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Abstract—The growth of cloud computing has led to the
widespread use of location-based services, such as spatial key-
word queries, which return spatial data points within a given
range that have the highest similarity in keyword sets to
the user’s. As the volume of spatial data increases, providers
commonly outsource data to powerful cloud servers. Because
cloud servers are untrustworthy, privacy-preserving keyword
query schemes have been proposed. However, existing schemes
consider only location queries or exact keyword matching. To
address these issues, we propose the Privacy-Preserving Spatial
Keyword Similarity Query Scheme (PPSKSQ), designed to search
for spatial data points with the highest similarity while protecting
the privacy of outsourced data, query requests, and results. First,
we design two sub-protocols based on improved symmetric homo-
morphic encryption (iSHE): iSHE-SC for secure size comparison
and iSHE-SIP for secure inner product computation. Then,
we encode range information and integrate it with a quadtree
to construct a novel index structure. Additionally, we use the
Jaccard to measure similarity in conjunction with the iSHE-
SC protocol, transforming similarity comparison into a matrix
trace operation. Finally, rigorous security analysis and extensive
simulation experiments confirm the flexibility, efficiency, and
scalability of our scheme.

Index Terms—Cloud computing, rectangular range query,
jaccard similarity query, privacy preservation, symmetric homo-
morphic encryption.

I. INTRODUCTION

IN the era of ubiquitous big data, the widespread adoption of
cloud computing has revolutionized everyday life by offer-

ing significant convenience and enabling efficient computation.
This has also driven research into spatial keyword querying, a
versatile and flexible method for matching keywords within a
specified range. Early studies in this field focused on location-
based services (LBSs) [1], [2], which later expanded into
various applications such as mobile crowdsensing [3], online
medical diagnosis [4], VANETs [5], intelligent transportation

This work was supported in part by the National Natural Science Foundation
of China under Grant 62472266, Grant 62472265, Grant 62302280, and Grant
62172258, in part by the Key Laboratory of Computing Power Network and
Information Security, Ministry of Education, under Grant 2023ZD021.

Changrui Wang, Lei Wu, Haojie Yuan, Hao Wang and Wenying Zhang are
with the School of Information Science and Engineering, Shandong Normal
University, Jinan 250358, China (E-mail: wangchangrui0705@163.com;
wulei@sdnu.edu.cn; yuanhaojie7218@163.com; wanghao@sdnu.edu.cn;
zhangwenying@sdnu.edu.cn).

Lijuan Xu, is with Key Laboratory of Computing Power Network and
Information Security, Ministry of Education, Qilu University of Technology
(Shandong Academy of Sciences) (e-mail: xulj@sdas.org).

Weizhi Meng is a Full Professor in the School of Comput-
ing and Communications, Lancaster University, United Kingdom(e-mail:
weizhi.meng@ieee.org).

* Corresponding author.

[6], social networking [7], and trajectory services [8]. In LBSs
research, the primary focus is on recommendation systems,
such as taxi services, where users look for Points of Interest
(POIs) that meet their particular needs. This has led to growing
attention to spatial keyword querying as an emerging research
area.

Existing spatial keyword query methods primarily focus on
matching all user keywords, which limits the general appli-
cability of the service to some extent. Previous studies have
proposed several solutions to spatial keyword queries, such as
[9]–[11]. However, these approaches predominantly emphasize
exact keyword matching. For example, in these schemes, if
the set of keywords is {swimming, music, supermarket, hotel}
and the user query set is {swimming, supermarket, stadium},
the system only returns results when all the query keywords
exactly match the existing set. In practice, user queries are
often dynamic, and users typically prefer to receive results
when only some of the keywords match. Therefore, enabling
keyword similarity queries has become a challenging problem
that requires a solution.

Keyword similarity queries aim to enable approximate
matching of keyword information. However, as user privacy
concerns are increasingly prominent, achieving spatial location
and similarity queries in a ciphertext environment represents
a major challenge in the field. Several privacy-preserving
schemes have been proposed to address this problem, such as
[12]–[18]. Nonetheless, these schemes have certain limitations:
1) [12], [14] only support single-location queries, which lack
flexibility and are challenging to adapt to diverse real-world
application scenarios; 2) [15], [17], [18] although combining
spatial and textual information, only support Boolean queries,
which require precise keyword matching and cannot satisfy the
demand for approximate matching; 3) [16] despite considering
the similarity between keywords, uses Euclidean distance as a
similarity metric, which is more suitable for fixed-length key-
word comparisons. Therefore, to address the above challenges,
we propose a solution for privacy-preserving spatial keyword
similarity queries among dynamic keyword sets, aiming to
provide users with a more flexible and efficient approach.

Since range filtering and similarity comparison in a cipher-
text environment is computationally intensive, we use a dual-
cloud environment to implement range query and Jaccard sim-
ilarity comparison to achieve privacy preservation. Recently,
many privacy-preserving dual-cloud schemes [19]–[23] have
been proposed. As our scheme performs range queries and
Jaccard similarity metrics in a ciphertext environment, dual-
cloud allows our scheme to support more computations and
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greatly improves the efficiency of queries and comparisons.
How to efficiently implement range queries and Jaccard sim-
ilarity metrics in a dual-cloud system will surely be a major
challenge in our work. In addition, exact keyword queries only
need to determine whether the keywords are equal or not,
whereas similarity queries based on Jaccard metrics neces-
sitate inter-set comparisons and fractional computations. This
computational complexity represents a significant challenge in
an outsourced ciphertext cloud environment. Currently, there
is no generalized solution for similarity queries, which further
compounds the challenge of developing a highly scalable
scheme. Meanwhile, similarity computation inevitably incurs
efficiency and communication overhead. Therefore, designing
a solution that balances flexibility, high performance, and
privacy preservation remains our key challenge.

In this paper, we propose a Privacy-Preserving Spatial
Keyword Similarity Query scheme (PPSKSQ), which aims to
identify spatial location points that conform to the location
range and exhibit the highest similarity. The main idea is to
transform the similarity into a matrix trace and thus operate
on it using a lightweight matrix that we have designed. We
found that the operation on the matrix trace can satisfy the
two encryption protocols we designed, and finally obtain
the encryption flag so that the similarity can be judged.
Specifically, our contributions are fourfold:

• First, we design two privacy-preserving protocols based
on lightweight improved symmetric homomorphic en-
cryption (iSHE): iSHE-SC and iSHE-SIP. When filtering
sets of keywords for the highest similarity, the iSHE-
SC protocol can securely compare the size of similar-
ity values among keyword sets. During range queries,
both location and range data are encoded into ciphertext
vectors, allowing the iSHE-SIP protocol, which securely
computes inner products, to determine intersections be-
tween range-to-range and point-to-range queries.

• Second, we secure the encoded keyword sets using
lightweight matrix encryption. Furthermore, by leverag-
ing the properties of matrix encryption, we transform
the keyword information into the trace of a matrix.
This approach enables operation on the matrix trace
using the iSHE-SC protocol to perform Jaccard similarity
comparisons, significantly reducing computational costs.

• Third, we leverage quadtree properties to construct a
tree-based index that encodes spatial location points
and their segmented rectangular ranges and stores them
within the index. Consequently, the iSHE-SIP protocol is
employed to efficiently filter the entire two-dimensional
space during range queries. The PPSKSQ scheme enables
the selection of appropriate quadtree division hierarchies
for various densities of location points on a map within
the same area size, to achieve optimal efficiency in the
outsourcing and querying phases.

• Finally, we prove the adaptive security of our scheme
through rigorous theoretical analysis. By conducting a
large number of comparative experiments, our scheme
significantly outperforms existing keyword similarity
query schemes in the outsourcing, token generation, and

query phases. Additionally, we evaluate the feasibility and
scalability of the PPSKSQ scheme for different densities
of datasets, and the flexibility of the quadtree hierarchy
selection in terms of its impact on efficiency.

The remainder of this paper is organized as follows: Related
works are introduced in Section II. In Section III, the system
model, threat model, and design goals are presented. Section
IV revisits the preliminaries used in this study. Section V
focuses on demonstrating the PPSKSQ scheme. Subsequently,
Section VI carries out the security analysis of the scheme,
followed by a detailed experimental evaluation in Section VII.
Finally, conclusions are discussed in Section VIII.

II. RELATED WORK

With the rapid advancement of LBSs, various types of
spatial queries, including spatial keyword queries and top-k
spatial keyword queries, have been introduced, accompanied
by numerous privacy-preserving schemes. In this subsection,
we review the related privacy-preserving schemes for each of
these categories.

Spatial queries. Privacy-preserving schemes for spatial
queries have been suggested in the literature [24]–[27]. These
schemes utilized Secure k-Nearest Neighbors and Shen-Shi-
Waters (SSW) encryption methods in conjunction with a tree-
based structure to efficiently retrieve spatial data. However,
these schemes operated within a symmetric environment,
requiring all participating parties to possess secret keys. Re-
cently, Tong et al. [28] introduced a spatial Boolean range
query scheme, termed PBRQ, which combined Bloom fil-
ters and Katz-Sahai-Waters (KSW) encryption. This scheme
achieved linear search efficiency in querying through the use
of Gray code-encoded constructions. Miao et al. [14] designed
a novel Bloom filter structure and then proposed an efficient
privacy-preserving range query scheme, denoted as PSRQ.
The scheme could provide security against Chosen-Plaintext
Attacks, but its query ranges were limited to the Geohash
algorithm, which lacked diversity.

