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In response to global concerns regarding air quality and the environmen-
tal impact of greenhouse gas emissions, detecting and quantifying sources
of emissions has become critical. To understand this impact and target mit-
igations effectively, methods for accurate quantification of greenhouse gas
emissions are required. In this paper, we focus on the inversion of concentra-
tion measurements to estimate source location and emission rate. In practice,
such methods often rely on atmospheric stability class-based Gaussian plume
dispersion models. However, incorrectly identifying the atmospheric stability
class can lead to significant bias in estimates of source characteristics. We
present a robust approach that reduces this bias by jointly estimating the hor-
izontal and vertical dispersion parameters of the Gaussian plume model, to-
gether with source location and emission rate, atmospheric background con-
centration, and sensor measurement error variance. Uncertainty in parameter
estimation is quantified through probabilistic inversion using gradient-based
MCMC methods. A simulation study is performed to assess the inversion
methodology. We then focus on inference for the published Chilbolton dataset
which contains controlled methane releases and demonstrates the practical
benefits of estimating dispersion parameters in source inversion problems.

1. Introduction. The latest Intergovernmental Panel on Climate Change (IPCC) report
concluded with high confidence that climate change is responsible for substantial damage to
our ecosystems. We are approaching irreversible losses and can say with very high confidence
that mass mortality events are being observed on land and in the oceans (Lee and Romero,
2023); Section 2.1.2 paragraph 3. Methane (CH4) has a global warming potential 84 times
greater than carbon dioxide (CO2) over 20 years, making it a more powerful greenhouse gas
(IPCC, 2013). With over 60% of methane emissions being anthropogenic (Saunois et al.,
2019), the current global average atmospheric CH4 concentration is about 1.93 parts per
million (PPM) (Lan, Thoning and Dlugokencky, 2024), increasing by over 0.075 PPM every
decade (Nisbet et al., 2019). While carbon dioxide remains in the atmosphere for hundreds of
years, methane’s shorter atmospheric lifetime of 8.9 ± 0.6 years (Prinn et al., 1995) (before
it is chemically transformed or deposited out of the atmosphere to the earth’s surface) means
that reducing methane emissions can quickly mitigate global warming, aligning with the 2015
Paris Agreement’s climate goals.

Identifying and quantifying methane emissions leads to a better overview of sources of
methane (e.g. leaks) which can subsequently be repaired or avoided. This plays a role in
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addressing climate change and enhancing sustainability efforts worldwide. There is there-
fore a need to accurately estimate and report methane emissions from various sources, such
as production facilities and distribution networks, where emissions may result from venting,
flaring, or equipment leaks. For instance, through satellite observations, the Caspian coast of
Turkmenistan has been identified as one of the most significant methane hotspots globally,
a finding that has since received extensive media coverage. Irakulis-Loitxate et al. (2022)
have linked these emissions to venting and pipeline leaks in oil and gas fields, presenting an
opportunity to make informed decisions towards reducing CH4 emissions in the region.

The Oil and Gas Methane Partnership 2.0 (OGMP 2.0) is the United Nations Environment
Programme’s voluntary framework for methane reporting and mitigation (OMGP2.0, 2024).
The program establishes 5 reporting levels of increasing granularity. To achieve gold standard
reporting, operators must demonstrate their efforts to move towards level 5, which requires
bottom-up emissions estimates from level 4 (based on an emission inventory combined with
source-level measurements) to be reconciled with site-level measurements. Continuous mon-
itoring of oil and gas facilities using methane concentration sensors is one method for obtain-
ing site-level measurements. Such measurements should be coupled with a robust inversion
methodology in order to obtain accurate and trustworthy site emissions estimates. For many
applications, including those to leak detection, it is reasonable to assume that the probability
of a source existing in the domain under observation is small. Hence, inversion assuming at
most a single source is likely to be adequate.

Many inversion methods have been proposed to estimate source emission rates and locations.
These can generally be grouped into optimization algorithms (Qiu et al., 2018; Albani, Al-
bani and Neto, 2020; Wang et al., 2020) and Markov chain Monte Carlo (MCMC) (Hirst
et al., 2013, 2020; Ma et al., 2021; IJzermans et al., 2024). Forward models describing how
gas disperses in the atmosphere can be used to attempt to explain measured gas concentra-
tions. Inversion methods estimate the parameters that given the forward model would best
describe the data collected. The most commonly used forward model for gas dispersion is
the Gaussian plume model motivated by the solution of an underlying system of partial dif-
ferential equations (PDEs) (Stockie, 2011). The accuracy of the inversion is therefore closely
linked to the accuracy of the forward model. The Gaussian plume model is very sensitive to
the standard deviation of its Gaussian concentration distributions σH and σV ; we will now
refer to these as “wind sigma” parameters. In the literature, wind sigmas are often chosen
based on the Pasquill atmospheric stability class (ASC) (Pasquill, 1961; Cui et al., 2019;
Mao et al., 2020). However, estimating the exact local ASC is often difficult in practice, and
misspecifying it can substantially bias the inversion estimation.

Conventionally, the practitioner estimates the ASC prior to inversion analysis for source
characterization. To estimate the ASC, the practitioner must first gather field evidence for
quantities such as net solar radiation index, wind speed, etc. With this information, the cur-
rent conditions can in principle be allocated to a given ASC. However, in practice, it is not
straightforward to gather this evidence unambiguously. As a result, there is often uncertainty
about the appropriate ASC for a given measurement. Secondly, once an ASC is assumed, the
practitioner reads the values of four dispersion parameters, which specify wind sigmas for
that ASC from historical tables of values (Briggs, 1973). These tables were established many
decades ago from field measurements. Therefore, there is uncertainty associated with the dis-
persion parameter values adopted for a given ASC. As a result, the conventional practice of
specifying the ASC and hence specifying fixed values of the four dispersion parameters is
a source of bias in the inversion analysis of source characterization. A more principled ap-
proach to source characterization accommodates uncertainty in our knowledge of wind field
dispersion parameters, and estimates them and their uncertainties as part of the inference.



3

FIG 1. Representation of the Gaussian plume model. Credit: Stockie (2011).

