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Abstract 4 

This paper brings forth a new automatic approach to determine the propagation parameters 5 

(horizontal velocity, propagation direction, and orientation) of mid-latitude ionospheric plasma 6 

structures (MIPS) using airglow images recorded by an all-sky airglow imager located at Hanle, 7 

Ladakh, India. The proposed approach is an amalgamation of two frameworks – a hybrid deep 8 

learning image segmentation model for localization along with automatic determination of 9 

parameters using the intensity minima of the MIPS. Designed in the form of a pipeline, the 10 

frameworks are executed sequentially. The propagation parameters obtained from the 11 

automatic method have been compared with the results of a previously implemented semi-12 

automatic approach. Comparison between the two approaches revolves around the error 13 

involved, time complexity, and dependency on the morphology of the plasma structures. The 14 

results suggest that the proposed method can be adopted over the semi-automatic approach as 15 

it has less error, minimal dependency on the morphology of the structures, and less time-16 

exhaustive. 17 

 

 

Keywords: All-sky airglow imager; Image segmentation; Mid-latitude ionospheric plasma 

structure; Deep learning. 

 

Highlights:  

• A new automatic method is developed to localize and determine the propagation parameters 

of MIPS. 

• The proposed method performed better when results were compared with a semi-automatic 

approach. 

• The automatic approach has less error, low time complexity, and minimum dependency on 

the morphology of plasma structures.  

18 
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1. Introduction 19 

The mid-latitude ionosphere was historically considered quiescent in nature. However, with 20 

the advancement of different probing techniques (ionosonde, incoherent scatter radar, airglow 21 

photometers and imagers) it is observed that different ionospheric plasma structures 22 

(irregularities) occur even in the mid-latitude region (Benzcze & Bakki, 2002; Bowman, 1981; 23 

Figueiredo et al., 2018; Fukao et al., 1991; Huang et al., 2018; Mathews et al., 2001; Miller, 24 

1997; Otsuka et al., 2004, 2008; Shiokawa et al., 2008; Sivakandan et al., 2020, 2021; Sun et 25 

al., 2015). These plasma structures include medium scale traveling ionospheric disturbances 26 

(MSTIDs) and mid-latitude field-aligned plasma depletion (MFPD). MSTIDs are propagating 27 

low and high electron density structures in the mid-latitude ionosphere having a preferential 28 

orientation of the fronts in both hemispheres (Ding et al., 2011; Hocke and Schlegel, 1996; 29 

Huang et al., 2016, 2018; Otsuka et al., 2004; Shiokawa et al., 2003a, 2005; Sun et al., 2015). 30 

Whereas, MFPDs are geomagnetically field-aligned plasma structures which cause the 31 

appearance of spread-F in ionograms (Fukao et al., 1988; Sivakandan et al, 2020; Yadav et al., 32 

2021a; and references therein). Previous studies have revealed that the propagative 33 

characteristics (velocity and orientation) of the mid-latitude ionospheric plasma structures 34 

(MIPS) play a crucial role in their dynamics (Otsuka et al., 2012; Patgiri et al., 2024a; Rathi et 35 

al., 2022, 2024; Wu et al., 2021; Yadav et al., 2021a). These studies reported that due to the 36 

change in orientation and/or velocity resulted in interaction, merging, distortion, and 37 

dissipation of these structures. Therefore, precise determination of these propagative 38 

characteristics is essential in studying the different phenomena associated with these structures.   39 

In recent years, quite a few methods have been developed and implemented to estimate 40 

these characteristics. A semi-automatic approach was developed and used by Yadav et al. 41 

(2021a) to investigate multiple fronts of an MSTID. Furthermore, the same method was applied 42 

to study various MSTID events involving interaction, merging, and dissipation (Patgiri et al., 43 

2024a; Rathi et al., 2021, 2022; Yadav et al., 2021b). A 3-D spectral analysis method was also 44 

applied to all-sky airglow images to determine the horizontal velocity, propagation direction 45 

and period (Takeo et al., 2017; Tsuboi et al., 2023). In another recent study, Liu et al. (2022) 46 

determined various characteristics of MSTIDs using TEC maps. These studies have determined 47 

different parameters, however, they were unable to provide any information about the velocity 48 

of the individual bands of MSTIDs and find their respective orientation. At present, finding 49 

propagation parameters of plasma structures is primarily based on semi-automatic approaches 50 
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that require manual intervention thus making it difficult, time-consuming, and subject to human 51 

error when the dataset is large-scale and spanning over years.  52 

The advent of deep learning algorithms has transformed the analysis of large datasets by 53 

bringing forth approaches that are capable of feature extraction, transformation, segmentation, 54 

and classification. With the amalgamation of deep learning techniques in the domain of space 55 

sciences, researchers have applied a variety of techniques for image segmentation in studying 56 

the complex and dynamic patterns of auroral images (Gao et al., 2011; Niu et al., 2018), cloud 57 

classification (Fabel et al., 2022; Hasenbalg et al., 2020; Xie et al., 2020; Zhang et al., 2018), 58 

gravity wave identification (Kumar et al., 2023; Lai et al., 2019) and so on. Previous studies 59 

on airglow images have mostly focused on understanding the generation mechanism of plasma 60 

irregularities, finding statistical characteristics (Lai et al., 2023), and analysis of these 61 

structures through image classification using conventional as well as machine learning 62 

approaches (Chakrabarti et al., 2024a; Githio et al., 2024). Therefore, the localization of MIPS 63 

and determination of their characteristics with the help of a deep learning approach is a first of 64 

its kind in this domain.  65 

In this study, we present a hybrid deep learning algorithm for all-sky airglow image 66 

segmentation to localize MIPS. A major contribution of this work is the custom-designed 67 

framework that is capable of finding the propagation parameters of these structures without 68 

any manual intervention. The paper is structured as follows. The two frameworks and their 69 

workings are introduced in section 2 along with the dataset description. Section 3 describes the 70 

detailed evaluation and discussion of experimental outcomes, followed by the conclusion in 71 

section 4. 72 

 73 

2. Data and Frameworks  74 

2.1 Data Description 75 

The dataset used in the present study is from a multi-wavelength all-sky airglow imager 76 

installed at Hanle (32.77°N, 78.97°E), Ladakh, India, that captures raw images of two airglow 77 

emissions (557.7 nm and 630.0 nm). The raw images are then processed for geospatial 78 

calibration where the corresponding latitude and longitude value of each pixel is calculated. 79 

This is followed by noise removal and unwarping of images to get the final processed images. 80 