Spatial keyword queries. Spatial keyword queries, a key
element of LBSs, have attracted considerable attention in
recent years. Yang et al. [9] proposed a keyword search
scheme for polygon ranges that employs polynomial fitting
technology for range queries and matrix multiplication for
keyword queries. Cui et al. [10] proposed a boolean keyword
query scheme under known background attacks by mapping
spatial keyword information into Bloom filters. Tu et al. [11]
shifted the research focus to multi-keyword queries and, for
ranges and keywords, designed intersection and subset pred-
icate encryption schemes, known as PMRK. However, none
of these schemes considered the similarity between keywords.
Recently, numerous schemes have been proposed for keyword
similarity studies [13], [16], [29], [30]. In [13] and [16],
Euclidean distance and Term Frequency-Inverse Document
Frequency(TF-IDF) were used to measure similarity, respec-
tively, which are less suitable than Jaccard for determining
similarity between sets of keywords. In [29], Bloom filters
were used to transform similarity measures into comparisons
of inequalities, necessitating extensive preparatory work from
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users, thereby increasing their overhead. In [30], the scheme
encoded location and keyword data together into a vector
but still required a bilinear pairing operation during the final
validation, significantly increasing the computational burden.
In contrast to the previously mentioned schemes, our approach
supports both keyword matching and similarity measurement
among keyword sets.

Top-k spatial keyword queries. In spatial keyword similarity
queries, there is a need to retrieve the top-k keywords, thus,
top-k keyword queries have emerged as a new research prob-
lem. Li et al. [31] proposed a scheme, denoted as PSKF, to fa-
cilitate top-k spatial keyword queries, leveraging fog comput-
ing. The scheme achieved text pruning by enhancing the R-tree
structure. Xu et al. [32] proposed a method for retrieving the
top-k diagnostic documents applicable in healthcare settings.
Specifically, they combined the secure kNN algorithm as well
as Paillier homomorphic encryption to conduct comparisons of
Euclidean distances among diagnostic documents, ultimately
obtaining the top-k diagnostic documents with the highest
similarity. In [33], Liu et al. employed the homomorphic order-
preserving encryption algorithm (FHOPE) to encrypt index
and query vectors for conducting top-k multi-keyword queries.
In contrast to the aforementioned scheme, our approach facili-
tates efficient tree pruning while also providing top-k keyword
information retrieval.

III. MODELS AND DESIGN GOALS

In this subsection, we discuss the system model, threat
model, and design goals of our PPSKSQ scheme.

A. System Model

Our system model, depicted in Fig. 1, utilizes this model to
provide privacy-preserving spatial range and similarity queries
within an outsourced cloud environment. It consists of three
principal entities: data provider (DP ), query users (QU =
u1, u2, ..., un), and two cloud servers (C1,C2).
• Data provider (DP ). The data providers are responsible

for initializing the entire system and have a large amount of lo-
cation and keyword data, denoted as D = {pi = (xi, yi),Wi},
where pi is the location information of each data point, and
Wi is the n-dimensional keyword set information. DP will
outsource these sensitive data to a computationally powerful
cloud server and provide registered users with spatial range
and keyword similarity query (SKSQ) services. To protect
privacy and improve query efficiency, DP will construct a
quadtree-based structure, store spatial data in the quadtree, and
encrypt the tree. In addition, DP will encrypt the dataset D.
The ciphertext tree and ciphertext dataset are finally uploaded
to the cloud server.

• Two cloud servers (C1,C2). Our system is deployed under
a two-cloud server model, and each cloud server has a lot
of storage and computing power. Without compromising the
privacy of DP and QU , C1 and C2 will collaborate to store
and perform spatial range and keyword similarity queries.

• Query users (QU = {u1, u2, ..., un}). A registered query
user ui wants to search for query results within a rectangular
range that satisfies the keyword similarity threshold. The ui
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Fig. 1. PPSKSQ system model.

will launch a request to the cloud servers via SKSQ, and the
cloud servers will return the corresponding query results to
the query user based on the user’s requests.

B. Threat Model

The data provider (DP ) is considered a honest party within
the system [21]. The cloud servers C1 and C2 are considered
semi-honest entities; they store DP ’s dataset D and provide
SKSQ services to query users (ui) reliably. However, C1 and
C2 may attempt to infer details about the encrypted dataset
D, the encrypted tree structure, query requests from ui, and
the final results. It is important to note that we assume no
collusion between C1 and C2 [22], a presumption grounded in
the strict regulatory environment of the real world, where any
improper conduct would jeopardize their reputation. Regarding
ui, we consider that he/she is also an honest participant
and will not collude with other entities because they want
to go through the SKSQ service to find their desired query
results. In summary, our system supports secure querying
while maintaining privacy-preserving properties and satisfies
the security requirements of the adaptively chosen plaintext
attack (IND-CPA) model. Specifically, it can defend against
data leakage attacks, query pattern analysis attacks, result
analysis attacks, and known plaintext attacks (KPA) because
our scheme limits the exposure of plaintext-ciphertext pairs to
a finite set, ensuring that attackers cannot infer other ciphertext
structures. We do not provide an extensive discussion on other
attack methods, such as channel attacks, as these issues will
be addressed as part of our future work.

C. Design Goals

Our PPSKSQ scheme aims to achieve efficient and privacy-
preserving spatial range and keyword similarity queries in an
outsourcing environment and thus will satisfy the following
design goals.
• Data privacy. The PPSKSQ scheme must meet privacy

preservation requirements, ensuring the protection of sensitive
data and results within an outsourced cloud environment.
First, protecting the datasets, index information, and quadtree
structures uploaded by data providers from access by cloud
servers is essential. Second, query requests and tokens from
querying users must not be leaked to the cloud servers. Finally,
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Fig. 2. Graphical representation of Jaccard’s definition of similarity. The
figure on the left illustrates the intersection of sets, while the figure on the
right depicts their union.

the query results returned to users must also be protected from
being disclosed to the cloud servers.

• Unlinkability. Ensure that the cloud servers cannot infer
the tokens uploaded by a few random querying users, i.e.,
the cloud servers cannot infer the relationship between the
ciphertext and plaintext from the query requests.

• Query efficiency. The PPSKSQ scheme avoids highly
consumptive query operations and implements range queries
and keyword similarity queries efficiently and cost-effectively.

IV. PRELIMINARIES

In this section, we introduce the concept of Jaccard similar-
ity, which leads to the definition of spatial range and keyword
similarity queries, and finally to the iSHE encryption scheme.

A. Jaccard similarity

In the field of similarity measurement, numerous methods
have been utilized, such as Jaccard similarity, Euclidean dis-
tance, TF-IDF, and others. Euclidean distance is primarily
suitable for comparing numerical data and lacks semantic
explanatory power for the similarity measure of keyword sets;
TF-IDF, while effective for exact textual data matching, is
limited in addressing fuzzy matching between sets. Given that
keywords are represented as sets in our scheme, employing
Jaccard similarity is the optimal choice for measuring simi-
larity. Furthermore, Jaccard similarity more accurately reflects
the similarity between keyword sets by calculating the ratio of
intersection to union, rather than the number or orientation of
elements. In large-scale spatial keyword querying, since our
PPSKSQ scheme is deployed in a dual-cloud environment,
this allows us to maximize the advantages of this system
to reduce the computational complexity of Jaccard, and thus
achieve similarity querying more efficiently. Typically, for two
sets A = (a1, a2, ..., an) and B = (b1, b2, ..., bn), Jaccard
similarity is calculated as J(A,B) = |A∩B|

|A∪B| . Since our
scheme converts the set of keywords into binary form, we can
thus transform the definition of Jaccard similarity as follows
Eq. (1), and it is graphically represented as shown in Fig. 2.

J(A,B) =

∑n
i=1(ai · bi)∑n
i=1(ai + bi)

=
Inner

Sum
, (1)

B. Spatial range and keyword similarity queries

A dataset in two-dimensional space comprises numerous
location points, each encoding keyword information, repre-
sented as D = {pi = (xi, yi),Wi}. Given a query request
Q = {Rq = (R

(x)
q , R
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(x)
q = (xl

q, x
r
q)

3P

4P 6P

8P

7P
2P

Spatial data Query request

1P

5P

1 2 3 4 5 6{ , , , , , }K = w w w w w w

1 1 3 6{ , , }=W w w w

3 2 3 4{ , , }=W w w w

5 2 5 6{ , , }=W w w w

3 6{ , }=qW w wQ

9P

10P

Fig. 3. Example of SKSQ. The keyword dictionary consists of six keywords,
with ten location points and query regions (represented as blue rectangles)
within the rectangular area. The keyword for the query request is Wq .

and R
(y)
q = (ylq, y

r
q) represent the x- and y-directions of

the rectangular range, and denotes the d-dimensional query
keywords, with (d < n). For the query request, our primary
objective is to identify data points whose locations fall within
the specified rectangular range and exhibit the highest keyword
similarity.
• Spatial range queries. To ensure that the data points

are within the rectangular range of the query, i.e., both
(xi−xl

q)(x
r
q−xi) > 0 and (yi−ylq)(y

r
q−yi) > 0 are satisfied.

• Spatial keyword similarity queries. Given a set of key-
words Wq = (q1, q2, ..., qd) for a query, there are the following
steps to filter the data points with the highest similarity.
First, map the set of keywords to a binary vector, where
each element in the vector is set to 1 if the corresponding
keyword is in the keyword dictionary and 0 otherwise. Second,
compare the magnitude of similarity between the data points
and the keyword binary vector of the query request, i.e.,
J(Wi,Wq)−J(Wj ,Wq), by defining this comparison equation
as Φ. Finally, sort the similarity of all the data points and
select the one with the highest similarity as the query result,
i.e., Top(Φ).

Formal definitions of spatial range and keyword similarity
queries are presented below.

Definition 1 (Spatial range and keyword similarity
queries)

Given a query request Q, the spatial range and keyword
similarity query (SKSQ) filters the data points to the query
user that fulfills the following conditions:
1) Spatial range requirement, i.e., ((xi −xl

q)(x
r
q −xi) > 0)∧

((yi − ylq)(y
r
q − yi) > 0).

