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Abstract—Ensuring scalability in cryptocurrency systems is significant in guaranteeing real-world utility along with the remarkable
increment of cryptographic currency. As an alternative in solving scalability issue, payment channel allows users to deliver extensive
offline transactions without uploading massive transaction details to the blockchain, such that increasing efficiency can be achieved.
However, the implementation of payment channel still encounters privacy concerns when considering the publicly available transaction
amounts and the potentials in mining associations between transaction parties. In this paper, we propose a novel payment channel
scheme, entitled Commitment-based Anonymous Payment ChannEl (CAPE), to facilitate unlimited off-chain bidirectional payments
while guaranteeing participants’ privacy. The proposed scheme adopts zero-knowledge proof (zk-SNARKSs) and verifiable timed (VTD)
commitments to ensure the anonymity of the relationship between on-chain and off-chain transactions, privacy of transaction amounts,
and security of balances. We comprehensively formalize security definitions and present rigorous proofs for each security attribute.
Experiment results further demonstrate the practical viability of CAPE.

Index Terms—Payment channel, privacy-preserving, zero-knowledge proof, blockchain, commitment

1 INTRODUCTION

NSPIRED by the dissemination of Bitcoin [1] , trust man-
Iagement has been dramatically changed from a central-
ized setting to a decentralized setting through a shared
public distributed ledger. For example, in Bitcoin system,
the trust model will sustain itself as long as the public
ledger satisfies the security assumption. However, the de-
centralized nature of the blockchain poses an obstacle to
the further development of blockchain-based cryptocurren-
cies [2][3]. Compared to traditional centralized solutions
[4], decentralized cryptocurrencies [5][6] are restricted by
two obstacles, including low transaction rates and low
transaction throughputs. This phenomenon implies that the
scalability of the blockchain system is a fundamental factor
for determining whether cryptocurriencies or Decentralized
Applications (DApp) are practical [7] .

Payment Channel Technology (PCT) [8] is an “off-chain”
technology, which has emerged as one of the promising so-
lutions to the scalability challenge [9][10][11]. PCT increases
the transaction rate of decentralized cryptocurrencies with-
out altering the existing blockchain consensus protocols
[12][13]. PCT enables users to securely conduct large-scale
offline transactions without interacting with the blockchain
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beyond opening and closing the payment channel. Theoret-
ically, a channel is able to scale up to an infinite transaction
capability if there is sufficient hardware support. Currently,
payment channels are widely deployed for large-scale pay-
ments of major cryptocurrencies (e.g., Bitcoin, Ether [14]
and Ripple [15]) as an effective solution to scalability and
performance issues on the blockchain [16].

PCT involves both parties to a transaction recording
the initial and final state of the payment channel on the
blockchain ledger. In contrast, all intermediate transaction
processes are conducted off-chain. A payment channel [17]
consists of three stages, including channel opening, off-
chain transaction, and closing. Within the channel opening
stage, both parties to the channel transaction must lock
their respective funds on blockchain to prevent partici-
pants from misappropriating or unilaterally withdrawing
the locked funds. At the off-chain transaction stage, both
sides of the channel generate multiple transactions off-chain
to redistribute the funds locked in the channel. In addition,
both parties to a channel transaction submit an off-chain
transaction to the blockchain at the channel closing stage,
which will close the payment channel and lock the funds
once the blockchain verifies that the submission is the latest
transaction from the off-chain transaction. Then, the locked
funds will be consumed.

Although payment channels provide blockchain systems
with optional solutions to solving scalability issues, existing
cryptocurrency payment channel systems still encounter
some issues. In DMC [18], for example, despite payments
occur at an off-chain state, any party can access transaction
amount information between two parties through payment
channel update transactions, ultimately exposed on the
blockchain ledger. Similarly, Bolt [19] indicates that the
linkage relationships between transaction parties can also
be exposed due to an on-chain establishment and closure of
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payment channels. Consequently, payment channels lacks
privacy protections for two types of information in transac-
tions, which are amount and transaction unlinkability (see
followings).

e Amount privacy: The system shall ensure that apart
from the two parties involved in the payment chan-
nel transaction, no other party can obtain the specific
transaction amount(s).

o Transaction unlinkability: The system shall ensure that
no other party can explicitly link the sender and
receiver of the payment, apart from the two parties
involved in the payment channel transaction.

We notice that some prior academic work has explored
solutions to address the privacy issues inherent in pay-
ment channels. Bolt [19] is a blind signature-based off-chain
payment method integrating with Zero-Knowledge Proof
(ZKP). The method utilizes a ZKP to protect relationship-
related privacy between two parties in a transaction and
uses blind signatures to verify channel updates. Similarly,
Thyagarajan et al. [20] propose a payment channel protocol,
called PayMo, which is based on verifiable timed linkable
ring signatures. This approach uses Monero to provide a
certain level of privacy protection for the payment channel.
However, the blind signatures used in Green's [19] proposal
are incompatible with Bitcoin. Meanwhile, PayMo [20] is a
proposal tailored for Monero and only supports one-way
payments, making it unsuitable for further extension to
bidirectional payments.

To solve the privacy issue in the payment channel
without causing additional consumption, we propose a
commitment-based privacy-preserving payment channel
scheme, by using ZKP [21] and other technologies (e.g., ver-
ifiable timed dlog) [22], [23], to realize privacy-preserving
and fair transactions of payment channels. Our approach
ensures that users can use the payment channel for trans-
actions while guaranteeing participants’ privacy, including
amount privacy and transaction unlinkability. Meanwhile,
our approach punishes channel users for improper behavior
within a predetermined time range by locking a secret value
in a timelocked verifiable commitment. Each party locks its
value in a timed verifiable commitment and entrusts it to
the other party, ensuring it can unlock and access it after a
certain period. Therefore, when one party fails in complying
with the agreement, the other party can open the timed
verifiable commitment within the predetermined time frame
to obtain the other party’s secret and access all the currency
stored in the payment channel.

Main contributions of this work are as follows:

e This work has proposed a commitment-based
privacy-preserving scheme for bidirectional payment
channels. To the best of our knowledge, the proposed
solutions in achieving transaction unlinkability and
amount privacy in bidirectional payment channels
are proposed for the first time.

e Our approach ensures no party can block or steal
other parties” funds when the payment channel is
closed. This is completed by both parties locking
their secret values in a timed verifiable commitment.
Then, when one party fails in adhering to the agree-
ment within the specified time, the other party will
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penalize them by unlocking the commitment. Mean-
while, our approach provides efficient bidirectional
payment channels on any scriptless blockchain.

o The proposed approach is based on Libsnark and
Ganache, which has been demonstrated by extensive
experiments, covering evaluations of three stages in
the paymen channel transaction processes as well
as the examination of ZKP in the entire system.
The experiment results provide evidence for proving
the feasibility of the proposed scheme. The security
analysis with proof of the proposed CAPE scheme
has been given in this work.

The remainder of this paper is organized as follows. We
review the relevant preliminaries in Section 2. The concepts
and definitions related to the CAPE scheme are presented
in Section 3. Then, the proposed CAPE scheme is presented
in Section 4, prior to the performance analyses in Section 5.
We review the related approaches in Section 6. Finally, we
conclude this paper in Section 7.

2 PRELIMINARIES

Verifiable timed DLog is proposed on the basis of homomor-
phic time-lock puzzles [22], [24]. A Verifiable timed dlog is
defined with respect to a group G of order ¢ and a generator
G. The scheme allows an operator to generate a time lock
against Y based on the discrete logarithmic value Y and
the corresponding secret value y selected in the group G. In
the time lock, on one hand, the time lock guarantees that
any party acquiring the time lock can acquire the secret
value y corresponding to the discrete logarithmic value Y
after the computation time T; on the other hand, the time
lock guarantees that without having to unlock the time
lock, any party can openly verify whether the time lock
contains the secret value y corresponding to the known
discrete logarithmic value Y. The verifiable timed dlog
usually consists of four algorithms: the Commit algorithm,
the Verify algorithm, the Open algorithm, and the ForceOp
algorithm. The algorithms are described in details as below.

e Commit algorithm: The input of this algorithm is a
discrete logarithmic value Y corresponding to the
secret value y and the lock time T, and its output
is the commitment C' and the proof 7.

e Verify algorithm: The input of the algorithm is a
discrete logarithmic value Y, a commitment C' with
lock time T and a proof m.It outputs 1 if and only
if the embedding y in C satisfies that it is the secret
value corresponding to the discrete logarithmic value
Y in the group G, otherwise it outputs 0.

e Open algorithm: The input to this algorithm is the
time commitment C' of a signature o, and after T
units of time have passed, it outputs the secret value
y and the random number 7 used to generate C.

e ForceOp algorithm: Inputs include the time commit-
ment C of the signature o. After being calculated
in sequence for time T, it outputs the secret value y
corresponding to the discrete logarithm Y.

3 SYSTEM CONCEPTS
3.1 Data Structure

The data structure consists of a few components as below:
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Fig. 1: The workflow of payment channel consists of major procedures, i.e., Payment Channel Setup, Payment Channel

Update, and Payment Channel Closure.

Ledger. At any given time T, all users can access L,
a sequence containing many transactions. Since the pro-
posed payment channel scheme is built upon a fundamental
decentralized cryptocurrency (such as Bitcoin), the ledger
includes the original transactions and the other seven new
types described below. Additionally, the ledger is append-
only (if T/ < T, all Ly will be stored in L).

Addresses. Each user possesses at least one pair of ad-
dress keys (pk, sk), where pk represents the public address
and sk represents the private address. The public address
pk is published on blockchain, allowing anyone to pay the
user. The private address sk receives payments sent to pk.

Zero-knowledge currencies. Zero-knowledge currencies
are the transformed form of plaintext base currency users
hold. This paper defines three types of zero-knowledge
currencies: basic zero-knowledge currency, Type-1 trans-
fer zero-knowledge currency, and Type-2 transfer zero-
knowledge currency. The contents included in each type of
zero-knowledge currency are as follows:

e Basic zero-knowledge currency c¢;: Numerical value
v;, representing the plaintext currency value cor-
responding to the basic zero-knowledge currency
as currency units. Serial number sn;, uniquely as-
sociated with ¢;. Address pk;, the address of the
user who owns this zero-knowledge currency. Pri-
vate key sk;, the private key of the user who
owns this zero-knowledge currency. Random num-
ber r;, used to obfuscate the zero-knowledge cur-
rency. Commitment c¢m;, a proof that the user pos-
sesses v; amount of the base currency, in the form
em;=COMM(pk;, v;, sn;, ;).

o Type-1 transfer zero-knowledge currency c¢;: Numer-
ical value v;, representing the plaintext currency
value corresponding to the zero-knowledge currency
in base currency units. Serial number sn;, uniquely
associated with c¢;. Address pk;, the address of the
user who receives this zero-knowledge currency. Ad-
dress pk;, the address of the sender. Random number
T3, used to prevent duplicate serial numbers. The
serial number sn; is associated with the transferred
zero-knowledge currency from the sender. Commit-
ment c¢m;, a proof that the user possesses v; amount
of the base currency, in the form ¢m;=COMM (pk;,
pkj,vi, sn, $05).

o Type-2 transfer zero-knowledge currency c;: The con-
tent of type-2 transfer zero-knowledge currency is
similar to type-1 transfer zero-knowledge currency,
with two differences. 1) Including the discrete loga-
rithm value Y is a parameter for ensuring fair trans-
actions. 2) The form of commitment c¢m; becomes
em; = COMM(pk;, pk;, vi, sng, sn;, Y).