A detailed description of the image processing techniques is given by Mondal et al. (2019). In 81 

the present study, we have used 630.0 nm unwarped airglow images (spanning over the latitude 82 

and longitude of 28 – 39°N and 73 – 86°E, respectively; as presented in Figure 1) for the 83 

localization and characterization of MIPS using a combined approach of deep learning 84 
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segmentation and automatic parameterization. The hybrid deep learning model for image 85 

segmentation is trained using nearly 1700 unwarped images consisting of single as well as 86 

multiple band plasma structures and their respective ground truth (a binary image/mask that 87 

serves as the reference for evaluating the image segmentation algorithm by highlighting the 88 

structures as zero/black and background as one/white) that spanned over five years (from 2018 89 

to 2022). It is to be noted that most of the events (~ 96%) during these five years occurred 90 

during geomagnetically quiet time. The images of these events used as input in the hybrid deep 91 

learning model were previously classified as ‘presence of plasma structures’ by a separate, 92 

stand-alone convolutional neural network model (Chakrabarti et al., 2024a). To the best of our 93 

knowledge, studies pertaining to the automatic characterization of MIPS were not reported in 94 

the literature. Therefore, we developed an automatic approach to find the propagation 95 

parameters of these structures. As mentioned previously, MIPS can appear as single or multiple 96 

bands in the all-sky airglow images but the present work revolves around only single dark band 97 

plasma structures. Five such events of single dark band structures with different morphologies 98 

(shape and size) were considered. 99 

 100 

2.2 Proposed Methodology 101 

The proposed methodology has two separate frameworks – the first framework chiefly consists 102 

of two steps, as shown in Figure 2, for image segmentation using a deep learning approach. 103 

The second framework, as presented in Figure 4, is a combination of multiple steps for finding 104 

the propagation parameters automatically. Detailed descriptions of the proposed frameworks 105 

are mentioned below. 106 

Framework 1: Deep learning-based image segmentation  107 

Step 1: Pixel thresholding for generation of mask 108 

Thresholding is an approach to convert a gray-scaled image to a binary image or ‘mask’ such 109 

that the objects present in the image can be separated from the background (Bovik, 2009). The 110 

pixels are defined on their intensity value and are generally denoted as either 0 or 1 based on a 111 

particular threshold value. A binary mask is generated where it defines the region of interest 112 

(ROI). The ROI and background are defined by either 0 or 1 (Bovik, 2009). In this work, single 113 

thresholding was performed, where the intensity is above or below a specified threshold. The 114 

single pixel thresholding approach has three main functions – histogram stretch, mapping of 115 

intensity level and finally the thresholding. The histogram stretch function uses minimum and 116 

maximum intensity values on the image, followed by mapping each intensity level to an output 117 
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intensity level. The final function is thresholding, where a desired threshold value is given to 118 

generate the masked image that serves as the ground truth in the image segmentation model.   119 

Step 2: Hybrid image segmentation model 120 

The architecture of the image segmentation model is based on the combination of the VGG16 121 

and the U-Net model (Ronneberger et al., 2015). Leveraging the pre-trained feature extraction 122 

competency of VGG16 while exploiting the unique U-shaped symmetrical architecture of the 123 

encoder-decoder (Shelhamer et al., 2017) with skip connections in between makes this 124 

framework robust and efficient for image segmentation. The convolutional layers of VGG16 125 

(Ayeni, 2022; Simonyan & Zisserman, 2014) are capable of extracting rich features from the 126 

input images and comprise the top half of the hybrid model, which is used as an encoder or the 127 

down-sampling path. The decoder of the U-Net, also known as the up-sampling path, uses 128 

transposed convolutions (deconvolution) for the reconstruction of the spatial dimension of the 129 

image (Fabel et al., 2022). The skip connections play a crucial role in integrating and retaining 130 

the fine-grained details of the encoder layer to the decoder layer during the up-sampling process 131 

(Wang et al., 2022). These connections are responsible for the concatenation of output from a 132 

preceding layer with the batch-normalized output of the corresponding encoder layer (Ioffe & 133 

Szegedy, 2015). The presence of skip connections enables feature channels in the decoder to 134 

encompass contextual information that aids in explicit localization (Fabel et al., 2022). The 135 

overview of the entire image segmentation framework is presented in Figure 2. The deep 136 

learning model used Adam optimizer (learning rate of 0.0001) and standard binary cross-137 

entropy as the loss function with the rest of the default parameters. This hybrid model entailed 138 

robust feature extraction and detailed localization which made it suitable for the image 139 

segmentation task. Figure 3 shows five instances of single-band MIPS that were segmented 140 

using the aforementioned hybrid approach. The figure depicts the original unwarped images, 141 

their masked counterparts that served as the ground truth and the obtained segmented images 142 

from the deep learning model. The algorithm of Framework 1 is mentioned in Appendix A 143 

along with the working principle of the hybrid image segmentation model.  144 

 

Framework 2: Automatic estimation of propagation parameters (Velocity, propagation 145 

direction, and tilt angle) 146 

Step 1: Loading segmentation model and input file  147 

The trained hybrid deep learning model was used to localize single dark band MIPS from the 148 

unwarped input file and generate the corresponding segmented images. 149 

Step 2: Locating the MIPS and condition to skip frames 150 



7 

 

The segmented images generated by Framework 1 were subjected to row-wise scanning to find 151 

the intensity minima of the structure and their pixel coordinates (x, y) as shown in Figure 4(a 152 

& b). The obtained coordinates of the minima points were used to plot a best-fit line (least-153 

square fit method) in each of the frames. While plotting the best-fit line, it was observed that a 154 

few outlier points were degrading the line fitting. In order to reduce the number of such outlier 155 

points, a condition was applied that automatically removed the points which have higher 156 

squared error than the average squared error of all the points from the initial best-fit line. Two 157 

examples are shown for pictographic explanation of the approach involved in plotting the first 158 

and the second best-fit line. The white dots in all the sub figures of Figure 5 represent the 159 

minima points obtained after row scanning, which are then used to draw the best fit line as 160 

marked in red. Outlier minima points (few instances shown as dashed circle in Figure 5a) 161 

having higher squared error than the average squared error is removed before plotting the 162 

second best-fit line. The scenario after removal of these outliers is presented in Figure 5b where 163 

locations of previously present outlier minima points are marked in dashed circle along with 164 

the second best-fit line. These second best-fit lines were used to calculate the propagation 165 

velocity as shown in Figure 4c – e. However, it is evident from the segmented images (Figure 166 

3), that single dark band MIPS vary in morphology with some having sharp and defined 167 

structures, while others having diffused structures. As expected, the diffused and distorted 168 

structures (Figure 3d–e) tend to have more scattered minima points that can lead to an overlap 169 

of points in the successive frames, which may affect the velocity calculation. To address such 170 

scenarios, instead of successive frames, a skipping condition is incorporated in the algorithm 171 

that processes alternate frames (one skip). For the skipping condition, the average squared error 172 

of all the minima points from the second best-fit line is calculated. The framework skips the 173 

frames if the number of such minima points fail to cross seventy-five percent (a substantial 174 

coverage of minima points) of the total minima points while lying within the average squared 175 

error value.  176 

Step 3: Determination of propagation parameters and error calculation  177 

After the skip condition, the velocity was calculated using the perpendicular distance between 178 

the best-fit lines of the two frames (including events where a skip was required) as shown in 179 

