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In classical inviscid fluids, antiparallel vortices perturbed by Kelvin waves exhibit the Crow instability, 
where the mutual interaction of the Kelvin modes renders them dynamically unstable. This results in 
the approach and reconnection of the vortices, leading to a cascaded decay into ever-smaller vortex 
loops. Through mean-field simulations we study the Crow instability of quantum vortex lines in a 
superfluid whose atoms are subject to the anisotropic, long-ranged dipole-dipole interaction. We 
observe that the direction of dipole polarization plays a crucial role in determining the dynamically 
favored Kelvin modes. The subsequent rate of the instability is linked to the mediation of the vortex 
curvature by the effective dipole-dipole interaction between the vortices themselves. The vortex 
curvature is strongly suppressed and modes of lower wavenumber are preferred when the dipole 
polarization is parallel to the vortices, whereas the curvature is maximized for polarizations along 
the vortices’ separation axis. For polarizations along the binormal axis, modes of higher wavenumber 
are favorable but the instability rate is considerably inhibited. This paves the way to a deeper 
understanding of vortex reconnections, vortex loop cascades and turbulence in dipolar superfluids.

Classical inviscid fluids play host to a variety of instabilities arising from the interaction of waves and vortices, 
and understanding their properties is a central tenet of fluid dynamics. One such example is the celebrated 
Crow instability, where a pair of vortices with antiparallel vorticities is unstable against transverse perturbations 
that induce helical Kelvin waves along each vortex. These waves grow in amplitude until the vortices reconnect 
to form a series of vortex loops. The subsequent cascade of reconnections to ever-smaller loops culminates in 
their dissipation as seen in the suppression of wingtip vortices of aircraft through interactions with contrails1. 
The promise of analogues of such instabilities have proven to be a fruitful source of inspiration in the study of 
quantum fluids, such as Bose-Einstein condensates, that exhibit superfluidity. Unlike classical inviscid fluids, 
superfluids can flow without viscous dissipation and are characterized by a superfluid order parameter2. The 
phase coherence of this order parameter ensures that the vorticity of a superfluid can only be nonzero along 
discrete, infinitesimally thin lines. Each quantum vortex line boasts a quantized circulation and is a node of 
the superfluid density3. As such, dynamical processes involving quantum vortices, such as reconnections and 
annihilations4,5, cannot change the total circulation as it is a topologically conserved quantity3. Whereas the 
ground state of an ensemble of quantum vortices – typically, a triangular vortex lattice – is well-understood6–9, the 
interwoven phenomena of instabilities, turbulence and disorder of incompressible (vortices) and compressible 
(phonon) excitations in superfluids are of considerable interest10–14. While certain superfluid instabilities such 
as the snake instability15 have no classical counterpart it has been shown that superfluids can become turbulent 
through quantum analogues of classical hydrodynamic instabilities such as the Kelvin-Helmholtz16–18, Rayleigh-
Taylor19,20 and Richtmyer-Meshkov21 instabilities. The Crow instability, too, emerges in pairs of antiparallel 
quantum vortex lines15,22–25. This is depicted in Fig. 1, showing how the transverse excitations of the vortex lines 
grow until the two vortices have approached each other closely enough for a reconnection into loops to occur.

Generally, investigations into hydrodynamic instabilities in superfluids have focussed on systems where 
the interactions between its constituents can be approximated as isotropic and short-ranged. Magnetic dipolar 
Bose-Einstein condensates (dBECs), comprised of certain lanthanide atoms with large, permanent magnetic 
dipole moments, are a counterpoint to this paradigm. When these dipole moments are uniformly polarized 
by an applied magnetic field, a dBEC exhibits a wealth of exotic phenomena arising from a delicate interplay 
of the long-ranged and anisotropic dipole-dipole interaction (DDI) and the residual short-ranged, effectively 
isotropic van der Waals repulsion26–28. The foremost consequence of this is the tendency of a dBEC to exhibit 
anisotropy, whether it be its density profile under external confinement29,30, the speed of sound and superfluid 
critical velocity31,32, or the profile of the core of an embedded quantum vortex33–36. There is a tendency towards 
stratification and short-ranged order, both of which are often associated with the presence of intermediate-
wavelength roton excitations. This results in novel behavior such as non-triangular vortex lattices with density 
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striping27,35,37–39, density ripples about vortex cores in quasi-two-dimensional dBECs34, stratification during 
turbulence40, pattern formation41,42, and the existence of supersolid phases43–45. Theoretical studies of quantum 
vortices in dBECs have also predicted a substantial influence of the DDI upon the velocities and trajectories 
of vortex pairs34,36,46–48 and the Kelvin wave spectra of single vortices49,50. These results, which are now of ever 
greater relevance after the experimental realization of vortices in both the superfluid and supersolid phases of 
a dBEC51,52, suggest that the onset of a hydrodynamic instability such as the Crow instability is sensitive to the 
magnitude and direction of the dipole moment polarization.

