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Abstract 151 

Theory predicts that high population density leads to more strongly connected spatial and 152 
social networks, but how local density drives individuals’ positions within their networks is 153 
unclear. This reduces our ability to understand and predict density-dependent processes. 154 
Here, we show that density drives greater network connectedness at the scale of individuals 155 
within wild animal populations. Across 36 datasets of spatial and social behaviour in >58,000 156 
individual animals, spanning 30 species of fish, reptiles, birds, mammals and insects, 80% of 157 
systems exhibit strong positive relationships between local density and network centrality. 158 
However, >80% of relationships are nonlinear and 75% are shallower at higher values, 159 
indicating saturating trends as demographic and behavioural processes counteract density’s 160 
effects. These are stronger and less saturating in spatial than social networks, as individuals 161 
become disproportionately spatially connected rather than socially at higher densities. 162 
Consequently, ecological processes that depend on spatial connections are likely more 163 
density-dependent than those involving social interactions. These findings suggest 164 
fundamental scaling rules governing animal social dynamics and could help to predict network 165 
structures in novel systems. 166 

Keywords: Behavioural ecology, Spatial ecology, Disease ecology, Epidemiology, Population 167 
dynamics, Social network structure, Network analysis, Spatial analysis 168 

Introduction 169 

The number of individuals occupying a given space – i.e., population density – is a central 170 
factor governing social systems. At higher densities, individuals are expected to more 171 
frequently share space, associate, and interact, producing more-connected spatial and social 172 
networks and thereby influencing downstream processes such as mating, learning, and 173 
competition. In particular, density-driven increases in network connectedness should provide 174 
more opportunities for parasites [1–5] or information [6] to spread between hosts[1–4,9] 175 
Despite the fundamental nature of such density-dependent processes, evidence is relatively 176 
limited that individuals inhabiting higher-density areas have more spatial and social 177 
connections. Furthermore, density effects should differ for asynchronous space sharing (e.g. 178 
home range overlap) versus social associations (e.g. den sharing or grouping) or interactions 179 
(e.g. mating or fighting). While several studies have compared animal populations at different 180 
densities to demonstrate variation in social association rates among populations (e.g., [7–9]) 181 
or groups (e.g., [10–12]), attempts to identify such density effects within continuous 182 
populations of individuals are rarer (but see [9,13–16]), and their findings have never been 183 
synthesised or compared for spatial and social behaviours. We therefore have an incomplete 184 
understanding of how density, as a fundamental ecological parameter, determines socio-185 
spatial dynamics within and across systems. This inhibits our ability to identify and predict how 186 



changes in density – e.g. through culling, natural mortality, dispersal, or population booms – 187 
influence downstream processes that depend on shared space and social interactions. 188 

The rate at which an individual interacts with conspecifics depends on its spatial and social 189 
behaviour within the context of the surrounding environment and population. Adding more 190 
individuals into the same space should cause them to more frequently spatially overlap and 191 
socially associate or interact (Figure 1). Often, individuals are modelled as randomly moving 192 
and interacting molecules (“mass action” or “mean field”). In this conceptualisation, direct 193 
contact between two molecules is analogous to a social interaction or association; rates of 194 
such interactions are often assumed to increase with density (“density-dependent”; e.g., [17]), 195 
and/or to be homogenous in space (e.g., [12]). In reality individuals are unlikely to behave and 196 
interact randomly in space, and instead will be influenced by spatially varying factors including 197 
local density [18] and competition for resources [9]. Changes in density may cause individuals 198 
to alter their foraging behaviour [19–21], dispersal [22,23], social preference or avoidance 199 
[15,24], mating behaviour [25], or preferred group size [8]. In some cases, density may have 200 
no effect on interaction rates, because individual animals alter their behaviour in a density-201 
dependent manner to maintain a desired interaction rate [26]. These and related processes 202 
might produce strong nonlinearities in density-interaction relationships, which can complicate 203 
the predictions of density dependence models of pathogen transmission, for example [2,4,5]. 204 
For example, individuals or groups can learn to avoid where competitors might go, resulting in 205 
greater spatial partitioning under higher densities [27]. Nevertheless, nonlinearities such as 206 
these are poorly understood and rarely considered. 207 

Several wild animal studies have suggested relationships between density and social 208 
association rates are often nonlinear and saturating [9–12,15]. Such relationships imply that 209 
association rates do not increase passively with density, but rather that behavioural or 210 
demographic processes likely change as density increases, with the ultimate consequence of 211 
slowing association rates. However, these nonlinearities are difficult to examine between 212 
populations or between species because they introduce a range of confounders and have few 213 
replicates along the density axis [2]. On the other end, lower densities may provide less ability 214 
to exert social preferences, but low-density populations may be harder to study due to (for 215 
example) low return on sampling investment; alternatively, the failure to achieve sufficient 216 
interaction rates may result in Allee effects and ultimately drive populations toward decline 217 
[28,29].  218 

