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A global database of soil microbial 
phospholipid fatty acids and 
enzyme activities
Laura G. van Galen et al.#

Soil microbes drive ecosystem function and play a critical role in how ecosystems respond 
to global change. Research surrounding soil microbial communities has rapidly increased 
in recent decades, and substantial data relating to phospholipid fatty acids (PLFAs) and 
potential enzyme activity have been collected and analysed. However, studies have mostly 
been restricted to local and regional scales, and their accuracy and usefulness are limited 
by the extent of accessible data. Here we aim to improve data availability by collating a 
global database of soil PLFA and potential enzyme activity measurements from 12,258 
georeferenced samples located across all continents, 5.1% of which have not previously 
been published. The database contains data relating to 113 PLFAs and 26 enzyme activities, 
and includes metadata such as sampling date, sample depth, and soil pH, total carbon, and 
total nitrogen. This database will help researchers in conducting both global- and local-scale 
studies to better understand soil microbial biomass and function.

Background & Summary
Soil microbes, particularly bacteria and fungi, are critical for biogeochemical cycling and Earth’s planetary 
health1. Our understanding of soil microbes has been developed primarily through local and regional studies 
that use methods such as DNA metabarcoding and metagenomics, phospholipid fatty acid (PLFA) extractions, 
and enzyme activity assays to study microbial community composition and their role in ecosystem processes2–4. 
Efforts to collate global soil DNA metabarcoding databases have vastly improved our understanding of below-
ground microbial diversity patterns and species’ distributions5–8. However, quantifying microbial biomass and 
function remains challenging based on DNA sequencing alone9. PLFA and enzyme activity assays have been per-
formed by scientists for decades, providing, among other things, the ability to estimate carbon stored in micro-
bial biomass and measure in situ microbial community functioning2,10. These methods complement emerging 
DNA technologies and are crucial for understanding the potential impact of global change factors on carbon 
storage and other critical biogeochemical processes9–11.

PLFA assays involve measuring fatty acids associated with phospholipids of cell membranes3,9,12. PLFA mole-
cules differ in factors such as fatty acid chain length, degree of saturation, branching, and functional group mod-
ifications11. To a certain degree, different PLFAs can be used as biomarkers of taxonomic groups such as fungi, 
protozoa, Gram-negative bacteria, and Gram-positive bacteria10,11,13,14, making it possible to use changes in the 
fatty acid composition of PLFAs to estimate broad shifts in microbial communities. Phospholipids are degraded 
rapidly after cell death, allowing PLFA assays to target living organisms15. Additionally, conversion factors have 
been developed that allow PLFAs to be used to estimate microbial carbon content10,16,17. Although PLFAs cannot 
provide taxonomic resolution equivalent to other quantitative biomass estimation methods, such as quantitative 
PCR, PLFA-based biomass estimates can be more reliable in many situations9,18. Additionally, PLFA analysis is 
a relatively cost-effective way to measure soil microbial community biomass and composition10 and has been 
widely employed since the early 1990s3,19.

Soil enzyme activity assays measure the oxidative or hydrolytic catalysis of organic matter substrates by 
enzymes in soils, the majority of which are thought to be extracellular20,21 and largely released by microbes but 
also by plant roots. Extracellular soil enzymes degrade organic polymers to liberate bioavailable forms of nutri-
ents required for metabolism and growth22,23. These assays aim to quantify the maximum potential enzyme activ-
ity by incubating soil samples in the lab and, most commonly, colourimetrically or fluorometrically measuring 
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the release of a chromophore or fluorophore from the oxidation or hydrolysis of dye-conjugated substrates2,22. It 
is important to note that these assays measure the maximum potential activity rather than in situ activity, which 
is influenced by temperature, soil pH, substrate availability, and other soil and ecosystem properties22,23. Due to 
substrate specificity, different enzyme activities relate to the acquisition of different products categorizable by 
macromolecular type and nutrient element. For example, β-glucosidase degrades cellobioside, and phospho-
monoesterases — often referred to by the broader enzyme class term of phosphatases — hydrolyse phosphate 
monoesters24. Similar to PLFA assays, soil enzyme assays have been performed for many decades25.

Despite the long history of PLFA and enzyme activity assays, data access has largely been restricted to rela-
tively small local and regional scales. Larger-scale global research networks and analyses are becoming increas-
ingly important for complementing local-scale research to better understand and tackle Earth’s global-scale 
environmental challenges26. Global-scale meta-analyses of microbial biomass carbon (MBC) have revealed that 
MBC shows complex biogeographical patterns and is highly sensitive to environmental change and human land 
use27–30. However, the underlying data used to estimate microbial biomass and function (i.e., the raw PLFA and 
enzyme measurements) are rarely available in meta-analyses, making it difficult to use these datasets to answer 
new and targeted research questions.

