proportions from 5% to 100% of the total dataset.
We evaluated the performance of the proposed method against
that of the existing technologies, including the following
approaches.

o Baseline: Inputting raw signals into the GADF mapping
process.

« Utilizing the continuous wavelet transform (CWT) [30]
coupled with a CNN for feature extraction.

o« IMG2IMU [31], a spectrogram-based feature extraction
method for enhancing IMU sensor data, which achieved
good results.

Comparisons between our approach and advanced technolo-
gies were performed based on accuracy and the ERR, as shown
in Fig. 8. Even with 5% of the training data (i.e., 100 samples),
our method yielded significantly higher accuracy and lower
EER values than spectrogram and CWT. This clear advantage
highlights the effectiveness of our preprocessing technique,
particularly when within equivalent training volumes. Similar
results were observed on the HMOG public dataset, which
includes rich data categories and only ten device types;
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TABLE III
PERFORMANCE ACHIEVED IN AGEING AND THERMAL TESTS CONDUCTED
OVER 9 MONTHS

Condition Accuracy F1 EER
Date Temperature

2023/9/20 27°C 99.12% 99.13% | 2.23%
2023/10/20 18°C 99.17% 99.17% | 1.96%
2023/11/20 15°C 98.93% 98.95% | 3.47%
2023/12/20 -7°C 99.01% 99.01% | 2.84%
2024/01/26 5°C 99.25% 99.23% | 2.33%
2024/02/20 -1°C 99.19% 99.20% | 1.84%
2024/03/20 15°C 99.17% 99.08% | 2.05%
2024/04/20 21°C 98.89% 98.99% | 3.61%
2024/05/22 30°C 99.15% 99.16% | 1.96%

however, our method achieved an accuracy of 99.34%. These
experiments indicate the robust performance of our approach
with limited training samples.

G. Performance Achieved with Ageing and Temperature

Semiconductor manufacturers perform ageing and thermal
testing on chips during production, which includes Monte
Carlo and process corner simulations, as well as testing
in thermal chambers, confirming the impacts of time and
temperature factors on chip performance. Similarly, we tested
various timings and temperature ranges to mimic real-world
conditions. For the ageing tests, the sensor chips were powered
for approximately 10 hours daily. The data in Table III show
how the accuracy shifted with time and temperature varia-
tions. The performance of our system remained stable over
the nine months despite temperature and duration changes.
These results are promising, showing that during prolonged
operational periods, the IMU fingerprint of a vehicle remains
stable, yielding consistently high accuracy.

H. System Overhead

To evaluate the deployment overhead of the proposed
network compression-based continuous authentication system,
we analyzed it from six perspectives: accuracy, EER, time
cost, memory, FLOPs, and MADDs. As shown in Fig. 9,
we improved the accuracy and EER of the student model,
closely matching the teacher model by distilling knowledge
from the teacher model. However, compared with the memory
requirements, time cost, FLOPs, and MADDs of the teacher
network, those of the student network were 83%, 51%, 83.5%
and 82.7% lower, which are 1.769M, 6.91 seconds, 3.98M and
2.338M, respectively. These results validate the effectiveness
of our network compression method. Student networks can
replace teacher networks when deployed on terminals with
limited computing resources. Additionally, As in Table V, we
compared our approach with other schemes, and our resource
consumption is one of the lowest.

1. Security Analysis

Based on the threat model in Section 2, we designed real
scenario to assess the resistance of our proposed continuous
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TABLE IV
SEVEN TEST DEVICES CORRECTLY MATCHED THE RESULTS OF THEIR
RESPECTIVE CATEGORIES

Vehicles A B C D E F G
A 99.99 | 0.49 0.00 0.28 0.00 0.02 1.36
C 0.00 0.00 | 99.96 | 0.02 0.00 0.79 0.04
E 0.00 0.03 0.04 0.00 | 99.23 0.00 0.00
Eves 0.01 99.21 0.00 | 99.70 | 0.77 99.19 | 98.60

authentication system to attacks, this scenario involving six
cars, three of which (A, C, E) were legitimate vehicles (Alices)
and three of which (B, D, F) were illegal vehicles (Eves).
These vehicles requested communication validation from the
RSU, which played the role of Bob. Vehicles A and B, and
C and D, were grouped, with the illegal vehicles following
the legitimate vehicles to closely observe their driving habits.
For a more extreme test, we placed an unauthorized IMU (G)
inside a legitimate vehicle E to capture its driving environment
and initiate impersonation attacks. Illegal vehicle F sends its
own IMU data to the Roadside Unit (RSU) without knowledge
of the legitimate vehicle’s driving patterns.