Figure 4e. The perpendicular distance was calculated from the mid-point of the best-fit line of 180 

one frame to that of the next one using the corresponding zonal and meridional distance 181 

coordinates. The algorithm of Framework 2 is mentioned in Appendix B. The framework also 182 

determines the propagation direction and orientation of the MIPS (anti-clockwise from 183 

geomagnetic north-south) using the slope of the second best-fit line. Since this approach is 184 
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based on the concept of best-fit line, it will have an error when the parameters are determined. 185 

Therefore, this framework also estimates the error involved while calculating the velocity, 186 

propagation direction, and tilt angle. The schematic representation of the methods used to 187 

calculate the error involved in determination of velocity, propagation direction, and tilt angle 188 

are presented in Figure 6. Figure 6a shows the second best-fit lines that has been used to 189 

calculate the velocity of the ionospheric plasma structures.  Figure 6b presents the approach to 190 

determine the error involved in plotting of the best-fit lines. To estimate this error, the method 191 

of standard error (SE) is used to find the margin between which the best-fit lines can lie 192 

depending on the spread of the minima points. Here, Δd is the distance error in plotting the 193 

best-fit line. Therefore, in determining the velocity error between two frames we have 194 

considered the distance error of each frame (d1, d2, …dn, where n = number of frames). 195 

Based on this the total error in velocity between two frames is calculated as (Δ𝑑1 + Δ𝑑2)/Δ𝑡 , 196 

where t is the time difference between two frames. Figure 6c shows the approach to calculate 197 

the tilt angle (𝜃) and propagation direction (𝜙 =  𝜃 + 90°) from the geomagnetic north-south 198 

(anti-clockwise). Figure 6d is the schematic representation of the approach to determine the 199 

error involved in calculating the propagation direction and tilt angle. The dashed lines represent 200 

the error margins as shown in Figure 6b. Errors can be approximated by how much the slope 201 

of the best-fit line can vary within the error margins. The error lies between the best-fit line and 202 

the line (passing through the midpoint of the best-fit line) connecting the two endpoints of the 203 

error margins. 204 

 205 

3. Results and Discussion 206 

Mid-latitude ionospheric plasma structures are often observed as a single dark band (MFPD) 207 

as well as multiple (bright and dark) bands (MSTIDs) (Figueiredo et al., 2018; Paulino et al., 208 

2018; Pimenta et al., 2008; Rathi et al., 2021; Sivakandan et al., 2020). Recently, a few studies 209 

have reported interaction between these plasma structures which led to certain post-interaction 210 

phenomena such as – merging, bifurcation, and dissipation (Wu et al., 2021, Patgiri et al., 211 

2024a; Rathi et al., 2021, 2022; Yadav et al., 2021b). They have enumerated various factors – 212 

horizontal velocity, orientation, propagation direction, and polarization electric field of these 213 

plasma structures that play a crucial role in their interactions. Therefore, the accurate 214 

determination of their horizontal velocity, propagation direction, and orientation (tilt angle) is 215 

necessary to comprehensively understand the phenomena associated with these MIPS.  216 
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As previously mentioned, various authors have developed and applied different approaches 217 

to determine the propagative characteristics of the MIPS. Yadav et al. (2021a), developed a 218 

semi-automatic approach to find the horizontal velocity and orientation of MSTID bands 219 

observed in the 630.0 nm airglow images. The method requires visual inspection of the MSTID 220 

bands to manually locate and mark two points along a straight part of the front’s edge. Using 221 

the coordinates of the two points, a straight line is drawn. This step is repeated for all the images 222 

of any particular event. With the help of such lines in successive images, the method determines 223 

the horizontal velocity and tilt angle of the MSTID bands. Although this method was used in 224 

multiple studies (Patgiri et al., 2024a, 2024b; Rathi et al., 2021, 2022; Yadav et al., 2021b), 225 

there are certain major drawbacks associated with it. As this method involves manual 226 

intervention, there is a high degree of subjectivity and human error. This error can be reduced 227 

to an extent with the repetition of steps over multiple iterations which is quite time-consuming. 228 

Also, this approach only works for MSTID bands having distinct and straight edges and fails 229 

when the edges are distorted or diffused. Due to these shortcomings of the semi-automatic 230 

approach, the present study puts forth an automatic method which requires no human 231 

intervention, is less time-consuming, and can work on any type (diffused/distorted) of mid-232 

latitude plasma structures.  233 

The automatic method encompassed two frameworks – a deep learning-based image 234 

segmentation for localizing the MIPS (refer subsection 2.2, Framework 1) and an automatic 235 

estimation of propagation parameters (refer subsection 2.2, Framework 2). Framework 2 in its 236 

current form is capable of determining the propagation parameters of MIPS consisting of only 237 

a single dark band. More than six years of data were meticulously checked and five events 238 

exhibiting single dark band MIPS were identified. Following the localization of the structures 239 

in the airglow images, the automatic approach was applied to these five events. Figure 7 240 

presents a comparative overview of the results obtained when both, the proposed automatic 241 

approach (blue curve) as well as the semi-automatic approach (red curve), were applied to the 242 

five events. The top panels (Figures 7a – e) show the temporal variation of the horizontal 243 

velocity, the middle panels (Figures 7f – j) present the tilt angle (orientation), and the bottom 244 

panels (Figures 7k – o) represents the propagation direction from the geomagnetic N-S (anti-245 

clockwise). Temporal average of the parameters (horizontal velocity with zonal and meridional 246 

component, tilt angle, and propagation direction) for each event with their respective error 247 

involved is presented in Tables 1 & 2.  248 

For the first three events (9 October 2018, 29 October 2018, and 16 January 2021), the trend 249 

in the temporal variation of the horizontal velocity, tilt angle, and propagation direction of the 250 
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structures are nearly similar (Figures 7a–c, f–h, & k–m) while in the remaining two events (11 251 

August 2021 and 2 July 2022) the values obtained from the two methods differ considerably 252 

(Figures 7d–e, i–j, & n–o). The reason behind this significant difference lies in their 253 

morphology. As mentioned earlier, the semi-automatic approach only works for structures 254 

having clear and straight edges. Therefore, whenever it encounters diffused or distorted 255 

structures (the last two events as shown in Figures 3d–e, i–j & n–o), only a small portion of the 256 

structure having a straight edge is considered. Hence, the values obtained may not represent 257 

the entire structure and will have larger errors as evident from Figures 7d–e, i–j, & n–o. Thus, 258 

in such scenarios, the semi-automatic method fails to accurately determine the propagation 259 

parameters. Apart from the dependency on morphology, the semi-automatic approach involves 260 

manual intervention which leads to subjectivity and additional human error that again gets 261 

reflected in the obtained parameters. This is evident from the larger error values in Tables 1 & 262 