Given the uncertainty in dispersion parameters, one common approach is to test many plume
models with fixed parameter combinations and select the best using criteria such as DIC,
BIC, or WAIC. However, this forces practitioners to adopt a single “best” set of values, ig-
noring parameter uncertainty. Moreover, it may be the case that the set of combinations of
dispersion parameters considered does not include the specific combination of dispersion pa-
rameters most relevant for the current local atmospheric conditions. In contrast, our approach
jointly estimates dispersion and source parameters within a Bayesian framework, capturing
uncertainty more naturally and offering greater computational efficiency than grid search-
based model selection. Related work by Mao et al. (2021) explores optimizing wind sigmas
via genetic algorithms under ASC-based schemes.

Objectives: In this paper, we propose an MCMC inversion method jointly estimating source
emission rates, locations, background concentrations, measurement error variance, and wind
sigmas. We demonstrate that estimating the wind sigmas is beneficial for the practicing en-
vironmental modeler, in terms of improved inferences, and demonstrate how incorrect gas
characterization can be when using ASC. Our methodology is based on the principles of
probabilistic inversion, which allow us to incorporate uncertainties and prior knowledge ef-
fectively.

2. Atmospheric Gas Concentration and Sensor Measurements. In this section, we
present the modeling framework of the simulation, incorporating the Gaussian plume model
for gas dispersion (Section 2.1 & 2.2); see Figure 1 for visual representation, OU process
for wind fields (Section 2.3), and sensor measurements when accounting for background gas
concentration (Section 2.4). By combining these three elements, we gain a holistic perspec-
tive on air quality dynamics, enabling a deeper understanding of pollutant transport.

The formulation of the forward model sets the stage for the subsequent exploration of inver-
sion modeling, where we aim to estimate sources’ location and emission rate by leveraging
the simulated sensor observations and gas dispersion patterns. We seek to estimate point
sources mixed with a spatially varying background concentration.

2.1. Modeling Gas Dispersions using the Gaussian Plume Model. A variety of gas dis-
persion models have been developed, each differing in accuracy and complexity, with three
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primary categories being prominent. Gaussian plume models, exemplified by ISC3 (Atkin-
son et al., 1996), AERMOD (Cimorelli et al., 2005), and ADMS 6 (Carruthers et al., 1994),
operate on the assumption of a Gaussian distribution and are widely utilized. Gaussian puff
models, such as CALPUFF (Scire et al., 2000), conceptualize the plume as composed of
discrete puffs, while high-fidelity computational fluid dynamics (CFD) models, like Fluidyn-
Panache (Libre et al., 2011), employ rigorous numerical techniques.

In practical application, selecting the most suitable model depends on the specific require-
ments and resources of the modeler. Gaussian plume and puff models are often preferred due
to their practicality, especially when comprehensive spatio-temporal wind field data required
by CFD models are not readily available to set the initial condition and boundary conditions.
Typically, wind data is collected at single points in space, limiting the applicability of CFD
models.

The Gaussian plume model is noteworthy for its computational efficiency and straightfor-
ward implementation. It is a closed-form analytical expression, that allows simulation of the
continuous emission from a single source under the assumption of unidirectional wind flow
in an unbounded space. Gaussian plume models have found widespread application in vari-
ous industries, often serving as a tool for monitoring and regulating emissions from industrial
projects. An example of their use can be seen in the work of Lushi and Stockie (2010), who
employed a Gaussian plume model to estimate the emission rates of a large lead-zinc smelting
operation in Trail, British Columbia. Similarly, Ramadan et al. (2008) utilized this model to
calculate the concentration of sulfur dioxide resulting from existing power stations in Kuwait.
These applications demonstrate the practical utility of the Gaussian plume model in assess-
ing and managing the dispersion of pollutants, aiding in environmental impact assessments,
urban planning, and emergency responses, among other critical areas.

In this paper, the Gaussian plume model is used to model the dispersion of methane. The
Gaussian plume equations are derived from the advection-diffusion Equation 1 which is a
PDE describing the transport of a substance in three-dimensional space whose mass concen-
tration is represented by a function C((x, y, z), t)[kg/m3].

(1)
∂C

∂t
+∇ · (Cu) =∇ · (K∇C) + S.

S((x, y, z), t)[kg/m3s−1] provides the source emission rates, K((x, y, z))[m2/s] are the dif-
fusion coefficients (from eddy and molecular diffusion), and u((x, y, z), t)[m/s] is the wind
velocity field. Using assumptions made by Stockie (2011) and following the derivations in
Supplementary Materials A.1, we can write the closed-form analytical expression for the
Gaussian plume solution as follows:
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2.2. Parametrization of the Wind Sigmas. The Gaussian plume model (2) contains at-
mospheric parameters that influence the shape of the plume, such as the horizontal and ver-
tical wind sigmas, σH , and σV . These represent the standard deviations of the horizontal
and vertical Gaussian distributions for gas concentration which shape the Gaussian plume
model. A large literature exists on choosing wind sigmas and originated with Pasquill’s
ASCs (Pasquill, 1961). Pasquill’s approach first determines the local ASC using meteoro-
logical data, then uses a dispersion scheme to fix wind sigmas according to the ASC. Nowa-
days, ASC-based dispersion schemes remain popular in practice (Kahl and Chapman, 2018),
with Briggs (Briggs, 1973), Smith (Pasquill and Smith, 1983), Pasquill-Gifford, and Chinese
National Standard being common choices (Mao et al., 2020). These power-law dispersion
schemes based on downwind distances fix the wind sigma parameters by selecting dispersion
parameters from ASC-based tables. However, atmospheric conditions are extremely com-
plex, and by fixing the dispersion parameters we risk misspecifying them (Finn et al., 2016).
In this paper, we present a method to estimate the wind sigmas by estimating the dispersion
parameters without relying on the ASCs. We generalize the power-law parametrization from
Hirst et al. (2013) by adding dispersion parameters aH ∈ R+, aV ∈ R+, bH ∈ (0,1], and
bV ∈ (0,1]. For time t= 1,2, · · · , nT and fixed location (x, y, z) :

σHt
= aH (δR tan(γHt

))bH +w,

σVt
= aV (δR tan(γVt

))bV + h,
(3)

where γH ∈ R+ and γV ∈ R+ are the 1 minute rolling standard deviation of the horizon-
tal and vertical wind direction time series, δR ∈ R+ is the downwind distance of location
(x, y, z) from the source located at (x̃, ỹ, z̃), w ∈ R+ is the source’s half-width, and h ∈ R+

the source aperture’s half-height. When the measurement location is upwind from the source
we set the Gaussian plume concentration contribution to zero. In Section 4, we show the
impact of misspecified wind sigmas on source parameter estimation and how estimating dis-
persion parameters reduces this bias.