Thus, in this article we present a systematic analysis of the Crow instability in a uniform dBEC and elucidate 
how the instability depends on the DDI. Initially, we give an overview of the underlying theory used to model 
perturbed quantum vortices in a uniform, three-dimensional dBEC. We then proceed to introduce a scenario 
where a pair of antiparallel vortices is subjected to a random perturbation and provide a qualitative discussion of 
the results of one such simulation, thereby illustrating the influence of the DDI upon the vortices when the Crow 
instability is triggered. We then proceed to analyse various properties of the vortex lines during their evolution 
towards reconnection, from the relative populations of different Kelvin modes and the growth rates of Kelvin 
mode amplitudes to the global line-averaged curvature of the vortices. Finally, these findings are summarized 
and their implications, as well as some possible generalizations of our investigation, are discussed.

Formalism
In this article, we investigate the dynamics of perturbed pairs of quantum vortices in a dBEC through propagating 
the dipolar Gross-Pitaevskii equation (dGPE) governing the superfluid order parameter, ψ(r, t). For a system 
composed of a single atomic species of mass m and magnetic dipole moment µd, polarized uniformly by a 
magnetic field parallel to the unit vector B, the dGPE is given by26–28,

	
iℏ∂ψ

∂t
=

{
− ℏ2

2m
∇2 + gn + µ0µ2

d

∫
d3r′ Vdd(r − r′)n(r′) − µ

}
ψ.� (1)

The dGPE incorporates both a short-ranged two-body interaction of positive strength g = 4πℏ2as/m, where 
as represents the scattering length of the atom-atom scattering potential, and the long-ranged magnetic dipole-
dipole interaction (DDI). The DDI is defined as26

	
Vdd(r) = 1

4π

[
1 − 3 (B · r̂)2

r3

]
,� (2)

and the ratio of the interaction strengths of the DDI and the short-ranged interaction is generally represented by 
the parameter εdd = mµ0µ2

d/(12πℏ2as). Here, µ0 is the permeability of free space. Additionally, in Eq. (1) the 
superfluid density and chemical potential are represented as n = |ψ|2 and µ, respectively.

As encapsulated by Eq. (2), the long-ranged DDI between two atoms in a dBEC is dependent on the angle 
between their separation, r, and B. When this angle, arccos(B · r̂), is less (more) than the critical angle 

Fig. 1.  The Crow instability of an antiparallel quantum vortex pair in a nondipolar superfluid. With tc the time 
till the first reconnection, the vortices are depicted at the times tc/3, 2tc/3 and tc.

 

Scientific Reports |        (2025) 15:33364 2| https://doi.org/10.1038/s41598-025-17373-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


θc = arccos(1/
√

3) ≈ 54.7 deg, the DDI is repulsive (attractive). The resulting tendency of the superfluid 
atoms to realign themselves to minimize their mutual DDI potential energy is why the condensate density can 
exhibit anisotropy in instances where a nondipolar BEC would be isotropic. When εdd > 1, the solutions of 
Eq. (1) are unstable to collapse as the dipolar attraction overwhelms the short-ranged repulsion. From a theoretical 
viewpoint, this necessitates the inclusion of a beyond-mean-field energy correction53–55 in such regimes to 
account for the existence and stability of exotic states such as quantum droplets56,57 and supersolids43–45. Thus, 
for the sake of simplicity, we focus on the regime 0 ≤ εdd < 1, where no such correction is necessary28. This 
renders it convenient to work in natural units where energies are scaled by µg = 4πℏ2as(1 − εdd)n0/m, the 
chemical potential of a dBEC of uniform background density n0. Simultaneously, times and lengths are scaled 
by τ = ℏ/µg and the healing length ξ = ℏ/

√
mµg, respectively, while the order parameter is scaled by 

√
n058. 

Rendering Eq. (1) in this manner results in a description of the dBEC independent of parameters such as m, as, 
or the total atom number, with B and εdd being the only remaining free parameters:

	
i
∂ψ

∂t
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{
−∇2

2 + 1
1 − εdd

[
n + 3εdd

∫
d3r′ Vdd(r − r′)n(r′)

]
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}
ψ.� (3)