2. On the other hand, as the proposed automatic approach considers the intensity minima of the 263 

entire structure, the morphology of the structure has minimal impact in determining the 264 

parameters. Hence, it overcomes the major shortcomings of the semi-automatic method. Since 265 

it is devoid of any manual interference, it also reduces the chance of any additional error (refer 266 

to Tables 1 & 2).  267 

The proposed automatic method is less exhaustive with low time complexity and involves 268 

less error, which makes it a favorable alternative over the semi-automatic approach and suitable 269 

for analyzing large amounts of data for any future statistical studies. However, the only 270 

limitation of the automatic approach is that it is only capable of determining the propagation 271 

parameters of single dark band MIPS at present. As mentioned earlier, these MIPS can have 272 

multiple bands which enhances the complexity in determining the propagation parameters of 273 

every front at the same time. Thus, the future scope of this work lies in extending and upgrading 274 

this approach for events having multiple bands. 275 

 276 

4. Conclusion 277 

The present study utilizes a hybrid deep learning algorithm for the localization of mid-latitude 278 

ionospheric plasma structures through image segmentation and introduces a new automatic 279 

approach for the determination of propagation parameters (horizontal velocity, propagation 280 

direction, and tilt angle) using all-sky airglow images. This work comprises two frameworks 281 

that are connected in a pipeline. The first framework is responsible for localizing the plasma 282 

structures from airglow images using a hybrid deep learning model of VGG16 – U-Net. The 283 

output (segmented images) of this framework is used in the second framework which uses the 284 
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minimum intensity of the plasma structures to automatically estimate the propagation 285 

parameters. The proposed method was applied to five separate events of single dark band 286 

plasma structures and the values of the estimated parameters were compared to a previously 287 

used semi-automatic approach. The results suggest that the automatic method performs better 288 

with respect to the error involved, time complexity and dependency on the morphology of the 289 

plasma structures. However, in the present form, the proposed method is only capable of 290 

determining the characteristics of single dark band plasma structures. Addressing multiple 291 

bands and finding their propagation parameters is complex and challenging, which is the future 292 

scope of the present study. 293 

 294 

Data availability 295 

The input image, ground truth and the model segmented output images are publicly available 296 

at Chakrabarti et al. (2024b). 297 
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Appendix A 311 

Framework1: Deep Learning based Image Segmentation 312 

Step1: Algorithm for Pixel Thresholding for Generation of Mask 313 

# Function responsible for histogram stretch 314 

func_histogram_stretch (image, new_min, new_max): 315 

hist,bins = create_histogram(image, bins=256, range = [0,256]  316 

hist_norm = hist/sum(hist) 317 

cum_dis_func = hist_norm.cumsum() 318 

min_Val, max_Val, min_Loc, max_Loc = MinMaxLoc(image) 319 

old_min = min_Val 320 

old_max = max_Val 321 

stretch_func = func{(x - old_min) * (new_max - new_min) / (old_max - old_min) + new_min} 322 

stretched_image = stretch_func(image) 323 

return (stretched_image) 324 

 325 

# Function to map intensity level (Contrast stretch) 326 

func_pixel_val (pix, r1, s1, r2, s2): 327 

 if (0 <= pix and pix <= r1) 328 

        return (s1 / r1)*pix 329 

 elseif (r1 < pix and pix <= r2) 330 

        return ((s2 - s1)/(r2 - r1)) * (pix - r1) + s1 331 

  else 332 

        return ((255 - s2)/(255 - r2)) * (pix - r2) + s2 333 

Define parameters: r1,s1,r2,s2 334 

pixelVal_vec = func_vectorize(pixel_val) 335 

 336 

# Thresholding Function 337 

func_apply_threshold (image, threshold): 338 

thresholded_image = func_where(image >= threshold, 1, 0) 339 

return (thresholded_image) 340 

 341 

Step2(a): Working Principle of Hybrid Image Segmentation Model  342 

The working principle for the VGG16-UNet hybrid model can be summarized as follows: 343 

1. Input Image (Image_data): The input image of shape H×W×C, H is the height, W is the 344 

width and C is the number of channels. 345 

2. Encoder Feature Extraction: The VGG16 model extracts features from different layers: 346 

F1, F2, …, Fn = VGG16(Image_data) 347 

3. Decoder (Up-sampling): The decoder up samples the feature maps while using skip 348 

connections: 349 

D1 = Up (Fn) 350 

D2 = Conv(Concat(D1,Fn-1)) 351 

            Continues for all layers until the original image size is restored. 352 

4. Segmentation Output: The output layer generates the segmented image: 353 
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      Output = Softmax/Sigmoid (Conv1x1(Dn)) 354 

 355 

Step2(b): Algorithm for Hybrid Image Segmentation Model 356 

#Initialization of VGG16 Model (Encoder) 357 

Load pre-trained VGG-16 model (without fully connected layer) as Encoder 358 

m_VGG16 = VGG16(include_top = False, weights = ‘imagenet’, input_shape =(input_shape)) 359 

set_trainable = ‘False’ 360 

for layer in VGG16.layers 361 

    if layer_name in ['block1_conv1']: 362 

        set_trainable = ‘True’ 363 

    if layer_name in ['block1_pool','block2_pool','block3_pool','block4_pool','block5_pool'] 364 

        layer_trainable = ‘False’ 365 

 366 

#Extraction of Features using VGG16 367 

 Block1_c1 = VGG16.get_layer("block1_conv2").output 368 

 Block2_c2 = VGG16.get_layer("block2_conv2").output 369 

 Block3_c3 = VGG16.get_layer("block3_conv3").output 370 

 Block4_c4 = VGG16.get_layer("block4_conv3").output 371 

 Block5_c5 = VGG16.get_layer("block5_conv3").output 372 

 373 

#Decoder (Up-sampling) using U-Net Model 374 

m_up1 = Conv2DTranspose(size, last_layer) 375 

m_up1 = func_activation(learning_rate, m_up1) 376 

concat_1 = func_concatenate(m_up1, Block4_c4) 377 

Continue Up-sampling and concatenation for successive blocks 378 

 379 

#Final Output Layer and Compilation 380 

model = func_model(inputs = inputs, outputs = outputs) 381 

model_compile= func_model(optimizer = optimizer(learning_rate), loss_func, metrics) 382 

 383 

#Training, Evaluation and Image Segmentation 384 

final_model = train_model(image, threshold_image) 385 

prediction_seg = final_model.predict(test_image 386 

 387 

  388 
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Appendix B 389 

Framework2: Automatic Estimation of Propagation Parameters (Velocity & 390 

Orientation) 391 

Algorithm:   392 

#Loading segmentation model and Input file 393 

seg_output = [] 394 

Model_seg = load (final_model) 395 

for images in Event folder 396 

      Input_file = load (Event folder) 397 

      seg_output [] = seg_output.append(Model_seg.predict(Input_file)) 398 

end for 399 

 400 

# Locating the plasma structure and condition to skip frames 401 

for i in range length(seg_output) #Selecting frames 402 

     Img = seg_output[i] 403 

     x_min = [] #Column Numbers 404 

     y_min = [] #Row Numbers 405 

    for j in range (0, size(Img)) #Scanning each row of the image for minima 406 

        Min_1 = Img.location[j].min() 407 

        y_min.append(j) #y coordinate of minima 408 

        x_min = x_min.append(Img.location[m].index_min()) #x coordinate of minima 409 

   end for 410 

    slope1, intercept1 = func_best_fit(x_min, y_min, 1) #Finding the first best fit line 411 

    x_best_fit1 = x_min     412 

    y_best_fit1= slope1*x_min + intercept1   413 

 414 

Squared error has been used to remove far away points and a second set of coordinates 415 