Characterising gradients of density across individuals within a population offers a workaround 219 
to these problems, and facilitates an appreciation of the fact that interactions occur between 220 
individuals rather than at the population level. Examining between-individual variation is one 221 
reason that social network analysis – which allows characterisation and analysis of individual-222 
level social traits, amongst other things – has become so popular in animal ecology in recent 223 
years [30–34]. Additionally, recent years have seen a substantial growth in understanding of 224 
socio-spatial behaviours, including harmonising the concepts of spatial and social density 225 
[2,18,35]. Applying network analyses coupled with this socio-spatial understanding of density 226 
could provide an individual-level picture of density’s effects on spatial and social 227 
connectedness, offering far higher resolution and statistical power and greater ability to detect 228 
within-system nonlinearities and between-system differences [2]. By providing new 229 
understanding of the correlates and emergent consequences of variation in density, this 230 



expansion could help to identify general rules underlying social structuring and network scaling 231 
in space. 232 

Critically, different types of interactions or associations should show different relationships with 233 
density: for example, the need to compete for food at higher densities could drive a 234 
disproportionate increase in aggression [36], but this is unlikely to be true of mating 235 
interactions. In contrast, higher density and food scarcity should lead to lower exclusivity in 236 
resources and more overlapping home ranges, thus enhancing the effect of density on spatial 237 
network [37]. This rationale is well-understood in disease ecology, as differences in density-238 
contact relationships are thought to drive differences in density dependence of infection – 239 
where “contact” is defined as an interaction or association that could spread a pathogen 240 
(Figure 1). “Contacts” then form the basis of spatial and social networks used to investigate 241 
pathogen transmission dynamics, which should likewise diverge with density just as contacts 242 
do. For example, density should drive greater transmission of respiratory pathogens but not 243 
sexually transmitted pathogens [1,38]. Establishing these density-contact relationships is 244 
integral to understanding disease dynamics and developing control measures [1,39], but we 245 
still have a poor understanding of how different interactions (and therefore contact events for 246 
different pathogens) are driven by density. This direct/indirect interaction dichotomy is most 247 
fundamental to disease ecology [35,40], but given building interest in the spatial-social 248 
interface and relationships between spatial and social networks in behavioural ecology [18], 249 
the framework is readily related to other fields (e.g. direct versus indirect cues that can lead to 250 
social learning [41]). Previously established density-interaction relationships are diverse and 251 
include feral dog bites [13], ant antennations [42] and trophallaxis [26], ungulate group 252 
memberships [14,19], rodent co-trapping [10,43], and agamid association patterns [15,16], but 253 
no study has yet synthesised how the rates of multiple interaction or association types relate 254 
to density, within or across systems. 255 

Identifying the general rules underlying density dependence requires quantifying density’s 256 
relationship with proxies of interaction rates at fine scales across a diversity of systems, then 257 
identifying the factors determining their slope and shape. To this end, we collate a meta-258 
dataset of over 58,000 individual animals across 36 wildlife systems globally (Figure 2) to ask 259 
how within-population variation in density determines between-individual interaction rates 260 
based on connectedness in spatial and social networks. We fit multiple competing linear and 261 
nonlinear relationships to identify the slope and shape of density effects within each system, 262 
and we use meta-analyses to investigate general rules determining their slope and shape 263 
across systems. In particular, we focus on comparing space sharing with social interactions 264 
and associations as a cross-system case study. Ultimately, we present a de novo cross-265 
system analysis of individuals’ social and spatial behaviour that traverses fields of behavioural, 266 
population, and disease ecology, which could help to inform general rules governing the 267 
structure of social systems, and eventually shape management and conservation decisions in 268 
a wide range of systems. 269 

270 



Results and Discussion 271 

We compiled a comparative meta-dataset of over 14 million observations of 151,835 individual 272 
animals’ spatial and social behaviour, across a wide range of ecological systems and 273 
taxonomic groups of animals. We then ran a standardised pipeline to align their spatial and 274 
social observations, identifying strong and predictable relationships between local density and 275 
network connectedness at the individual level.  276 