Results
Vortex line profiles: qualitative features
In a realistic scenario, the Crow instability may be triggered in a trapped Bose-Einstein condensate when the 
trapping potential landscape is locally inhomogeneous in the vicinity of a pair of antiparallel vortices, thereby 
resulting in background density gradients that perturb the vortices and seed Kelvin waves23,24.. In this article we 
consider an idealized scenario where both vortex lines are already subject to a random transverse perturbation 
in the initial conditions of the numerical simulations15,22,25. Since there is no inhomogeneous or anisotropic 
trapping applied to the superfluid, we can assume without loss of generality that the unperturbed vortices are 
(anti-)parallel to the z-axis and separated along the y-axis. As described in the Methods, cf. Eqs. (10)-(11), each 
vortex is initially imprinted with the 40 lowest-lying Kelvin modes of the computational domain with a random 
phase, ηq , associated with each mode q. We have populated an ensemble of 6 distinct sets of {ηq} with each value 
sampled from a uniform distribution over [0, 2π). For each choice of parameters, our analysis of the evolution 
of the vortex pair involves a set of simulations over this ensemble. The two-body interaction strength ratio εdd 
assumes one of the values {0, 0.1, . . . 0.8, 0.9}, ranging from the nondipolar limit to just below the maximal 
threshold, εdd = 1, for the validity of mean-field theory. Given the initial vortex configuration, we consider 
B, the dipole polarization axis, to be parallel to either the vortex lines’ translational velocity (x̂), their mutual 
separation (ŷ), or the lines themselves (ẑ). In addition, until the final stages of the reconnection process, we 
desire that the vortex dynamics are driven principally by Kelvin wave–sound interactions rather than the mutual 
overlap of the vortices. Thus, all of the simulations feature an initial vortex separation of d = 6.25ξ. While this 
choice is somewhat arbitrary, it ensures that the vortex cores do not overlap at t = 0 and is also small enough 
that the reconnection process occurs over a duration that is computationally feasible to simulate.

We now turn to describing the qualitative features of the vortex lines as they approach a reconnection. In 
units of τ = ℏ/µg, the vortex line profiles are computed from the numerical values of ψ at time intervals of 
∆t = 0.5 and a reconnection is identified topologically through the change in vortex line terminals from one 
pair to the next. For a given simulation, we define the last observed time before the reconnection occurs as tc 
and therefore the exact reconnection time lies in the interval (tc, tc + ∆t). Our analysis of the vortex lines does 
not extend past t = tc, such that we restrict our focus to the duration before the disconnected vortex lines have 
become loops. Returning to Fig.  1, which depicted the Crow instability in a nondipolar superfluid, we note 
that the snapshots of the vortex lines were taken at the times t = tc/3, t = 2tc/3, and t = tc. Figure 2 depicts 
the corresponding snapshots of the vortex pair subjected to the same Kelvin wave initial conditions but with 
εdd = 0.9 and B being parallel to x̂ (a), ŷ (b), or ẑ (c). Let us stress that the time to the first reconnection, tc, is 
dependent on B and εdd as well as the initial Kelvin wave profile. Similarly, the displacement of the vortices from 
their initial position is dependent on B and εdd as expected from studies of dipolar superfluid vortex dynamics 
in the absence of Kelvin waves36.

Figure 2 visibly demonstrates a dependence of the Crow instability of the vortex lines on the DDI. Compared 
to the nondipolar case (Fig.  1), the vortex lines in Fig.  2 (c) (B ∥ ẑ) are noticeably straighter. Whereas the 
nondipolar limit is characterized by a highly agitated pair of vortex lines when t = tc, narrowly separated at 
multiple locations along the z-axis, only one such point is evident in the z-polarized case. This is sharply contrasted 
by what occurs when B ∥ ŷ, the separation axis of the vortices (Fig. 2 (b)). Here, the three vortex separation local 
minima are roughly at the same points along the z-axis as those of the nondipolar limit and, of the three, the 
global minimum where the first reconnection occurs is closest to that of the nondipolar case. However, the 
vortices are closer to each other at the other two minima than when εdd = 0; the vortex separations at the upper 
and lower minima in Fig. 2 (b) are 3.15ξ and 2.82ξ, respectively, compared to 3.45ξ and 3.40ξ, respectively 
for the corresponding minima in Fig. 1. This indicates that the second and third reconnections occur earlier for 
nonzero εdd when B ∥ ŷ than in the nondipolar limit. By contrast, the chief characteristic of the vortex lines 
in Fig. 2 (a) (B ∥ x̂) is that the vortices are perturbed more strongly along the x-axis at each local minimum of 
their separation than in the other regimes; this is particularly evident when t = tc. We also note that we have 
verified these qualitative aspects of vortex pair evolution for smaller values of εdd and thus believe that they are 
independent of εdd.
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Vortex line profiles: analysis
The significant variation in the vortex line profiles at t = tc, modulated by the DDI, suggests that the relative 
contributions of the various Kelvin modes on the vortices are modulated by the dipolar parameters B and 
εdd. This warrants an investigation of the spectral properties of the vortex line profiles, through which one 
can characterize the time-dependent populations of the Kelvin waves. Indexing the vortices as n ∈ {1, 2}, we 
write the time-dependent amplitude of the mode on vortex n with wavenumber kz  as Wn(kz, t); a method 
for computing these amplitudes from the vortex line profiles is described in the Methods. Initially, we study 
the time-dependence of the respective contributions of each mode to the overall mode population. The parity 
symmetry of the initial conditions, |W1(kz, t = 0)| = |W2(−kz, t = 0)|, motivates the definition of the relative 
population of a Kelvin wave of positive kz  as

	
W ′(kz, t) = |W1(kz, t)| + |W2(−kz, t)|∑

kz>0 [|W1(kz, t)| + |W2(−kz, t)|]
.� (4)

Figure 3 depicts W ′(kz, t) in the nondipolar limit (a) as well as the maximally dipolar regime, εdd = 0.9, with 
B parallel to x̂ (b), ŷ (c), or ẑ (d). In each subplot, we average the results over the ensemble of initial conditions 
until the minimal value of tc in the ensemble. This accounts for the distinct endpoints of t in each subplot.