(best_x and best_y) are obtained to find the second-best fit line 416 

 417 

    slope2, intercept2 = func_best_fit(best_x, best_y, 1) #Finding the second best fit line 418 

    x_best_fit2 = best_x 419 

    y_best_fit2= slope2* best_x + intercept2   420 

    421 

    slope2 has been appended in slope_best_fit for all the frames 422 

   423 

   for k in range length(best_x) #Condition to skip frames  424 

         Finding the distance of the minima points from the second-best fit line 425 

         Finding the average of the distances (Avg_dist) 426 

         count = 0   427 

        for l in range length(best_x) 428 

             if dist(minima point) < Avg_dist 429 

             count = count + 1 430 

             end if 431 
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             if count > 75% of length(best_x) 432 

             skip = 0 433 

             else 434 

             skip = 1 435 

            end if  436 

        end for 437 

      end for 438 

   end for   439 

  Finding time difference (dt) of the selected frames (skip or no skip) after the skip condition 440 

 441 

  # Determination of propagation parameters and error calculation  442 

  Find the mid-point of each best fit line (x_Mid, y_Mid) 443 

  Find the slope and intercept of the perpendicular lines from the mid points    444 

  slope_perp = -1/slope2 445 

  intercept_perp = (y_Mid – slope_perp*x_Mid) 446 

  Find the intersection points of perpendicular lines & the successive best fit line (x_Int, y_Int) 447 

 448 

  # Loading zonal and meridional distance files  449 

  f = Read_file(Event_h5_file) 450 

  meridional_dis = func_extract(f [‘Gridded Meridional Distance’]) 451 

  zonal_dis = func_extract(f ['Gridded Zonal Distance']) 452 

      453 

final_vel = []     454 

final_vel_error = [] 455 

for m in range length(seg_output)-1 # Velocity calculation  456 

    med_dis1= meridional_dis[y_Int]  457 

    zon_dis1= zonal_dis[x_Int] 458 

    med_dis2 = meridional_dis[y_Mid] 459 

    zon_dis2 = zonal_dis[x_Mid] 460 

    vel_zon = (zon_dis2 – zon_dis1)/dt[m] # Zonal velocity 461 

    vel_med = (med_dis2 - med_dis1)/dt[m] # Meridional velocity 462 

    distance = func_sqroot(sqr(med_dis2 - med_dis1) + sqr(zon_dis2 – zon_dis1)) 463 

    vel = distance[m]/dt[m] # Horizontal velocity 464 

    final_vel.append(vel) 465 

 466 

      std_err_pixel = func_std_error(scattered_points) # Velocity error calculation 467 

      std_err_dis = (std_err_pixel)*(per_pixel_dis) 468 

      vel_error = (std_err_dis[m] + std_err_dis[m+1]) /dt[m] 469 

         final_vel_error.append(vel_error) 470 

    end for 471 

 472 

  tilt_angle = [] 473 

  final_tilt_angle_error = [] 474 

  for n in range length(slope_best_fit) # To calculate the tilt angle 475 
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    slope = slope_best_fit[n] 476 

    angle_radian = func_inverse_tan(slope) 477 

    angle_degree = (angle_radian*180)/func_pi 478 

    angle_degree = (90 – angle_degree) + angle_of_declination (1.56) # Tilt angle 479 

    prop_angle = angle_degree + 90 # Propagation direction 480 

    tilt_angle.append(angle_degree) 481 

          482 

         # To calculate the error of angle 483 

        Intersecting line joining (x_Mid, y_Mid) and (x,y)  484 

       slope_inter = (y – y_Mid)/(x – x_Mid) 485 

       angle_err_radian = func_inverse_tan((slope_inter – slope2)/(1+slope2*slope_inter)) 486 

       angle_err_degree = (angle_err_radian*180)/func_pi 487 

       final_tilt_angle_error.append(angle_err_degree) 488 

  end for  489 



17 

 

References 490 

Ayeni, J., 2022. Convolutional neural network (CNN): the architecture and applications. Appl. J. Phys. Sci., 4(4), 491 
pp.42-50. http://dx.doi.org/10.31248/AJPS2022.085  492 

Bakki, P., 2002. On the region of mid-latitude spread-F. Acta Geod. et Geophys. Hung., 37(4), pp.409-417. 493 
https://doi.org/10.1556/ageod.37.2002.4.4.  494 

Bovik, A.C., 2009. Basic binary image processing. In The Essential Guide to Image Processing (pp. 69-96). 495 
Academic Press. https://doi.org/10.1016/B978-0-12-374457-9.00004-4  496 

Bowman, G.G., 1981. The nature of ionospheric spread-F irregularities in mid-latitude regions.  J. Atmos. Solar-497 
Terrestrial Phys., 43(1), pp.65-79. https://doi.org/10.1016/0021-9169(81)90010-6. 498 

Chakrabarti, S., Patgiri, D., Rathi, R., Dixit, G., Krishna, M.S. and Sarkhel, S., 2024a. Optimizing a deep learning 499 
framework for accurate detection of the Earth’s ionospheric plasma structures from all-sky airglow images. Adv. 500 
Sp. Res., 73(12), pp.5990-6005. https://doi.org/10.1016/j.asr.2024.03.014 501 

[dataset] Chakrabarti, S., Patgiri, D., Rathi, R., Dixit, G., Krishna, M.S. and Sarkhel, S., 2024b. Optimizing a deep 502 
learning framework for accurate detection of the Earth’s ionospheric plasma structures from all-sky airglow 503 
images. Zenodo Data, v1. https://doi.org/10.5281/zenodo.14222287  504 

Ding, F., Wan, W., Xu, G., Yu, T., Yang, G. and Wang, J.S., 2011. Climatology of medium‐scale traveling 505 
ionospheric disturbances observed by a GPS network in central China. J. Geophys. Res. Space, 116(A9). 506 
https://doi.org/10.1029/2011ja016545. 507 

Fabel, Y., Nouri, B., Wilbert, S., Blum, N., Triebel, R., Hasenbalg, M., Kuhn, P., Zarzalejo, L.F. and Pitz-Paal, R., 508 
2022. Applying self-supervised learning for semantic cloud segmentation of all-sky images. Atmospheric 509 
Measurement Techniques, 15(3), pp.797-809. https://doi.org/10.5194/amt-15-797-2022 510 