2.3. Simulating Unsteady-State Wind Field using Ornstein-Uhlenbeck Process. The OU
process is a stochastic process often used to model the behavior of physical systems that
tend to revert toward a mean or equilibrium state (Uhlenbeck and Ornstein, 1930). When
simulating wind speeds and wind directions, the OU process can be useful for generating
realistic, time-varying wind fields. In the simulation study we model the wind speed and
direction as two separate stochastic processes. Their temporal evolution is modeled using an
OU process with mean set to the desired average wind speed and direction. By incorporating
the OU process into wind simulation models, it is possible to generate wind fields that exhibit
realistic temporal and spatial variability. This is useful for many applications such as wind
energy production, air pollution dispersion modeling, and neuronal activity (Arenas-López
and Badaoui, 2020; Boughton, Delaurentis and Dunn, 1987; Ricciardi and Sacerdote, 1979).

The OU process can be numerically simulated using the Euler-Maruyama method (Maruyama,
1955). The Euler-Maruyama scheme discretizes the OU process into a series of time steps,
and the stochastic differential equation governing the process is approximated using a finite-
difference equation. We can therefore simulate an OU process numerically with standard
deviation ξ ∈R+ and correlation time Θ ∈R+ using:

(4) η(t+ dt) = η(t)−Θdtη(t) + νtξ
√
2dtΘ,

where νt is a random number sampled independently at every time-step dt ∈ R+ from a
standard normal distribution (Kloeden, Platen and Schurz, 2002).
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2.4. Point and Beam Sensor Measurements. Our inversion model utilizes measurements
of atmospheric gas concentration. Different types of gas sensor platforms are available, such
as satellites, airplanes, drones, line-of-sight/beam sensors, and point detectors (Fox et al.,
2019), with each sensor type having its advantages. Point sensors can provide very high
accuracy measurements but have poor spatial coverage whereas satellites can cover vast areas
at the cost of measurement precision. This paper focuses on ground sensors (point and beam
sensors) since these are the most common techniques for continuous fence line monitoring
of assets.

Ground sensors measure gas concentrations over time at fixed locations. Assuming mea-
surement error ϵ and Gaussian plume model concentrations As, the data collected can be
represented by the following equation:

(5) d=As+β+ ϵ.

The nobs data points collected are denoted by a nobs × 1 vector d, while A is a coupling
matrix with dimensions nobs ×nsrc, where nsrc represent the number of sources in our model.
The elements of A are the Gaussian plume model concentrations at the sensor locations for a
unit source emission at the source location. Here, we use a Gaussian plume model, however,
more accurate spatial discretization models of the gas dispersion equations are potential alter-
natives; such as a finite volume method discretization of the advection-diffusion Equation 1
(Moukalled et al., 2016; Calhoun and LeVeque, 2000). The vector s has dimensions nsrc × 1
and contains the emission rate for each source. The spatially varying and temporally station-
ary background gas concentration is represented by the nobs × 1 vector β, from a Gaussian
field with β ∼ N(µβ,Σβ), for µβ ∈ R+ and covariance matrix Σβ . Lastly, ϵ denotes the

measurement error vector, where ϵk
iid∼ N(0, σ2) for k = 1,2, · · · , nobs and σ2 ∈R+.

3. Probabilistic Inversion for Gas Emission Problems. Building upon Section 2, we
now explore the inversion model implemented to estimate the source locations and emission
rates. By leveraging the simulated sensor observations and the knowledge of gas dispersion
patterns, the inversion model offers a valuable tool for identifying and quantifying the precise
source characteristics.

Using i = 1,2, · · · , nsrc, j = 1,2, · · · , nsns, and t = 1,2, · · · , nT to represent sources, sen-
sors, and observation time points, respectively, for every pair (j, t) we have recorded mea-
surements dj = (dj1, dj2, · · · , djnT

)T . Each sensor takes a measurement at time t giving a
nobs × 1 vector of observations d= (dT

1 ,d
T
2 , · · · ,dT

nsns
)T . Each sensor’s concentration mea-

surements are a combination of gas emitted from the sources, background gas concentration,
and measurement error variance. The sources’ contributions for unit emission rates are de-
noted by the nobs×nsrc matrix A, modeled using the Gaussian plume equation (2). Aki is ob-
tained by computing Equation 2 for a specified source location (x̃i, ỹi, z̃i) and dispersion pa-
rameters aH , aV , bH , bV from Equation 3. Each source has an emission rate denoted si used to
rescale the coupling matrix A. Each sensor’s measurements contain a different spatially vary-
ing background gas concentration βj = (βj1, βj2, · · · , βjnT

)T where βj1 = βj2 = · · ·= βjnT

giving β = (βT
1 ,β

T
2 , · · · ,βT

nsns
)T .

We are interested in estimating emission rates s = (s1, s2, · · · , snsrc)
T and corresponding

source locations (x̃, ỹ, z̃) = ((x̃1, x̃2, · · · , x̃nsrc)
T , (ỹ1, ỹ2, · · · , ỹnsrc)

T , (z̃1, z̃2, · · · , z̃nsrc)
T ).

These are estimated simultaneously with β, σ2, and aH , aV , bH , bV to reduce bias. For sim-
plicity, we fix the sources’ height near the ground z̃i ≈ 0.