Commitment set CMList and serial number set SNList.
Both the commitment and serial number set are public
data sets. Given any time T, the commitment set CMListr
contains all the commitments that appear in the ledger
transactions L. Given any time T, the serial number set
SNListt contains all the serial numbers that appear in the
ledger transactions L.

Merkle tree. Given any time T, CMTreet represents the
Merkle tree constructed from the commitments in CMList,
with each commitment as a leaf node, and rtr represents its
root. Given any time T, the function Pathr(cm) represents
the authentication path from a commitment c¢m that appears
in CMListt to the root rt7 of CMTreer.

3.2 Overview of CAPE

The key ideas of the proposed scheme covers a few aspects.
We use a hash-based commitment to conceal the transac-
tion amounts between users in the payment channel. ZKP
and Merkle trees are adopted to ensure the correctness of
transactions and the unlinkability between the transaction
parties. Timed verifiable commitments guarantee fairness
during the payment channel transaction process.

The CAPE scheme consists of five phases, namely, the
setup, mint, payment channel setup, payment channel up-
date, and payment channel closure phases. The setup phase
occurs before any other phase, during which the standard
parameters of the entire system are initialized. The mint
phase occurs before the establishment of payment channels
between the parties. In the mint phase, both parties to the
transaction convert plaintext currency on the blockchain
into hidden zero-knowledge currency, where ZKPs are used
to ensure the correctness of the transaction. Simultaneously,
to conceal the zero-knowledge currency they intend to
spend, the newly minted zero-knowledge currency is mixed
with other zero-knowledge currencies to form a Merkle tree.

The transaction process between the parties of the pay-
ment channel consists of three phases: payment channel

3/Transfer currency

payment channel
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setup phase, payment channel update phase, and payment
channel closure phase, as shown in Fig. 1.

The specific flow of the payment channel setup phase is
shown in Fig la. In the payment channel setup phase, the
parties first jointly generate a joint address and then trans-
fer their respective zero-knowledge currencies to the new
address. When spending zero-knowledge currency, ZKPs
are required to prove ownership of the zero-knowledge
currency in the hidden Merkle tree. This is to ensure the
fairness of the transaction and to conceal the sender-receiver
link. However, before both parties transfer zero-knowledge
currency to the joint address, to prevent one party from
going offline and preventing the other party from claiming
their rightful amount, this paper employs timed verifiable
commitments to ensure that both parties of the payment
channel can claim their owed zero-knowledge currency after
a fixed time.

The specific flow of the payment channel update phase is
shown in Fig 1b. In the payment channel update phase, the
parties can negotiate the allocation of zero-knowledge cur-
rency on the joint address. However, to prevent users from
maximizing personal interests by publishing old payment
channel update transactions to close the payment channel,
before generating a new payment channel update transac-
tion, the old payment channel update transaction’s zero-
knowledge currency needs to be withdrawn. Additionally,
to give the parties of the payment channel time to detect
whether the other party has published old transactions,
we use timed verifiable commitments to require the user
who posts the closing channel transaction to wait for a
certain period before obtaining zero-knowledge currency.
Thus, when one party publishes an old transaction, the
other party can take measures to get all the currency in the
payment channel of the party that posted the old transaction
to ensure the fairness of the transaction.

The specific flow of the payment channel closur is
shown in Fig lc. In the payment channel closure phase,
both parties can close the payment channel by publishing
the latest payment channel update transaction. Once the
payment channel update transaction is uploaded, miners on
the blockchain can verify the correctness of the ZKPs in the
transaction. After successful verification, the payment chan-
nel is closed completely. However, to protect the security
of the currency obtained, each party needs to transfer the
accepted currency to a new address separately.

4 PROPOSED MODEL

As we mentioned in prior sections, existing payment chan-
nel techniques still encounter privacy concerns. It achieves
privacy-preserving for the identities and transactions of
both P; and P; parties to a transaction in a payment
channel. The key idea of this scheme is using a hash-based
commitment scheme to conceal the transaction amounts
between users in the payment channel. Then, ZKP and
Merkle trees are utilized to ensure the correctness of transac-
tions and the unlinkability between the transaction parties.
VTD commitments guarantee fairness during the payment
channel transaction process. This scheme consists of the fol-
lowing five phases: Setup, Mint, Payment Channel Setup,
Payment Channel Update and Payment Channel Closure.

4

Algorithm 1 Mint Algorithm

Input: The list of public parameters pp, the coin value to be
converted v; and address pk;;

Output: A zero-knowledge currency ¢; and a mint transac-

tion tXMint;

Randomly sample a random number 7;

Compute a new serial number sn; = PRF(sk;, ;)

Compute a new commitment c¢m;=COMM(pk;,v;,s1;,7;)

Set the information that needs to be disclosed to gen-

erate a ZKP = :=(cmy,v;,pk;) and hidden evidence

w :=(sn;, sk;, ;)

Compute 7 print=zk-SNARKs.GenProof(pk zint , 2, W)

Set zero-knowledge currency c; :=(cmy;,pki,vi,sni,r;)

Set m :=(TMing, CMs, V5)

Generate a signature on m using private key sk;

oMint =BLS.Sign(m, sk;)

9: Set tTMint:=(m, Pk;, OMint)

10: Output zero-knowledge currency c;and mint transac-

tion txMint

4.1 Phase I: Setup Phase

The system public parameter list pp will be initialized
during the setup phase. In the setup phase: first, for a given
security parameter A\, we will generate the public parameter
pp; for it using the Initialization Algorithm in zk-SNARKSs;

Then, the KenGen algorithm in zk-SNARKSs is used
to generate a key pair (pk,i, vk,;) for each specific circuit
C; required for a commitment-based anonymous payment
channel scheme. These circuits are Cpiint , CsetSend, CUnFreezer
CUpdate/ CRevrCTransferl and C'I‘ransfer2/ which will be used for
the generation and verification of transaction proofs during
the payment channel. At the same time, we need to set
the relevant public parameter ppprs of the BLS signature
algorithm and the relevant public parameter ppprg of the
discrete logarithm. Note that this phase is executed only
once to output the list of public parameters. A trusted third
party executes this phase at the beginning of the ledger
creation, and it is executed only once, and the output is
made public to all users.

4.2 Phase II: Mint Phase

Before engaging in transactions within a commitment-based
anonymous payment channel, any participating user must
possess a specific quantity of zero-knowledge currency ac-
quired through a minting algorithm. When user P; intends
to convert their currency using the minting algorithm, the
following steps are followed: Firstly, user P; must have
at least one public address pk; on the blockchain, with
an adequate amount of plaintext currency in that address.
Subsequently, user P; employs the minting algorithm to
generate a mint transaction txwins, facilitating the conver-
sion of a designated amount of plaintext currency into zero-
knowledge currency. The mint transaction tx iyt associated
with user P;’s public address pk; comprises the following
variables:

o Address pk;: it is the address of transaction sender
and the address of the transaction receiver.

Page 4 of 18
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e Value v;: it is the value of minting transactions that
need to be transformed from plaintext currency to
zero-knowledge currency.

e Commitment Value c¢m;: the commitment scheme
COM M generates a fresh zero-knowledge currency
commitment value. This commitment value encapsu-
lates the hidden components, including the address
pk;, value v;, the newly generated random number
r;, and a unique string sn; generated by the PRF
function associated with this specific commitment.

o ZKP muMing: The ZKP is generated by zk-
SNARKSs.GenProof, is to prove the validity of the
following equation for the Chin, circuit.

1) cm; = COMM (pk;, v, sn;, ;)
2) sn; = PRF (sk;, ;)

o Signature onint:User P; signs the above (mfing, cmi,
v;) with private key sk;.

The detailed procedure of the user P; Mint algorithm is
shown above (see Algorithm 1).

4.3 Phase lll: Payment Channel Setup Phase

Once both parties involved in the transaction, namely user
P; and user P}, possess a certain quantity of zero-knowledge
currency for conducting transactions through the payment
channel, they can proceed to the payment channel estab-
lishment phase. During this phase, the following steps are
undertaken: Firstly, users P; and P; need to generate a
payment channel address pks_ pc shared by the two parties
and the corresponding private key ska_ pc (the private key
sko_pc consists of ski_ p and skj_po. skb_ pe is private
to user P; and sk‘%_ pc 1s private to user P;).

Then, users P; and P; need to deposit funds (v;, v;) to
address pks_ pc to complete the payment channel establish-
ment. When the user P; wants to transfer the funds v; to the
address pka_ pc, it is done by the payment channel estab-
lishment and sending algorithm. The algorithm generates
a payment channel establishment and sending transaction
txgetsend, Which transfers the funds to be transferred by user
P; to address pks_pc. The tTgetsend transaction consists of
the following variables.

e Merkle tree root rt: This is the proof that the commit-
ment cm'? exists in the ledger;

« Commitment serial number sn?'?: A unique string
associated with the commitment cmg'?.

« Commitment value cm?“: This value is generated by
the commitment scheme COMM, and the content
implied in the commitment includes the address
pca_ pc, the address pc;,the transferred value v;, se-

rial number sn?!? and serial number sn}“ associated
with this commitment value generated by the PRF
function;

o ZKP TsetSend: This zero-knowledg-

e proof is generated by zk-SNARKs.GenProof, prov-
ing that the following conditions apply to the circuit

of CsetSend-
1) cem$d =COMM(pk;, v;, sn'?, r¢l?)
2)  sn!d =PRF(sk;, r¢'?)
3)  cm?* =COMM(pks— pc, phi, vi, snd'?, snl°)

Transactions on Dependable and Secure Computing
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Algorithm 2 Payment Channel Establishment and Sending
Algorithm

Input: The list of public parameters pp, Merkle root rt,
path path;,Zero-knowledge currency c?'¢ and address
pka—pc;

Output: Zero-knowledge currency ¢/ and payment chan-

nel establishment and sending transactions tzsetSend;

1: Parsect” :=(cm?'?, pk;, v;, sng'? rold, sk;)

7
new

2: Randomly sample a random number r;}
serial number sn“ =PRF(pka_ pc, ")

3: Compute the new commitment cm?“=COMM (pka_ pc,
pkia Vi, Sn?ld7 Sn];C

4: Set ¢ :=(cm?®, pka_pc, pki, vi, snb¢, sndld prew

5: Set the information that needs to be disclosed to gener-
ate a ZKP x :=(rt,em%®, sng'?)

6: Set hidden evidence w :=(path;, cm,‘i’ld,pkg,pc,pki, Vi,
snbe rold pnew gk

7: Compute msctSend=2k-SNARKSs.GenProof(pk,setSend, L, W)

— pc ld
8: Set thetSend-—(rtv cm; o, sn? ) WSetSend)

and compute

9: Output zero-knowledge currency ¢! and payment
channel establishment and sending transactions
tzSetSend

4)  sn?° =PRF(pka_pc, "
5) The path path; from emg'? to the rt saved on
the ledger is correct (the commitment cm?'d

owned by P; is on the ledger)

The specific execution of Algorithm 2 is shown above.