2) Spatial keyword similarity requirement, i.e., Top(Φ).
Fig. 3 presents a simple example of SKSQ, where Pi(1 ≤

i ≤ 10) represents spatial data points, each possessing a
set of keywords. Firstly, we define the keyword dictionary
set as K = {w1, w2, w3, w4, w5, w6}. Secondly, the keyword
sets for data points P1, P3, and P5 are denoted as W1 =
{w1, w3, w6}, W3 = {w2, w3, w4}, and W5 = {w2, w5, w6},
respectively. Given a query request Q = {Rq,Wq}, where
Wq = {w3, w6} denotes the query keyword set. When the
querying user launches SKSQ, it will first perform the filtering
of spatial range requirement to obtain {P1, P3, P5}, followed
by the filtering of spatial keyword similarity requirement



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

by calculating J1(W1,Wq) = 2
5 , J2(W3,Wq) = 1

5 , and
J3(W5,Wq) = 1

5 , respectively, and sorting the keyword
similarity, i.e., Top(J1, J2, J3) = J1, and finally return the
result of SKSQ, {P1}, to the user.

C. iSHE encryption scheme

The iSHE encryption scheme [34] is a symmetric encryption
scheme with homomorphic properties and is shown to be
semantically secure with CPA and also resistant to AGCD
attacks. Specifically, the iSHE encryption scheme comprising
three algorithms is as follows.

• KenGen(k0, k1, k2, kr) → (pp, sk): The key generation
algorithm takes the security parameters (k0, k1, k2, kr) as input
and selects random large prime numbers p and q of size k0,
i.e., |p| = |q| = k0, and further computes N = pq. Next,
the algorithm selects a random number s. Then, the algorithm
selects another random number L of size k2, i.e., |q| = k2,
and sets the secret key to sk = (s, p,L). In addition, the
message space size is M =

[
−2k1−1, 2k1−1

)
, and set the

public parameters as pp = (k0, kr,M,N ), where the security
parameters satisfy k1 < k2 = kr < k0.
• Enc(m, sk) → E(m): Given a secret key sk and a

message m ∈ M , the encryption algorithm chooses two
random numbers r and r′ such that r ∈ {0, 1}kr , r′ ∈ {0, 1}k0 ,
and sets an exponent value d of sk. Therefore, the message
m is encrypted (E(m), d) = Enc(m, sk) = s · (rL+m)(1+
r′p) mod N in the following way, where d is 1.

• Dec(E(m), sk, d) → m: The decryption algorithm takes
as input the ciphertext E(m), the secret key sk, and its
counterpart d, and obtains the plaintext of the message as
follows: m′ = (((sd)−1) · E(m) mod p) mod L, where m ={
m′ if m′ < L/2
m′ − L if m′ > L/2

and (sd)−1 · sd ≡ 1 mod N .

iSHE encryption scheme has homomorphic addition and
homomorphic multiplication properties in the ciphertext state.
Homomorphic addition: Dec(E(m1) + E(m2), sk, d) →
E(m1 + m2), where d = max(d1, d2); Dec(E(m1) +
m2, sk, d) → E(m1 + m2), where d = d1. Homomorphic
multiplication: Dec(E(m1) · E(m2), sk, d) → E(m1 · m2),
where d = d1 + d2; Dec(E(m1) ·m2, sk, d) → E(m1 ·m2),
where d = d1.

Based on the above homomorphic properties, the iSHE
symmetric encryption scheme likewise has a public key
way to encrypt messages. The public key is set to pk =
{E(0), E(0)′), E(1)}, where E(0) and E(0)′ are two different
cryptography representations of 0. Given the public key pk, it
is possible to encrypt a message m ∈ M in the following way
and by utilizing homomorphic properties,

E(m) = (m · E(1) + r1 · E(0) + r2 · E(0)′) mod N , (2)

where the random numbers r1, r2 ∈ {0, 1}kr . The public
key version encryption scheme also satisfies the semantic
security of IND-CPA [34].

TABLE I
NOTATION DEFINITION

Notation Definition

h Height of the quadtree
d̂ Number of spatial points within the rectangle
d′ Length of vector
k Number of range vectors in PBRQ-T+
η Degree of polynomial fit in TSKS
TM , TV Cost of matrix/vector multiplication
TE Cost of modular exponentiation in PBRQ-T+
TP Cost of bilinear pairing in PBRQ-T+
TTFIDF Cost of TFIDF calculation
iSpk, iSsk Cost of iSHE public/secret key encryption
iSa Cost of iSHE homomorphic addition
iSm Cost of iSHE homomorphic multiplication
DS Cost of iSHE decryption
|Z| Size of the ciphertext in TSKS
|Vn| Size of an n-dimensional vector
|Mn∗n| Size of n*n dimensional matrix
|D| , |C| Size of the dataset and ciphertext
|G| , |GT | Element lengths of cyclic groups in PSRQ-T+

V. OUR PROPOSED SCHEME

In this section, we first design a new secure comparison
protocol based on some basic protocols of iSHE. Second,
for spatial range queries, we propose a secure computational
inner product protocol, iSHE-SIP, based on the random mask
protocol in [35]. Then, we illustrate how to utilize the Jaccard
similarity metric to measure keyword similarity queries in
our scheme. Finally, with the above building blocks, we pro-
pose the privacy-preserving spatial keyword similarity query
scheme, i.e., PPSKSQ. For the sake of clarity of the subsequent
descriptions in the article, the notations used are shown in
Table I.

A. Construction of Basic Protocols and Query Patterns

1) iSHE-SC protocol. Unlike previous secure comparison
protocols [36], [37], our iSHE-SC protocol enables us to
determine whether two ciphertexts are greater than, less than,
or equal to each other in a single round of comparison. As we
utilize an enhanced version of the symmetric homomorphic
encryption scheme iSHE, our secure comparison protocol is
extremely robust in terms of security. The secure comparison
protocol is deployed on two cloud servers C1 and C2 to
securely determine the size relationship between two given
ciphertexts E(m1) and E(m2) without leaking any informa-
tion about plaintexts m1 or m2 to C1 and C2. Where C1 holds
the ciphertexts E(m1) and E(m2), and C2 holds the secret
key sk. The protocol outputs E(1) if m1 > m2, E(−1) if
m1 < m2, and E(0) otherwise if m1 = m2.
• Step-1: C1 chooses a number s whose values E(1) and

E(−1) are calculated by Eq. (2). Then, C1 randomly chooses
two random numbers r1, r2 ∈ M such that they satisfy r1 ≫
r2 > 0. Next, C1 computes E(z) = s · E(r1) · (E(m1) +
E(m2) · E(−1)) + s · E(r2) · E((m1 − m2)

2) · E(−1) =
E(s · r1 · (m1 −m2)− s · r2 · (m1 −m2)

2). Afterwards, C1

sends E(z) to C2.
• Step-2: Upon receiving E(z), C2 uses sk to get z and

determine the size of z. If z > 0, C2 sets θ = 1 and encrypts
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it as E(θ); if z < 0, C2 lets θ = −1; otherwise θ = 0. Then,
C2 returns E(θ) to C1.
• Step-3: After receiving E(θ), C1 computes E(µ) as

E(µ) =

{
E(θ) if s = E(1)

E(θ) · E(−1) if s = E(−1)
.

Finally, E(µ) is the output of the entire protocol.
Correctness. If s = 1, then E(z) = E(r1 ·(m1−m2)−r2 ·

(m1 −m2)
2). Since r1 ≫ r2 > 0, if m1 > m2, then z > 0.

Hence, E(µ) = E(θ) = E(1). If m1 < m2, then z < 0.
Then, E(µ) = E(θ) = E(−1). If m1 = m2, then z = 0. In
this case, E(µ) = E(θ) = E(0). Similarly, when s = −1, we
can equally prove that the protocol outputs E(µ) = E(1) if
m1 > m2, E(µ) = E(−1) if m1 < m2, and E(µ) = E(0)
if m1 = m2. In summary, the secure comparison protocol is
correct.

2) Spatial range queries. To determine the inequality in
Definition 1, our main idea is to determine the sign of two
inequalities by their inner product. First, the spatial point

(xi, yi) is encoded into vectors
−−→
P

(x)
i = (xi, xi,−1, x2

i ) and−−→
P

(y)
i = (yi, yi,−1, y2i ) along the x-direction and y-direction,

respectively. Second, we encode the rectangular range Rq also

into
−−→
P

(x)
Rq

= (xl
q, x

r
q, x

l
q · xr

q,−1) and
−−→
P

(y)
Rq

= (ylq, y
r
q , y

l
q ·

yrq ,−1) along the x-direction and y-direction, respectively.

Finally, we determine whether (
−−→
P

(x)
i ,

−−→
P

(x)
Rq

) and (
−−→
P

(y)
i ,

−−→
P

(y)
Rq

)
are greater than 0 by using the inner product to determine
if the spatial points fall within the rectangle. In this way,
we can use a single inner product in a quadtree recursion to
determine whether a point lies within a rectangle and whether
the quadtrees intersect. To ensure the secure computation of
the inner product of two vectors, we designed a dedicated
protocol, iSHE-SIP, which is built on the iSHE framework.

3) iSHE-SIP protocol. Unlike previous methods for se-
curely computing inner products, such as the Secure k-
Nearest Neighbor algorithm described in [30], which requires
additional matrices to maintain privacy, our iSHE-SIP pro-
tocol offers a secure computational inner product method
utilizing an eliminable random number design. This approach
demonstrates significantly higher efficiency, particularly for
dense computational vector dimensions. Given two vectors−→
X = (x1, x2, ..., xn) and

−→
Y = (y1, y2, ..., yn), the input of

the protocol is two vectors E(
−→
X ) and E(

−→
Y ) encrypted by

iSHE, and if the inner product of E(
−→
X ) and E(

−→
Y ) is greater

than 0, then the output is E(1), otherwise E(0). C1 holds
E(

−→
X ), C2 holds E(

−→
Y ), and the flow of the protocol is as

follows.
• Step-1: C1 chooses an n-dimensional random vector

−→
R =

(r1, r2, ..., rn), ri ∈ M and computes
−→
Z = E(

−→
X ) −

−→
R =

E(x1 − r1, x2 − r2, ..., xn − rn). In addition, C1 chooses a
random number r at random and computes

−→
W = r ·

−→
Z =

(w1, w2, ..., wn). C1 then sends {
−→
R,

−→
W} to C2.