Figueiredo, C.A.O.B., Takahashi, H., Wrasse, C.M., Otsuka, Y., Shiokawa, K. and Barros, D., 2018. Investigation 511 
of nighttime MSTIDS observed by optical thermosphere imagers at low latitudes: Morphology, propagation 512 
direction, and wind filtering. J. Geophys. Res. Space, 123(9), pp.7843-7857. 513 
https://doi.org/10.1029/2018ja025438.  514 

Fukao, S., Kelley, M.C., Shirakawa, T., Takami, T., Yamamoto, M., Tsuda, T. and Kato, S., 1991. Turbulent 515 
upwelling of the mid‐latitude ionosphere: 1. Observational results by the MU radar. J. Geophys. Res. Space, 516 
96(A3), pp.3725-3746. https://doi.org/10.1029/90ja02253. 517 

Fukao, S., McClure, J.P., Ito, A., Sato, T., Kimura, I., Tsuda, T. and Kato, S., 1988. First VHF radar observation 518 
of midlatitude F‐region field‐aligned irregularities. Geophys. Res. Lett., 15(8), pp.768-771. 519 
https://doi.org/10.1029/GL015i008p00768 520 

Gao, X., Fu, R., Li, X., Tao, D., Zhang, B. and Yang, H., 2011. Aurora image segmentation by combining patch 521 
and texture thresholding. Comput. Vis. Image Underst., 115(3), pp.390-402.  522 
https://doi.org/10.1016/j.cviu.2010.11.011 523 

Githio, L., Liu, H., Arafa, A.A. and Mahrous, A., 2024. A machine learning approach for estimating the drift 524 
velocities of equatorial plasma bubbles based on All-Sky Imager and GNSS observations. Adv. Sp. Res., 74(11), 525 
pp.6047-6064. https://doi.org/10.1016/j.asr.2024.08.067 526 

Hasenbalg, M., Kuhn, P., Wilbert, S., Nouri, B. and Kazantzidis, A., 2020. Benchmarking of six cloud 527 
segmentation algorithms for ground-based all-sky imagers. Sol. Energy., 201, pp.596-614. 528 
https://doi.org/10.1016/j.solener.2020.02.042 529 

Hocke, K. and Schlegel, K., 1996, September. A review of atmospheric gravity waves and travelling ionospheric 530 
disturbances: 1982–1995. In Ann. Geophys.  (Vol. 14, No. 9, p. 917).  https://doi.org/10.1007/s005850050357.  531 

Huang, F., Dou, X., Lei, J., Lin, J., Ding, F. and Zhong, J., 2016. Statistical analysis of nighttime medium‐scale 532 
traveling ionospheric disturbances using airglow images and GPS observations over central China. J. Geophys. 533 
Res. Space, 121(9), pp.8887-8899. https://doi.org/10.1002/2016ja022760. 534 



18 

 

Huang, F., Lei, J., Dou, X., Luan, X. and Zhong, J., 2018. Nighttime medium‐scale traveling ionospheric 535 
disturbances from airglow imager and Global Navigation Satellite Systems observations. Geophys. Res. Lett., 536 
45(1), pp.31-38. https://doi.org/10.1002/2017gl076408.  537 

Ioffe, S., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 538 
arXiv preprint arXiv:1502.03167. https://proceedings.mlr.press/v37/ioffe15.html. 539 

Kumar, L., Sahay, S.K. and Kusneniwar, H.G., 2023. An investigation of two-step cascaded CNN for the detection 540 
of gravitational wave signal from two different astronomical sources. Procedia Comput. Sci., 222, pp.676-684. 541 
https://doi.org/10.1016/j.procs.2023.08.205 542 

Lai, C., Xu, J., Lin, Z., Wu, K., Zhang, D., Li, Q., Sun, L., Yuan, W. and Zhu, Y., 2023. Statistical characteristics 543 
of nighttime medium‐scale traveling ionospheric disturbances from 10‐years of airglow observation by the 544 
machine learning method. Sp. Weather, 21(5), p.e2023SW003430. https://doi.org/10.1029/2023SW003430 545 

Lai, C., Xu, J., Yue, J., Yuan, W., Liu, X., Li, W. and Li, Q., 2019. Automatic extraction of gravity waves from all-546 
sky airglow image based on machine learning. Remote Sens., 11(13), p.1516. 547 

https://doi.org/10.3390/rs11131516 548 

Liu, P., Yokoyama, T., Fu, W., and Yamamoto, M., 2022. Statistical analysis of medium-scale traveling ionospheric 549 
disturbances over Japan based on deep learning instance segmentation. Sp. Weather, 20, e2022SW003151. 550 
https://doi.org/10.1029/2022SW003151 551 

Mathews, J.D., Gonzalez, S., Sulzer, M.P., Zhou, Q.H., Urbina, J., Kudeki, E. and Franke, S., 2001. Kilometer‐552 
scale layered structures inside spread‐F. Geophys. Res. Lett., 28(22), pp.4167-4170. 553 
https://doi.org/10.1029/2001gl013077. 554 

Miller, C.A., 1997. Electrodynamics of midlatitude spread F. 2. A new theory of gravity wave electric fields: 555 
Aeronomy of the solstice thermosphere/ionosphere system. Part 2. J. of geophys. res., 102(A6), pp.11533-11538. 556 
https://doi.org/10.1029/96JA03840. 557 

Mondal, S., Srivastava, A., Yadav, V., Sarkhel, S., Krishna, M.S., Rao, Y.K. and Singh, V., 2019. Allsky airglow 558 
imaging observations from Hanle, Leh Ladakh, India: Image analyses and first results. Adv. Sp. Res., 64(10), 559 
pp.1926-1939. https://doi.org/10.1016/j.asr.2019.05.047. 560 

Niu, C., Zhang, J., Wang, Q. and Liang, J., 2018. Weakly supervised semantic segmentation for joint key local 561 
structure localization and classification of aurora image. IEEE Transactions on Geosci. and Remot. Sens., 56(12), 562 
pp.7133-7146. https://doi.org/10.1109/TGRS.2018.2848725 563 

Otsuka, Y., Shiokawa, K., Ogawa, T. and Wilkinson, P., 2004. Geomagnetic conjugate observations of medium‐564 
scale traveling ionospheric disturbances at midlatitude using all‐sky airglow imagers. Geophys. Res. Lett., 31(15). 565 
https://doi.org/10.1029/2004gl020262. 566 

Otsuka, Y., Shiokawa, K. and Ogawa, T., 2012. Disappearance of equatorial plasma bubble after interaction with 567 
mid‐latitude medium‐scale traveling ionospheric disturbance. Geophys. Res. Lett., 39(14). 568 
https://doi.org/10.1029/2012gl052286. 569 