We observed strong positive relationships between individuals’ local population density and 277 
their connectedness in spatial and social networks across a wide range of wild animals: of our 278 
64 replicates, 51 (78%) were significantly positive when analysed using linear models (Figure 279 
3A). Meta-analyses identified a highly significant positive mean correlation between density 280 
and connectedness, both for social networks (Estimate 0.22; 95% CI 0.17, 0.27) and spatial 281 
networks (0.45; 0.36, 0.53; Figure 3B). Our study therefore provides fundamental evidence 282 
that high local population density broadly drives greater connectedness within ecological 283 
systems, at the individual level. Slopes were highly variable across systems for both spatial 284 
and social networks (Figure 3A; Q-test of heterogeneity across systems: Q37 = 5627.33 and 285 
Q25 = 1281.83, both P<0.0001), indicating that quantifying these slopes within and between 286 
multiple systems and comparing them is important for understanding animal socio-spatial 287 
structure. That is, relationships between density and individual connectedness differ 288 
substantially between populations, and the biological mechanisms underlying these divergent 289 
trends are likely important. As well as adding resolution and allowing comparisons of density 290 
effects across systems, our methodology facilitated fitting of nonlinear relationships (using 291 
generalised additive models (GAMs); see below). This approach has only rarely been applied 292 
before, and then at much coarser resolution (see [10,11,13]). As such, this study fills an 293 
important empirical gap by providing insights into the slope and shape of density-294 
connectedness relationships for a diverse variety of animal groups and their social and spatial 295 
behaviours (Figure 4). Nevertheless, despite this diversity, we were able to identify several 296 
further general trends in our data. 297 

Remarkably, density’s effect more than doubled in size for spatial compared to social networks 298 
(Figure 3B; r=0.45 versus 0.22); there was a difference of 0.26 (CI 0.16, 0.36, P<0.0001) for 299 
this effect when we meta-analysed the two contact types together. This finding indicates that 300 
as density increases, wild animals are more likely to share space with each other, but that 301 
social connections increase at a much slower rate. Similarly, we discovered that saturating 302 
shapes were extremely common: as density increased, its effect on connectedness 303 
decreased, such that 48/64 systems (75%) had a steeper slope at low density values than at 304 
high ones. This effect was strong for both social networks (effect on r= -0.11; CI -0.19, -0.03; 305 
P=0.01) and for spatial networks, with substantial overlap between their estimates (-0.22; -306 
0.37, -0.07; P=0.0042). Due to the greater overall effect for space sharing, the latter half of 307 
density’s spatial effect was still higher than the first half of its social effect (Figure 3C). 308 
Together, these observations suggest that density-dependent processes act to limit the 309 
increase in social connectedness with density, but without limiting spatial overlaps to the same 310 
extent. Consequently, higher-density areas are characterised disproportionately by individuals 311 
asynchronously sharing space rather than socially associating, while in lower-density areas 312 
individuals are disproportionately more socially connected proportional to their shared space. 313 



There are many possible social reasons for saturating nonlinearity in density-dependent 314 
network structuring: for example, individuals in higher density areas may begin to avoid each 315 
other, seeking to avoid competition or aggression [36] or exposure to infectious disease [44]. 316 
For instance, Eastern water dragons (Intellagama lesueurii) show greater avoidance at higher 317 
densities [15], supporting avoidance-related mechanisms. Alternatively, in species with high 318 
social cognition or stable bonds, saturation could reflect lower social effort or ability to keep 319 
track of social affiliates at higher densities [45]. In general, individuals likely have a preferred 320 
social interaction rate or group size – a preference that they may increasingly exert at higher 321 
densities [8]. It remains to be seen how this preference varies among individuals, and whether 322 
individuals vary in their preferred social network position given a certain density. Given that 323 
individuals vary in their movement and spatial phenotypes [46–48], and social phenotypes 324 
[48–50] in ways that should manifest for density-dependent behaviours specifically [18], it 325 
seems likely that these slopes could vary between individuals as they do between populations. 326 
Future analyses might fit variable density-connectedness slopes among individuals to identify 327 
socio-spatial syndromes across systems, as has been done previously in single systems 328 
including caribou (Rangifer tarandus) [51] and American red squirrels (Tamiasciurus 329 
hudsonicus) [52]. Additionally, we could dissect the social network and its relationship to the 330 
spatial network to identify levels of attraction [53,54] or avoidance [55] and how they depend 331 
on density. 332 