Irrespective of the dipolar parameters, Fig 3 demonstrates that the dynamics of the vortices at early times 
are characterized by the mutual interaction of the modes driving fluctuations of their relative populations. 
This is accompanied by the suppression of strongly energetic high order modes with |q| ≳ 7. We note that this 
justifies the initial mode cutoff, |q| ≤ 20, as being sufficiently large as to not exert an artificial influence upon 
the dynamics. It is not until t ≳ 2tc/3 and the vortices are nearing their first reconnection that unambiguous 
signatures of a dependence on the dipolar parameters becomes evident, cf. Figs. 1 and 2. In Fig. 3 (d), where 
εdd = 0.9 and the dipole polarization is (anti-)parallel to the vortex lines, the Kelvin mode populations 
monotonically decrease as a function of kz  as t → tc. This is consistent with the features of the vortex lines in 
Fig. 2 (c) since, at t = tc, each vortex exhibits only one antinode of its displacement from the unperturbed mean. 
By contrast, polarizing the dipole moments orthogonal to the vorticity of either vortex stimulates the population 
of higher Kelvin modes. Figure 3 (b) illustrates clearly that when B is parallel to the vortices’ velocity, i.e. x̂, the 
q = 3 mode is by far the most strongly excited at late times before the first reconnection. Again, this is consistent 
with the qualitative features at t = tc in Fig. 2 (a) where 3 distinct antinodes are distinguishable on each vortex. 
Intriguingly, Fig. 3 (c) depicts that while modes of odd q are preferentially occupied as t → tc when the dipole 
polarization is parallel to the separation axis, ŷ, no single mode is overwhelmingly dominant. Nonetheless, the 
first 6 modes contribute to the majority of the mode population just like the nondipolar limit. Indeed, while the 
two vortex antinodes at z ≈ −20, −50 when t = tc appear to be closer to instigating reconnections in Fig. 2 
(b) than the corresponding ones are in Fig. 1, the nondipolar vortices are otherwise much more similar to the 
dipolar vortices in Fig. 2 (b) than those in (a) and (c).

With these insights on the evolution of the modes in the maximally dipolar regime, εdd = 0.9, we proceed to 
study specific features of the mode population over the full range εdd ∈ [0, 0.9]. One such measure is kz ≡ kc, 
the wavenumber that maximizes W ′(kz, tc) and is thus the most strongly excited Kelvin wave at t = tc. Figure 4 
plots the ensemble mode of kc as a function of εdd with the values for each B being represented by distinct 
markers. For the sake of clarity, we have augmented the kc-axis with the corresponding values of the Kelvin 
wave index q. It is immediately apparent that in the nondipolar limit the q = 4 mode is most frequently the 

Fig. 2.  The Crow instability of an antiparallel quantum vortex pair, initially separated along the y-axis, in 
a dipolar superfluid with εdd = 0.9 and B parallel to x̂ (a), ŷ (b) and ẑ (c). With tc the time till the first 
reconnection, the vortices are depicted at the times tc/3, 2tc/3 and tc.
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Fig. 4.  The wavenumber, kc, of the Kelvin wave maximally occupied at t = tc, represented as a mode over the 
ensemble of initial conditions as a function of εdd. The distinct markers correspond to polarizations parallel to 
x̂, ŷ, and ẑ, each of which converge in the limit εdd = 0 to the nondipolar value of kc; this is represented by a 
distinct marker. The index of the Kelvin modes, q, is also represented for reference.

 

Fig. 3.  The relative occupation of the lowest-lying Kelvin modes with positive kz  during time evolution, 
ensemble-averaged over the initial conditions. In (a), εdd = 0 and in the remaining subfigures, εdd = 0.9; B is 
parallel to x̂ in (b), ŷ (c) and ẑ (d).
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dominant one. This corresponds to a wavenumber kcξ = 8π/200 ≈ 0.126, which is broadly consistent with 
predictions in earlier studies of the nondipolar Crow instability that dkc ∼ 122. When εdd ̸= 0 the behavior of 
kc is directionally dependent on the dipole polarization. When B ∥ ŷ, kc is insensitive to εdd and its ensemble 
mode is equivalent to the nondipolar value across the full range of εdd. This is consistent with the qualitative 
similarity of the plots of the relative Kelvin mode populations for εdd = 0 and {εdd = 0.9, B ∥ ŷ} in Figs. 3 
(a) and (c), respectively. However, such robustness with respect to εdd is not evident for dipole polarizations 
along either x̂ or ẑ. When εdd = 0.9 and B ∥ ẑ, Fig. 3 (d) shows that the q = 1 mode is preferentially occupied 
most often as t → tc. This substantial discrepancy away from the nondipolar limit for large εdd is supported by 
Fig. 4 where kc also broadly decreases with increasing εdd. Thus, while we do not focus on the dynamics of the 
vortices for t > tc, the vortex loops formed as a consequence of the Crow instability are unambiguously larger 
for increasing εdd when the dipole polarization is parallel to the initial vortex configuration. A similar scenario 
occurs when B ∥ x̂ with the q = 3 mode being dominant most frequently for εdd ≥ 0.1.