After users P; and P; generate new zero-knowledge
currencies ¢! and ¢ belonging to the payment channel ad-
dress pko_ pc: first, they send the information of the newly-
generated zero-knowledge currencies to each other through
the secured channel, respectively; then, users P; and P; send
the payment channel establishment and sending transaction
to the blockchain to complete the transfer. Before users
P; and P; post the payment channel establishment and
send transactions to the blockchain to complete the transfer,
we need to consider the possibility that one party goes
offline after the payment channel is established. When this
happens, it will result in the other party’s funds being
locked in the joint address pks_pc forever. Therefore, to
prevent this from happening, before users P; and P; post a
transaction, users FP; and P; need to jointly generate their
own payment channel unfreeze transactions to ensure that
they can retrieve their original funds after a certain period
of time.

To unfreeze the funds transferred by user P; to the pay-
ment channel address pks_ pc, user P, is required to transfer
the funds from the payment channel address pks_ pc to the
address of P; via a payment channel unfreezes transaction
tZUnFreeze- Meanwhile, for P; to receive the rightful currency
only after a fixed time T (the selection of the corresponding
time T is negotiated off-chain between the two parties to
the transaction), it is required in this paper that the pay-
ment channel unfreezes transaction {ZynFreeze ONly becomes
effective after the user P; has supplied the secret value y
corresponding to the discrete logarithm value Y, which is
locked in the VTD commitment, which can only be obtained
after at least a fixed time T has elapsed.
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Algorithm 3 Payment Channel Unfreeze Algorithm

Input: The list of public parameters pp, c/,the P; has the
partial private key sk%_ pc of address pko_ pc, lock time
T;

Output: The new zero-knowledge currency c; V2 ez, pay-
ment channel unfreeze transactions tXyunFreeze cOntain-
ing partial signatures,VID commitment (Cyrp, TyTD);

1: Parse ¢/ :=(cml*, pka_pc, pki, vi, snf¢, snod, rold

2: Randomly select secret values y, and compute discrete
logarithm Y = ¢¥.

3: Compute the new commitment cm[*” =COMM( pk;,
pka_pc, vi, s, snYY)

4: Set '™ :=(cmPY, pko_pc, pki, vi, SN, sV )Y)

5: Set the information that needs to be disclosed to gener-
ate a ZKP z :=(cmP®, em??, pkao_pc, snt,Y)

6: Set hidden evidence w :=(pk;, v;, sn2'¢, snpew rold

7: Compute TUnFreeze=2k-SNARKSs.GenProof(pk,unFreeze,
T, w)

8: Setm :=(cm

9: Compute the signature o
skl po form

10: Generate VID commitment (Cyrp, myTp) = VID.
Commit(y,T") based on parameters T and y

11: Set tTUnFreeze :(m7pk2—pcv Ul(gr)xFreeze)

12: Output VID commitment (Cyrp, Tyrp ), Zero-knowle-
dge currency cj'*" and payment channel unfreeze trans-
actions tXUnFreeze

pc new pc

i CMYy y STY; 7‘Ya 7TUnF}reeze)
(9)
UnFreeze

of the private key

The payment channel unfreezes transaction {ZunFreeze
for user P; is generated as follows: First, P; runs the
payment channel unfreezes algorithm, which generates a
payment channel unfreezes transaction tZyunprecze contain-
ing a partial signature and a timed VTD commitment
(CvTtp, mvTD). The trynFreeze transaction contains the fol-
lowing variables.

e Old commitment values c¢m!“: the commitment
value corresponding to the old zero-knowledge cur-
rency ¢/ is denoted as ecm?®,;

« Serial number sn“: the string associated with the
commitment cm?*;

e New zero-knowledge currency commitment value
cmi°?: it is generated by the commitment scheme
COMM, and implicit in the commitment with the ad-
dress pk;, the address pks_ pc, the transferred value
v;, the commitment serial number sn?“ and a unique
string snj'*" associated with this commitment value,
generated by the PRF function;

o Address pky_ pc: payment channel address;

o ZKP TUnFreese: this ZKP is generated by zk-
SNARKSs.GenPr-
oof that the following conditions apply to the circuit

of CUnFreeze~

1) em® =COMM(pka—pc, phi, vi, sn'd, snl)
2)  sn¢'d =PRF(pks_pc,r'?)

3)  em*“=COMM(pka_pc, pki, vi, snt°, snI'e?)
4)  snP“"=PRF(pk;,Y)

o Discrete logarithmic value y and secret value y:Y =
9Y(g is a public parameter);

6

o Signature oupFreeze:Signature of the above (TunFreeze,
eml®, emP?™, s, Y) by the payment channel pri-
vate key ska_pc.

The specific execution of Algorithm 3 is shown above.

Next, P; sends a new zero-knowledge currency c}“";
the payment channel unfreezes transaction tXunFrecze CON-
taining the partial signature and the VID commitment
(CvTp, mvTp), Which is output by the payment channel
unfreezes algorithm, to P;. When P; receives the above
message, it first verifies that the signature Jgr)lpmczc included
in the payment channel unfreezes transaction tXunFreeze 15
correct, and then verifies via VID.Verify(Y, CyTp, TvTD)
that y in {Tunrreeze is generated from the secret value y
promised in the VID commitment. When y is computed,
it will use its possession of sk .. to sign and aggregate
the payment channel unfreezes transaction {Tunfreeze tO
generate the complete signature and add y to it to form
the complete payment channel unfreezes transaction, which
results in the corresponding currency. The operations above
ensure that user P; unfreezes the currency stored at the
payment channel address pks_pc after a fixed time T.
Operations performed for unfreezing the funds stored on
the joint public key address pks_pc by the user P; are
similar and only require the operations between P; and P;.

Once the participating users of the payment channel,
P; and Pj, have obtained the VID commitment sent by
the other party through the payment channel unfreezes
algorithm and have verified it correctly, they can send their
respective payment channel establishment transactions to
the chain to accomplish the goal of transferring a certain
amount of money to the address pks_ pc. Thus, the payment
channel establishment phase is completed.

4.4 Phase IV: Payment Channel Update Phase

When the payment channel is formally established, the
transaction parties P; and P; can proceed to the next phase,
which is the actual payment transaction between the two
parties.

(a) Payment Channel Trading Update:

During this phase, the two parties to a payment channel
transaction allocate the zero-knowledge currency on the
payment channel address pks_ pc based on the transactions
between them and reallocate it with each transaction until
the end. During each allocation of the currency on the
payment channel pks_pc, two different versions of the
transaction payment channel update transaction tzypdate
are generated, one version under the control of party P;
and the other version under the control of party P;. By
“under the control of party P;”, we mean that party F; has
all the conditions needed to publish the payment channel
update transaction tTypdate, and the same is true for “under
the control of party P;”. The two different versions of the
transaction are both re-allocations of the currency on the
payment channel pks_pc. In both versions, the same cur-
rency is allocated to the same party. The difference between
the two versions is that to prevent a party from closing
the payment channel by posting an old payment channel
allocation transaction that is most favorable to the party, the
currency acquired by the party in the version-controlled by
each party can only be spent after a fixed time T (the choice
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of which is also chosen in advance by the parties). Like the
approach described above, the user must provide a secret
value y corresponding to a discrete logarithm value Y when
spending the currency, and the secret value y is locked to a
VTD commitment. It can only be obtained after at least a
fixed time T.

The specific process of generating a payment channel
update transaction t2ypdate for a version controlled by user
P; is as follows: First, user P; runs the following payment
channel update algorithm, which generates a payment chan-
nel update transaction tZypdate containing a partial signa-
ture and a VID commitment (Cyrp, myTp). The txyupdate
transaction consists of the following variables.

e Merkle tree root 7t: the proof that the commitment
em?® and em?*© exists in the ledger;

o Serial numbers sn; and sn}“: strings associated with
commitment cm?“ and Commitment em?

e Commitment Values cmi®? and cm"”". it is also
generated by the commitment scheme COMM. The
contents implicit in the cmj*Y commitment are
the address pk;, the address pkso_pc, the explicit
value vj**", serial number sn}*" associated with this
commitment value generated by the PRF function,
discrete logarithm Y and the serial number sn!‘;
the contents implicit in the cmj* commitment are
the address pk;, the address pkg_ pc, the explicit
value v;ww, serial number sn”?¢% associated with this
commitment value generated by the PRF function,
discrete logarithmic Y and the serial number sn? <,

e Address pks_pc: payment channel address;

o ZKP Typdate: this ZKP is a proof generated by zk-
SNARKSs.GenProof, which is suitable for the circuit
of C1Updatte-

1) em}® =COMM(pks-pc, pk;,v ;’ld, sn?ld, snt°)
2) Snpc =PRF(pky_pc, ")
3) cmp( =COMM(pko_ PC,ka,’Ufld, sn?ld, snP)
4) snpc =PRF(pky_pc, 79'?)

Transactions on Dependable and Secure Computing
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Algorithm 4 Payment Channel Update Generation Algo-
rithm

Input: The public parameter list pp,cj“ and ¢}, Merkle tree
root 7t, path path;and path;, the private key sk%_ PC
corresponding to the payment channel part of the user

’j» lock time T, plaintext values v7“* and v;"“"’;

Output Zero-knowledge currency c}¢" and i NTD
commitment (C’VTD,WVTD),payment channel update
transaction txUpdate containing a partial signature,

1: Parse ¢ (lec,pkig pc, ki, v, snPe snold pold)
and ¢} : (cm] ,Pka—pc.,.pkj,v ]ld, snk, sn?ld, r;’ld)

2: Cornpute the random numbers r/'“* and r}“*and

compute serial number snj¢’ = PRF(ka,r;ww) and
snpe" = PRE(pk;, r*

3: Select secret value y, and compute discrete logarithm
Y =¢g¥

4: Compute the new commitment value cm*** =COMM
(pko—pc, pki, v, snbC, snl”, Y) and emier =
COMM (pko— Pc,pk], v, snfc, snye“’

5. Set 'Y :=(cmPY, pka— pc, pki, VY, snl¢, snlew prew,
Y) and Cnew - ( newjka PCapkj»’Unew S’ﬂ?c, sn?ew,
TTLEUJ)

J

6: Set the information that needs to be disclosed to gener-
ate a ZKP z :=(rt,em}°, cmp", pky_ po,snk¢ g snt®)

and Set hidden evidence w :=(path;, path;, cm’*, “, emtc,

pk]/ pk?z, ’U;ld ,Upld, Unewl ,U'lnew, Sn}zewl Sn?ew, Sn?ld,

S’I’)Old, T;tew’ ,,,new’ ,,,;)ld, rold Y)
7: Compute Typdate=2k- SNARKS GenProof (pk,uUpdate T

w)Set m := (rt, Tupdate, M, cmpe, snfc, snf“) and

Generate partial signature UiJr)) date Using partial private
key skj_po tom ‘
8: Set up txupdate = (maka—PCa O'(Ujp))date)
9: Generate VID commitment (CyTp,TvTD)
10: Output c;** and ¢}, (Cyrp, TvTD), tTUpdate

of Y is generated from the secret value y promised in

5 cm il " =COMM(pks— pc, pk;, ;lewv sn?i Snnew)the VTD commitment. Once all the above verifications are

6) sni“” =PRF(pk;, r7°")

YRR

7)  cmP =COMM(pka—pc, ki, v, snf®, snlev

v '
8) snP® =PRF(pk;, ri*")
9) ]Old 4 ,Upld U;“Lew 4 ,U;*Lew
10) The path path; from cm?® to the rt saved on
the ledger is correct
11)  The path path; from cm?
the ledger is correct

“ to the rt saved on

o Signature oypdate: this is a signature of the above
(rt, Tupdate, cmie” cm}“”“’,sn ) by the pay-

ment channel private key ska_pc.