We considered that density-dependent changes in spatial behaviours might explain these 333 
trends: for example, density could create greater competition over resources and therefore 334 
reduce energy to roam (and contact others). Individuals may partition their niches [56], or 335 
reduce their territory or home range sizes [52,57,58], potentially driven by years of plentiful 336 
resources supporting higher densities alongside smaller home ranges sufficiently providing 337 
ones’ resource needs, which could drive lower association rates. However, our findings do not 338 
seem to support explanations related to small home ranges, because such explanations 339 
should produce an equivalent or stronger reduction in (relative) spatial connectedness. In 340 
contrast, we observed that density drove individuals to become spatially connected faster than 341 
socially, such that the underlying mechanisms likely involve behaviours and demographic 342 
processes that specifically affect social collocation in space and time. Testing the precise 343 
underlying mechanism will likely require finer-scale behavioural observations, as described 344 
below. Regardless of mechanism, these saturating density-connectedness relationships 345 
strongly support the idea that examining density effects at the individual level – rather than 346 
between populations – is highly informative. For many systems, “mean field” expectations of 347 
homogenous interactions under increasing density likely produce an inaccurate (i.e., inflated) 348 
picture of density’s effects. Importantly, our study included many examples of proximity-based 349 
social networks – most notably “gambit of the group” measures [59] – but relatively few “direct” 350 
interactions such as mating, grooming, or fighting. It is interesting that these differences 351 
manifested even among two ostensibly spatially-defined contact metrics (gambit of the group 352 
and home range overlap). This observation supports the assertion that social association 353 
metrics defined by spatiotemporal proximity are valuable for informing on social processes 354 
separately from more spatial behaviours sensu stricto such as ranging behaviour [14]; we 355 
expect that “more direct” interactions could show even further differences in relationships with 356 
density. Incorporating a larger number of “direct” metric-based systems could help to address 357 
this question (see Supplementary Discussion). 358 



The fact that spatial networks show stronger and more linear density dependence than social 359 
networks could heavily influence the ecology of animal systems. For example, indirectly 360 
transmitted (i.e., environmentally latent) parasites may exhibit greater density dependence 361 
than directly transmitted ones, given that individuals likely experience disproportionately more 362 
indirect contact at higher densities. This observation contrasts with orthodoxy that directly 363 
transmitted parasites are most likely to be density dependent [60], and supports the value of 364 
investigating nonlinear changes in socio-spatial behaviour and grouping patterns in response 365 
to density when considering density dependence. Saturating density-connectedness functions 366 
further have implications for disease modelling and control. Specifically, our findings lend 367 
behavioural support to the growing consensus that many diseases are density-dependent at 368 
lower densities, but not at higher densities (i.e., that the slope flattens with density) [17,61]. 369 
Rather than assuming constant behavioural mixing at higher densities, epidemiological 370 
models could benefit from incorporating density-dependent shifts in behaviours and 371 
demography that influence direct and indirect interaction frequencies, as previously suggested 372 
empirically and by epidemiological theory [17]. These relationships could influence our targets 373 
for culling or vaccination coverage [62]. Given that animals at high density seem likely to have 374 
a relatively shallow relationship between density and contact rates, reducing population 375 
density – for example by culling – might therefore be ineffective at reducing pathogen 376 
transmission initially, particularly when considering socially transmitted pathogens, where 377 
contact rates are particularly likely to have become saturated (Figure 3C). Similar problems 378 
with culling have already been acknowledged in specific systems – e.g. in canine rabies 379 
[39,63,64]  – but our study implies that shallow nonlinear density-contact trends could be more 380 
general than previously thought and could be driven by flexible density-dependent changes in 381 
behaviour and demography. Conversely, culling could be disproportionately effective at 382 
intermediate densities and identifying the inflection points of the curve might help to design 383 
optimal management strategies. Future studies should investigate whether the divergence in 384 
spatial and social connectedness with density drives a concurrent divergence in the 385 
prevalence of directly and indirectly transmitted parasites, as well as addressing several other 386 
biases in our selection of systems (e.g. [65]; see Supplementary Discussion). 387 

Beyond these general trends, we ran generalised additive models (GAMs) that revealed that 388 
52/64 density effects on network connectedness (81%) were significantly nonlinear (ΔAIC>2); 389 
these relationships took a wide variety of shapes, representing a range of nonlinear functions 390 
that are hard to generalise (Figure 4). Notably, while many GAM smooths were eventually 391 
significantly negative (Figure 4), the vast majority of linear models fitted to the second half of 392 
the data were positive (Figure 3C); this result is likely an artefact of restricted model fitting, 393 
rather than true downturns in connectedness with density. Nonlinearity did not cluster 394 
according to connection type definitions, or according to animal group. These observations 395 
were largely corroborated by our meta-analytical models, which found no factors influencing 396 
the slope and shape of density effects overall (P>0.05; Supplementary Table 3), including no 397 
clear phylogenetic signal (ΔAIC=2.71). This observation speaks to the complexity of these 398 
relationships within and across systems, while accentuating that simple functional 399 
relationships are often likely to be complicated by contravening ecological factors like habitat 400 
selection [66,67], group formation [9], parasite avoidance [68], and demographic structuring 401 
[69]. While we were unable to identify specific between-system predictors of nonlinearity of 402 
density-connectedness relationships, the finding that most such relationships are strongly 403 
nonlinear is an important consideration for future work.  404 