Otsuka, Y., Tani, T., Tsugawa, T., Ogawa, T. and Saito, A., 2008. Statistical study of relationship between medium-570 
scale traveling ionospheric disturbance and sporadic E layer activities in summer night over Japan. J. Atmos. 571 
Solar-Terrestrial Phys., 70(17), pp.2196-2202. https://doi.org/10.1016/j.jastp.2008.07.008. 572 

Patgiri, D., Rathi, R., Yadav, V., Sarkhel, S., Chakrabarty, D., Mondal, S., Krishna, M.S., Upadhayaya, A.K., 573 
Vivek, C.G., Kannaujiya, S. and Sunda, S., 2024a. A case study on multiple self-interactions of MSTID bands: 574 
New insights. Adv. Sp. Res., 73(7), pp.3595-3612. https://doi.org/10.1016/j.asr.2023.05.047 575 

Patgiri, D., Rathi, R., Yadav, V., Chakrabarty, D., Sunil Krishna, M.V., Kannaujiya, S., Pavan Chaitanya, P., Patra, 576 
A.K., Liu, J.Y. and Sarkhel, S., 2024b. A rare simultaneous detection of a mid‐latitude plasma depleted structure 577 
in O (1D) 630.0 and O (1S) 557.7 nm all‐sky airglow images on a geomagnetically quiet night. Geophys. Res. 578 
Lett., 51(14), p.e2023GL106900.  https://doi.org/10.1029/2023GL106900 579 



19 

 

Paulino, I., Moraes, J.F., Maranhão, G.L., Wrasse, C.M., Buriti, R.A., Medeiros, A.F., Paulino, A.R., Takahashi, 580 
H., Makela, J.J., Meriwether, J.W. and Campos, J.A.V., 2018, February. Intrinsic parameters of periodic waves 581 
observed in the OI6300 airglow layer over the Brazilian equatorial region. In Ann. Geophys.  (Vol. 36, No. 1, pp. 582 
265-273). Göttingen, Germany: Copernicus Publications. https://doi.org/10.5194/angeo-36-265-2018. 583 
https://doi.org/10.5194/angeo-36-265-2018.  584 

Pimenta, A.A., Amorim, D.C.M. and Candido, C.M.N., 2008. Thermospheric dark band structures at low latitudes 585 
in the Southern Hemisphere under different solar activity conditions: A study using OI 630 nm emission all‐sky 586 
images. Geophys. Res. Lett., 35(16). https://doi.org/10.1029/2008gl034904.  587 

Rathi, R., Gurram, P., Mondal, S., Yadav, V., Sarkhel, S., Krishna, M.S. and Upadhayaya, A.K., 2024. Unusual 588 
simultaneous manifestation of three non-interacting mid-latitude ionospheric plasma structures. Adv. Sp. Res., 589 
73(7), pp.3550-3562. https://doi.org/10.1016/j.asr.2023.04.038 590 

Rathi, R., Yadav, V., Mondal, S., Sarkhel, S., Krishna, M.S. and Upadhayaya, A.K., 2021. Evidence for 591 
simultaneous occurrence of periodic and single dark band MSTIDs over geomagnetic low-mid latitude transition 592 
region. J. Atmos. Solar-Terrestrial Phys., 215, p.105588. https://doi.org/ 10.1016/j.jastp.2021.105588. 593 

Rathi, R., Yadav, V., Mondal, S., Sarkhel, S., Sunil Krishna, M.V., Upadhayaya, A.K., Kannaujiya, S. and 594 
Chauhan, P., 2022. A Case Study on the Interaction Between MSTIDs' Fronts, Their Dissipation, and a Curious 595 
Case of MSTID's Rotation Over Geomagnetic Low‐Mid Latitude Transition Region. J. Geophys. Res. Space, 596 
127(4), p.e2021JA029872. https://doi.org/10.1029/2021JA029872 597 

Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image 598 
segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international 599 
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp. 234-241). Springer Int. Pub. 600 
https://doi.org/10.48550/arXiv.1505.04597 601 

Shelhamer, E., Long, J., and Darrell, T. 2017. Fully Convolutional Networks for Semantic Segmentation. IEEE 602 
Trans. Pattern Anal. Mach. Intell., 39(4), p.640-651. https://doi.org/10.1109/TPAMI.2016.2572683 603 

Shiokawa, K., Ihara, C., Otsuka, Y. and Ogawa, T., 2003. Statistical study of nighttime medium‐scale traveling 604 
ionospheric disturbances using midlatitude airglow images. J. Geophys. Res. Space, 108(A1). 605 
https://doi.org/10.1029/2002ja009491. 606 

Shiokawa, K., Otsuka, Y., Tsugawa, T., Ogawa, T., Saito, A., Ohshima, K., Kubota, M., Maruyama, T., Nakamura, 607 
T., Yamamoto, M. and Wilkinson, P., 2005. Geomagnetic conjugate observation of nighttime medium‐scale and 608 
large‐scale traveling ionospheric disturbances: FRONT3 campaign. J. Geophys. Res. Space, 110(A5). 609 
https://doi.org/10.1029/2004ja010845.  610 

Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv 611 
preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556 612 

Sivakandan, M., Mondal, S., Sarkhel, S., Chakrabarty, D., Sunil Krishna, M.V., Chaitanya, P.P., Patra, A.K., 613 
Choudhary, R.K., Pant, T.K., Upadhayaya, A.K. and Sori, T., 2020. Mid‐latitude spread‐F structures over the 614 
geomagnetic low‐mid latitude transition region: An observational evidence. J. Geophys. Res. Space, 125(5), 615 
p.e2019JA027531. https://doi.org/10.1029/2019JA027531. 616 

Sivakandan, M., Mondal, S., Sarkhel, S., Chakrabarty, D., Sunil Krishna, M.V., Upadhayaya, A.K., Shinbori, A., 617 
Sori, T., Kannaujiya, S. and Champati Ray, P.K., 2021. Evidence for the In‐Situ Generation of Plasma Depletion 618 
Structures Over the Transition Region of Geomagnetic Low‐Mid Latitude. J. Geophys. Res. Space, 126(9), 619 
p.e2020JA028837. https://doi.org/10.1029/2020JA028837. 620 

Sun, L., Xu, J., Wang, W., Yue, X., Yuan, W., Ning, B., Zhang, D. and De Meneses, F.C., 2015. Mesoscale field‐621 
aligned irregularity structures (FAIs) of airglow associated with medium‐scale traveling ionospheric disturbances 622 
(MSTIDs). J. Geophys. Res. Space, 120(11), pp.9839-9858. https://doi.org/10.1002/2014ja020944. 623 

Takeo, D., Shiokawa, K., Fujinami, H., Otsuka, Y., Matsuda, T.S., Ejiri, M.K., Nakamura, T. and Yamamoto, M., 624 
2017. Sixteen year variation of horizontal phase velocity and propagation direction of mesospheric and 625 