The results in Table IV show that all seven test devices were
correctly associated with their respective categories, achieving
satisfactory outcomes; in particular, the IMU of the attacker
(G) placed inside a legitimate vehicle was also accurately
identified. This finding demonstrates that even if an attacker
mimics the driving style of the victim vehicle under similar
external conditions, the unique hardware fingerprint of its IMU
sensor remains distinct from those of legitimate vehicles. No-
tably, hardware fingerprints are determined by uncontrollable
random factors during the manufacturing process, making it
practically impossible for attackers to replicate these character-
istics accurately, even if they manage to simulate most of the
signal. Thus, the Spoofing attack is also deemed unsuccessful.
They confirm that our designed system can effectively defend
against random, Spoofing and impersonation attacks.
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TABLE V TABLE VI
COMPLEXITY ANALYSIS WITH DIFFERENT APPROACH COMPARISON AMONG DIFFERENT DL MODELS
Baseline Memory FLOP MADD De.ep learning modgls Accuracy(%) | Training time(s)
(MB) ™M) ™M) Categories Baseline
Mekki [23] 8.63 153.15 126.20 LSTM LSTM [35] 90.91 20.34
Wang [7] 0.658 0.796 0.637 MLP CycleMLP [36] 89.66 144.07
Xun [6] 4.661 13.27 10.25 Swin-Trans [37] 99.31 155.43
. . Transformer

Fereidooni [16]  17.33 264.72 201.89 Crossvit [38] 99.15 178.26
Jiang [32] 11.56 193.34 178.64 BLS ConvBLS [39] 99.01 78.51
Weshabi [33] 2.417 58.291 48.77 ABL [40] 92.55 4.65
Arshad [30] 6.422 90.67 72.19 ResNet-18 [32] 99.19 40.33
Yoon [31] 8.26 130.39 110.42 CNN VGG16 [34] 96.41 56.29
Reddy [34] 19.72 342.89 326.45 MobileNet-V2 [33] 98.67 13.62
Ours 1.769 3.98 2.338 Ours 99.10 6.19

VI. GENERALIZABILITY TO OTHER DL MODELS

To assess the generalizability of the proposed preprocessing
and representation methods across other deep learning mod-
els, we considered nine baseline methods belonging to five
categories. The models included LSTM networks, multilayer
perceptrons (MLPs), transformers, broad learning systems
(BLSs) and CNNs. We adjusted the input to suit each baseline,
conducted ten training sessions for each method and calculated
the average performance.

The classification results obtained on a dataset consisting
of 20 vehicles are shown in Table VI; the models using the
CNN and transformer methods performed almost perfectly,
whereas the models using the MLP and LSTM methods
achieved mediocre performance. The adaptive breadth learning
(ABL) model completed the training process in less time but
with intermediate accuracy, possibly due to parameterization
challenges. Notably, after the proposed signal processing pre-
processing and representation methods were applied, most of
the models required only short training periods to achieve
satisfactory performance. Our model achieved encouraging
results in only 5.46 seconds and ranked second. The results
indicate that the proposed lightweight approach achieved a
better balance between training time and accuracy. This makes
it highly suitable for real-world applications where rapid
training and model adjustment processes are crucial. In the
V2X communication environment, the ability of models to
adapt in real time is crucial. Most models rely on offline
training; however, offline data often fails to cover all variables
encountered on-site, such as extreme road and equipment age-
ing, leading to decreased performance in practical applications.
In contrast, the lightweight design proposed in this study
makes it possible to adapt instantly to environmental changes
on-site.

VII. LIMITATIONS AND FUTURE WORK

In this section, we discuss some of the limitations and cor-
responding future work emerging from the above experiments,
as follows:

Extreme Scenarios: In Sections V-D and F, while the system
performs well under typical driving conditions, challenges
persist in more extreme scenarios, such as high-speed driving

and driving on bumpy roads. Under these conditions, the
accuracy remains insufficient, which necessitates the collection
of training data that are specific to these scenarios. To address
the challenge, future research may focus on developing more
robust feature extraction methods that are less sensitive to
changes in extreme scenarios, using adaptive filtering tech-
niques could help reduce the impact of harsh driving condi-
tions on system performance.

Extensive Testing: Our paper demonstrates the potential
of IMU-based device fingerprinting and introduces a two-
stage feature mapping method. However, due to current ex-
perimental limitations, we are unable to validate the system
across thousands of vehicles. Nevertheless, with the continued
development of device fingerprinting technology, IMU-based
continuous authentication for vehicles shows considerable
promise. In future work, we aim to test the system on a
broader range of vehicles to further validate its scalability and
effectiveness.

Resource Overhead: Although we apply a network compres-
sion model to address resource-limited terminals, this approach
still introduces some overhead due to the compression process
itself. Future work should focus on developing models that
eliminate the need for compression, aiming for even lower
overhead levels.

VIII. CONCLUSION

In this paper, we proposed a lightweight continuous authen-
tication system based on IMU fingerprints, which significantly
enhanced the safety of V2X communication. By combining
the fingerprints of IMU devices with our proposed two-stage
feature mapping method, the system achieved an average
accuracy and F1 score of over 99.10% in nine months of real-
world driving tests. Additionally, our method was validated
using the HMOG dataset, and it similarly achieved an impres-
sive average accuracy of 99.34%. In the resource-constrained
environments encountered in V2X environments, our model
compression approach dramatically reduces the demand for
computing resources, and the system to complete model train-
ing in 6.91s while maintaining robustness and high accuracy.
This rapid training capability is crucial for onsite training and
updates, enhancing the system’s practical deployment. A series
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of extensive experiments demonstrated the effectiveness and
adaptability of our approach across various driving phases
and road conditions. Furthermore, through evaluations con-
ducted across various deep learning models, this study shows
the generalizability of the proposed preprocessing and data
representation methods.
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