Density is a universal factor underlying the dynamics of animal populations, and its linear and 405 
nonlinear effects on spatial and social network structure are likely to impact myriad processes 406 
in behaviour, ecology, and evolution. Similar to other studies that have reported general 407 
scaling patterns in network analysis [70] and in food web ecology [71], the patterns we report 408 
strongly suggest that animal systems generally become more connected spatially than socially 409 
under increasing density. These trends might extrapolate to human networks, given that other 410 
scaling patterns in animal networks do [70]. As these patterns seemingly manifest regardless 411 
of animal group and interaction type, they may reflect a generalisable rule governing the socio-412 
spatial structure of ecological systems. Further refining and implementing these models could 413 
facilitate prediction of network structure in novel systems. 414 

Finally, this study is relatively unique in conducting an expansive meta-analysis of behavioural 415 
data from individual animals across a diverse selection of systems. As datasets accumulate 416 
comparative analyses are increasing in frequency in social network ecology [72], but often 417 
revolve around analysing whole networks rather than individuals [73], and never (to our 418 
knowledge) in conjunction with analyses of spatial behaviour. These analyses therefore hold 419 
exceptional promise for disentangling spatial and social behaviour across diverse systems; for 420 
example, given that our dataset includes many repeatedly sampled known individuals, future 421 
analyses could investigate individual-level repeatability or multi-behaviour “behavioural 422 
syndromes” across a variety of different taxa and environments [18,74]. Additionally, 423 
capitalising on the wide range of methodological approaches to behavioural data collection 424 
(e.g. censuses, trapping, and GPS telemetry), the methodological constraints of socio-spatial 425 
analyses could be tested in this wide meta-dataset as they have been in other recent 426 
comparative analyses of wild ungulates [75]. As well as being diverse, our meta-dataset had 427 
several replicate examples of (for example) marine mammals and trapped rodents, which 428 
could be used for finer-scale and more targeted comparative analyses within these smaller 429 
taxonomic groupings. For now, it is highly encouraging that we uncovered general trends 430 
across these disparate animal systems, and further explorations of these socio-spatial 431 
patterns may help to inform a wide range of exciting and longstanding questions at the spatial-432 
social interface [18]. 433 

Methods 434 

Data standardisation and behavioural pipeline 435 

Data were manipulated and analysed using R version 4.2.3 [76], and all R code is available at 436 
https://github.com/gfalbery/DensityMetaAnalysis. Our 36 datasets each involved at least one 437 
continuous uninterrupted spatial distribution of observations in a single population; some 438 
datasets comprised multiple such populations; all systems had at least one social network 439 
measure, and two had two different types of social interaction. These datasets covered 30 440 
different animal species, including sharks, carnivores, cetaceans, ungulates, rodents, 441 
elephants, birds, reptiles, and one orthopteran insect (Figure 2). In one case (The Firth of Tay 442 
and Moray Dolphins) we used two distinct replicates despite being composed of overlapping 443 
groups of individuals, because of their distinct spatial distributions, which made it difficult to fit 444 
a coherent density distribution. 445 

To standardise the timescale across studies, all systems were analysed as annual replicates 446 
– i.e., social and spatial networks were summarised within each year. Our analyses used 64 447 

https://github.com/gfalbery/DensityMetaAnalysis
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system-behaviour replicates, listed in Supplementary Table 1, and totalled 151,835 unique 448 
system-individual-year-behaviour data points. 449 

All spatial coordinates were converted to the scale of kilometres or metres to allow comparison 450 
across systems. To provide an approximation of local density, following prior methodology 451 
[14,77], we took each individual’s average location across the year (their centroid) and created 452 
a spatial density kernel using the `adehabitathr` package [78], which provides a probabilistic 453 
distribution of population density across each study system based on the local frequencies of 454 
observed individuals. Each individual was assigned an annual estimate of local density based 455 
on their centroid’s location within this spatial density distribution. We made these density 456 
distributions as comparable as possible between systems by incorporating the density raster 457 
using metre squares; however, there were large differences in density across populations that 458 
were difficult to resolve and put on the same scale (e.g. interactions per individual/km2 unit of 459 
density). Consequently, we scaled and centred density to have a mean of zero and a standard 460 
deviation of one within each population, which allowed us to focus on differences in relative 461 
slope and shape across systems.  462 