• Step-2: Once {
−→
R,

−→
W} is received, C2 computes{

u =
−→
R · E(

−→
Y ) = E(r1 · y1 + r2 · y2 + ...+ rn · yn)

v =
−→
W · E(

−→
Y ) = E(w1 · y1 + w2 · y2 + ...+ wn · yn)

.

Fig. 4. Examples of quadtree construction and search. Example of quadtree
construction and search, where the left figure shows the two-dimensional space
divided and the right figure shows the corresponding quadtree structure with
a depth of 3.

Next, C2 returns {u, v} to C1.
• Step-3: After receiving {u, v}, C1 computes E(θ) = u+

r−1 · v and sends E(θ) to C2.
• Step-4: After accepting E(θ), C2 recovers θ with the

secret key and judges its size; if θ > 0, it sets E(µ) = E(1),
otherwise E(µ) = E(0). Next, C2 sends E(µ) to C1.

Finally, E(µ) is the output of the whole protocol.
Correctness. Due to

−→
W = r ·

−→
Z = (E(r · (x1 − r1)), E(r ·

(x2 − r2)), ..., E(r · (xn − rn))), it follows that u+ r−1 · v =
E(r1 · y1+(x1− r1)y1+ r2 · y2+(x2− r2)y2+ ...+ rn · yn+
(xn−rn)yn) = E(x1 ·y1+x2 ·y2+ ...+xn ·yn) = E(

−→
X ·

−→
Y ).

Moreover, since u+r−1 ·v =
−→
R ·E(

−→
Y )+r−1 ·

−→
W ·E(

−→
Y ) =

−→
R ·

E(
−→
Y )+r−1 ·r·

−→
Z ·E(

−→
Y ) = (

−→
R+

−→
Z )·E(

−→
Y ) = E(

−→
X )·E(

−→
Y ),

the iSHE-SIP protocol is correct.
However, as spatial datasets expand, the complexity of

queries also increases. To efficiently handle large-scale spatial
datasets, we utilize quadtree properties [38]–[40] for two-
dimensional spatial data retrieval. The quadtree-based con-
struction comprises three main types of nodes: root node,
internal nodes, and leaf nodes. In Fig. 4, we have given a
schematic diagram of quadtree construction and search.
• Root node. The root node, representing the largest rect-

angle that encompasses the entire two-dimensional space, is
generally disregarded as it inherently contains all information
within this space.
• Internal nodes. Each root node comprises four internal

nodes that divide the two-dimensional space into four rectan-
gular subspaces, each corresponding to a subtree. Additionally,
the internal nodes represent the information of the rectangular
subspaces, which we encode as vectors stored in them, i.e.,

Ri = (
−−→
P

(x)
Ri

,
−−→
P

(y)
Ri

). Consequently, each internal node houses
{Ri, ni.child}, with ni.child serving as a pointer to the child
node.

• Leaf nodes. A leaf node is the smallest rectangular
subspace formed after constant recursion, similar to an internal
node. Furthermore, leaf nodes retain information pertaining to
the spatial data encompassed by these rectangular subspaces.

Using the quadtree construction, we traverse the entire tree
to determine if the query ranges intersect with its nodes. Given
a rectangle query range Rq = (R

(x)
q , R

(y)
q ) and information

about the non-leaf nodes of a quadtree (R
(x)
i , R

(y)
i ), analogous

to Definition 1, we transform the intersection of rectangles
into a judgment of the following two lower equations: (xr

q −
xl
i)(x

r
i−xl

q) > 0 and (yrq−yli)(y
r
i −ylq) > 0. Therefore, for the
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Fig. 5. Rectangular intersection case. Rectangular intersection case, where the
blue dashed box represents the query range, and the black solid box represents
the node range of the corresponding quadtree.

non-leaf node information Ri of the quadtree, the x-direction

and y-direction are encoded as vectors
−−→
P

(x)
Ri

= (xl
i, x

r
i ,−1, xl

i ·

xr
i ) and

−−→
P

(y)
Ri

= (yli, y
r
i ,−1, yli·yri ), respectively. This approach

has the advantage of merging all the original range information
into one vector and filtering out the eligible spatial points
with a single inner product calculation. The query range Rq

is also encoded into vectors
−−→
P

(x)
Rq

= (xl
q, x

r
q, x

l
q · xr

q,−1)

and
−−→
P

(y)
Rq

= (ylq, y
r
q , y

l
q · yrq ,−1) along the x-direction and y-

direction, respectively. Finally, we can tell whether the query
range intersects an internal node of the quadtree by computing

whether the inner products of (
−−→
P

(x)
Ri

,
−−→
P

(x)
Rq

) and (
−−→
P

(y)
Ri

,
−−→
P

(y)
Rq

)
are both greater than 0. In Fig. 5, several cases of intersecting
or not intersecting two rectangles are given.

4) Spatial keyword similarity queries. In PPSKSQ, after
executing the spatial range queries, the next step is to compare
the magnitude of similarity. The comparison of similarities
is conducted by calculating their differences and sorting
the results, subsequently returning the data record with the
highest similarity to the querying user. Given a keyword set
Wq = (q1, q2, ..., qd) for a query, and data points Pi and
Pj that meet the spatial range query, their keyword sets are
denoted as Wi = (a1, a2, ..., an) and Wj = (b1, b2, ..., bn),
respectively. From Jaccard’s definition of similarity in Section
IV, we need to compute Φ = J(Wi,Wq) − J(Wj ,Wq) =
Inner1
Sum1

− Inner2
Sum2

= Inner1·Sum2−Inner2·Sum1

Sum1·Sum2
and determine

the size of the equation. By observation, we know that the
denominator is constantly greater than zero, so we only need to
go to the numerator to determine its size. Setting the numerator
to be ω, once we know the size of ω, we can determine the
size of J(Wi,Wq) − J(Wj ,Wq). To determine the size of
ω, we expand the equation, ω =

∑n
i=1(ai · qi)

∑n
j=1(bi +

qi) −
∑n

i=1(bi · qi)
∑n

j=1(ai + qi) =
∑n

i=1aiqi · (
∑n

j=1bi +∑n
j=1qi)−

∑n
i=1biqi · (

∑n
j=1ai +

∑n
j=1qi).

We set SumWi
=

∑n
i=1ai, SumWj

=
∑n

i=1bi, SumWq
=∑n

i=1qi. We can get

ω = (SumWj
+ SumWq

) ·
∑n

i=1aiqi

− (SumWi
+ SumWq

) ·
∑n

i=1biqi.
(3)

Observing ω, it can be observed that the binary addition
operation can be implemented locally efficiently, whereas

computing the multiplication locally incurs severe computa-
tional overhead. To solve the latter computation, we utilize
the matrix multiplication technique to convert the operation
of product sum into the operation of matrix trace [13], which
will be elaborated in subsection V-B. Finally, we can obtain
Top(Φ), i.e., return the data record with the highest similarity.

B. Detailed construction of PPSKSQ

In this subsection, based on all the above constructions,
we propose our scheme, i.e., PPSKSQ, whose main idea is
to first filter out a portion of the data records that meet the
requirements based on the spatial range requirement, and then
go on to derive the data points that meet the final requirements
based on the spatial similarity requirement. To facilitate the
introduction, we divide it into five phases: 1) Registration
and Initialization; 2) Outsourcing and Index Build; 3) Token
Generation; 4) Query; and 5) Result Recovery.

Registration and Initialization. The querying user first reg-
isters with the DP and only the registered ui can participate
in the service and the whole system is initialized by the DP .
The initialization steps are as follows.

• Step-1: Given the security parameters (k0, k1, k2, kr),
DP calls iSHE.KeyGen() to generate the public parameter
pp = (k0, kr,M,N ) and the secret key sk = (s, p,L), and
computes {E(0), E(0)′E(1)} as a way to set the public key
to pk = {pp,E(0), E(0)′, E(1)}.
• Step-2: Inputting the security parameter λ, the DP

randomly outputs two n-dimensional invertible matrices
{M1,M2}, a permutation function π, and computes its inverse
matrix {M−1

1 ,M−1
2 }.

• Step-3: Finally, the DP publishes pk and sends
{M−1

1 ,M−1
2 , π} to the registered ui as well as the secret key

sk to C2.
Outsourcing and Index Build. In this phase, to efficiently

filter the spatial location data, DP constructs a quadtree in
two-dimensional space T . Additionally, DP maps the set of
keywords to a binary vector and encrypts the vector. Finally,
the encrypted T and spatial data are uploaded to C1 as follows.
• Step-1: Given a spatial dataset D = {pi = (xi, yi),Wi}

based on the keyword dictionary, DP maps the keyword
set information of each pi into binary vectors. Next, DP

encodes each spatial point pi = (xi, yi) into vectors
−−→
P

(x)
i =

(xi, xi,−1, x2
i ) and

−−→
P

(y)
i = (yi, yi,−1, y2i ), respectively, and

randomly chooses a positive random number α to com-

pute {
−−−→
P

(x)′

i = α
−−→
P

(x)
i ,

−−−→
P

(y)′

i = α
−−→
P

(y)
i }. Subsequently, the

location information pi, the set of keywords Wi, and the

vectors {
−−−→
P

(x)′

i ,
−−−→
P

(y)′

i } are encrypted as E(D) = {E(pi) =

(E(xi), E(yi)), E(Wi), E(
−−−→
P

(x)′

i ), E(
−−−→
P

(y)′

i )} using the secret
key sk. In addition to this, DP computes and encrypts the
sum of the keyword sets for each pi, denoted as E(SumWi

).
• Step-2: The internal nodes of T are {R(x)

i =

(xl
i, x

r
i ), R

(y)
i = (yli, y

r
i )}, which DP encodes them into vec-

tors
−−→
P

(x)
Ri

= (xl
i, x

r
i ,−1, xl

i·xr
i ) and

−−→
P

(y)
Ri

= (yli, y
r
i ,−1, yli·yri ),

respectively, and computes {
−−−→
P

(x)′

Ri
= α

−−→
P

(x)
Ri

,
−−−→
P

(y)′

Ri
= α

−−→
P

(y)
Ri

}.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

In addition, each bit of the vector {
−−−→
P

(x)′

Ri
,
−−−→
P

(y)′

Ri
} is encrypted

with the secret key sk, and the encrypted vector is denoted

as {E(
−−−→
P

(x)′

Ri
), E(

−−−→
P

(y)′

Ri
)} The leaf nodes of T store the in-

formation of the spatial dataset pi, which we have stored
encrypted in Step-1. To enhance privacy preserving, DP
randomly shuffles the order of the child nodes belonging to
the same parent node to obtain the encrypted tree E(T ).
• Step-3: For each spatial point mapping followed by an

n-dimensional keyword set Wi = (wi,1, wi,2, ..., wi,n), i ∈ D.
To protect privacy, DP first utilizes a random number α to
compute αWi and applies a permutation function π to the
keyword set, denoted as Wi = π(αWi). Subsequently, DP
constructs a diagonal matrix UWi

with Wi as its diagonal
elements and randomly constructs an upper triangular matrix
VWi

with all diagonal elements equal to 1, where the non-zero
elements are randomly selected random numbers. Then, DP
encrypts the keyword set Wi as C(Wi) = M1VWiUWiM2.