Next, P; sends the new zero-knowledge currency c;'*",

the payment channel update transaction tZupdate cON-
taining the partial signature, and the VID commitment
(Cvtp, mvTDp), which are output by the payment channel
update algorithm, to F;. When P; receives the above mes-
sage, it first verifies that the signature 08; date included in
the payment channel update transaction tZypdate is correct,

and then verifies via VID.Verify (Y, Cyrp, myTp) that ¢**

passed, user P; can start running VTD.ForceOp(C;), until y

»is computed after a time T. The above operation guarantees

that user P;, can spend the currency obtained from the
payment channel address pks_ pc, only after a fixed time T
. A similar operation is performed for the payment channel
update transaction {xypdate for the version controlled by
the user P;, by simply interchanging the above operations
between P; and P;.

(b) Payment Channel Rollback Trading Process:

Due to the generation of new payment channel update
transactions in the payment channel for the reallocation
of zero-knowledge currency on the shared payment chan-
nel address, there exists a possibility of users attempting
to maximize their personal benefits by broadcasting old
payment channel update transactions to close the payment
channel. To prevent such occurrences, it is necessary to
utilize payment channel rollback transactions before gen-
erating each new payment channel update transaction.
These rollback transactions ensure the reassignment of zero-
knowledge currency generated by the old payment channel
update transaction. As a result, users attempting to close
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the payment channel by broadcasting old payment channel
update transactions will lose all of their currency holdings.

For user P;, the old payment channel under the ver-
sion controlled by user P; will be updated through this

phase with the currency c(’ld '—(cm(’ld,pkg pc,pk;j,v],snf
/ST ;’ld ;’ld Y)generated by the exchange belonging to P; is

transferred to it. For transferring the currency belonging to
P; generated by the old payment channel update trans-
action under the control of the user P; version to P; is
generated as follows: first, the following payment channel
rollback algorithm is run by the user P;, which generates
a payment channel Rollback transaction, txreyv, Where the
txRrey transaction consists of the following variables:

;’ld: the old zero-

corresponding to the value

e Old commitment values cm
knowledge currency ¢7'
of the commitment;

e Serial number sng’ld
commitment cm;’ld

e New zero-knowledge currency commitment value
cm": is also generated by the commitment scheme
COMM and implicit in the commitment with the
address pk;, the address pk;, the transferred value
v;, serial number sn2 and serial number snirev
associated with this commitment value generated by
the PRF function;

e Address pk; : Address of user Pj;

o ZKP TRey: this ZKP is generated by zk-
SNARKSs.GenProof that the following conditions
apply to the circuit of Crey.

the string associated with the

1) cm"ld =COMM(pks_ pC,ka,’UJ,S’I’Lj , ?ld,Y)
2) sn9'4 = PRE(pk;, ro'

3) emPev = COMM(pk],ka,v],sn"ld snprew)

4)  sn}** = PRF(pk;, ")

o Discrete logarithm Y and secret value y : Y = g¥%(g
is a public parameter)

o Signature oRrey: Signature of the above (7Rey, cm;?ld,

sn;?ld, Y') by the payment channel private key

new
cmie?,

S]{Zj.

The details of the payment channel rollback algorithm
are shown above (see Algorithm 5):

Then, P; sends the new zero-knowledge currency cj'**
and the payment channel rollback transaction txgre, output
by the payment channel rollback algorithm to P;. Finally,
when P; receives the above information, it verifies that the
signature oRrey included in the payment channel rollback
transaction tx re, is correct, and if correct ends, otherwise
the rollback fails. Adding the secret value y corresponding
to the discrete logarithm Y to the received txge, in the
correct case constitutes the complete payment channel roll-
back transaction. The action taken for the rollback of zero
coins belonging to P; generated by an old payment channel
update transaction under the control of the version of user
P; to user P; is similar. It only requires interchanging the
operations between P; and P; as described above.

Through the aforementioned two steps, users in the
payment channel can achieve security and accuracy dur-
ing each transaction. However, there are several points to
consider during the payment channel update phase: Firstly,

8

Algorithm 5 Payment Channel Rollback Algorithm

O

Input: The public parameter list pp, ¢ ld, public key pk; of

P; and private key sk; of Pj;
Output: Zero-knowledge currency ¢
rollback transaction tz'%;,, ;
1: Parse c;’ld (cm"ld,pkg pc,Pk;j,vj, snf , sn;?ld, r?ld, Y)
2: Randomly sample a random number r*** and compute
serial number sn]'*" =PRF(pk;, r]"**"
3: Compute new commitment value cmj*’=COMM (pk;,
pk;, vj, Snold sn;new)

j
4: Set ¢’ =(cm}", pk;, pki, vj, snjld snpew, pnew)

5: Set the information that needs to be dlsclosed to gener-

ate a ZKP z: (cm;” 4 emPev, pk;, sn"ld Y)
6: Set hidden evidence w:=(pks_pc, pk‘l, vj, SN
,r.old ,r,new)
J
7. Compute Tre,=zk-SNARKs.GenProof (pk,rev, =, W)

8: Setm := (WRCV,chld cmpev sn?ld,Y).

9: User P; uses private key sk; to generate signature
Orev =BLS.Sign(m, sk;) for m.

10: Set txgev 1= (M, pkj, ORev)-

11: Output zero-knowledge currency ¢
rollback transaction tTRey.

2%, payment channel

pc

J , Snnew

7o payment channel

Algorithm 6 Transfer Algorithm

Input: The public parameter list pp, c¢'¢, Merkle tree root
rt and path path;, public key pk; of Pi , new public key
pk¢? of P; and new private key sk[**" of P;

Output: New zero-knowledge currency c}'*", transfer trans-
action t T Transfer1;

1: Parse ¢ := (cmS¢
2: Select new random number 7}
number sn*=PRF(sk}**", r"e“’)

(2
3: Compute new commitment value cm““=COMM(v;,

kaLCw Snneu} ,rlnew)
4: Set '™ := (empPev, , Vi, SNPCY PP skTew)
5: Set the information that needs to be disclosed to gener-
ate a ZKP z:=(rt, emP¢v, pk;, sng', Y')

6: Set hidden evidence w:=( path;, cmfld, pka_pc, Pk,
vy, snb¢, sniew, pold pnew gpnew)

7: Compute m=zk-SNARKs.GenProof(pk,ransfer1,Z, W)

8: Set m = (Trvansfer1, 't, cmI", s fld7Y)

9: User P; uses private key sk to generate signature
OTransfer1 =BLS.Sign(m, sk;) for m.

10: Set tTTransfer1 = (m7pki7yngransferl)/Where Yy is the
secret value corresponding to the discrete logarithm
value Y .

11: Output zero-knowledge currency c'“* transfer transac-

tion thransferl

ld ld ld
7 aka PC;pkmvz,SnZ ’Sno Q aY)

e and compute serial

knew w

during the generation of payment channel update transac-
tions in the first step, it is crucial to ensure the security of
the transaction amounts for both parties. The other party
generates each party’s transaction, and a VID commitment
is employed. This commitment ensures that the party ini-
tiating the transaction must wait for a duration, denoted
as T, before being able to spend their entitled funds. This
waiting period gives the other party enough time to utilize
the payment channel rollback transaction to transfer their
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funds in case the first party broadcasts an old transaction.
Finally, it is essential to note that the setting of the waiting
period T must be greater than the difference between the
current time and the time of payment channel closure. This
ensures that both parties do not indefinitely wait without
broadcasting the latest payment channel update transaction.
This precaution prevents the occurrence of prolonged wait-
ing periods without the release of the most recent payment
channel update transaction.

4.5 Phase V: Payment Channel Closure Phase

Once both parties to a payment channel have completed
their transactions, they can close the channel by posting the
latest version of their respective payment channel update
transactions without having to communicate with the other
party. When user F; releases an update transaction txypdate
for the version of the payment channel under his control,
user P; can immediately receive his share of the currency
and transfer it to his own address, while user P; has to
wait for a certain amount of time before he can transfer
his share of the currency to his new address. After the user
P; waits for the set time 7', he can completely cut off the
pka_ pc relationship with the payment channel by executing
the transfer algorithm, through which a transfer transaction
will be generated for tZrvansteri, Which will transfer the
zero-knowledge currency c¢'? received by user P; to a new
address pk[*°". Where the tZTyansfer1 transaction consists of
the following variables.

o Merkle tree root rt: This is the proof that the commit-

ment cm'? exists in the ledger;

o Commitment serial number sn¢'?: A unique string
associated with the commitment cn?!<.

o Commitment value cm}“?: This value is generated
by the commitment scheme COMM, and the content
implied in the commitment includes the address
pk" the transferred value v;, new random numbers
r*" and serial number sn}““ associated with this
commitment value generated by the PRF function;

o Address pk;: Address of user P; ;

o ZKP TTransferi: This ZKP is generated by zk-
SNARKSs.GenPr-
oof that the following conditions apply to the circuit

of CTransfcrl .

1) em¢@ =COMM(pka_pc, pki, v, snt¢, sng'd)Y)
2)  sn¢'? =PRF(pk;, r'?)

3)  emPew —COMM(PKL®™, v;, ¥ sniev)

4)  sniew —PRE(skpew, ynev)

5) The path path; from em¢'? to the rt saved on
the ledger is correct

o Discrete logarithm Y and secret value y : Y = g¥%(g
is a public parameter)

o Signature
ld
(WTl'ansferll rt’cm?ew, STL;-) ) by

channel private key sk;.

Signature of the above
the payment

OTransferl-

For user P;, the transfer algorithm can be executed to
generate the transfer transaction {Zrvanster2 to transfer the
currency to the secure address as soon as the payment
channel update transaction under the version of P; takes

Transactions on Dependable and Secure Computing
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effect, but unlike tZvansteri, the ZKP does not need to
provide the discrete logarithmic value Y and the corre-
sponding secret value y. The transfer operations performed
by user P; and user P; after the release of the payment
channel update transaction under user P;’s version of the
transaction are similar, and only require interchanging the
operations between P; and P; as described above.

4.6 Security of CAPE

Referring to the security models defined by Zerocash, Bolt,
and Blockmaze [25], we have defined two security attributes
of CAPE: Transaction Unlinkability and Balance. Refer to
Appendix A for the formal security definitions.

Definition 1. (Security). A CAPE scheme II = (Setup,Mint,
Payment Channel Setup, Payment Channel Update, Payment
Channel Closure) is considered secure if it satisfies transaction
unlinkability and balance.

1) Transaction Unlinkability. Transaction is unlinkable
if it does not leak the linkage between its sender and
recipient during fund transfers. If for all PPT adversaries
A and sufficiently large security parameter ), there exists
a negligible function negl(\) such that the following prob-
ability holds: Pr [CAPEE&UL()\) = 1] < negl()), then we
say that II is TR-UL secure.

2) Balance. This property requires that no bounded ad-
versary A can own more money than he minted or received
via payments from others. If for all PPT adversaries .4 and
sufficiently large security parameter A, there exists a neg-
ligible function negl(\) such that the following probability
holds: Pr [CAPER(A) = 1] < negl()), then we say that
1T is BAL secure.