To improve the availability of soil microbial data, Smith, et al.31 released an open call for collaboration to 
develop a global database of soil PLFA and potential enzyme activity measurements. Many scientists with data 
collected from 89 countries answered this call and here we provide access to the developed database. We provide 
a full description of the database, along with analyses assessing the coverage of environmental space, remaining 
data gaps, and potential biases that users should be aware of. This database will allow researchers to investigate 
critical questions at both local and global scales to better understand patterns of microbial biomass and function. 
We also hope that data gaps revealed in this database will inspire further research in data-limited regions so that 
geographical biases can be reduced in the future.

Methods
Following the open call for collaboration by Smith, et al.31, georeferenced data from PLFA and enzyme assays 
of soil samples were provided by interested collaborators. Additional PLFA data were sourced from the United 
States National Ecological Observatory Network32. We also added data from several sources that reported indi-
vidual PLFA measurements33–37, as well as a recent study with a large enzyme dataset38. Where necessary, data 
were extracted from figures using DataThief 39. We did not perform an additional exhaustive formal literature 
search because very few studies have reported measurements of individual PLFA biomarkers. Only samples with 
geographical coordinates were included. Data from experimental plots were excluded, as well as those from 
samples solely consisting of leaf litter.

Authors performed PLFA and enzyme activity assays using numerous well-recognised methods, with the 
cited methods used by each study listed in the database. Full sample collection and processing methods can be 
found in the original publications for previously-published samples (DOIs provided in the database). Methods 
for unpublished samples are included in this publication as Supplementary Information. The majority of PLFA 
assays were performed using variants of Bligh and Dyer12 lipid extraction methods and gas chromatography-mass 
spectrometry, following Frostegård, et al.19. Several contributed datasets used ester-linked fatty acid measure-
ments, following Schutter and Dick40. Although these two methods recover comparable compositional signals, 
ester-linked fatty acid measurements have concentrations approximately twice as high41. Therefore, we divided 
values from these samples in half to scale them appropriately. Enzyme activities were assayed using colourimet-
ric and/or fluorometric methods22, and in the case of urease, with the natural substrate (i.e., urea). Assays were 
assumed to be performed under optimal conditions of substrate according to best practices, and varied in assay 
incubation temperatures from a standardised temperatures or a temperature that reflected in situ conditions (e.g., 
mean annual temperature).

We thoroughly cleaned and standardised the database by first converting all PLFA units to nmol g−1 soil and 
enzyme activity units to nmol h−1 g−1 soil. We also checked all other variables and converted variable categories 
and units where needed. Sample depths listed as O horizon, A horizon, or “organic” were classed as 0–10 cm. 
Then, where possible, missing important data (e.g., enzyme reaction temperature) was obtained by re-contacting 
data contributors or examining publications. We examined the range of values in all variables to look for errors 
and outliers. A small number of samples contained negative enzyme activity values, which we replaced with zero, 
and percentages greater than 100, which we capped at 100. It was not possible to evaluate the precision or accu-
racy of provided sample coordinates. However, we used the “coordinateCleaner” R package v3.0.142 to ensure 
all coordinates correspond to the correct coordinate reference system (WGS84), and to flag any potential errors 
such as those with equal absolute latitude and longitude or those within a 100 m radius of country centroids or 
capitals. All included samples passed coordinate validity checks.

We included all PLFAs and enzymes in the final database for which, once the data sources were merged, there 
were at least 100 data points available. We extracted the continent, country, and biome43 information for each 
sample location using the “terra” (v1.7–78), “sf ” (v1.0-19), and “rnaturalearth” (v1.0.1) packages in R version 
4.4.144–47.

Data Records
The database is available as a .xlsx file on Figshare48. The file includes tabs with the names of all PLFAs and 
enzymes (including Enzyme Commission numbers) for which data are available, and the number of samples 
available for each. The metadata, PLFA data, and enzyme data for each sample are provided in separate tabs 
which can be linked by the “sampleID” column. All column names are programming-language friendly.