Inversion modeling is a powerful technique in various scientific disciplines, particularly geo-
physics and statistics, and aims to infer unknown parameters or variables from observed data.
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It involves the mathematical formulation of a forward model that simulates the observed data
given a set of input parameters. Inversion modeling reverses this process by estimating the
most likely parameters that produced the observed data. MCMC methods are frequently em-
ployed in inversion modeling for their ability to explore complex, high-dimensional param-
eter spaces that are otherwise intractable. MCMC is particularly useful when dealing with
nonlinear and non-Gaussian problems, providing robust and probabilistic estimates of model
parameters while accounting for uncertainties in both data and model assumptions.

Let λ= {θ, σ2,β}= {{s, x̃, ỹ, aH , bH , aV , bV }, σ2,β}. We can write the full posterior dis-
tribution of our inversion problem as follows:

(6) p(λ | d)∝ p(d | λ)p(λ).

The common set of parameters for prior distributions used during the simulation case study
(Section 4) and the inversion on the Chilbolton dataset (Section 5) are listed in Supplementary
Materials B.3.

3.1. Gibbs Sampling. Gibbs sampling (Geman and Geman, 1984) is a fundamental tech-
nique in MCMC methods particularly advantageous in scenarios where the joint distribution
is difficult to sample directly but where conditional distributions are known or can be easily
calculated. When the prior and likelihood functions belong to a conjugate pair, the poste-
rior distribution has a known analytical form. This allows for posterior samples drawn by
sequentially sampling from the conditional posterior distributions. The parameters σ2 and β
are estimated using Gibbs sampling with the following priors:

σ2 ∼ Inv-Gamma(a, b),

β ∼N (µβ,Σβ),
(7)

where a ∈R+, b ∈R+, µβ is set using historical average background gas concentrations and
Σβ is a diagonal matrix. The mathematical derivations of the following conjugate posteriors
are provided in Supplementary Materials A.2:

(8) σ2 | λ \ {σ2} ∼ Inv-Gamma

(
nobs

2
+ a , b+

∑nobs(d−β−As)2

2

)
,

(9)

β | λ \ {β} ∼ N

((
1

σ2
I+Σβ

−1

)−1( 1

σ2
(d−As) +Σβ

−1µβ

)
,

(
1

σ2
I+Σβ

−1

)−1
)
.

3.2. Manifold Metropolis Adjusted Langevin Algorithm Sampling. Gibbs sampling is
only possible when analytical forms of the conditional posterior distribution are available.
The emission rates, locations, and dispersion parameters have a nonlinear relationship, mak-
ing the derivation of the conditional posteriors extremely challenging. In such cases, gradient-
based MCMC methods like the Metropolis-Adjusted Langevin Algorithm (MALA) offer a
valuable alternative to sample from the posterior (Grenander and Miller, 1994). Gradient-
based MCMC leverages gradient information from the target distribution to guide proposals,
leading to faster convergence and better exploration of the probability landscape.

Considering the structure of the Gaussian plume model, we expect variables to be correlated.
Traditional MALA schemes rely on local gradient information, resulting in inefficient sam-
pling in this scenario. Here M-MALA presents compelling advancements over MALA by
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accounting for these interdependencies using a Riemann metric tensor to adapt to the local
curvature of our target distribution (Girolami and Calderhead, 2011; Xifara et al., 2014). This
ensures a more efficient and accurate sampling procedure which has been shown to work for
similar problems (Karimi et al., 2023). Under M-MALA, sampling of θ is performed by a
Metropolis-Hastings (MH) step with the following proposal distribution:

(10)
θ∗ ∼ Nn

(
θ(l−1) + 0.5ζ(l−1)G−1(θ(l−1))∇θ(l−1) log(p(θ(l−1) | d)), ζ(l−1)G−1(θ(l−1))

)
,

where l is the current MCMC iteration, n is the number of parameters, θ∗ are the proposed
parameter values, θ(l−1) are the parameter values in the Markov Chain at iteration l − 1,
ζ(l−1) is the step size at iteration l− 1, and G(θ(l−1)) =∇2 log(p(θ(l−1) | d)) is the Hessian
matrix.

However, it is essential to note that M-MALA is often computationally expensive due to the
calculation of the Hessian scaling as O(n3). To address this challenge and enhance computa-
tional speed, our code is implemented in JAX (Bradbury et al., 2018), a library for automatic
differentiation and high-performance computing, enabling efficient sampling, and gradient
and Hessian computation for large-scale Bayesian inference tasks.

3.3. Positively Constrained Manifold-MALA-within-Gibbs. Combining Gibbs sampling
with MH algorithms yields a hybrid approach known as MH-within-Gibbs (Chib and Green-
berg, 1995); here we use M-MALA-within-Gibbs. This methodology leverages the strengths
of both techniques to efficiently sample from complex posterior distributions, particularly in
scenarios with correlated parameters and nonlinear relationships. The pseudo-code for our
implementation of M-MALA-within-Gibbs is presented in Supplementary Materials A.3 and
the full code is available at the GitHub repository provided at the end of this paper. We em-
ploy log transformations to enforce positivity constraints on emission rates and dispersion
parameters, ensuring physically realistic parameter values throughout the sampling process.
However, we do not enforce bH , bV ≤ 1 in the MCMC scheme; exceptional values observed
serve as an indicator of model misspecification.

4. Simulation Study. A simulation study was conducted to assess the performance of
our inversion methodology and identify its limitations. The experiments presented in this
section help to understand how varying factors impact parameter estimation, demonstrating
the robustness of our approach and highlighting the necessary conditions for it to perform
optimally. These are fundamental steps towards applying our method to real-world data (see
Section 5), where some factors cannot be controlled and the true parameter values are often
unknown. In this section, we demonstrate our ability to simultaneously estimate the source
emission rate, location, background gas concentration, measurement error variance, and dis-
persion parameters in single source cases. We then highlight the importance of estimating
dispersion parameters by comparing source estimations when dispersion parameters are as-
sumed to be known or estimated.