To validate the local density measures estimated using the kernel density approach, we also 463 
estimated local density for individuals across all populations based on the locations of 464 
individual annual centroids within a designated area. To do so, we first estimated the area of 465 
the minimum bounding box (MBB) within which all individuals were censused during the study 466 
period based on their annual centroids. For each individuals mean location, we then estimated 467 
a circular boundary of radius r=1/20 * area of MBB. We then calculated the number of 468 
individuals present within this boundary as an individual’s local density measure. We 469 
estimated the Pearson correlation coefficients between the local density measures derived 470 
using the KDE approach and the proportional area - based approach (Supplementary Figure 471 
1). 472 

To provide a measure of asynchronous space sharing, we constructed home range overlap 473 
(HRO) networks based on proportional overlap of two individuals’ minimum convex polygon 474 
(MCP; i.e., the bounding polygon around all observations of each individual in a given year). 475 
These HRO networks were restricted to only individuals with five or more observations in a 476 
given year to allow us to create convex polygons effectively; 10/36 (28%) systems did not 477 
have sufficient sampling for this analysis. We also repeated our analyses with a series of 478 
higher sampling requirements for observation numbers to ensure that our findings were robust 479 
to this assumption. The MCP approach is relatively low-resolution, and assumes uniform 480 
space use across an individual’s home range; however, this approach is less data intensive – 481 
and less sensitive to assumptions – than density kernel-based approaches that would estimate 482 
variation in space use across the home range, allowing us to apply the models across more 483 
systems, more generalisably, and more conservatively.  484 

To provide a measure of social connectedness, we built social networks using various 485 
approaches as defined by the original studies: direct observations of dyadic interactions (e.g. 486 
fighting or mating); gambit of the group (GoG; i.e., membership of the same group) [59]; co-487 
trapping (i.e., trapped together or in adjacent traps within a given number of trapping 488 
sessions); or direct contact measured by proximity sensors (defined by a certain distance-489 
based detection threshold). Notably some analyses use indirect interactions – i.e., spatial 490 
overlap – to approximate direct interactions, which requires spatiotemporal coincidence, which 491 



we caution against particularly when modelling pathogen transmission [35,79]. While the two 492 
do often correlate, here we are not using HRO to approximate direct interaction rates, but 493 
rather as a measure of indirect interactions (e.g., indicative of transmission of environmental 494 
parasites). 495 

For each social network, we scaled connection strength relative to the number of observations 496 
of each individual in a dyad (i.e., simple ratio index [80]). Our response variable therefore took 497 
the form of strength centrality, scaled to between 0-1 for each dyad, for each social and spatial 498 
network. We focus on comparing density effects on social interactions and associations with 499 
density’s effects on space sharing. 500 

Density-connectedness models: what forms do density effects 501 
take? 502 

We developed a workflow to allow us to derive and compare density’s effects on 503 
connectedness – and their drivers – in a standardised way across our animal systems. We 504 
fitted models with three main forms: linear models fitted to the whole dataset, nonlinear 505 
Generalised additive models fitted to the whole dataset, and linear saturation models fitted 506 
separately to low- and high-density subsets of each dataset.  507 

Linear models: For each system-behaviour replicate, we first fitted a linear model using the 508 
`lm` function in R, fitting scaled density as an explanatory variable to estimate linear density 509 
effect slopes. The linear fits are displayed in the supplement (Supplementary Figure 2), as are 510 
the residuals (Supplementary Figure 3). 511 

Generalised additive models (GAMs): We fitted GAMs in the ̀ mgcv` package [81] to identify 512 
whether each density effect was better described by a linear or nonlinear relationship, and to 513 
identify the shape of these nonlinear relationships. For each model, we fitted a default thin 514 
plate spline with k=4 knots. This knot number was selected to reduce overfitting in our models, 515 
which formed several fits to the data that were difficult to reconcile with functional formats. To 516 
assess whether nonlinear models fit better than linear models, we used Akaike Information 517 
Criterion (AIC), with a contrast of 2ΔAIC designated to distinguish between models.  518 

Saturation models: To quantify whether density effects were generally saturating (i.e., that 519 
density had steeper relationships with individuals’ connectedness at lower density values), we 520 
split the data into two portions: all values below the median density value, and all values above 521 
the median. We then re-ran linear models examining the relationship between density and 522 
strength in each portion. We attempted to investigate nonlinear patterns (especially saturating 523 
effects) across all our systems using a range of other methods (e.g., comparing specific 524 
functional relationships with nonlinear least squares), but found that they were generally 525 
incapable of fitting well to the data in a standardised way across the many datasets (i.e., non-526 
convergence of nonlinear least squares using semi-automated starting estimates across 527 
systems). As such, this approach represented a tradeoff between tractable, generalisable 528 
model fitting, interpretability, and accurate representation of the relationship’s shape. All else 529 
being equal, we posit that investigating the relative slopes of two otherwise-identical portions 530 
of the data is a conservative and informative method of identifying saturation, which was our 531 
main hypothesis for the expected shape of density effects. 532 