Finally, DP outsources to C1

{E(D), E(SumWi), E(T ), C(Wi)}.

Token Generation. In this phase, the registered query users
can launch SKSQ and generate token based on their query
requests Q = {Rq = (R

(x)
q , R

(y)
q ),Wq}. The token generation

process is as follows.
• Step-1: ui maps the set of query keywords Wq to binary

vectors based on the keyword dictionary, computes the sum
SumWq of Wq locally, and encrypts its sum with the public
key pk as in Eq. (2), denoted as E(SumWq

).
• Step-2: For a rectangular query range Rq = (R

(x)
q , R

(y)
q ),

ui encodes it into vectors
−−→
P

(x)
Rq

= (xl
q, x

r
q, x

l
q · xr

q,−1)

and
−−→
P

(y)
Rq

= (ylq, y
r
q , y

l
q · yrq ,−1), respectively, and randomly

chooses a positive random number β to compute {
−−−→
P

(x)′

Rq
=

β
−−→
P

(x)
Rq

,
−−−→
P

(y)′

Rq
= β

−−→
P

(y)
Rq

}, and subsequently, encrypts each bit

of it as {E(
−−−→
P

(x)′

Rq
), E(

−−−→
P

(y)′

Rq
)} using pk.

• Step-3: For the query keyword request Wq , similar to a
data provider, ui first utilizes a random number β to compute
βWq and then applies the permutation function π on the set
of query keywords, denoted as Wq = π(βWq). Subsequently,
ui constructs a diagonal matrix UWq

with diagonal elements
Wq , and a random upper triangular matrix VWq

whose main
diagonal elements are all 1, where the non-zero elements
are randomly selected random numbers. Then, ui encrypts
the keyword set Wq as C(Wq) = M−1

2 UWq
VWq

M−1
1 using

{M−1
1 ,M−1

2 }.
Finally, ui generates query token Tk1 =

{E(SumWq
), C(Wq)} and Tk2 = {E(

−−−→
P

(x)′

Rq
), E(

−−−→
P

(y)′

Rq
)} and

sends Tk1 to C1 and Tk2 to C2.
Query. In this phase, the two cloud servers collaborate to

complete the query operation, they first perform the spatial
range queries and then the keyword similarity queries. Since
only the spatial data points that satisfy the query rectangular
range continue to be performed for the keyword similarity
queries, we elaborate the query in two phases, i.e., spatial
range queries and keyword similarity queries.

1) Spatial range queries. In this subphase, C1 holds
E(T ) and C2 holds Tk2. Firstly, the filtering starts from
the root node of E(T ), and when filtering to the internal
nodes, C1 possesses the encoded vector of each encrypted

subrectangle {R(x)
i , R

(y)
i }, i.e., {E(

−−−→
P

(x)′

Ri
), E(

−−−→
P

(y)′

Ri
)}. At this

time, C2 owns the encoded vector {E(
−−−→
P

(x)′

Rq
), E(

−−−→
P

(y)′

Rq
)} of

the encrypted query range {R(x)
q , R

(y)
q }, and takes E(

−−−→
P

(x)′

Ri
)

and E(
−−−→
P

(x)′

Rq
), as well as E(

−−−→
P

(y)′

Ri
) and E(

−−−→
P

(y)′

Rq
) as inputs to

the iSHE-SIP protocol, respectively, and determines whether
the two rectangles intersect or not by securely computing the
inner product. Moreover, set the output of the former to be
E(µ1) and the latter to be E(µ2). If and only if C2 computes
E(µ1)E(µ2) > 0, we then continue recursively to the child
node of the current node, that is, ni.child; otherwise, the node
will be pruned. This process continues until we filter down
to the leaf nodes, at which point C1 possesses the encrypted

spatial data point pi’s encoding vectors {E(
−−−→
P

(x)′

i ), E(
−−−→
P

(y)′

i )}.
Then, the iSHE-SIP protocol is executed once again, this time

with inputs E(
−−−→
P

(x)′

i ) and E(
−−−→
P

(x)′

Rq
) as well as E(

−−−→
P

(y)′

i ) and

E(
−−−→
P

(y)′

Rq
), to determine whether the spatial data point pi falls

within the query rectangle range. Similarly, we set the output
of the former as E(µ1) and the latter as E(µ2), and C2

computes and determines whether the product of E(µ1) and
E(µ2) is greater than 0. If C2 determines the result to be
greater than 0, then C1 will set a query result candidate set
R′ = {E(pd̂), 0 ≤ d̂ ≤ i}, where E(pd̂) only includes spatial
data points that satisfy the rectangle range criteria.

1) Keyword similarity queries. After executing the spatial
range queries phase, in this subphase, the cloud server has
to filter the spatial data points with the highest similarity to
be returned to ui as query results. The specific steps are as
follows.

• Step-1: C1 first extracts the encrypted keyword sets
C(Wd̂) = M1VWd̂

UWd̂
M2 in the candidate set R′, where

{VWd̂
, UWd̂

} is similar to the Outsourcing and Index Build
phase. Next, C1 uses Tk1 to separately calculate each spatial
data point C(Wd̂)C(Wq), 0 ≤ d̂ ≤ i, that falls within the
rectangular range. Moreover, C1 computes the matrix trace
of each C(Wd̂)C(Wq) separately, that is, trd̂(C(Wd̂)C(Wq)),
and encrypts the trace as E(trd̂) with the public key pk.
• Step-2:C1 has {E(SumWd̂

), E(SumWq
), E(trd̂)}, and

then it sorts d̂ spatial data points in the candidate set R′. C1

randomly selects two data points from the candidate set R′

and calculates them as follows{
E(Simd̂1

) = (E(SumWd̂1
) + E(SumWq

))E(trd̂1
)

E(Simd̂2
) = (E(SumWd̂2

) + E(SumWq
))E(trd̂2

)
.

As illustrated in Eq. (3){d̂1, d̂2} represents two data points
chosen at random by C1, while {E(Sumd̂1

), E(Sumd̂2
)}

serves as an indicator of the similarity between the key-
words associated with these two data points. C1 takes
{E(Sumd̂1

), E(Sumd̂2
)} as the input to the iSHE-SC pro-

tocol, and C2 holds the secret key sk, and the two work in
concert to execute the protocol. If the protocol outputs E(µ) =
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E(1), then C1 can know that E(Sumd̂1
) > E(Sumd̂2

); if
the protocol outputs E(µ) = E(−1), then C1 can know that
E(Sumd̂1

) < E(Sumd̂2
); otherwise, if the output E(µ) =

E(0), then C1 can know that E(Sumd̂1
) = E(Sumd̂2

).
• Step-3: C1 goes through all the data points in the candidate

set R′ as in Step 2 and sorts the similarity of all the data
points. Subsequently, C1 gets a data point with the highest
similarity to the query keyword set, i.e., Top(R′). Finally,
C1 sets the encrypted query result set E(R) = {E(pd̂) =
(E(xd̂), E(yd̂)), E(Wd̂)}.

Correctness. Similar to the proof in [13], in linear algebra,
there is the lemma: the trace of a square matrix A multiplied
by an invertible matrix M and its inverse M−1 is equal,
formally stated as tr(A) = tr(MAM−1). In the process
of our keyword similarity queries, the encrypted keyword
set of the candidate set R′ is C(Wd̂) = M1VWd̂

UWd̂
M2,

and the encrypted keyword set of the query request is
C(Wq) = M−1

2 UWq
VWq

M−1
1 . By the lemma, we know

that C(Wd̂)C(Wq) = M1VWd̂
UWd̂

UWqVWqM
−1
1 , as well as

tr(C(Wd̂)C(Wq)) = tr(VWd̂
UWd̂

UWqVWq ). Therefore, the
keyword similarity queries are correct.

Result Recovery. In the recovery phase, C1 and C2 work
together to complete the return of query results to ui, and
ui has the ability and ease to recover the results. The result
recovery process is as follows.

• Step-1: C1 randomly selects a series of random numbers
rd̂ for the location information pd̂ of each data point in the
result set E(R) and generates a corresponding sequence of
random numbers rWd̂

= {rWd̂1
, ..., rWd̂n

} for each bit of the
keyword sets information Wd̂, where n indicates the dimension
of the keyword vector, and {rd̂, rWd̂

} are elements of set M .
Then, C1 computes

E(Xd̂) = E(xd̂) + rd̂ = E(xd̂ + rd̂)
E(Yd̂) = E(yd̂) + rd̂ = E(yd̂ + rd̂)

E(Kd̂) = E(Wd̂) + rWd̂
= E(Wd̂ + rWd̂

)
.