In order to simulate the data for all experiments we follow the steps in Section 2 and generate
realizations of point sensor temporal observations. Parameter estimation was performed us-
ing 20,000 M-MALA-within-Gibbs iterations with initialization values set by a coarse grid
search on the emission rate and location followed by a Latin hypercube on all parameters.
The code is available at the GitHub repository listed below and was run using Python version
3.10.12 on 4 cores Intel® Xeon® Gold 6248R and 16GB RAM. The algorithm uses fixed
seed pseudo-random numbers for all MCMC samples to ensure reproducibility of results and
comparability between simulations.
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4.1. Single Source Estimation. Simple yet realistic single-source scenarios are useful for
examining the inversion capabilities of our model. Our simulations showcase the model’s
ability to estimate parameters and assess its robustness to parameter variations using the
following experimental design. The simulated parameter variations considered are the fol-
lowing: (a) WDC: wind direction coverage in degrees mathematical [°], (b) DPV: dispersion
parameter values, (c) SER: source emission rate [kg/s], (d) DTS: distance between the source
and sensors [m], (e) OPS: number of observations per sensor, and (f) SL: sensor layout.
These variations assess the robustness of our inversion methodology under different atmo-
spheric conditions (a, b), source characteristics (c, d), and data collection conditions (e, f).
For each of the six factors (a)-(f), we define low (L), medium (M), and high (H) levels as
detailed in Figure 2 and Figure 3. We then perform a “main effects” analysis, changing each
factor in turn from L to M and then to H, holding all other factors at level M. The level
M conditions correspond to an emission source positioned at coordinates (50m, 50m, 5m)
within a 110m × 110m square, emitting at a rate of 0.00039 kg/s (corresponding approxi-
mately to the Chilbolton release rates), with all plume dispersion parameters set to 1.0. A
grid of 36 evenly spaced sensors positioned downwind of the plume (see Supplementary Ma-
terials B.1 Figure 1-3), collects 100 measurements per sensor at a frequency of 1 Hz and with
a measurement error variance of 1e-6 PPM. In practice, sensor layouts will be informed by
the local prevailing wind conditions and the physical characteristics of the site. We believe
the sensor setup adopted here is useful to explore the role of key design parameters on the
quality of inference. An OU process simulates wind speeds with a mean of 6 m/s, and the
wind direction varies every second, encompassing a 140° range. Results of the analysis are
shown in Figure 2 and Figure 3 in terms of box-whisker plots summarizing the marginal pos-
terior distributions of parameters from the MCMC. In all subplots of Figure 2 and Figure 3,
the middle box-whisker plot corresponds to level M for all factors. Detailed results of each
inversion presented in Figure 2 and Figure 3 are available in Supplementary Materials B.1.

Varying atmospheric conditions: In practice, the wind direction coverage is often positively
correlated to the observation period. The longer we collect data the higher the chances of
observing a wide range of wind directions. However, a region’s prevailing wind can result
in narrow wind direction coverage, especially when the observation period is small; e.g.
100 seconds in this simulation. The first column in Figure 3 demonstrates the difficulty of
estimating dispersion parameters when the wind direction coverage is too small, shown by
large uncertainty when the wind direction covers only 60°. However, a full 360° coverage
does not lead to optimal inference, due to sensors spending the majority of time outside the
plume. The second column contains varying dispersion parameters and shows the model’s
robustness to different atmospheric conditions. In-depth studies of the impact of varying
wind direction coverage are included in Supplementary Materials B.1.1. These reveal the
following atmospheric conditions for our inversion method to perform optimally:

1. At least one sensor must be in the plume for the majority of the observation period. For
a given source location, this is determined by the wind directions and point sensor place-
ments.

2. The horizontal range of wind directions must exceed the horizontal plume width. This
ensures that no point sensor is always in the plume, which makes identification of the
dispersion parameters difficult.

Varying source characteristics: Source location and emission rate are crucial when monitor-
ing for gas emissions. It is therefore interesting to understand how these affect the inversion
capability of our model. From the third column in Figure 2 and Figure 3, it is clear that
an increase in the emission rate reduces our estimation uncertainty. This is likely due to
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a more pronounced distinction between the source contribution and the atmospheric back-
ground concentration. Similarly, the fourth column indicates a positive correlation between
estimation uncertainty and the distance between the source and the sensors.

Varying data collection conditions: The fifth column demonstrates the reduction in bias and
estimation uncertainty as the sample size increases. The sixth column shows that the sen-
sor layout is a fundamental factor influencing our estimation accuracy. Losing the vertical
coverage in the sensor layout has significantly impacted our ability to estimate the vertical
dispersion parameters. Due to the structure of the Gaussian plume model, there are positive
and negative correlations between the emission rate and the dispersion parameters. To explain
the observed gas measurements, a trade-off exists between the dispersion parameters and the
emission rate. The former can narrow/widen the shape of the plume while the latter is de-
creased/increased to explain the measured concentrations. This identifiability issue is shown
to be significantly influenced by the sensor layout, we explore it in more detail in Supple-
mentary Materials B.1.6. In the next section we illustrate the bias in source estimation when
dispersion parameters are misspecified, highlighting the importance of correctly estimating
them.

Overall, the model and inversion methodology presented in Sections 2 and 3 have demon-
strated the ability to estimate all parameters simultaneously and have shown general robust-
ness to the changing atmospheric, source, and data collection conditions applied. However,
both wind direction coverage and sensor layout indicate potential limitations of our approach
in practice. Dispersion parameters become difficult to estimate when wind direction coverage
is small or in the absence of a vertical sensor layout.