Given the maximally unstable Kelvin mode, kc, we can also study the evolution of its amplitude, W (kc, t), over 
the interval t ∈ [0, tc]. The early stages of vortex pair evolution are marked by a transient in W (kc, t) arising from 
nonlinear interactions with the other modes. This can be attributed to the initially imprinted superfluid phase, 
defined in Eqs. (10) and (11) in the Methods, being only an approximation of the true phase of a superposition 
of Kelvin modes on a pair of antiparallel vortex lines. Thus, a redistribution of Kelvin mode amplitudes occurs 
as the vortices interact with the background superfluid to establish a valid phase profile. Subsequently, W (kc, t) 
grows approximately exponentially in time, i.e. W (kc, t) ∼ exp(σt) with σ the growth rate. Let us define the 
timescale tc0 as the ensemble-averaged value of tc in the nondipolar limit. Figure 5 (a) plots ensemble-averages 
of log10 W (kc, t) as a function of t/tc0 from t = 0 till the ensemble-averaged value of tc/tc0; this is presented 
for εdd = 0.9, B ∥ {x̂, ŷ, ẑ} as well as the nondipolar limit. The exponential growth of W (kc, t) with respect 
to t means that each curve is approximately linear; this is consistent with the Crow instability manifesting itself 
as a linear dynamical instability of the k = kc mode. Figure 5 (a) also emphasizes the pronounced dependence 
of tc on the dipole polarization, with prior investigations additionally demonstrating the dipolar dependence of 
the vortex pair’s velocity36. Extracting the growth rate, σ, requires excising of the effects of the initial transient 
in ψ before applying linear regression to log10 W (kc, t). Thus we conduct regression only in the linear growth 
regime which we take to be the interval t ∈ [tc/2, tc]. This yields Fig. 5 (b), where the ensemble average of 
σ is plotted as a function of εdd with distinct markers for B ∥ {x̂, ŷ, ẑ}. First, we compare our nondipolar 
result, σ ≈ 0.0118, to pre-existing predictions obtained through linear stability analysis of antiparallel vortices 
in superfluids15,22,

	 σ(kc)2 ∼ d−2k2
c

[
ln(

√
2d) + 0.38

]
,� (5)

yielding a prediction σ ≈ 0.04. While both values are of the same order of magnitude, we believe that the 
discrepancy is mainly due to the nonlinear growth of W (kc, t) evident in Fig. 5 (a) and the aforementioned 
reasons for this nonlinearity. When εdd is nonzero, Fig. 5 (b) shows that σ is always smaller for B ∥ x̂ than for 
the other two polarizations and that the εdd → 1 limit is characterized by the hierarchy σ(x̂) < σ(ẑ) < σ(ŷ). 
Given that we always specify an initial vortex separation d = 6.25ξ, one would expect longer reconnection times 
for smaller σ. As such, the observed hierarchy of σ in Fig.  5 (b) is consistent with the ensemble-averaged 
reconnection times, tc(x̂) > tc(ẑ) > tc(ŷ), seen in Fig. 2 in the regime εdd = 0.9.

Fig. 5.  (a) log10 W (kc, t) as a function of t, with kc the maximally unstable mode wavenumber and 
εdd = 0.9. The initial conditions correspond to those in Figs. 1 and 2. (b) The ensemble-average of σ, the 
exponential growth rate of W (kc, t), as a function of εdd. In both plots, B ∥ {x̂, ŷ, ẑ}, and their convergence 
to our nondipolar results is represented by a distinct marker.
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While the results presented so far focused on the spectral properties of the vortex lines, the dipolar dependence 
of the maximally occupied Kelvin mode wavenumber, kc, indicates that local geometric properties of the vortex 
lines are also sensitive to the DDI. One such quantity is the vortices’ curvature. Let us write the coordinates of 
the nth vortex line at time t as γ(n)(s, t) = [γ(n)

x (s, t), γ
(n)
y (s, t), s]. Suppressing the index n for notational 

simplicity, the curvature of this line is then defined as59

	
κ(s, t) = |∂sγ(s, t) × ∂2

ssγ(s, t)|
|∂sγ(s, t)|3 .� (6)