Next, C1 sends {E(Xd̂), E(Yd̂), E(Kd̂)} to C2 and random
numbers {rd̂, rWd̂

} to ui.
• Step-2: Once {E(Xd̂), E(Yd̂), E(Kd̂)} are received, C2

decrypts them separately with the secret key sk to obtain {xd̂+
rd̂, yd̂+rd̂,Wd̂+rWd̂

}. Subsequently, C2 sends {xd̂+rd̂, yd̂+
rd̂,Wd̂ + rWd̂

} to ui.
• Step-3: After receiving the encrypted random numbers

{rd̂, rWd̂
} and {xd̂ + rd̂, yd̂ + rd̂,Wd̂ + rWd̂

}, ui can easily
eliminate the random numbers to get the query result R =
{pd̂ = (xd̂, yd̂),Wd̂}.

VI. SECURITY ANALYSIS
We first prove the security of the two privacy-preserving

protocols, iSHE-SC and iSHE-SIP, and then justify the overall
security of the scheme.

For security analysis, we employ ideal-real simulation [41].
Let Π denote the protocol. For a semi-honest adversary, if
it cannot distinguish between the real-world and ideal-world
views in probabilistic polynomial time, then Π is considered
secure. Our focus is on adaptive adversaries, which can query
based on information obtained from previous token and index-
ing phases. Specifically, to satisfy the security requirements

of the adaptive IND-CPA model, we must demonstrate that in
the ideal world, there exist two simulators, {Sim1,Sim2},
that simulate an ideal environment using an ideal function
f . Meanwhile, in the real world, there exist two semi-honest
adversaries {A1,A2}, whose purpose is to destroy the cloud
server. By comparing the views of the ideal and real worlds,
if the adversaries cannot distinguish between the two in
probabilistic polynomial time, it can be concluded that the
scheme is resilient to attacks from adaptive adversaries.

A. Security of the iSHE-SC and iSHE-SIP protocol

The iSHE-SC protocol is used to securely determine the
size relationship between two ciphertexts E(m1) and E(m2)
in the case of semi-honest adversaries {A1,A2}. In the
real world, the view of A1 is the two encrypted values
{E(m1), E(m2)} and the final output of the protocol, E(µ),
denoted as V iewΠ

real,A1
, while the view of A2 is the z =

s·r1 ·(m1−m2)−s·r2 ·(m1−m2)
2 received from C1, denoted

as V iewΠ
real,A2

. Whereas, in the ideal world, we define the
leakage of Sim1 to be L1 = {pk,E(m1), E(m2), E(µ)} and
the leakage of Sim2 to be L2 = {sk}, and thus A1’s view
is the {E(m′

1), E(m′
2), E(µ′)} randomly generated by Sim1

and encrypted with iSHE, denoted V iewf
ideal,Sim1,L1

and the
view of A2 is the z′ randomly generated by Sim2, denoted
as V iewf

ideal,Sim2,L2
. For A1, all values are encrypted by

iSHE, and due to the semantic security of iSHE [34], A1

cannot distinguish V iewΠ
real,A1

from V iewf
ideal,Sim1,L1

. For
A2, due to the introduction of the random numbers {r1, r2}
in the real world, which makes all subsequent values with
randomness, and thus A2 cannot distinguish V iewΠ

real,A2
from

V iewf
ideal,Sim2,L2

either. In summary, the iSHE- SC protocol
is resistant to semi-honest adversaries.

The iSHE-SIP protocol securely computes the inner product
of two encrypted vectors under a two-cloud environment,
where the ideal function f can output the product of the two
vectors under the simulation by Sim1. In the real world, A1’s
view consists of the encrypted vector E(

−→
X ), the pair {u, v} re-

ceived from C2, and the randomly selected {
−→
R, r} by C1, de-

noted as V iewΠ
real,A1

; A2’s view includes the {
−→
R,

−→
W} sent by

C1 and the encrypted vector E(
−→
Y ), denoted as V iewΠ

real,A2
.

In the ideal world, Sim2 can randomly choose {
−→
R′,

−→
W ′}

and output {
−→
R′,

−→
W ′, E(

−→
Y )}, so A2’s view is denoted as

V iewf
ideal,Sim2

; in addition, Sim1 also randomly selects u′

and uses f to compute v′, outputting v′ = r(E(
−→
X )E(

−→
Y )−u′),

so A1’s view is denoted as V iewf
ideal,Sim1

. Finally, similar to
what is proved in the iSHE-SC protocol, since A1, A2 cannot
distinguish between {

−→
R,

−→
R′}, {

−→
W,

−→
W ′}, {u, u′}, and {v, v′},

it is also impossible to distinguish between V iewΠ
real,A1

and
V iewf

ideal,Sim1
as well as V iewΠ

real,A2
and V iewf

ideal,Sim2
.

B. Security of the PPSKSQ scheme

Our PPSKSQ scheme retrieves spatial data points that are
within a rectangle and satisfy the Jaccard similarity require-
ment, similar to the proofs of the iSHE-SC and iSHE-SIP
protocols, again utilizing the ideal-real security model to
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analyze the scheme as adaptively secure. For the PPSKSQ
scheme, all leakage occurs in C1 and C2. Therefore, we define
the leakage function of the scheme as follows.

• L(C1): In the Registration and Initialization phase, it
learns the public key pk. In the Outsourcing and Index Build
phase, it receives from the DP the encrypted spatial dataset
E(D), the encrypted sum of the set of keywords in the dataset
E(SumWi), the encrypted tree E(T ), and the encrypted key-
word set C(Wi). In the Token Generation phase, C1 receives
the query token Tk1 from ui. In the Result Recovery phase,
C1 leaks the result set E(R). Thus, C1 can know the number
of dataset sizes, the access pattern of E(T ), and the query
pattern for query range and keyword similarity.

• L(C2): In the Registration and Initialization phase, it can
learn the secret key sk. In the Token Generation phase, C2

receives the query token Tk2 from ui.
Next, we analyze the flow of the PPSKSQ scheme in the

ideal-real world based on the leakage functions L(C1) and
L(C2).

Ideal world. In the ideal world, there exist two simulators,
{Sim1,Sim2}, each possessing L(C1) and L(C2) respec-
tively. Additionally, there are two semi-honest adversaries,
{A1,A2}. In this scenario, the construction of the simulators
and adversaries is as follows.

• Registration and Initialization. In this phase, the simulator
calls iSHE.KeyGen() to output the public key pk, set the
secret key sk, and send sk to A2.

• Outsourcing and Index Build. In this phase, based on the
leakage in L(C1), Sim1 constructs a simulated version of the
encrypted tree structure, denoted as E(T )Sim. Specifically,
since the internal nodes of the tree are sub-rectangles of the
quadtree dividing the two-dimensional space, it includes the
x and y directions of the rectangles and is encoded and
stored in the tree by the DP in advance in the PPSKSQ
scheme. Therefore, Sim1, based on the representation of
sub-rectangles, randomly selects four numbers {R(x),Sim

i =

(xl,Sim
i , xr,Sim

i ), R
(y),Sim
i = (yl,Sim

i , yr,Sim
i )} to represent

each sub-rectangle for every internal node. As for the leaf
nodes, which store spatial data information, Sim1 randomly
selects two numbers to replace the information of each location
point, similar to the method for internal nodes. Additionally,
the sum of the keyword set is handled similarly. Moreover, for
an n-dimensional keyword set Wi, Sim1 randomly selects
an n-dimensional vector to replace it, denoted as WSim

i .
Following this, Sim1 constructs a diagonal matrix USim

Wi
based

on WSim
i , and also randomly constructs an upper triangular

matrix V Sim
Wi

.
It is worth noting that for all the data encrypted with

iSHE, Sim1 utilizes pk and chooses random numbers r1, r2 ∈
{0, 1}k2 to compute its ciphertext by using Eq. (2). Finally,
Sim1 sends all the results simulated at this phase to A1.
• Token Generation. At this phase, Sim1 and Sim2 con-

struct simulated versions of TkSim
1 and TkSim

2 , respectively,
based on L(C1) and L(C2). For E(SumWq ) in Tk1, Sim1

also chooses a random number to replace it, denoted as
E(SumWq

)Sim. Similarly, for Tk2, Sim2 chooses two 4-
dimensional vectors instead of Tk2, respectively. In addition,
for the keyword request of the query, similar to the Outsourc-

ing and Index Build phases, Sim1 goes ahead and constructs
a diagonal matrix USim

Wq
and an upper triangular matrix V Sim

Wq
.

Finally, Sim1 and Sim2 send the simulated information to the
corresponding A1 and A2, respectively.

Moreover, if it is assumed that there is collusion between
C1 and C2 at this point, a query token for ui is not obtained.
Even though C2 holds the secret key sk and can recover
E(SumWq ) and Tk2 uploaded by ui, ui randomly chooses
a positive random number β to obfuscate the original vectors

before encrypting {E(
−−−→
P

(x)′

Rq
)} and {E(

−−−→
P

(y)′

Rq
)}. Consequently,

cloud servers cannot determine the user’s query range vectors.
Regarding E(SumWq

), although it is not obscured with a ran-
dom number before encryption, the cloud servers are unaware
of the mapping relationship of the set of keywords. During
the query process, when calculating the similarity between the
keywords, the trace of the point E(trd̂i

) contains the random
number α chosen by the DP . Thus, even if the cloud servers
can decrypt the encrypted trace, they cannot deduce the query
token uploaded by ui.
• Result Recovery. In the result recovery phase, Sim1

generates a series of random numbers rSim
d̂

and rSim
Wd̂

and uses them to compute the simulation views, denoted
as {E(Xd̂)

Sim, E(Yd̂)
Sim, E(Kd̂)

Sim}, respectively. Finally,
Sim1 sends them to A1.

Real world. The two semi-honest adversaries {A1,A2}
exist in the real world and the real-world view is consistent
with the construction process of our PPSKSQ scheme, so we
don’t expand the discussion in detail here.