4.2. Estimating Dispersion Parameters. We now focus on a significant limitation of
many gas inversion methods when applying them to real data, the misspecification of dis-
persion parameters. Similar work was done by Cartwright et al. (2019) who tuned the wind
sigmas by estimating a horizontal and a vertical scaling parameter. The parametrization of
the wind sigmas used in their work also uses four dispersion parameters. However, these are
taken from ASC-based tables, and the ASC was determined using a Monin–Obukh length
and an effective roughness length. This approach fixes the dispersion parameters and as-
sumes that rescaling the pairs {aH , bH} and {aV , bV } can sufficiently improve the Gaussian
plume model. We propose additional flexibility by allowing all four dispersion parameters
to be directly, individually, and jointly estimated. This removes bias introduced by the ASC,
Monin-Obukh length, and effective roughness length. To the best of our knowledge, there is
currently no method other than the one we propose in this paper that simultaneously estimates
source location, emission rate, background concentration, measurement error variance, and
dispersion parameters. In practice, it is common for dispersion parameters to be chosen based
on the local ASC. However, as shown in Figure 4, dispersion parameter misspecification can
introduce substantial bias in the source estimation. We estimated the source location, emis-
sion rate, background concentration, and measurement error variance for various dispersion
parameter misspecifications to quantify this bias. We misspecified each dispersion parameter
at a time, aH , aV , bH , bV , while fixing the remaining three to their true value. This enables us
to identify the main effect biases of each dispersion parameter. Moreover, this experimental
design reflects an optimistic reality where three of the four dispersion parameters are correctly
specified. In practice, we expect all four ASC-based dispersion parameters to be misspeci-
fied because the tables these come from discretize the dispersion parameters when these are
in fact continuous. Additionally, the meteorological data required to correctly identify the
local ASC is not always available. Parameter estimation based on misspecified dispersion
parameters is compared to “est.": where all four dispersion parameters are estimated simul-
taneously, and to “truth": the unrealistic scenario where all four dispersion parameters have
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FIG 2. Parameter estimation performance main effects simulation analysis. Each column compares simula-
tions where a single parameter was varied. The column heading indicates the parameter being varied. WDC:
wind direction coverage [degrees°], DPV: dispersion parameter values, SER: source emission rate [kg/s],
DTS: distance between the source and sensors [m], OPS: number of observations per sensor, and SL: sen-
sor layout. The rows correspond to the different parameters estimated using M-MALA-within-Gibbs. case
1: aH = 1.4, bH = 0.9, aV = 1.2, bV = 0.95. case 2: aH = 1.0, bH = 1.0, aV = 1.0, bV = 1.0. case 3:
aH = 0.9, bH = 0.8, aV = 0.7, bV = 0.85. low: 0.000195 kg/s. mid: 0.00039 kg/s. high: 0.00078 kg/s. line:
36 × 1 line of sensors. grid: 6 × 6 grid of sensors. s.line: 6 × 1 sparse line of sensors. The red dashed lines
represent the true values of the estimated parameters.

been fixed to the truth. The true values of the dispersion parameters in this simulation are
aH = 1.0, aV = 1.0, bH = 0.8, bV = 0.8, and all other conditions are set to level M.

From Figure 4, it can be observed that when aH is too small, or too large, the emission
rate is under or overestimated, the same is true for aV . The estimated source distance to
the grid of sensors is overestimated when the horizontal dispersion parameters are too small
or the vertical dispersion parameters are too large. Similarly, the distance is underestimated
when horizontal dispersion parameters are too large and vertical dispersion parameters are too
small. However, estimation of the source location coordinate y is robust to misspecification
due to the sensors and source layout (see Supplementary Materials B.1 Figure 3). There is no
bias in its estimation but a reduction in uncertainty when dispersion parameters are correctly
specified.

Overall, the misspecification of dispersion parameters shows a strong bias in estimating
source characteristics. Meanwhile, estimating the dispersion parameters significantly reduces
this bias, as shown by Figure 4 where the “est" and “truth" box-whisker plots are almost iden-
tical.

5. Chilbolton Real Data. Site-level gas emission monitoring is an emerging field that is
gaining significance as governments and private companies increasingly prioritize emissions
reporting. Given the novelty of this research area, high-quality controlled release data remains
scarce, and open-source datasets are even more limited. The Chilbolton dataset is one such
rare resource, which we will utilize to apply our inversion methodology.
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FIG 3. Parameter estimation performance main effects simulation analysis. Each column compares simulations
where a single parameter was varied. The column heading indicates the parameter being varied. For the meanings
of acronyms in the titles, see caption to Figure 2. The rows correspond to the different parameters estimated using
M-MALA-within-Gibbs. case 1: aH = 1.4, bH = 0.9, aV = 1.2, bV = 0.95. case 2: aH = 1.0, bH = 1.0, aV =
1.0, bV = 1.0. case 3: aH = 0.9, bH = 0.8, aV = 0.7, bV = 0.85. low: 0.000195 kg/s. mid: 0.00039 kg/s. high:
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The Chilbolton dataset contains controlled methane releases made on the flat terrains of the
Chilbolton Observatory, Hampshire, UK. As these are controlled releases, the true source lo-
cations and emission rates are known. This enables comparability of our results against other
methods applied on the same dataset (Hirst et al., 2020; Voss et al., 2024). The data for these
controlled releases were collected using a multiple open-path laser dispersion spectrome-
ter (LDS) and a single 3D ultrasonic 20Hz anemometer; our inversion uses the anemometer
data rather than modelling wind using an OU process. The LDS measures path-averaged
methane concentrations along beams between the LDS and seven fixed reflectors (see Figure
5), with continuous sequential scanning of all beams taking 3s to cover all reflectors. To en-
sure compatibility between the coupling matrix’s point location concentration structure and
the beam’s path-averaged measurements, 40cm spaced point locations were created along
the beams, across which the coupling matrix concentrations were averaged. The Chilbolton
experiments contain three controlled releases, two with single sources (Source 1 and Source
2), and one with two sources (Source 3 and Source 4) which we tackle using an extended
two-source methodology. Each release event includes multiple sub-releases to increase wind
direction coverage in the dataset. Sources were created by 2m×2m aluminum frames laid on
the ground, evenly perforated with 1cm spaced holes. The Gaussian plume model is a repre-
sentation of the long-term time-averaged concentration under steady-state wind conditions.
Thus, over short time scales, it can be a poor representation of the observed data. Averaging
the data over longer time periods can improve the correspondence between the model and the
(averaged) data. Consequently, measurements from each beam, taken every 3 seconds, were
aggregated within 1-minute intervals before estimating the parameters. See Supplementary
Materials B.2.1 for details regarding data processing.
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parameters are being estimated “est.”.

5.1. Deficiencies in Pre-Specifying Atmospheric Stability Classes for Inversion. We con-
sidered each of four parametric descriptions of the variation of wind sigma with downwind
distance, in the inversion procedure presented in Section 3, and compared their estimation
accuracy. In turn, these: 1) assume fixed ASC-based dispersion parameters using the Briggs
scheme, 2) assume fixed ASC-based dispersion parameters using the Smith scheme, 3) es-
timate dispersion parameters using an ASC-free Smith scheme, and 4) estimate dispersion
parameters using ASC-free Equation 3. From now on, we refer to 3) and 4) as “estimated
Smith” and “estimated Draxler”, respectively.