Initially, we study the time-dependence of the vortices’ curvature, focussing on the maximally dipolar case 
εdd = 0.9. Comparisons can then be made between the vortices’ curvature for different dipole polarizations 
and with the nondipolar limit, as well as with the corresponding results for the evolution of W (kc, t) in Fig. 5 
(a). Let us define κ(t) as the global curvature at time t found by averaging κ(s, t) over s for each vortex and 
finding the mean of the two spatial averages. We also define ⟨κ(t)⟩ as the ensemble average of κ(t). Figure 6 plots 
⟨κ(t)⟩ as a function of t/tc0; here, the reader is reminded that tc0 is the ensemble-averaged nondipolar value of 
tc. A fascinating contrast emerges when examining the features of Fig. 6. Firstly, a universal property of ⟨κ(t)⟩ 
is that it increases sharply immediately before the reconnection. This is expected from the vortex line profiles 
for t = tc in Figs. 1 and 2 since, at the respective vortex separation global minima where the reconnection is 
about to occur, the vortices’ curvature is visibly large. In addition, large oscillations are observed at early times 
due to the initial transient in ψ. However, the behavior of ⟨κ(t)⟩ in the intermediate stages is not universal and 
is instead dipole-dependent. Unless the dipole polarization is parallel to the z-axis, ⟨κ(t)⟩ increases slowly until 
immediately before the reconnection. This rate of increase is higher for nonzero εdd than in the nondipolar limit 
since, as Figs 2 (a) and (b) demonstrate, the vortices are strongly perturbed along the axis of dipole polarization. 
This can be understood in terms of the 1 < q < 6 modes contributing quite substantially to the Kelvin mode 
population in Figs.  3 (b) and (c) during this time interval. Conversely, the mean vortex curvature in the z-
polarized superfluid decreases as the dominant contributions in Fig. 3 (d) are from the lowest mode, q = 1.

Further insight is afforded by comparing the global mean curvature for different dipolar regimes when t = tc. 
Figure 7 plots ⟨κ(tc)⟩ as a function of εdd with B ∥ {x̂, ŷ, ẑ}. While ⟨κ(t)⟩ exhibits temporal fluctuations due 
to the randomness of the initial conditions, one finds that ⟨κ(tc)⟩ is largely independent of εdd when the dipole 
moments are polarized along the x-axis, the translation axis of the vortices. As for polarizations along the y-
axis, Fig. 7 suggests that ⟨κ(tc)⟩ generally increases with εdd but only slightly relative to the nondipolar value. 
This constrasts sharply to the case where the dipole moments are polarized along the z-axis, i.e. parallel to the 
vortex lines. Instead, ⟨κ(tc)⟩ decreases monotonically for larger εdd, such that the mean vortex curvature is not 
enhanced but suppressed by the DDI. The magnitude of this dependence of ⟨κ(tc)⟩ on εdd is also larger than that 
when B ∥ ŷ. In earlier studies of Kelvin waves on single, isolated vortices, this has been attributed to the effective 
interaction between the virtual dipole moments that are induced in the vortex line49,50,60. Note that the virtual 
dipoles are antiparallel to the real dipole moments of the superfluid bulk. When B ∥ ẑ the contributions to the 
dipolar interaction energy arising from the interactions between the virtual dipole moments are minimized 
when the angle between any two virtual dipoles and their polarization axis is minimized, cf. Eq. (2). This results 
in the vortex curvature being suppressed and also implies a lower wavenumber of the preferentially excited 
Kelvin mode when B ∥ ẑ than for the other polarizations in Fig. 4. These effects are naturally more pronounced 
for larger values of εdd, leading to the monotonic decrease of both ⟨κ(tc)⟩ and kc with respect to εdd in Figs. 7 
and 4 (c), respectively. Furthermore, the inducement of virtual dipole moments in the vortex cores can explain 
the salient features of the vortices when B is parallel to x̂ or ŷ. When B ∥ ŷ, configurations of the virtual dipole 
moments along this axis are favored and, thus, perturbations are enhanced along this axis. While this results 

Fig. 6.  The mean curvature of the vortices ensemble-averaged over the initial conditions, ⟨κ(t)⟩, as a function 
of t/tc0. Except for the nondipolar case, we have εdd = 0.9.
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in the monotonicity of ⟨κ(tc)⟩ in Fig. 7, it is also responsible for faster vortex reconnections than for the other 
dipole polarizations as observed in Fig. 2. By extension, this is why the exponential mode growth factor σ is 
largest when B ∥ ŷ. Similarly, when B ∥ x̂, vortex line perturbations orthogonal to this axis are suppressed and 
thus the mean curvature arises mainly from perturbations parallel to the velocity of the vortex pair. While this 
results in the large transverse perturbations of the vortices in the x-z plane in Fig. 2 (a), perturbations along ŷ are 
greatly inhibited and thus the reconnection is greatly delayed. This dipole-mediated inhibition of the exponential 
growth of the dominant Kelvin mode when B ∥ x̂ is responsible for the smaller values of σ in Fig. 5 (b).