20 

 

thermospheric waves in airglow images at Shigaraki, Japan. J. Geophys. Res. Space, 122(8), pp.8770-8780. 626 
https://doi.org/10.1002/2017JA023919 627 

Tsuboi, T., Shiokawa, K., Otsuka, Y., Fujinami, H. and Nakamura, T., 2023. Statistical Analysis of the Horizontal 628 
Phase Velocity Distribution of Atmospheric Gravity Waves and Medium‐Scale Traveling Ionospheric 629 
Disturbances in Airglow Images Over Sata (31.0° N, 130.7° E), Japan. J. Geophys. Res. Space, 128(12), 630 
p.e2023JA031600. https://doi.org/10.1029/2023JA031600 631 

Wang, H., Cao, P., Wang, J. and Zaiane, O.R., 2022, June. Uctransnet: rethinking the skip connections in u-net 632 
from a channel-wise perspective with transformer. In Proceedings of the AAAI conference on artificial 633 
intelligence (Vol. 36, No. 3, pp. 2441-2449). 634 

Wu, K., Xu, J., Wang, W., Sun, L. and Yuan, W., 2021. Interaction of oppositely traveling medium‐scale traveling 635 
ionospheric disturbances observed in low latitudes during geomagnetically quiet nighttime. J. Geophys. Res. 636 
Space, 126(2), p.e2020JA028723. https://doi.org/10.1029/2020JA028723. 637 

Xie, W., Liu, D., Yang, M., Chen, S., Wang, B., Wang, Z., Xia, Y., Liu, Y., Wang, Y. and Zhang, C., 2020. 638 
SegCloud: A novel cloud image segmentation model using a deep convolutional neural network for ground-based 639 
all-sky-view camera observation. Atmos. Meas. Tech., 13(4), pp.1953-1961. https://doi.org/10.5194/amt-13-640 
1953-2020 641 

Yadav, V., Rathi, R., Gaur, G., Sarkhel, S., Chakrabarty, D., Krishna, M.S., Chaitanya, P.P., Patra, A.K., 642 
Choudhary, R.K., Pant, T.K. and Upadhayaya, A.K., 2021a. Interaction between nighttime MSTID and mid-643 
latitude field-aligned plasma depletion structure over the transition region of geomagnetic low-mid latitude: First 644 
results from Hanle, India. J. Atmos. Solar-Terrestrial Phys., 217, p.105589. https://doi.org/ 645 
10.1016/j.jastp.2021.105589. 646 

Yadav, V., Rathi, R., Sarkhel, S., Chakrabarty, D., Sunil Krishna, M.V. and Upadhayaya, A.K., 2021b. A unique 647 
case of complex interaction between MSTIDs and mid‐latitude field‐aligned plasma depletions over geomagnetic 648 
low‐mid latitude transition region. J. Geophys. Res. Space, 126(1), p.e2020JA028620.  https://doi.org/ 649 


Zhang, J., Liu, P., Zhang, F. and Song, Q., 2018. CloudNet: Ground‐based cloud classification with deep 651 

convolutional neural network. Geophys. Res. Lett., 45(16), pp.8665-8672. 652 

https://doi.org/10.1029/2018GL077787  653 



21 

 

Figures: 654 

 655 

Figure 1: Example of an airglow image with latitude-longitude range and pixel number. The red star denotes the 656 

location of the airglow imager at Hanle, Ladakh, India. 657 

 

 

 
Figure 2: Pictographic representation of Framework 1. 
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Figure 3: Five instances of unwarped images (top row) with corresponding ground truth (middle row) and the 

segmented images (bottom row) from the hybrid model.  

 658 

 

Figure 4: Illustration of steps in Framework 2 for estimation of propagation parameters. 
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Figure 5: Two examples showing the difference between the first and the second best-fit line.  659 

 

 
Figure 6: Schematic representation of the methods used for calculation of propagation parameters and the error 

involved with it. 
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Figure 7: The calculated horizontal velocity, tilt angle, and propagation direction using semi-automatic (red) and 

automatic (blue) approaches with their estimated errors. 
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Tables: 

 

Table 1: Average horizontal, zonal and meridional velocity with the estimated errors using both automatic and 660 
semi-automatic method 661 

Date Skip Time (UT) 

Average Horizontal Velocity ± 

Average Error 

(m/s) 

 Average Zonal Velocity ± 

Average Error 

(m/s) 

Average Meridional Velocity ± 

Average Error 

(m/s) 

Automatic Semi-Automatic Automatic Semi-Automatic Automatic Semi-Automatic 

09-10-2018 0 
16:25:56 to 

16:57:12 
47.43 ± 11.11 59.00 ± 15.14 -43.25 ± 10.02 -52.66 ± 13.67 -19.39 ± 4.80 -26.51 ± 6.83 

29-10-2018 0 
15:08:11 to 

15:58:12 
80.93 ± 9.83 87.00 ± 10.44 -73.98 ± 10.04 -79.87 ± 9.95 -32.59 ± 4.31 -34.29 ± 4.63 

16-01-2021 0 
19:57:56 to 

20:35:26 
68.76  ± 11.29 78.97 ± 13.26 -65.89 ± 10.72 -75.20 ± 12.77 -19.45 ± 3.53 -24.04 ± 4.08 

11-08-2021 1 
17:52:58 to 

18:49:13 
114.11 ± 7.38 108.90± 20.21 -83.87 ± 4.94 -83.76 ± 15.78 -77.13 ± 5.46 -69.54 ± 12.97 

02-07-2022 1 
16:59:25 to 

18:20:40 
67.91 ± 5.17 66.58 ± 13.00 -58.81 ± 4.28 -55.75 ± 11.17 -33.47 ± 2.85 -36.10 ± 7.28 

 

Table 2: Average tilt angle and propagation direction (anti-clockwise from geomagnetic N-S) with the estimated 662 
errors using both automatic and semi-automatic method 663 

Date Skip Time (UT) 

Average Tilt Angle (𝜃) ±  

Average Error 

(deg) 

Propagation Direction(𝜙) ± 

Average Error 

(deg) 

Automatic Semi-Automatic Automatic Semi-automatic 

09-10-2018 0 
16:25:56 to 

16:57:12 
27.22 ± 0.15 27.09 ± 1.85 117.23 ± 0.15 117.07 ± 1.85 

29-10-2018 0 
15:08:11 to 

15:58:12 
24.95 ± 0.11 24.09 ± 2.29 114.95 ± 0.12 114.09 ± 2.29 

16-01-2021 0 
19:57:56 to 

20:35:26 
19.76 ± 0.11 19.58 ± 1.00 109.77 ± 0.11 109.58 ± 1.00 

11-08-2021 1 
17:52:58 to 

18:49:13 
48.58 ± 0.40 41.31 ± 1.88 138.58 ± 0.40 131.31 ± 1.88 

02-07-2022 1 
16:59:25 to 

18:20:40 
34.93 ± 0.26 34.12 ± 3.25 124.93 ± 0.26 124.12 ± 3.25 

 664 

 