Theorem 1. The scheme 11 = (Setup, Mint, Payment Channel
Setup, Payment Channel Update, and Payment Channel Clo-
sure) is a secure commitment-based anonymous payment channel
scheme. (The proof is given in Appendix B)

5 EXPERIMENT AND RESULTS
5.1 Experiment Configuration

To benchmark the protocol’s performance, we implemented
our protocol using the C++ programming language, the
Libsnark library, which is a library that implements the zk-
SNARKSs scheme in C++, and the GMP library.

Cryptographic Libraries: In order to achieve zk-SNARK
operations in the CAPE scheme, we have implemented func-
tions for constructing and verifying zk-SNARK proofs based
on the Libsnark library [26] . For zk-SNARKs implemented
using the Libsnark library, we adopt ALT_BN128 as the
default elliptic curve and support different ZKP schemes,
including Groth16 [27] , GM17 [28] , and PGHRI13 [29]
schemes. The key pair (pk,vk) used for zk-SNARKs proof
generation or verification is generated and pre-installed on
each blockchain node. Additionally, the Merkle tree con-
struction, commitment generation hash function COMM,
Hash, and pseudo-random function PRF used in our im-
plementation are all instantiated using the SHA-256 hash
function. To implement BLS signatures, this paper develops
the BLS signature algorithm based on the GMP library.
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Fig. 2: The performance of zk-SNARKSs used in CAPE.

All experiments were performed on a Ubuntu Linux
16.04 LTS machine equipped with an Intel(R) Core(TM) i7-
9700 CPU @3.00GHz CPU and 16GB RAM.

5.2 Experiment Results
5.2.1 zk-SNARKs Performance Evaluation

To determine which zk-SNARK scheme is suitable for
CAPE, this paper evaluates the performance of PGHR13,
Groth16, and GM17 schemes regarding computation and
storage. Fig.2 show performance comparisons of the three
schemes, namely PGHR13, Groth16, and GM17, for seven
circuits: Mint, SetSend, UnFreeze, Update, Rev, Transferl,
and Transfer2. These comparisons are based on various
aspects such as proof/verification key size, proof genera-
tion time, and verification time. Fig.2 show that Groth16
has significant advantages over the two schemes PGHR13
and GM17, especially in proofing verification time, and
proof/verification key size. In the Mint circuit, the proof
verification time of GM17 is 2.4 times that of Groth16, and
the proof verification time of PGHR13 is 7.5 times that
of Grothl6. In the Update circuit, the proof key size of
GM17 is 2.5 times that of Grothl16, and the proof key size
of PGHR13 is 1.5 times that of Grothl6. In the Update
circuit, the verification key size of GM17 is 1.16 times that of
Groth16, and the verification key size of PGHR13 is 1.5 times
that of Groth16. In the Update circuit, the proof generation
time is similar between Groth16 and PGHR13, while the
proof generation time of GM17 is 2.2 times that of Groth16.
Taken together, it is evident that the Groth16 solution is the
most appropriate for calculating time and space occupation.
Therefore, subsequent experiments in this paper use the
Groth16 scheme.

By comparing the experimental results evaluation of
different zk-SNARKS circuits under the Groth16 scheme, we
can find that the setup time consumption, proof generation
time consumption, and the size of the proof or verification
key are related to the complexity of the zk-SNARKSs circuit
relatively. For example, the Update circuit in the payment
channel update process consists of eight SHA-256 gate cir-
cuits, two Merkle commitment gate circuits, and addition
and equal gate circuits. This circuit is the most complex,
so that it can be used in the setup and proof generation
times. The cost is the largest in terms of the proof or
verification key size. In comparisons, the Mint circuit is
the simplest, consisting of only two SHA-256 gate circuits.

Therefore, the consumption of time and space is the lowest.
However, compared with other aspects of zero-knowledge-
proof performance, the Setup has the lowest impact on the
solution’s performance because it can be set in advance.
Compared with the above four aspects, the verification time
consumption of ZKP is the same for different zk-SNARKSs
circuits, which is about 5ms. Therefore, it has less impact on
on-chain verification.

5.2.2 Comparisons on Blockmaze, Zerocash and Aegis

Fig. 3 shows the experiment results that compare our
scheme with other privacy protection schemes in terms of
setup time, proof or verification key size, proof generation
time, and verification time using zk-SNARKs. Although
Blockmaze, Zerocash, and Aegis [30] have different use
cases from this scheme, they all adopt a similar method,
zk-SNARKS, to achieve privacy protection. From the per-
spective of algorithmic functionality, the Mint operation in
the CAPE scheme is equivalent to Mint in Blockmaze. The
CAPE scheme’s SetSend, Update, and Transferl operations
are similar to Deposit in Blockmaze. The Mint, SetSend,
Update, and Transferl operations in the CAPE scheme are
similar to Pour in Zerocash. The Mint operation in the
CAPE scheme is similar to Ownership in Aegis. Operations
SetSend, Update, and Transferl in the CAPE scheme are
similar to JoinSplit in Aegis.

Compare to the schemes mentioned above, our scheme
has advantages over Blockmaze in terms of setup time,
proof or verification key size, and proof generation time,
specifically in the Mint operation. In the comparison process
of SetSend, Update, Transferl, and Deposit, only Update
and Deposit perform inadequately in the setup time, proof
or verification key size, and proof generation time. How-
ever, since Update involves multiple off-chain transactions
before being included on-chain, it still possesses advantages
in practical applications. Unlike Zerocash, the Mint opera-
tion in this paper requires zero-knowledge operations.

Moreover, our scheme has advantages in SetSend,
Update, and Transferl operations over Pour in Zerocash
regarding computation time and storage cost, especially the
Update circuit. On one hand, the proof generation time for
the Pour circuit is 1.4 times more than the Update circuit. On
the other hand, Update can be executed off-chain without
requiring on-chain consensus, making it more efficient for
completing a transaction.
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Fig. 3: Comparisons of Blockmaze, Zerocash and Aegis.

Compare to Aegis, the Mint circuit in this paper, corre-
sponding to the recharge operation, our scheme only takes
4.1 seconds to generate a proof. The Ownership circuit in
Aegis for the recharge operation takes 12.4 seconds. As such,
Aegis is more time-consuming. This paper’s computation
and storage costs of the SetSend, Update, and Transferl
circuits are lower than JoinSplit Aegis for the transfer
operation between accounts. As for the verification time for
the proof, the CAPE scheme in this paper performs similarly
to the other three schemes, requiring only around 5ms to
complete.

In summary, CAPE shows a superior performance re-
garding the computational costs associated with ZKPs,
showcasing good computational efficiency and storage
costs, comparing to other schemes.

5.2.3 Evaluation of Payment Channel

So far we have evaluated the on-chain storage overhead and
off-chain communication overhead, for the three phases of
the payment channel, we evaluate the message complexity
within the channel at each phase, including the number of
on-chain transactions and off-chain messages.

The Number of On-chain Transactions: establishing a
payment channel requires transaction parties i and j to post
one transaction each on the blockchain. While updating the
payment channel, both parties do not need to make on-chain
transactions. When the payment channel and both parties’
honest collaboration are closed, three on-chain transactions
are required; otherwise, three transactions are also required
when there is a dispute.

The Number of Off-chain Messages: when a payment
channel is established, two transactions and two VTD com-
mitments must be exchanged between trading parties. In
updating a payment channel, two transactions and two
VTD commitments are exchanged between the two parties
for each update. When the payment channel is closed, no
off-chain message exchange is required. According to the
experiment results given in in Table 1, to open a payment
channel in the CAPE scheme, both parties must place 445.78
bytes (2 transactions) on the chain and exchange 10.24 KB
off-chain. During the process of payment channel update,
for each update transaction, both parties need to exchange
11.39 KB off-chain. When the payment channel is closed
and both parties are closed honestly, 1791.31 bytes (three

transactions) must be placed on the chain; when one party
is dishonest, 1794.67 (three transactions) must be placed on
the chain.

Comparison with Light and Sleepy. Table 2 shows
a comparison of the on-chain storage overhead and off-
chain communication overhead during payment channel
establishment and payment channel update between the
present solution and other existing solutions. Although the
present solution has increased the associated privacy protec-
tion measures compared to Light and Sleepy, the on-chain
storage overhead and off-chain communication overhead
during the payment channel establishment and payment
channel update process are still within an acceptable range.
During the payment channel establishment process, the
transaction size to be stored on the chain in this scheme
is only 1.3 times that of the Light scheme and 1.3 times
that of the Sleepy scheme, and the off-chain communication
overhead of this scheme is 12 times that of the Light and 5
times that of the Sleepy, respectively. During the payment
channel update process, the communication overhead of
this scheme under the chain is 9.6 times that of Light and
4.8 times that of Sleepy, respectively.

Computation Overhead. For the three phases of the pay-
ment channel, we evaluate the consumption of in-channel
time in each phase (refer to Table 3). In the CAPE scenario,
a non-trivial time cost is required at each stage due to
the presence of ZKPs and VTD commitments. We ignore
the communication overhead for our time-specific mea-
surements. According to our measurements, the time spent
on a single update during the payment channel update is
30.1s, comparing to 6.6 TPS (Transaction Per Second) for the
same type of zcash blocking transaction, the throughput of
transaction per second can be improved to 0.033D TPS when
the scheme in this paper is adopted, where D is the number
of channels opened on the blockchain. When the number
of payment channels opened on the blockchain is 10000,
this scheme can provide 33 TPS transaction throughput per
second.

Overall, although our proposal incorporates more pri-
vacy protection measures, the on-chain storage overhead
and off-chain communication costs during the establish-
ment and updating phases of the payment channel remain
within acceptable ranges. Specifically, during the payment
channel establishment phase, the on-chain storage overhead



oNOYTULT D WN =

Transactions on Dependable and Secure Computing

12

TABLE 1: On-chain Storage Overhead and Off-chain Communication Overhead

Off-chain On-chain
tat tad (ci 7rn) ) ;
UnFreeze’ " UnFreeze’ vVTD» “VTD/» J
Create i i ) 1024 KB 12 sonds P ersond 44578 B
VTD’ "VTD
- 7 - 7 -
Update tx{]pdate’ t‘fEUpdate’ ﬁleev’ szev’ (C{/TD’ 11.39 KB _ _
i
™v1p) (Cvp TyTD)
. _ _ i i J
ClOSQ(OptlmlSth) tm%pdate’ t‘r’zl"ransferl ’ tzTransferQ 1791.32 B
Close(pessimistic) - - 24, dater EERev tah oo 1794.67 B

TABLE 2: Comparison of Off-chain Communication Over-
head with Light and Sleepy

Channel Channel
opening opening Channel
(on-chain) (off-chain) update
CAPE 445.78 B 10485 B 11663 B
Sleepy 338 B 2026 B 2408 B
Light 338 B 832 B 1214 B
TABLE 3: Computational Overhead
int k Channel Channel
Joint key opening update
i(s) 0.017 21.87 30.12
j(s) 0.017 21.85 30.11

of our approach is slightly higher than other solutions, but
the off-chain communication costs remain manageable. In
the updating phase of the payment channel, the off-chain
communication costs of our approach are also within accept-
able ranges compared to other solutions. Additionally, while
our proposal incurs some time costs, with an increase in the
number of channels, the throughput of transactions per sec-
ond experiences a significant improvement, demonstrating
good scalability and performance advantages. Therefore,
experimental results indicate that although our proposed
solution incurs higher communication and computational
costs compared to traditional payment channel schemes, its
performance remains feasible and practical for real-world
applications.