Discussion and conclusions
Through studying the evolution of a pair of antiparallel vortices in a dipolar superfluid when subjected to an 
initial transverse perturbation, we have found that the Crow instability exhibits a striking dependence on the 
magnetic dipole polarization and the relative strength of the DDI. When the axis of the applied magnetic field, B, 
is parallel to the unperturbed vortex lines, the vortices’ curvature is strongly suppressed by interaction between 
virtual dipole moments inside the vortex cores. This stiffening results in the dominant Kelvin modes excited by 
the Crow instability being of ever-longer wavelength as the relative dipolar interaction strength, εdd, increases. 
These virtual dipole moments have the opposite effect when the dipole polarization is orthogonal to the initial 
vortex lines, with both the vortex curvature and the growth of higher Kelvin modes being enhanced by the 
DDI. While the Kelvin mode relative population for a dipole polarization parallel to the vortex separation is 
quite similar to its nondipolar counterpart, these modes induce larger vortex curvatures for higher εdd and, 
correspondingly, a more rapid onset of the Crow instability. However, for dipole polarizations parallel to the 
vortices’ velocity, the Kelvin mode population is concentrated at a single mode, q = 3, in the large-εdd limit and 
the elongation of the vortex lines along the polarization axis inhibits the Crow instability when compared to the 
other two polarizations.

The outcome that the Crow instability is strongly modulated by the dipole polarization suggests that other 
hydrodynamic instabilities might exhibit a directional dependence in a dipolar superfluid. Notably, the snake 
instability of dark solitons is suppressed when the dipole polarization is parallel to the solitonic phase slip61. 
An intrinsic correspondence exists between the snake instability of dark solitons and the Crow instability of 
antiparallel vortices15, such that the analogue of this solitonic phase slip in our system is parallel to the x-axis. 
Given that our results demonstrate a suppression of the Crow instability for dipole polarizations along this 
axis, the twin predictions of instability suppression are probably not coincidental. We note that this prediction 
of the suppression of the snake instability was obtained via linear stability analysis of the excitation spectrum 
of a three-dimensional dark soliton61 and that similar methods have been used to analyze the stability of two 
antiparallel vortices against transverse perturbations in a nondipolar BEC22. It is thus likely that linear stability 
analysis of the stationary states of an antiparallel vortex pair in a dipolar superfluid would shed further insight 
into the dipolar Crow instability. We also note that Ref61. did not consider dipole polarizations orthogonal to 
the solitonic phase slip. Given the contrasts we have observed for different dipole polarizations, we believe that 
it is prudent to also study the snake instability when the dipole polarization lies in the soliton plane. Another 
hydrodynamic instability arising from transverse perturbations is the Donnelly-Glaberson instability of vortex 
ensembles in rotating superfluids, where spontaneous radiation and amplification of Kelvin modes can lead 
to reconnections as well as the melting of a lattice of straight vortex lines into a tangled state62. Noting our 
observations of the dipole-mediated enhancement or suppression of Kelvin mode growth in a pair of antiparallel 
vortices, a study of transverse perturbations of a much larger ensemble of vortices embedded in a dipolar 
superfluid might thus be warranted.

Fig. 7.  ⟨κ(tc)⟩, the mean curvature over the length of the two vortices ensemble-averaged over the set of 
vortex initial conditions at time t = tc. Each data series converges to the nondipolar value in the limit εdd = 0, 
which we have represented via a distinct marker.
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Data availability
The datasets generated during and/or analysed during the current study are available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​2​5​4​0​
5​/​d​a​t​a​.​n​c​l​.​3​0​0​4​8​3​6​4​.​​

Methods
Propagating the dipolar Gross-Pitaevskii equation and extracting the vortex lines
Our results are obtained from numerically solving the dimensionless dGPE via the second-order split-step 
pseudospectral method63. The spatial domain has dimensions {Lx, Ly, Lz} = {100ξ, 100ξ, 200ξ} along the 
x, y- and z-axes, respectively, and is discretized evenly on a spatial grid of 256 × 256 × 512 points. The use 
of discrete Fourier transforms in the pseudospectral scheme to calculate spatial derivatives results in periodic 
boundary conditions being imposed upon the solutions of Eq. (3). The contribution of the DDI to Eq. (3) is also 
evaluated pseudospectrally via the convolution theorem and the analytical form of Vdd(r) in reciprocal space, 
Ṽdd(q)26:

	
Ṽdd(q) = (B · q̂)2 − 1

3 .� (7)

The initial conditions of the dGPE are obtained by applying a Wick rotation to the dGPE such that t �→ it 
and propagating it in imaginary time with the desired initial phase of ψ being imprinted continuously until 
|ψ| converges. The numerical simulations of the evolution of the system are conducted by inverting the Wick 
rotation and evolving the dGPE in real time; for all of the parameters and initial conditions studied in our work, 
the imaginary and real timesteppers use timesteps of dt = 0.01 and dt = 0.001, respectively.