Heteroskedasticity and log-log models: To ensure that our estimates were robust to non-533 
normality and to provide another source of information concerning possible saturation effects, 534 
we also conducted tests of heteroskedasticity on our linear models and accompanied them 535 
with simulations and fitted log-log linear models. First, we carried out a simple simulation study 536 
to test how: a) the skew in residuals; b) a saturating relationship; and c) heteroscedasticity 537 
impact whether we may under- or overestimate the slope of an assumed linear relationship 538 
between density and strength (See Supplementary Methods - Heteroskedasticity 539 
Simulations). These demonstrated that our models were resilient to skew and saturating 540 
effects, but that heteroskedasticity in residuals could drive overestimated linear effects in our 541 
models. 542 

To examine this possibility further, we derived the Breusch-Pagan statistic for each linear 543 
model as a measure of heteroskedasticity, and then plotted it against the meta-analysis 544 
covariates and fixed effects. There was no evidence that the density effect was being skewed 545 
to be greater for spatial behaviours due to heteroskedasticity, and neither were the second 546 
portions of the data more heteroskedastic, which would be expected if this was driving the 547 
saturating effect (Supplementary Figure 4). Finally, we fitted log-log linear models with the 548 
same formulations as our main linear models defined above, but with both density and strength 549 
log(X+1)-transformed, rather than scaled to have a mean of 0 and a standard deviation of 1 550 
(Supplementary Figure 5). Our results showed broadly identical findings of greater estimates 551 
for spatial behaviours, and the fact that the slopes were largely under 1 is indicative of a 552 
saturating effect. As such, these tests strongly support our findings’ resilience to uneven data 553 
distributions. 554 

Meta-analysis: what factors determine the slope of density- 555 
connectedness relationships? 556 

To characterise the typical relative slope of density effects across systems and identify the 557 
factors influencing their variation, we fitted hierarchical meta-analytical models using the 558 
`metafor` package in R. The response variable was the standardised slope of the linear density 559 
effect; because both individual network strength and density were scaled to have mean of zero 560 
and standard deviation of one in the linear regression, this is equivalent to the correlation 561 
coefficient (r) [82]. We converted all correlation coefficients into Fisher’s Z (Zr) and computed 562 
associated sampling variance.  563 

For our hierarchical meta-analysis models, we used an initial model that nested observations 564 
within a system-level random effect to account for within- and between-system heterogeneity 565 
[83], as 26/36 systems had more than one density effect. We used another random effect for 566 
species to account for repeat observations per animal species.  567 

We then added a separate random effect for animal phylogeny [84]. This effect used a 568 
phylogenetic correlation matrix of our 30 animal species derived from the Open Tree of Life 569 
via the `rotl` package [85], with the `ape` package used to resolve multichotomies and provide 570 
branch lengths [86].  571 

We then fitted intercept-only models using the `rma.mv()` function with restricted maximum 572 
likelihood (REML), weighted by inverse sampling variance, and used variance components to 573 
quantify I2, the contribution of true heterogeneity to the total variance in effect size. We used 574 



Cochran’s Q to test whether such heterogeneity was greater than that expected by sampling 575 
error alone. 576 

We next fitted models with the same random effects structure that included explanatory 577 
variables. To detect whether some animals were more likely to experience density effects, we 578 
fitted Animal group as a factor with six categories, representing a combination of species’ 579 
taxonomy and general ecology: aquatic (fish and dolphins), birds, large herbivores (elephants 580 
and ungulates), small mammals (rodents and hyraxes), carnivores, and ectotherms (insects 581 
and reptiles). We also fitted several explanatory variables indicative of greater statistical power 582 
that might increase the strength of density effects: Geographic area (km2, log10-transformed), 583 
Number of years of study, and Number of individuals, all of which we fitted as continuous 584 
covariates. Broadly, the animal group model was highly uninformative and competed with the 585 
other effects, and we expected that the phylogeny would be more informative, so we report 586 
the results of the model without the animal group effect fitted. 587 