6 RELATED WORK
6.1 Payment Channel

Hearn and Spilman [31] initially introduced the payment
channel, which built a channel micropayment protocol
based on the Bitcoin system. The protocol allows direct
Bitcoin transactions between the sender and the receiver
in an off-chain channel. However, this scheme still had
the constraint of supporting only one-way payments. [32]
introduced a two-way micropayment channel scheme via
Duplex. However, the Duplex also had a drawback in en-
larging the number of payments deriving from the limited
capability; whereby the life-cycle of the payment channel
was shortened when the number of off-chain payments
increased. Poon et al. [17] introduced the most popular
two-way payment channel scheme through the lightning
network. In the lightning network, the primary measures
of a two-way payment channel scheme to ensure secure off-
chain transactions between the two parties of the transaction

were the time lock mechanism and the penalty transaction
mechanism. However, establishing a payment channel in a
lightning network requires a load of complex operations,
which could be less favourable to its rapid development. A
new payment channel protocol, xLumi [33], has been created
on the basis of blockchain systems. This protocol differed
from the Lightning Network in that it significantly reduces
the number of interactions and the complexity of opening
payment channels during off-chain payments. However,
xLumi only created one-way payment channels and does
not extend to two-way payment channels.

Furthermore, Lind [34] introduced a new payment chan-
nel framework via Teechan, which enabled off-chain mi-
cropayments between two parties to a transaction on the
existing Bitcoin blockchain. Similar to Duplex and Lightning
Network schemes, Teechan used multiple signatures to es-
tablish a long-term payment channel between two mutually
untrusted parties. In Teechan, payments were made through
a single message and can be made simultaneously in both
directions, making it a two-way payment channel instead of
a one-way one.

6.2 Privacy-Preserving Payment Channel

Although the emergence of payment channels had im-
proved the scalability of blockchain systems, there were
still many areas for improvement in protecting privacy.
Green and Miers [19] proposed a chain-off payment channel
scheme (called Bolt) that provided completely anonymous
transactions in which the parties can achieve privacy protec-
tion with variable bidirectional payments. By this scheme,
transaction data privacy was protected by hiding the trans-
action amount, the privacy of the relationship between
transaction parties was protected using ZKPs, and blind
signatures are used to verify channel updates. Compared
to our scheme, the use of blind signatures in Bolt was
incompatible with Bitcoin, whereas the ZKPs and time-
lock verifiable commitments adopted in this paper can be
applied to various blockchains. Additionally, the expenses
of ZKPs required by Bolt were higher than our approach.
Zhang et al. [35] proposed a payment channel called Z-
Channel to protect privacy, which also used ZKPs to pro-
tect user privacy but avoids the problems caused by blind
signatures. Compared to our scheme, Z-channel employed
the relatively common technique of relative timelocks used
in most payment channels, which limited its use in non-
scripted blockchains.

In addition, Moreno-Sanchez [36] proposed a payment
channel protocol, called DLSAG for Monero, which could
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achieve payment channel privacy protection through off-
chain transactions on Moreno. However, their solution was
not backwards compatible and required great modifications
to the Monero transaction scheme. Thyagarajan et al. [20]
proposed a new payment channel protocol called PayMo
for Monero, which did not require any changes to the
Monero transaction scheme or adding any features to the
script language. Compared to our scheme, both PayMo and
DLSAG were tailored proposals specifically designed for
Monero, and they only supported one-way payments, mak-
ing them unsuitable for further expansion into bidirectional
payments. Guan et al. [37] proposed a payment channel
scheme based on Mimblewimble, which tool advantage of
the ability of Mimblewimble to hide user identities and
transaction amounts to achieve privacy protection for pay-
ment transactions. Compared to our scheme, it was tailored
for Mimblewimble and only supported one-way payments.

7 CONCLUSIONS

This paper proposed a scheme, named CAPE, which utilized
commitment schemes, zk-SNARKSs, and VID commitments
to achieve privacy protection for users in payment channel
transactions. Our scheme concealed the transaction amounts
in both on-chain and off-chain transactions within the pay-
ment channel, as well as the linking relationships between
participants, while ensuring fairness in the transaction pro-
cess. We provided the specific construction of our CAPE
scheme and formal security proofs. Finally, this work eval-
uated the performance of the CAPE scheme to demonstrate
its potentials for deployment in real-world environments.
Compared to other privacy-preserving schemes of the same
type, this paper incurs less computational and storage costs
to achieve privacy. Compared to other payment channel
schemes, the various increases in overheads to achieve
privacy in this paper are within acceptable limits.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized business review, vol. PP, no. 99, p. 21260, 2008.

[2] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, et al., “On
scaling decentralized blockchains: (a position paper),” in FC Work-
shops, BITCOIN, VOTING, and WAHC, (Christ Church, Barbado),
pp- 106-125, 2016.

[3] A.Biryukov and S. Tikhomirov, “Deanonymization and linkability
of cryptocurrency transactions based on network analysis,” in
2019 IEEE European symposium on security and privacy (EuroS&P),
(Stockholm, Sweden), pp. 172-184, 2019.

[4] M. Trillo, “Stress test prepares visanet for the most
wonderful time of the year (2013),” URL http://www. visa.
com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-
most-wonderful-time-of-the-year/index. html, 2013.

[5] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro, “Coda: Decentral-
ized cryptocurrency at scale,” Cryptology ePrint Archive, vol. PP,
no. 99, p. 1, 2020.

[6] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in 26th SOSP, (New York), pp. 225-235, 2017.

[7] P.Zheng, Z. Jiang, J. Wu, and Z. Zheng, “Blockchain-based decen-
tralized application: A survey,” IEEE Open Journal of the Computer
Society, vol. PP, no. 99, p. 1, 2023.

[8] N. Papadis and L. Tassiulas, “Blockchain-based payment channel
networks: Challenges and recent advances,” IEEE Access, vol. 8,
no. 99, pp. 227596-227609, 2020.

[9]1 ]. Xie, E R. Yu, T. Huang, R. Xie, J. Liu, et al., “A survey on the
scalability of blockchain systems,” IEEE Network, vol. 33, no. 5,
pp. 166-173, 2019.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

Transactions on Dependable and Secure Computing

13

G. Kaur and C. Gandhi, “Scalability in blockchain: Challenges
and solutions,” in Handbook of Research on Blockchain Technology,
pp. 373-406, 2020.

D. Khan, L. T. Jung, and M. A. Hashmani, “Systematic literature
review of challenges in blockchain scalability,” Applied Sciences,
vol. 11, no. 20, p. 9372, 2021.

J. Xu, C. Wang, and X. Jia, “A survey of blockchain consensus
protocols,” ACM Computing Surveys, vol. PP, no. 99, p. 1, 2023.

K. Gai, Z. Hu, L. Zhu, R. Wang, and Z. Zhang, “Blockchain meets
DAG: a blockdag consensus mechanism,” in 20th ICA3PP, (New
York City, NY, USA), pp. 110-125, 2020.

V. Buterin et al., “Ethereum white paper: a next generation
smart contract & decentralized application platform,” First version,
vol. 53, no. 99, p. 1, 2014.

F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in 8th Int'l Conf. on TRUST,
Heraklion, (Heraklion, Greece), pp. 163-180, 2015.

Y. Zhang, K. Gali, ]. Xiao, L. Zhu, and K.-K. R. Choo, “Blockchain-
empowered efficient data sharing in internet of things settings,”
IEEE |. on Selected Areas in Communi., vol. 40, no. 12, pp. 3422-
3436, 2022.

J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” White Paper, vol. PP, no. 99, p. 1, 2016.

S. Liu and J. Wang, “Dmc: Decentralized mixer with channel for
transaction privacy protection on ethereum,” in CS & IT Conference
Proceedings, vol. 11, 2021.

M. Green and 1. Miers, “Bolt: Anonymous payment channels for
decentralized currencies,” in ACM SIGSAC Conf. on Computer and
Communications Security, (Dallas Texas, USA), pp. 473489, 2017.
S. A. Thyagarajan, G. Malavolta, F. Schmidt, and D. Schroder,
“Paymo: Payment channels for monero,” Cryptology ePrint Archive,
vol. PP, no. 99, p. 1, 2020.

O. Goldreich and Y. Oren, “Definitions and properties of zero-
knowledge proof systems,” Journal of Cryptology, vol. 7, no. 1,
pp. 1-32, 1994.

S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Déttling, A. Kate,
et al., “Verifiable timed signatures made practical,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1733-1750, 2020.

S. A. Thyagarajan, G. Malavolta, and P. Moreno-Sanchez, “Univer-
sal atomic swaps: Secure exchange of coins across all blockchains,”
in IEEE Symposium on Security and Privacy (SP), (San Francisco, CA,
USA), pp. 1299-1316, 2022.

G. Malavolta and S. A. K. Thyagarajan, “Homomorphic time-
lock puzzles and applications,” in Annual International Cryptology
Conference, (Santa Barbara, CA, USA), pp. 620-649, 2019.

Z.Guan, Z. Wan, Y. Yang, Y. Zhou, and B. Huang, “Blockmaze: An
efficient privacy-preserving account-model blockchain based on
zk-snarks,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, no. 3, pp. 1446-1463, 2020.

E. Ben-Saason, A. Chiesa, D. Genkin, S. Kfir, E. Tromer, et al.,
“libsnark: C++ library for zksnark proofs,” 2014.

J. Groth, “On the size of pairing-based non-interactive argu-
ments,” in Advances in Cryptology—EUROCRYPT 2016: 35th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II 35, (Vienna, Austria), pp. 305-326, 2016.

J. Groth and M. Maller, “Snarky signatures: Minimal signatures
of knowledge from simulation-extractable snarks,” in Annual Int'l
Cryptology Conf., (Santa Barbara, CA, USA), pp. 581-612, 2017.

B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio:
Nearly practical verifiable computation,” Communications of the
ACM, vol. 59, no. 2, pp. 103-112, 2016.

H. S. Galal and A. M. Youssef, “Aegis: Privacy-preserving market
for non-fungible tokens,” IEEE Transactions on Network Science and
Engineering, vol. 10, no. 1, pp. 92-102, 2022.

M. Hearn and J. Spilman, “Bitcoin contracts,” URL: https://en.
bitcoin. it/% 20wiki/Contracts (visited on 2015-10-08), 2015.

C. Decker and R. Wattenhofer, “A fast and scalable payment
network with bitcoin duplex micropayment channels,” in Stabi-
lization, Safety, and Security of Distributed Systems: 17th International
Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015,
Proceedings 17, (Edmonton, AB, Canada), pp. 3-18, 2015.

N. Ying and T. W. Wu, “xlumi: Payment channel protocol and
off-chain payment in blockchain contract systems,” arXiv preprint
arXiv:2101.10621, vol. PP, no. 99, p. 1, 2021.



oNOYTULT D WN =

Transactions on Dependable and Secure Computing

[34] J. Lind, L. Eyal, P. Pietzuch, and E. G. Sirer, “Teechan: Payment
channels using trusted execution environments,” arXiv preprint
arXiv:1612.07766, vol. PP, no. 99, p. 1, 2016.

[35] Y. Zhang, Y. Long, Z. Liu, Z. Liu, and D. Gu, “Z-channel: Scalable
and efficient scheme in zerocash,” Computers & Security, vol. 86,
no. 99, pp. 112-131, 2019.