The superfluid velocity corresponding to ψ is given by v = ∇S where S = ∇ [Im(log ψ)], the phase of 
S, effectively plays the role of a superfluid velocity potential. Quantum vortices are characterized by both a 
quantized circulation3, viz.

	
Γ =

∮
ds · v = 2πs : s ∈ Z,� (8)

around the vortex and a vanishing superfluid density, i.e. |ψ|2 = 0, at the vortex core. To efficiently identify 
regions of the spatial domain where both properties are manifested, we compute the pseudovorticity64,

	
ωps = 1

2∇ × (nv) ≡ ∇Re[ψ] × ∇Im[ψ].� (9)

This quantity is only nonzero in the vicinity of a quantum vortex core and has thus been used extensively in 
recent studies of superfluid vortex dynamics to locate and track vortices25,65–67. Vortex detection is therefore 
implemented as a two-stage process. First, the entire domain is divided into sets of discretized x-y, y-z and z-x 
planes; for example, each of the x-y planes is defined such that z equals one of its spatial gridpoints. On each 
plane, the circulation of v is computed via the trapezoidal rule and, given we expect only vortices of quanta 
s = ±1, a vortex is taken to lie near a gridpoint of the plane if |Γ| > 6. The subgrid domain between the identified 
gridpoint and the neighboring points is then divided into 10 intervals in each direction before the node of the 
vortex line is interpolated between each interval. This is achieved by employing the Newton-Raphson method to 
find the points where |ψ|2 < 10−5, with the search direction being weighted by the pseudovorticity to aid in its 
convergence. This procedure is applied every 500 timesteps such that the interval between subsequent snapshots 
of the vortex profiles is ∆t = 0.5.

Superfluid phase: initial conditions
The correspondence between the phase of ψ and the superfluid velocity, v = ∇S, allows us to use the classical 
result for the velocity potential of a pair of straight, antiparallel vortices in an incompressible fluid as the basis 
of the initial phase in the simulations. For vortices in the x-y plane in a periodic domain with dimensions 
x ∈ [0, Lx), y ∈ [0, Ly), this is given by68–70

	
S(x, y) =

∞∑
p=−∞

2∑
n=1

(−1)n

{
arctan

[
tanh

(
πYn

Ly
+ pπ

)
cot

(
πXn

Ly

)]
− πΘ(Xn)

}
+ 2π(x1 − x2)y

LxLy
,� (10)

Here, the vortex with circulation 2π(−1)n is located at rn and Rn = r − rn. In practice, replacing the infinite 
sum over p with a partial sum from −P  to P results in a rapid convergence of S for small positive P; our 
simulations fix P = 11 in line with our previous work36.

Let us define the following random perturbation,

	
δw(z) =

Q∑
q=−Q

exp
[
iπ(2ηq − 1) + 2πiqz

Lz

]
− exp [iπ(2η0 − 1)] ,� (11)

representing a uniform population of the 40 lowest-lying excitations along the z-axis, each with random phase 
ηq  drawn from the uniform distribution in the interval [0, 1). As described in the Results, we populate only the 
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lowest 40 modes and, as such, Q = 20 throughput the article. The initial phase of ψ in our simulations of the 
Crow instability is then given by Eq. (10) with (xn, yn) �→ [xn + (−1)nRe(δw), yn + (−1)nIm(δw)].

Kelvin mode amplitudes and vortex curvature
To determine the Kelvin mode amplitudes, Wn(kz, t), we represent the coordinates of the nth vortex line as 
wn(z) = xn(z) + iyn(z). Shifting the average of these coordinates over the z-axis to the origin of the x-y plane 
yields the quantity w̃n(z, t) = wn(z, t) − ⟨wn⟩(t), where w̃n(z, t = 0) = (−1)nδw(z) is the initial Kelvin 
wave perturbation given by Eq. (11). The corresponding mode amplitudes, Wn(kz, t), are the discrete Fourier 
transforms of w̃n(z, t) and the periodicity of the domain ensures a restriction of the mode wavenumber, kz , 
such that kz = 2πq/Lz, q ∈ Z. We also note that, by construction, Wn(kz = 0, t) = 0.

The curvature of each vortex line can be computed directly from the mode amplitudes as follows. Noting 
that γ(n)(s, t) is simply equivalent to [xn(s, t), yn(s, t), s], the first and second derivatives in Eq. (6) can be 
found by multiplying W (kz, t) by ikz  and −k2

z , respectively, and transforming the product back to real space. 
Decomposing the result into its real and imaginary components yields the spatial derivatives with respect to x 
and y, respectively. In practice, though, before inverting the discrete Fourier transform, it is necessary to apply 
a low-pass filter to minimize the effects of noise from the vortex detection procedure, as well as aliasing, that 
adversely affect the computation of higher-order derivatives. Through trial and error we have found that a simple 
low-pass filter that excises modes for which |kz| > 100 × 2π/Lz  is sufficient.
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