We ran several different versions of these meta-analyses: first, we fitted meta-analytical 588 
models to the overall linear models of spatial and social interaction types separately, and 589 
then together, to investigate differences between the spatial and social networks in terms of 590 
their mean density slope. Next, we fitted duplicated versions of these models, but with the 591 
saturation models. These models were identical, but each system replicate had two linear 592 
estimates: one taken from the first 50% of the data (up to the median), and one from the latter 593 
50%. By fitting a binary fixed effect of “data portion” to the meta-analytical models, this model 594 
would tell us whether the slopes were generally higher in the first portion of the data than the 595 
last (and therefore showed generally saturating shapes). We were unable to fit meta-analytical 596 
models to our GAMMs, as methods for the meta-analysis of nonlinear estimates are not yet 597 
well defined. 598 

Data availability 599 

The data required to run the meta-analysis models are available on Zenodo at  600 
https://doi.org/10.5281/zenodo.15847435 on GitHub at 601 
github.com/gfalbery/DensityMetaAnalysis. Datasets are available from contributing coauthors 602 
upon request. 603 

Code availability 604 

All code is available on Zenodo at https://doi.org/10.5281/zenodo.15847435 and on GitHub at 605 
github.com/gfalbery/DensityMetaAnalysis. 606 
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Figure legends 625 

Figure 1: Schematic detailing the rationale underlying this study, outlining how population density 626 
drives the formation of spatial and social networks. This depiction uses the Wytham Wood great tits 627 

as an example. Panel A presents the outline of the woods. In panel B, the points represent individual 628 
birds’ locations, with some jittering added; the red shading represents local population density. In 629 

panel C, the different purple shades correspond to different individuals’ home ranges. In panel D, red 630 
lines depict connections among individuals, with each individual located at their centroid. Ultimately, 631 

one of our main aims is to ask whether spatial or social connections generally show a stronger 632 
relationship with density, partly functioning as a proxy for indirect and direct contact events with the 633 
potential to transmit pathogens. This framework moves between concepts of network and contact 634 

formation traversing behavioural ecology, spatial and social network ecology, and disease ecology. 635 

Figure 2: The phylogenetic (A) and geographic (B) distribution of our 36 examined datasets of spatial 636 
and social behaviour, with (C) schematic depicting the methodology for deriving local density values, 637 

using the Isle of Rum red deer data as an example. The X and Y axes are bivariate spatial 638 
coordinates. The panels within (C) show raw observations of individuals in space that we then 639 

average at the individual level to make centroids; we use the centroids to generate annual density 640 
distributions, which are then assigned to individuals in the form of local density measures. Animal 641 

silhouettes are from phylopic.org; a list of attributions is in the supplement (Supplementary Table 2). 642 
NB the Potomac dolphins are now defined as Tursiops erebennus; they are currently incorporated in 643 

Panel A as T. truncatus, following the Open Tree of Life nomenclature. 644 

Figure 3: Meta-analysis revealed drivers of variation in linear density effects on individual 645 
network connectedness across N=36 systems comprising N=64 system-behaviour 646 

replicates. A) Our fitted linear model estimates of density effects on network strength. Each 647 
point represents the mean estimate from a given system; the error bars denote 95% 648 
confidence intervals. Opaque error bars were significant (i.e., do not overlap with 0); 649 

transparent ones were not. The estimates are in units of standard deviations for both density 650 
and network strength. The colour of the point denotes whether the network being examined 651 
was defined using spatial or social connections. B) Meta-analyses revealed that centrality in 652 

spatial networks (i.e., home range overlap; red points) had a significantly steeper 653 
relationship with density than social networks (blue points). C) We fitted linear models 654 

separately to two portions of the data within each study population (“first” and “last” 655 
represent values below and above the median). The slopes for the latter portion (pink points) 656 

were generally less positive than the former portion (purple points), implying a general 657 
saturation shape. In panels B) and C), each coloured point represents a study replicate fitted 658 

to the strength estimate; points are sized according to sample size, and jittered slightly on 659 
the x axis to reduce overplotting. The large black points represent the mean slope estimated 660 

from the meta-analysis, and the error bars represent 95% confidence intervals.  661 

Figure 4: Relationships between density and network connectedness varied substantially across 662 
N=64 animal systems comprising N=151,835 individual animals. Density in individuals per area is on 663 

the x axis; network connectedness (strength centrality) is on the y axis. Both values have been 664 
standardised to have a mean of zero and a standard deviation of 1 within each system; the axis ticks 665 
are in units of 1 standard deviation. Each point represents an individual-year-behaviour replicate; the 666 

lines portray the model fit from our generalised additive models (GAMs). Red lengths of the 667 
smooth=significantly positive; grey=not significantly different from zero; blue=significantly negative. 668 
Points are semi-transparent to enhance visibility. Panels are arranged phylogenetically following the 669 



tree displayed in Figure 2A; GOG=gambit of the group; HRO=home range overlap. Animal silhouettes 670 
are from phylopic.org; a set of links and attributions are in the Supplement. 671 
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