Theorem 1: If the iSHE scheme has CPA security, then our
PPSKSQ scheme can achieve adaptive security.

Proof : The PPSKSQ scheme can be considered adaptively
secure if, in the ideal-real world, the simulators Sim1 and
Sim2 ensure that the adversaries A1 and A2 have a negli-
gible advantage in distinguishing between the ideal and real
environments. In the Outsourcing and Index Build phase, for
each spatial point {pi = (xi, yi)} after each encoding, DP
uses a positive random number α once to obfuscate the value

of the original vector before encrypting {
−−−→
P

(x)′

i ,
−−−→
P

(y)′

i }. Then,
DP utilizes the iSHE encryption scheme to encrypt the ob-

fuscated vectors as {E(
−−−→
P

(x)′

i ), E(
−−−→
P

(y)′

i )}. For the constructed
quadtree T , DP does the same as above. In addition, for
the n-dimensional keyword set Wi, DP first obfuscates it by
utilizing a random number α as well. Then, the permutation
function π is applied to the obfuscated keyword set, denoted as
Wi. Next, DP transforms Wi into a diagonal matrix UWi

and
randomly generates an upper triangular matrix VWi

. Finally,
the set of keywords is encrypted using {M1,M2}, denoted as
C(Wi) = M1VWiUWiM2.

It is easy to see that for the spatial data, A1 cannot observe
or guess the random number α, the substitution function
π, and the randomly selected upper triangular matrix VWi

.
Moreover, the data are encrypted by utilizing iSHE as well
as {M1,M2} are unknown to A1. Similarly, in the Token
Generation phase, the upper triangular matrix VWq and the
secret key {M−1

1 ,M−1
2 } are not known to A1. Therefore, due

to our construction and the CPA security of the iSHE scheme,
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A1 is unable to distinguish between the ideal and the real
world.

For A2, a query token Tk2 = {E(
−−−→
P

(x)′

Ri
), E(

−−−→
P

(y)′

Ri
)} from

ui is received, and in addition, A2 has to run the protocols
iSHE-SC and iSHE-SIP in collaboration with A1, the proofs
of both of which have been discussed in VI-A and VI-B,
respectively. The fact that A2 does not know the random
number β chosen by ui, as well as the semantic security of
the security protocols and iSHE, makes it equally impossible
for A2 to distinguish between the ideal and the real world.

VII. PERFORMANCE EVALUATION

In this subsection, we thoroughly analyze the performance
of the proposed PPSKSQ scheme and compare it with existing
spatial keyword similarity schemes [9], [28], [42]. All experi-
ments are conducted on a machine with an Intel(R) Core(TM)
i5-8250U CPU @ 1.80 GHz, 4.00 GB of RAM, and the
Windows 11 operating system. The experimental environment
is implemented in Java language with JDK11. For the iSHE
symmetric homomorphic encryption used in the scheme, we
set its security parameters to k0 = 4096, k1 = 40, and
k2 = kr = 160 to achieve a higher security goal. The
experimental data is selected from the real dataset Yelp1 and
we use its business data. The dataset contains 21,900 entries,
with the maximum size of the keyword sets being 27 and
the keyword dictionary consisting of 1,123 terms. A subset of
the data was selected and preprocessed in advance. Finally, we
assess the scheme’s performance by analyzing communication
overhead, computational overhead, and experimental results.

A. Communication overhead

The comparison between our PPSKSQ scheme and the
schemes [9], [28], [42] is shown in Table II. In our scheme,
the main communication overhead arises during the iSHE-SC
protocol, iSHE-SIP protocol, Outsourcing and Index Build,
Token Generation, and Query phases. In the iSHE-SC and
iSHE-SIP protocols, communication between cloud servers are
restricted to the exchange of ciphertexts and vectors, which
leads to a communication overhead characterized by 2 |C| for
the former protocol and 8 |C|+ |V4| for the latter. During the
Outsourcing and Index Build phase, which actually includes
two processes, namely data outsourcing and index building,
the stage involves transferring all information of the encrypted
dataset and building an encrypted quadtree. The overhead is
slightly larger than schemes that do not build a tree, but this is
acceptable because the quadtree we construct aims for higher
efficiency during the query phase. Hence, the total communi-
cation overhead for this phase is (9+ 4(4h−1−1)

3 ) |C|+|Mn∗n|.
In the Token Generation phase, although two tokens are gener-
ated, the overhead only relates to the size of the ciphertext and
matrix, thus making the communication overhead for the two
tokens 9 |C|+ |Mn∗n|. Furthermore, during the Query phase,
which includes two processes, namely range queries and
keyword similarity queries, the former incurs a communication
overhead of (h− 1)(8 |C|+ |V4|), and the latter 2(d̂− 1) |C|.

1Yelp dataset, 2020. [Online]. Available:: https://www.yelp.com/dataset

Fig. 6. Time cost of each iSHE operation

B. Computation overhead

The comparison of computational overhead between
schemes is shown in Table III. Similar to the analysis in
Subsection VII-A, for the computational overhead, we also go
to evaluate these parts. In the PPSKSQ scheme, the computa-
tional overhead is mainly caused by the iSHE encryption algo-
rithm. Therefore, before the evaluation, the time taken by the
most time-consuming operations (iSa, iSm, DS, iSsk, iSpk) in
iSHE is shown in Fig. 6. It can be seen that the efficiency of
homomorphic addition and homomorphic multiplication is fast
to perform. In addition, public key encryption and secret key
encryption are the most time-consuming in iSHE compared to
decryption operations.
• iSHE-SC and iSHE-SIP protocols. The operations of

both protocols are homomorphic multiplication and homo-
morphic addition constructs, the only difference being that
only C1 in the first step of the iSHE-SC protocol requires
cryptographic operations, while the iSHE-SIP protocol does
not involve any cryptographic operations. Thus, the two pro-
tocols are theoretically very efficient. Their total computational
overhead is 2iSpk + DS + 2iSa + 5iSm for the former and
11iSa + 13iSm +DS for the latter.
• Outsourcing and Index Build. The data outsourcing

phase requires encrypting the entire dataset and constructing
the encryption tree, thus its overhead is related to the tree
height and the size of the dataset. However, for the tree height,
we can utilize the homomorphism of iSHE to encrypt the
entire quadtree in an extended manner, which we consider the
most complicated case. In the index construction phase, there
are three matrix multiplication operations, but the matrices
selected in our scheme are upper triangular matrices, and
thus all the computations are not required at the time of
computation. So, the computational overhead of the entire
phase is (9 + 8(4h−1−1)

3 )iSsk + 3TMn∗n .
• Token Generation. Since ui uploads the encrypted rect-

angular range, public key encryption is used here. In addition,
for the subsequent keyword similarity queries, ui also needs to
be similar to the three matrix multiplication operations in the
outsourced indexing phase. Therefore, the total computational
overhead of the token generation phase is 9iSpk + 3TMn∗n .
• Query. In the range queries, the cloud servers recursively

go through the tree nodes to search whether they intersect
with the query ranges or not, and at this point, the iSHE-
SIP protocol is used. Therefore, in this small stage, the
computational overhead is closely related to the iSHE-SIP
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TABLE II
COMMUNICATION OVERHEAD

Scheme Outsourcing and Index Build Token Generation Query
TSKS |Z| 2 |Z| d̂ |Vη+n+3|
MRSF |Mn∗n|+ |Md′∗d′ | |Md′∗d′ |

∣∣Md̂∗d̂
∣∣+ ∣∣Vd̂

∣∣
PBRQ-T+ (1 + 3d′) |G| (1 + 2kd′ + 4d′) |G| (3 + k) |GT |
PPSKSQ (9 +

4(4h−1−1)
3

) |C|+Mn∗n 9 |C|+ |Mn∗n| (h− 1)(9 |C|+ |V4|) + 2d̂ |C|

TABLE III
COMPUTATION OVERHEAD

Scheme Outsourcing and Index Build Token Generation Query
MRSF TTFIDF + 2TMd′∗d′

2TMd′∗d′
2TMd′∗d′

TSKS 4TM(η+n+3)∗(η+n+3)
4TM(η+n+3)∗(η+n+3)

2TM(η+n+3)∗(η+n+3)

PBRQ-T+ 28TE +
4(4h−1−1)

3
(4d′k + 4d′ + 2k)TE + TS (log2 L)(2d

′k + 2d′)TP + 2d′TP

PPSKSQ (9 +
8(4h−1−1)

3
)iSsk + 3TMn∗n 9iSpk + 3TMn∗n

(h− 1)(25iSm +DS)

d̂TV4 + (3d̂− 2)iSpk + (d̂− 1)(DS + 7iSm)

TABLE IV
COMPARISON WITH EXISTING SCHEMES

Schemes SAGTree [10] PBRQ-T+ [28] PRSQ-F [30] MRSF [42] GRQ+MSSAC [13] PPTR-F [12] PSDQ+ [14] TSKS [9] PPSKSQ

Keyword Queries Boolean Boolean TF-IDF TF-IDF TF-IDF − − − Jaccard
Security IND-CPA IND-SCPA IND-SCPA IND-CLS-CPA IND-SCPA IND-CPA IND-CPA IND-CPA IND-CPA
Sublinear Efficiency ✓ × ✓ ✓ ✓ ✓ ✓ × ✓
Scalability ✓ × ✓ × ✓ × ✓ × ✓

Noteworthy: − indicates no similar.

protocol. In the keyword similarity queries, at this point, the
leaf nodes of the tree have been filtered, and to filter out the
spatial points with the highest similarity, the cloud servers
use the iSHE-SC protocol to compare the similarity size in
the candidate set. In summary, the computational overhead
of the former is (h − 1)(11iSa + 14iSm + DS); the total
computational overhead required in the latter query phase is
d̂TV4 + (3d̂− 2)iSpk + (d̂− 1)(DS + 2iSa + 5iSm).