As with all real-world datasets, the Chilbolton dataset lacks the necessary meteorological data
to reliably determine the local ASC. The only available information consists of the recorded
wind speeds and a photograph of the Chilbolton site taken during the releases. Based on Table
3 in Supplementary Materials B.2.4, the observed wind speeds and the overcast sky possibly
suggest an ASC B or C. Clearly, this remains an approximation and is insufficient to identify
a single local ASC confidently, as required for ASC-based wind sigma parameterizations.

To address the absence of definitive meteorological evidence, we conducted an exploratory
data analysis (EDA), which involved comparing Smith- and Briggs-based model predictions
of spatial gas concentration measurements to the real data. The details of this analysis are
provided in Supplementary Materials 2.4. The results revealed significant differences be-
tween ASC-based model predictions for different classes, yet no single model consistently
provided the best approximation of the observed data. For a given Chilbolton experiment (for
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a specific source location, monitored over multiple days), the most accurate predictions were
equally distributed among the Smith B, Smith C, Briggs A, and Briggs B schemes. This lack
of a clear preference is problematic, as it prevents the reliable selection of a specific ASC. In
practice, this uncertainty undermines trust in ASC-based inference.

The risk of introducing bias through incorrect ASC specification presents a major challenge
in gas emission estimation, highlighting the advantage of estimating dispersion parameters
directly from data as part of the inversion. Further details on the Smith and Briggs schemes,
as well as ASC determination, can be found in Supplementary Materials B.2.2–B.2.4.

5.2. Results. For each model, we ran 10,000 and 5,000 iterations of the M-MALA-
within-Gibbs for Sources 1 and Source 2 respectively, with a 4,000 and 1,000 burn-in which
took on average 27 and 30 minutes for ASC-based models and 48 and 54 minutes for esti-
mated Smith and Draxler approaches. MCMC convergence was evaluated by investigating
traceplots of estimated parameters. Convergence diagnostics are shown in Supplementary
Materials B.2.5 and B.2.6. Based on equivalent diagnostics, we found that the MCMC of the
multiple source scenario (Source 3 and Source 4) failed to converge after 50,000 iterations
taking 1631 minutes. For that reason, we excluded this scenario from the results. A simu-
lation of Chilbolton’s Source 3 and Source 4 release, included in Supplementary Materials
B.2.7, indicates that the lack of convergence is likely due to insufficient wind direction cov-
erage in the real data (See Supplementary Materials B.2.7.1). Figure 6 compares the models’
estimation of Source 1 and Source 2 emission rate and location. As expected from the EDA,
we observe a significant difference between the estimation of ASC-based models. For both
Sources 1 and Source 2, estimation accuracy decreases as ASC moves away from ASC A.
However, both estimated Smith’s and estimated Draxler’s estimations are close to the truth,
comparable to ASC B-based models, and outperform ASC C, D, E, and F-based models.
Figure 7 provides a visual representation of the estimated source locations relative to the true
source positions and beams. Figures 6 and 7 collectively illustrate that our ASC-free estima-
tion method significantly outperforms ASC-based models with incorrect ASC specification.
While the “estimated Smith” and “estimated Draxler” inversions each took approximately
50 minutes to run, executing all ASC-based Briggs and Smith schemes required 168 and 84
minutes, respectively. Therefore the estimated Smith and estimated Draxler inversions are
computationally more efficient than the combined ASC-based inversions, as well as admit-
ting a broader class of dispersion parameters.

We now compare estimated models using the Bayesian information criterion (BIC) (Schwarz,
1978), and assess model goodness of fit using root mean square error (RMSE). Table 1 gives
values of BIC and RMSE for each model considered. In terms of RMSE, Source 1 was best
estimated using estimated Smith inference, but Smith B inference was preferred when penal-
izing for model complexity using BIC. For Source 2, estimated Draxler inference produced
the lowest RMSE and BIC, markedly better than all competitors. Overall, ASC-free models
consistently yield the lowest RMSE inversions and, when accounting for model complexity,
achieve the lowest BIC for Source 2 and a close second for Source 1.

We conclude from the Chilbolton field study that estimating dispersion parameters as part of
the inversion inference avoids the problematic selection of a single ASC, whilst providing
accurate and computationally efficient source characterization.

6. Discussions. We consider a Gaussian plume forward model for atmospheric gas dis-
persion, parameterised inter alia by dispersion parameters known colloquially as “wind sig-
mas”, related to atmospheric stability classes (ASCs). We propose an MCMC inversion
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TABLE 1
Comparing models’ inversion performances for Source 1 and Source 2 using BIC and RMSE. Optimal models

for each performance measure are given in bold. “Estimated Smith” and “Estimated Draxler” estimate the
dispersion parameters instead of using ASC-based tables.

Briggs Smith Estimated
A B C D E F B C D Smith Draxler

Source 1 BIC 2048 2189 2450 2667 3181 3502 2014 2021 2167 2025 2058
RMSE 0.63 0.68 0.76 0.87 1.12 1.29 0.62 0.66 0.90 0.61 0.62

Source 2 BIC 4386 4537 5212 5707 6323 6543 4541 4343 4412 4223 3539
RMSE 0.58 0.60 0.69 0.76 0.86 0.90 0.60 0.61 0.67 0.55 0.48
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FIG 5. Sensor, beam, and source positions for the Chilbolton experiment. Each colored line corresponds to a
different sensor-reflector path. The straight blue line and dashed red line boxes correspond respectively to the
plotting area of Source 1 and Source 2 in Figure 7.

scheme to estimate the gas source emission rate, location, gas background concentration,
measurement error variance, as well as the dispersion parameters. When the ASC is known
a priori, our results show that ASC-based inference (assuming known ASC) and ASC-free
inference (estimating dispersion parameters) are of similar quality. However, determining the
ASC accurately in practical applications is challenging. As a result, ASC-based models are
prone to bias and high computational costs. In contrast, estimating dispersion parameters as
part of inversion inference reduces bias and offers more reliable source characterization.