[36] P. Moreno-Sanchez, A. Blue, D. V. Le, S. Noether, B. Goodell, et al.,
“Dlsag: non-interactive refund transactions for interoperable pay-
ment channels in monero,” in 24th Int’l Conf. Financial Cryptography
and Data Security, (Kota Kinabalu, Malaysia), pp. 325-345, 2020.

[37] Z. Guan, L. Zhang, Y. Zhang, D. Li, Y. Sun, et al.,, “Off-chain
anonymous payment channel scheme based on mimblewimble,”
in IEEE Int’l Conf on ISPA/BDCloud/SocialCom/SustainCom, (New
York), pp. 1469-1475, 2021.

Page 14 of 18
14



Page 15 of 18

oNOYTULT D WN =

APPENDIX A

A CAPE scheme II = (Initialization, Coin Minting, Payment
Channel Establishment, Payment Channel Update, and Pay-
ment Channel Closure) is considered secure if it satisfies
transaction unlinkability and balance preservation. Refer-
ring to the security models defined by Zerocash, Bolt, and
Blockmaze, each property is formalized as a game between
an adversary A and a challenger C. Each property depends
on an experiment involving a finite-state oracle O“AFE that
interacts with CAPE. In each experiment, the behavior of
the honest party is realized by a random oracle OCAPE,
The random oracle O“APE provides an interface for
executing the algorithms defined in the CAPE scheme II.
It is injtialized and maintains a state with a set of public
parameters pp. Internally, O“AFE stores and maintains the
following: (i) L, a ledger recording transactions. (ii) Addr, a
collection of address-secret pairs. (iii) COIN, a set of coins.
All of L, Addr, and COIN start as empty. OCAPE
accepts different types of queries, and each query results
in updates to L, Addr, COIN, and the output. Below, we
will describe these queries to the random oracle OCAPE,

o Query(CreateAccount).When receiving the Create-
Accountquery, the challenger C: (i) Computes a key
pair (sk, pk). (ii) Adds pk as an address to Addr. (iii)
Outputs (pk).

o Query(Mint,pk;,v).When receiving the Mint
query, the challenger C: (i) Invokes the Mint
algorithm to compute a coin ¢ and a Mint
transaction tZyne. (il) Adds the coin ¢ to COIN and
txmine to the ledger L. (iii) Outputs L.

o Query(SetSend, cm;, pk;, pka—pc). When receiving
the SetSend query, the challenger C: (i) Invokes the
payment channel establishment and sending algo-
rithm to compute a coin c and a SetSend transaction
tZsetsend- (i) Adds the coin ¢ to COIN and txseisend
to the ledger L. (iii) Outputs L.

e Query(UnFreeze,cm,pka_pc,pk;). When receiv-
ing the UnF'reeze query, the challenger C: (i) Invokes
the payment channel unfreezes algorithm to com-
pute a coin ¢ and an UnF'reeze transaction tZunfreeze-
(ii) Adds the coin ¢ to COIN and tTypfreeze to the
ledger L. (iii) Outputs L.

o Query(Update, pko_pc, pki, pk;, cmi, cm;, v, v;).
Wh-en receiving the Update query, the challenger
C: (i) Calls the payment channel update generation
algorithm to compute two new coins ¢;"“*” and ¢},
and an Update transaction tTypdaee- (i) Adds the
coins ¢ and ¢} to COIN, and adds tzypdate to
the ledger L. (iii) Outputs L.

o Query(Rev,pks_pc,pk;, pkj, cm): When receiving
the Rev query, the challenger C. (i) Invokes the
payment channel rollback algorithm to compute a
coin ¢ and a Rev transaction tTRey. (ii) Adds the coin
cto COIN and tzgey to the ledger L. (iii) Outputs L.

e Query(Transferl,pk;,v). When receiving the
Trans- ferl query, the challenger C. (i) Invokes
the corresponding transfer algorithm for Transferl
to compute a coin ¢ and a Transferl transaction
t T Transtert - (i1) Adds the coin ¢ to COIN and tZrvansfer1
to the ledger L. (iii) Outputs L.
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o Query(Transfer2,pk;,v). When receiving the
Trans-fer2 query, the challenger C. (i) Invokes the
corresponding transfer algorithm for Transfer2 to
compute a coin ¢ and a Transfer2 transaction
tTTransfer2- (i1) Adds the coin ¢ to COIN and tZTransfer2
to the ledger L. (iii) Outputs L.

o Query(Insert,tx). When receiving the Insert
query, the challenger C verifies the result by execut-
ing different algorithms. If the condition is met, the
output result is 1, and the transaction tx is added to
L. Otherwise, it aborts.

A.1 Transaction Unlinkability

Let 7 be a zero-knowledge transaction table, where tZsetsend,
txUpdate/ 1TRev, tTUnFreezes tTTransferl, ANd tXTransterz are gen-
erated in response to SetSend, Update, Rev, UnFreeze,
Transferl, and Transfer2 queries, respectively, in the
context of the CAPE protocol. The design of the transaction

unlinkability experiment CAPE[; 7" () is as follows:

1) Compute pp := Setup (1)‘) and send it to A. Initial-
ize a CAPE random oracle OCAPE,

2) Whenever A queries O““TE, provide the ledger L in
the response to each query operation.

3) Continue responding to queries from .A until A out-
puts a pair of zero-knowledge transactions (tx, tz’)
that satisfy the following conditions: (i) (tz,tz")eT
and (tz,tx’) are transactions of the same type,
but tx # tx'. (ii) If tx=tTsesend, the sender and
receiver of (tx,tx') are not A. (iil) If tx=tzypdate,
the sender and receiver of (tx,tz’) are not A. (iv)
If tx=tTranster1, the sender and receiver of (tx,ta’)
are not A. (v) If tx=tTranster2, the sender and re-
ceiver of (tx,tx’) are not A. (vi) If tx=tayunFreeze
the sender and receiver of (tx,tz’) are not A.
(vii) If tx=tagey,(tz, t2’), the sender and receiver of
(tz,tx’) are not A

4) If any of the following conditions hold, output 1
(indicating that A wins); otherwise, output 0: If
tx=tZsesend, the sender and receiver of (tx,tz’) are
the same. If tx=txypdate, the receiver of (tz,tx') is
the same. If to=tZTranster1, the receiver of (tx,tx’) is
the same. If to=tZTranster2, the receiver of (tx,tx’) is
the same. If t=tZUnFreeze, the receiver of (tx,tx') is
the same. If tx=txgey, the receiver of (tz,tz’) is the
same.

Definition 2 (TR-UL Security): Let II =(System Setup,
User Initialization, Payment Channel Establishment, Pay-
ment Channel Update, and Payment Channel Closure) be
a CAPE scheme. If for all probabilistic polynomial-time ad-
versaries A and sufficiently large security parameter )\, there
exists a negligible function neg(\) such that the following

probability holds: Pr [CAPEE‘;UL()\) = 1] < neg()), then
we say that II = is TR-UL-secure.

A.2 Balance Conservation

For balance conservation, we design the BAL experiment
where a probabilistic polynomial-time (PPT) adversary 4
attempts to attack a given CAPE scheme. First, we define
four variables in our security model as follows:
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*  UUnspent: The total value of all spendable coins in
the set Seoin Owned by A. The challenger C can
check whether a coin C owned by A is spendable
by: 1) Checking if a valid ¢Zgetsend transaction can
be generated through a Setsend query for coins
generated by a {zmine transaction. 2) Checking if a
valid {ZTransfer1 transaction can be generated through
a Transferl query or if a valid tZTmansferz transac-
tion can be generated through a Transfer2 query
for coins generated by txsesend, XU pdates tLTransferl,
tZTransfer2, tTUnFreeze, and tTgey transactions, depend-
ing on whether the coin commitment includes a
discrete logarithm value.

e Umint 1S the total value of all coins minted by .A.
To compute vnint, the challenger C sums up the
values of all coins generated by Mint queries using
addresses not in Addr, or by directly inserting Mint
transactions into the ledger

e U Addris the total amount paid to A from addresses
in Addr. To compute v 4 adar, the challenger C uses
Transfer2, Transferl, Setsend, Update, UnFreeze, and
Rev queries to look up corresponding transactions in
the ledger and aggregates the values transferred to
addresses not in Addr.

e Uaddr A is the total amount paid by A to addresses
in Addr. To compute vagdr« 4, the challenger C first
identifies the set S of all coins sent to parties in Addr
through Insert queries, and then sums up the values
of the coins in S.

At the end of the experiment, if...vypspent + VAddrea >
UMint + VA« Addr,C outputs 1; otherwise, it outputs 0.

Formally, we define the balance conservation experiment
CAPEBAL()\) as follows:

o Compute pp := Setup (1)‘) and send it to A. Initial-
ize a CAPE random oracle O“AFE,

« Whenever A queries O““PE, provide the ledger L in
response to each query operation.

o Continue responding to queries from A until A out-
puts a set of coins Seoin-

o Compute the aforementioned four balance variables.

o If VUnspent + VAddr«A > UMint + VA« Addrs the
experiment outputs 1; otherwise, it outputs 0.

Definition 3. (BAL security): Let II = (setup, user ini-
tialization, payment channel establishment, payment chan-
nel update, and payment channel closure) be a CAPE
scheme. If for all PPT adversaries A and sufficiently
large securrtX parameter A, the following probability holds:
Pr [CAPE =1] < negl()\), then we say that I is
BAL-secure.

APPENDIX B

Theorem 1. The scheme II = (initialization, coin minting,
payment channel establishment, payment channel update,
and payment channel closure) is a secure commitment-
based anonymous payment channel scheme.

B.1 Transaction Non-Linkability Proof

Let 7 be the zero-knowledge transaction table, where
LZsetSend txUpdate ~ 1TRev ~ tTUnFreeze > {%Transfer1, and

2

tZTransfer2 are generated by OCAPE response to SetSend,

Update, Rev, UnFreeze, Transferl, andTransfer2
queries, respectively. Adversary A can win the TR-UL
experiment only if A outputs a pair of zero-knowledge
transactions (tz,tx’) satisfying one of the following
conditions: (i) If tx=txsewend, both the sender and receiver of
(tx,ta’) are the same. (ii) If tx=tTypdate, both the receivers
of (tx,jtz') are the same. (iii) If tx=tTranster1, both the
receivers of (tz,tx’) are the same. (iv) If tx=tZrransfer2, both
the receivers of (tz,tx’) are the same. (v) If t=tZyunFreeze,
both the receivers of (tx,txz’) are the same. (vi) If tx=tzgey,
both the receivers of (tz, tx’) are the same.

a) Assuming A outputs a tuple of transactions
(t2etSend, tT6pgeng) fOr payment channel establishment,
where tZsesend satisfies the following conditions:

pc old

thetSend = (Tt cm, o, SNy 77TSetSend)

= COMM (pks_ pc,pki,vi,sn"ld snt)
cm"ld COMM (pk;, v;, sn”ld r"ld)

, e
1 %G geng AlSO satisfies:

pe! old’
t'rSetSend - (Tt cmy; -, SNy 7TSetSend)
/
emPe = COMM(pk2 pos PkL vl sn"ld ,snb)
/
emd'® = COMM(pk;’, v; ,sn(’ld ol

In order to win the TR-UL experiment, one must find
a pair of transactions (tZsesend;s t€4egenq) Where the receiver
pko_pc = pkh_ po and the sender pk; = pk;.