In summary, the scheme [42] employs the secure kNN
algorithm for encrypted data retrieval; the matrix dimension
of the scheme [28] is significantly larger than that of our
scheme, and the scheme [9] relies on pairwise operations to
generate a large amount of gray code for range queries. Since
our PPSKSQ scheme leverages efficient iSHE and lightweight
matrix multiplication through a tree structure for filtered
queries, it can significantly reduce computational overhead.
In subsequent experimental evaluations, we will examine the
impact of tree height on the scheme’s performance to identify
the optimal height that minimizes computational overhead.

C. Experimental results

Firstly, we evaluate the performance of both iSHE-SC
and iSHE-SIP protocols. Secondly, our PPSKSQ scheme is
compared in detail with existing privacy-preserving keyword
query schemes at a macro level in Table IV. It is clear that
our approach uniquely utilizes the Jaccard index to assess the
similarity between sets of keywords. Then, we measure the
impact of quadtree height on the partitioning of dense and
sparse maps to select the optimal tree height, thus achieving
the best query efficiency for our scheme. Finally, we make

a detailed comparison with the three schemes [28], [9], and
[42].

(a) Vector dimension is 4 (b) Keyword set size is 4
Fig. 7. Time cost of iSHE-SC and iSHE-SIP protocol.

• iSHE-SC and iSHE-SIP protocols. Both protocols are
implemented on two cloud servers. The iSHE-SC protocol
compares the sizes of two numbers in ciphertext, whereas
the iSHE-SIP protocol securely computes the inner product
of two vectors. Consequently, the performance of the former
is influenced by the number of spatial data points, while the
dimensionality of the vectors impacts the latter’s performance.
In Fig. 7, we show a comparison between the iSHE-SC
protocol and the secure comparison protocol designed by [36],
as well as between the iSHE-SIP protocol and the secure inner
product protocol designed by [35]. Fig. 7a indicates that the
time cost of the iSHE-SC protocol escalates with the increase
in the number of data points, maintaining a constant vector
dimension of 4. Fig. 7b demonstrates that the time cost of
the iSHE-SIP protocol gradually increases with the vector
dimension when the size of the keyword set W is constant
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(a) 5018 location points (b) 214 location points (c) Performance of PPSKSQ
with Dense datasets

(d) Performance of PPSKSQ
with sparse datasets

Fig. 8. Effect of quadtree tree height on the distribution of different datasets. (a) Dense datasets. (b) Sparse datasets. (c) Time cost of querying and outsourcing
under dense datasets. (d) Time cost of querying and outsourcing under sparse datasets.

(a) Keyword set size is 4 (b) Spatial data points are 100 (c) Varying with data points (d) Varying with keyword set
Fig. 9. Time cost of Outsourcing and Index Build, Token Generation. (a) Impact of the number of data points on the time cost of outsourcing. (b) Impact of
the size of keyword set on the time cost of outsourcing. (c) Cost of outsourcing time between schemes. (d) Cost of Token time between schemes.

at 4, showing that when the vector dimension reaches 8, the
protocol only requires about 7ms.

• Height of the quadtree. To comprehensively demonstrate
the flexibility of the PPSKSQ scheme, we examine the impact
of tree height h on both dense and sparse datasets. Further-
more, the blue box in the diagram is defined as the query
range ui. Fig. 8a illustrates a scenario where 5,018 location
points are concentrated in a dense distribution, whereas Fig. 8b
depicts only 214 location points scattered across a sparse
distribution. This is also very practical to consider, because
sometimes the space area is bustling, and sometimes it is very
scattered.

Tree height primarily influences the outsourcing and query
phases, and our objective is to optimize h for maximum query
efficiency. We test the impact of tree height h at partition levels
2, 3, 4, and 5 on outsourcing and querying, respectively. Fig. 8c
illustrates the influence of tree height on the outsourcing and
querying phases under a dense dataset. It is observed that the
time cost of the outsourcing stage incrementally increases with
higher levels of tree division, although the differences are not
significant. In the query phase, we can find that when the
tree is divided into four levels, the query efficiency is optimal
and only needs 0.68s, which is significantly faster than the
two and three levels. Fig. 8d examines the balance of tree
height in a sparse dataset. The time cost of the outsourcing
stage is observed to still increase with tree height, yet remains
generally stable. During the querying phase, it is determined
that a tree height of 3 yields optimal querying efficiency,
requiring only 0.4s.

Therefore, various quadtree heights are selected based on
the number of data points and the degree of distribution
to optimize query efficiency. In subsequent experiments, we
choose the case where the tree height is optimal to evaluate
the performance at different stages.

• Outsourcing and Index Build. At this phase, it is
necessary to construct an encrypted quadtree with all the data
points in the two-dimensional space. In Fig. 9, the impact
of the number of spatial data points and the size of the
keyword set on the PPSKSQ scheme is evaluated. Fig. 9a
shows that with an increasing number of spatial data points,
the complexity of the PPSKSQ scheme also increases when the
keyword set size W is set at 4. This increase in complexity is
attributable to the extended time required for constructing the
tree as the number of data points grows. Fig. 9b demonstrates
that when the number of spatial data points pi is fixed at 100,
the PPSKSQ scheme exhibits a gradual increase in complexity
as W expands. Additionally, Fig. 9c shows a comparison
of our scheme with other schemes. As pi increases, it is
observed that the time required to construct the tree also
escalates, resulting in a higher outsourcing time for our scheme
compared to the MRSF and TSKS schemes. This is tolerable
because building a tree is a time-consuming operation, but
it significantly improves efficiency during the query phase.
Furthermore, we can find that our scheme is significantly faster
than PBRQ-T+ by several tens of folds.

• Token Generation. The token generation phase is per-
formed by ui, ui selects a rectangular range based on the query
requirements, encodes and encrypts this range, and sets the set
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of query keywords, which are encrypted using the secret key
{M−1

1 ,M−1
2 }. In the previous theoretical analysis, it is not

difficult to find that the most important factor affecting this
phase is the size of the query keyword set by ui. Therefore,
we evaluate the time consumption of the token generation
phase by adjusting the size of W in Fig. 9d. Experimental
results demonstrate that as the number of keywords in W
increases, the PPSKSQ scheme requires only approximately
1.5ms, whereas the MRSF, TSKS, and PBRQ-T+ schemes
require approximately 65ms, 25ms, and 0.5s, respectively. This
is because, in the token generation phase, ui only needs to
select a rectangular range and set of query keywords and
perform their encoding encryption, and these operations were
fast in the previous analyses. In summary, the time cost of
our scheme during the token generation phase is significantly
lower compared to the MRSF, TSKS, and PBRQ-T+ schemes.

(a) Varying with data points (b) Varying with keyword set
Fig. 10. Time cost of Query. (a) Cost of query time between schemes under
the impact of spatial data points. (b) Cost of query time between schemes
under the impact of keyword sets.

• Query. The query phase is conducted collaboratively
by two cloud servers, C1 and C2, who initially perform a
range query to identify spatial points within a specified range.
Subsequently, a keyword similarity search and sorting are
conducted on these points. Finally, the spatial data points
that conform to the range and have the highest similarity are
returned to the ui. Therefore, in this phase, we first measure
the time cost of the PPSKSQ scheme in range queries and then
compare the performance in similarity queries. Fig. 10 shows
the performance of the two steps in the query phase separately.
In Fig. 10a, the impact of increasing numbers of spatial data
points on various schemes is compared. In this test, it can
reflect the performance of our scheme in the range queries,
and we assume that the tree height h = 5. It is observed that
the index tree structure, constructed during the outsourcing
indexing phase, allows for efficient searching and filtering
despite the initial non-optimal time cost, thereby enabling
quick access to leaf nodes. When handling 10,000 spatial
points, our scheme requires approximately 1.42s, compared
to approximately 2.3s for the MRSF scheme, 1.75s for the
TSKS scheme, and 75s for the PBRQ-T+ scheme. Our scheme
is significantly superior to PBRQ-T+ and MRSF schemes and
is close to TSKS schemes. However, the TSKS scheme does
not consider the similarity between keyword sets, thereby the
PPSKSQ scheme has strong scalability.

In addition, in Fig. 10b, we measure the comparison of the
performance between the schemes as the size of the keyword

set increases. In this phase, it can reflect the performance of
keyword similarity queries of the PPSKSQ scheme. It can
be seen that our scheme is significantly better than all the
schemes. Moreover, when the keyword similarity query stage
is carried out, it means that there are d̂ spatial data points that
satisfy the query range. Here, we set the d̂ constant to 10, but
in fact, we can already achieve good efficiency in the range
queries phase, and the corresponding d̂ will be less. So we have
considered the general case of our scheme, which in reality
would be faster in terms of query efficiency. In summary, the
PPSKSQ scheme can efficiently filter the spatial data points
that match the range and have the highest similarity in the
query phase.

VIII. CONCLUSION

In this paper, we have proposed a Privacy-Preserving
Keyword Similarity Query scheme (PPSKSQ) that enables
range queries and keyword similarity metrics while preserving
user privacy. Furthermore, we utilize the Jaccard metric to
measure the similarity between keyword sets. Specifically,
we first design two protocols based on the iSHE encryption
scheme, namely iSHE-SC and iSHE-SIP, which serve as
building blocks of our scheme to realize the size comparison
of ciphertexts as well as secure inner product computation
between two vectors. With the above building blocks, for range
queries, we encode the location information into vectors and
combine them with the efficient filtering of quadtree and iSHE-
SIP protocols, which can quickly achieve range queries. For
keyword similarity queries, we combine lightweight matrix
encryption and iSHE-SC protocol to sort the matrix traces
and thus filter the spatial location points with the highest
similarity. Finally, through security analysis and experimental
evaluation, we demonstrate the adaptive security, efficiency,
flexibility, and scalability of our PPSKSQ scheme. In future
work, as users may show greater interest in specific keyword
information, we will consider the effect of weights on the set
of keywords to improve the flexibility of the scheme even
further. Moreover, we will explore protecting access patterns
to improve the security of our scheme.
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