Whenever possible, plume dispersion parameters should therefore be estimated rather than
fixed a priori, whilst also exploiting any prior information about possible relevant ASCs,
obtained from meteorological and other information from the measurement campaign. The
simulation study in Section 4 shows that this is only feasible when data are recorded using
an appropriate sensor layout and sufficient wind direction coverage. A large literature exists
demonstrating the importance of appropriate sensor layouts in inverse problems (Liu et al.,
2022; Liu and Li, 2022; Dia et al., 2024). These conditions ensure optimal inversion estima-
tion and should therefore serve as guidelines when installing ground sensors and collecting
data for monitoring purposes. Additionally, the simulation study demonstrated the robustness
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FIG 6. Source 1 and Source 2 emission rate and location estimations for all ASC-based models tested, estimated
Smith, and estimated Draxler. The red dashed line represents the true sources’ location and rate.
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of our inversion methodology to a wide range of atmospheric, source, and data collection con-
ditions. In Section 5 we proved the effectiveness of our method in practice by applying it to
real data.

A number of relatively straightforward extensions of the model are possible. The observation
Equation 5 can be adapted so that the background gas concentration, the sensor measurement
errors, and gas dispersion are represented in a more physically realistic way. For example,
background gas concentration β could be modeled using a spatio-temporal Gaussian process
or Gaussian Markov random field, potentially accounting for wind field-induced dependence.
Under this assumption, it is important to jointly estimate β and the measurement error vari-
ance σ2. Additionally, the assumption that sensor measurement errors are independently and
identically normally distributed may be relaxed to include serially correlated errors and mod-
eling sporadic error spikes. In the current work, the source is assumed to be located near the
ground z̃ ≈ 0, appropriate for many applications. This assumption can of course be relaxed
to include estimation of source elevation. Source horizontal and vertical half widths {h,w}
can be estimated similarly. We could also consider non-spherical sources.
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Furthermore, the coupling matrix A could be computed using a more physically realistic for-
ward model. Kennedy and O’Hagan (2001) consider emulation of a plume model for atmo-
spheric dispersion of radionuclides, in their application of Bayesian calibration of computer
models. In the application, the forward model, assumed to be a Gaussian plume, is charac-
terized by a Gaussian process, required to predict the outputs of the computer model, namely
remote concentrations of radionuclides for given inputs, namely source strength, wind speed,
direction, and plume “wind sigmas” for an assumed known source location. This approach
could be extended to account for unknown source locations. Kennedy and O’Hagan (2001)
also consider a discrepancy model to correct the output of their Gaussian process emulated
to observations, thereby accommodating a degree of flexibility within the statistical model
to a misspecified Gaussian plume. We also note literature on non-Bayesian calibration meth-
ods, such as L2-based frequentist approaches. Here, calibration parameters are estimated by
minimizing the squared difference between model outputs and observations. This is often
achieved by estimating discrepancy nonparametrically and then optimizing parameters via
least squares (Wong, Storlie and Lee, 2017; Tuo, 2019; Plumlee, 2019). These methods pro-
vide computationally efficient point estimates with strong asymptotic guarantees, without
requiring priors, but rely on bootstrap or asymptotic approximations for uncertainty quantifi-
cation.

We could go a step further and account for obstacles in the flow field. Traditional finite ele-
ment or finite volume methods have been extensively studied for this purpose and numerous
high-quality software libraries are available e.g. OpenFOAM (OpenCFD, Ltd., 2024) and
ANSYS Fluent (Ansys, Inc., 2024). However, solving the PDE every time the estimated pa-
rameters change can be time-consuming. Recent advancements in forward model emulators
might offer a solution. Physics-informed neural networks (PINNs) have shown great accuracy
at solving general nonlinear PDEs (Raissi, Perdikaris and Karniadakis, 2019; Cai et al., 2021)
including the advection-diffusion equation (Pang, Lu and Karniadakis, 2019; Salman et al.,
2022) and 2D Navier-Stokes equations (Brahmachary and Thuerey, 2024), thereby extending
the emulation idea of Kennedy and O’Hagan (2001). Training a PINN can be very computa-
tionally expensive and time-consuming. However this cost is amortized, once the training is
complete, the solution evaluation is fast (Cuomo et al., 2022). This efficiency is particularly
advantageous in inversion scenarios where the same PDE must be solved repeatedly with
different parameter values.

A grid-based version of our method was originally considered, with the center of the grid cell
serving as a potential source location. In practice, the number of sources is expected to be
small compared to the number of cells; our methodology therefore incorporated a spike and
slab prior on the emission rates to constrain the number of cells corresponding to sources.
However, this method was abandoned due to its computational cost. Assuming cell-centered
sources introduces bias in the parameter estimation, which can be reduced by increasing
the grid’s resolution. Unfortunately, using a fine grid creates a high-dimensional inversion
problem with strong correlations between parameters. Nonetheless, we believe it would be
interesting to use the gridded approach, with a computationally cheaper non-Hessian-based
MCMC method, to identify the number of sources and their emission rates. These estimates
could then be used as starting solutions for our inversion method. See for example Van de
Kerkhof, Jones and Randell (2024) and Hirst et al. (2013).

Finally, for practical online source monitoring applications, it is critical to accommodate
temporal variations in source, background, and dispersion parameter characteristics, due to
effects of e.g. weather conditions, human activities, and seasonality. To account for these tem-
poral variations, we believe extending our work to state-space models whilst enforcing source
sparsity would be an exciting area of research. Voss et al. (2024) have presented promising
results for such approaches on the Chilbolton dataset.
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Data Availability Statement. The raw Chilbolton data that support the findings of this
study are openly available at the following: https://edata.stfc.ac.uk/items/5c88d121-0e19-4
840-a26b-499dba49419a.

Code Availability and Supplementary Materials. Code and data for replicating the
study results are available at https://github.com/NewmanTHP/Probabilistic-Inversion-Mod
eling-of-Gas-Emissions. The Python package sourceinversion implementing the proposed
method and Supplementary Materials A and Supplementary Materials B for this paper are
also available on the same GitHub repository.
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