To achieve the goal of finding the same receiver, A can
determine whether pks_pc and pk}_ . are equal in two
ways: (a) Obtain the receiver address pko_pc (or pkb_pe)
from cm? or (em?"). (b)Extract pka_pc (pk)_ pe) from the
zk-SNARKS proof mseisend (B Tyigeng)- FOT (a), A must distin-
guish the included (pka— pc and pkf,_ ) without knowing
the secret values of (cm?® and em?®’). This would violate the
hiding property of COM M, making it impractical for A.
For (b), A cannot extract the receiver address from the zero-
knowledge proof due to the unbreakable zero-knowledge
property of zk-SNARKs mentioned in Chapter 3.

To achieve the goal of finding the same sender, A can
also determine it through three approaches: (a) distinguish-
ing the sender addresses from the zk-SNARKs proofs, (b)
A first looks up the commitment value (cm"ld cmOld ) used
in the SetSend transaction from its view, and then uses the
cmassociated Mint transaction to differentiate sender, (c)
distinguishing the sender address from cm?® or (cm?®").

For approach (a), A must be derived from different
zero-knowledge proofs (mseisend, Tseisend’) Will distinguish
(pki,pk;"), which means that A needs to destroy the zero-
knowledge property of zk-SNARKs.

For approach (b), A can differentiate the sender (pk;,
pk;") by looking for the previous transactions (¢Zumint, tZ3gin;)
that contain (cm”ld cm"ld ), without knowing other secret
values in (emg'?, cm"ld ). However, since em¢'¢ and cm"ld
are not visible in ¢Tsetsend and a4, s, 4, A must obtain cm'?
and cm"ld through two means: (1) the Merkle tree root, and
(2) zk- SNARKS proof.

For method (1), A must be proposed from the Merkle

root (rt, rt’) (cmOld cmOld ), and this needs to destroy the
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anti-collision property of CRH. For the way (2), A must
be proved from zk-SNARKS (Tsesend , (¢4, em?1’) is ex-
tracted from 7m¢,q..q), Which means that A needs to destroy
the zero-knowledge property of zk-SNARKs. For method
(c), it will violate the hidden characteristics of COMM for
the same reason as above. Therefore, due to the commitment
scheme, hash function and zk-SNARKSs security features, it
is guaranteed that the sender and receiver of the transaction
cannot be distinguished in the tZgesen transaction.

b) Suppose A outputs a payment channel retracement
transaction tuple ({Zgev, tTge,), Where txpge, meets the
following conditions:

tme = (WRev,cmgld emi®, sn °ld Y pk:],aRev)
emd = COMM (pks— pc,pk],vj,snf ,sn?d Y)
em?® = COMM (pkj,pkz, vj, snOId sn“ew)
g’y is also satisfied:
1T hey 1= (Wf{ev ,cmjld/,cm?e“’/ "ld Y’,pkj,chev)

cm;’-ld = COMM (pk’zfpc,pk v, sn¥ ,anld/,Y'>

YRR J J

emP?" = COMM (pk ,pkl,vj,sn;’ld sniev’)

To gain the TR-UL experiment must find a set of trans-
action (tZrey, tTke,) receivers pk; = pk,”"". In order to
achieve the goal of finding the receiver, A should choose
(a) to get the receiver from cm}“" (or cm”e“’ ) Party
address pk; (or pk.),(b) From Zk SNARKSs proof TRev(OT
They) €Xtracts pk; (or pk}). For (a) A must be unaware of
the commitment emj* (or cm”e“’ ) under the premise of
distinguishing the pk (or pk}) contained in it, which means
This destroys the concealment property of COMM. For (b),
also because A cannot break through the zero-knowledge
property of zk-SNARKs mentioned in Section 3, it cannot be
obtained from zero-knowledge The address of the recipient
is also not available in the proof. In the same way, it is the
same for unfreezing transactions corresponding to the same
type of payment channel.

c)Suppose Aoutputs a payment channel update trans-
action tuple (txUpdate,tx/Update), where {Zypdate meets the
following conditions:

_ new new pc
txUpclate - (Tt, WUpdate ) ij , Cy; 7pk27PC7 Snj )

pc
SNy 7UUpdate)
old old pc

= COMM (ka PCapkja 5 ST
cm”tcOMM (pko—pc, pki, v, sng snPC)

Cm? = COMM (ka PC;pk]7 ;EW ’ Sngca Sn?ew)

emi = COMM (pka—pc, pki, 0], snbe snW | Y)
AT paate Als0 satisfied:

/ new’ new’ / pc’
t:L.Update - (Tt 7-‘—Upclate , CIM; ) €Y 7pk27PC7 S’I'Lj )

pc /
SN » TUpdate )

cmpc = COMM (pk2 pos Dk 02 ,sno-ld/,snpcl)

]’J J

79 Z K2

cmf = COMM (pk2 pos Pkl Old/,sng’ld/,sn’.’cl)

J

em™? = COMM (pk:2 PO pkj, ; j

’ CI /
new ’Snp ’Sn?ew )

emP€ = COMM (pkz po, kL vl ,snfcl,sn

’L”L

new’ 1
7 ’ Y
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To win the TR-UL experiment, one must find a set
of transactions (txUPdatG’tx,Update) with receivers pk;=pk]
and pk;=pk}. In order to achieve the goal of finding the
recipient, A can also make judgments in three ways: (a)
Distinguishing the recipient address from the zk-SNARKSs
proof, (b) A first looks up the commitment value cm’® (and

¢m® ) used in the transaction tx_Update (tx_U pdate’) from
its view, and then uses the Setsend transaction associated
with the commitment value to distinguish recipients, (c)

Distinguishing the sub—rec1p1ent address from cmj“’ and

cm? (and cm”ew ).

For approach (a), A has to prove that (pk;,pk;) and
(pkj,pk;) are distinguished, which means that A needs
to break the zero-knowledge property of zk-SNARKSs. For
method (b), A can be used w1th0ut know1ng the secret

values among cm’, em]“(cm’’ ), (cm

J
flndlng the prev1ous1y contained cmf®, emf*(cm

) and others, by

fcl), and

(em ) transactions to d1st1ngulsh the receiver (pk pk{)
) M (emb* ) are

Gl (pkj,pkj). But since cm}®, emj“(cm i

not visible to txUpdate(tx’Update), so A must obtain cm’*,
cmfc(cmfc,) F (cmfc/) in two ways: (1) Merkle root; (2) zk-
SNARKSs proof: For method (1) A must be extracted from
Merkle root rt(rt’) out of cm?, cm?“(em®), and (emf),
and this needs to destroy CRH ant1 colhs10n properties.

For method (2), A must extract cm , cm? C(cmgJ ), and

(emk* ) from the zk-SNARKSs proof Typdate (wUpdate , which
means that A must breaks the zero-knowledge property of
zk-SNARKSs. Approach (c), for the same reason as above,
would violate the hidden property of COMM. Therefore,
due to the security features of the commitment scheme, hash
function, and zk-SNARKSs, it is guaranteed that the receiver
of the transaction cannot be distinguished in the txypdate
transaction. In the same way, it is the same for the same
type of transfer transactions.

B.2 Proof of Balance Conservation

We modify the balance conservation experiment without
affecting the A view: for each txypdqte transaction recorded
on the ledger L, the challenger C needs to provide compu-

tational evidence w :=(path;;, pathz, 17 em?, pk;, pki,
U;-)ld ; ’U?ld , QUeW new g new S,nnew o d sn(-’ld phew ,.new

I A S At B S 4 A B A A

rold pold YY) for each zk SNARKs instance z :=(rt,

VLY
emY, emPeY, pko_ pc,sn] “,sn¥°). In this way, C obtains

an Jaugmented ledger (L, W), where w; is the witness of the
zk-SNARKSs instance z; of the ith Update transaction in L.

Balance conservation ledger: An augmented ledger
(L, w) is balanced if the following conditions hold.

Condition I: Each (txypdate, w) € (L, W) announces
two different monetary commitment values em?“ and em?*
unique information (ie serial number sn’ and sny“ ). Also
the monetary commitments cm”“ and em?“ are both output
by tx previously recorded on L.

Condition II: There are no two (tZypdate,w) and
(tT1pdatew"in(L, W)) contains the only information about
the same monetary commitment (i.e. no two transac-
tions contain the same sequence number). Condition III:

(em?®, eml® contained in each (txypdate,w) €(L,W),

7’
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em?eY emev) corresponds to (vheW oW pold pold) gl

J Jo0%i 0
satisfy v;" + vj*" = vold 4 pold,
Condition IV: For each of the two monetary commit-

ments cm’® and emj”, if they are all the outputs of the

Setsend transaction tZgeseng ON L, then trgesenq Witness
that the value v; (or v; ) of em!® (or cm}“ ) contained in
w is equal to vz?ld (or o914,

Condition V: If (t:z:Update,w) € (L, W) is inserted into
L by A, and the emj and cm’® in trypdae are outputs of
previous transactions tz;" and tx;’ recorded in L, it implies
that the receivers in tz;’ and tz j’ are not users in Addr.

Intuitively, the aforementioned conditions ensure that in
L, A does not spend money that was not previously minted
or money not under the control of A. Specifically, if (L, W)
is balance-preserving, then vynspent + VAddrea = UMint +
VA Addr- For each of the aforementioned cases, we have
proven in a contradictory manner that the probabilities of
each case not holding can be neglected. In each case, we
have demonstrated how to derive a contradiction, thereby
providing the proof.

Violation of Condition I. For each (txUpdate , w) e (L,W)
if not entered by A, then txypgae must satisfy the condition
L

Violation of Condition II. Suppose Pr[A wins but violates
condition II] is not negligible. When condition II is vio-
lated, L contains two Update transactions txpdate tx’Up date
spend the same monetary commitment cm , and show two
serial numbers sn and sn . Since tZypdate, tx’Up date 18 valid, it
must be sn # sn’ . However, if two Update transactions cost
cm but produce different sequence numbers, then the corre-
sponding witnesses wyw P"™¢ contains public information
of different cm. However, this contradicts the binding prop-
erties of the commitment scheme COMM.

Violating condition III: Let’s assume that Pr[A wins
but violates condition III], which is non-negligible. In this
case, the contradiction is direct: whenever condition III is
violated, the equation v} + vj*" = v;»’ld + 19" does not
hold, violating the soundness of the zk-SNARKSs.

Violating condition IV: Let’s assume that Pr[A wins but
violates condition IV] is non-negligible. It can be observed
that when condition IV is violated, the values committed in
cm? | cmf ¢ for the tZypdate transaction are different from
the values committed in the cm’ and em! of the previous
transaction ¢tz recorded in L. This contradicts the binding
property of the commitment scheme COM M.

Violating condition V: Let’s assume that Pr[A wins but
violates condition V] is non-negligible. It can be observed
that when condition V is violated, L contains an inserted
Update transaction txypdate that spends the output of the
previous transaction t z’ to the address pk in Addr. This
would require A to forge the private key signature of
pk, violating the unforgeability property of the signature
scheme.

Finally, utilizing a similar structural proof, it can be
shown that O“APE generates balance-preserving transac-
tions in response to Mint, SetSend, Transferl, Transfer2,
UnFreeze, and Rev queries. Consequently, it can be derived
that Pr [CAPE%/?}((/\) = 1] is negligible.
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