In total, there are data for 12,258 soil samples from 3,743 unique locations (Fig. 1). There are 6,923 samples 
with PLFA data (for 113 PLFAs), 6,657 samples with enzyme activity data (for 26 enzyme groups), with 1,322 
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samples containing both. Data from 627 samples (5.1%) have not previously been published. Samples were col-
lected between 1989 and 2019 (Fig. 1). Of all samples, 10,436 (85%) are from natural ecosystems, and 1,822 
(15%) are from managed (e.g., agriculture, plantation, urban) ecosystems. Data are predominantly from North 
America and Europe, but samples are available from all continents, including 70 samples from Antarctica (Fig. 1). 
Temperate and boreal biomes are the best represented, but many samples are also available from tropical moist 
broadleaf forests, particularly in the enzyme dataset. Montane grasslands, Mediterranean forests and deserts are 

Fig. 1  The PLFA and enzyme activity database contains 12,258 samples from 3,743 locations. The purple 
colour gradient shows the degree to which climatic space is represented by the samples (scale of 0 to 1, see 
Technical Validation section). Grey regions do not have sufficient climate data available to evaluate climatic 
representation. The histogram and donut plots show number of samples (in parentheses) from the PLFA (blue) 
and enzyme (red) datasets collected in different years, from different continents, from different biomes43, 
and within different categories of maximum sample depth. Only large segments of donut plots are labelled. 
Temp. = temperate.
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also reasonably well represented. Most samples were collected with a maximum sampling depth between 0.5 and 
20 cm, but the PLFA dataset also contains high representation of data from up to 50 cm deep (Fig. 1).

Fourteen of the most commonly assessed PLFAs and five of the most commonly measured enzymes are very 
well represented in the database, with between ~2,600 and ~6,800 samples available for each (Table 1). Data are 
also available for an additional 99 PLFAs and 21 enzyme categories. Metadata relating to sample depth are availa-
ble for 100% of PLFA samples and 99.9% of enzyme samples, and data relating to sampling year, sampling month, 
and soil pH are available for 47–90% of PLFA samples and 60–86% of enzyme samples (Table 1). Metadata of 
other soil properties (carbon, nitrogen, moisture and bulk density) and elevation are also available for many 
samples (Table 1).

Technical Validation
We checked the database for erroneous outliers by calculating the interquartile range (IQR) of values within each 
biome for each PLFA/enzyme, and flagging values greater than 5 times the IQR. PLFA and enzyme data are often 
left-skewed, with our database being no exception, and many samples contained flagged values. We scanned the 
flagged values to look for patterns regarding the assay methods used or the study for which the samples were 
collected. No patterns were evident, and so all data were retained.

We assessed climatic space represented by the samples by assessing the degree of extrapolation in multi-
dimensional space, following methods described in van den Hoogen, et al.49. Briefly, we extracted values for 
19 bioclimatic layers from CHELSA50 for each point location in the dataset, then transformed all values into 
principal component (PC) space. Next, we assessed whether each pixel value of the global bioclimatic layers fell 
within or outside convex hulls for each of the bivariate combinations from the first five principal components. 
These five PC axes collectively covered more than 90% of the sample space variation. We plotted the proportion 
of times that each pixel fell within the convex hulls on a map to evaluate the degree to which climate space is 
represented in the database (Fig. 1). As with many other large ecological datasets51, global coverage of the data 
remains geographically and climatically uneven. In particular, substantial portions of Africa, South America, 
Asia, Antarctica, and ecosystems at high northern latitudes are currently under-sampled (Fig. 1).

PLFA contents and enzyme activities vary across biomes (Figs. 2, 3). Overall, PLFA values are relatively high 
in tropical conifer forests, tundra, and boreal forests (Fig. 2). Similarly, soil enzyme activities are high in tun-
dra and boreal forest samples, but some enzyme activities are also high in soils from tropical dry forests and 
Mediterranean forests (Fig. 3).

Name Putative group # samples

Metadata availability (%)

Depth Year Month pH C N Moisture BD Elev.

PLFAs

c18:2ω6c Fungi 6,612 100.0 89.2 85.5 46.5 4.0 29.8 2.4 1.3 32.8

cy17:0 GN bacteria 6,523 100.0 89.4 85.6 44.9 4.1 29.6 3.7 2.3 33.5

cy19:0 6,612 100.0 89.2 86.2 45.4 4.0 30.2 3.6 2.3 33.2

c16:1ω7c 5,600 100.0 88.7 87.8 45.9 4.7 31.8 2.9 2.7 36.1

c18:1ω7c 4,829 100.0 88.1 83.1 42.9 0.0 24.1 2.3 1.7 43.5

a15:0 GP bacteria 6,764 100.0 89.5 85.9 45.7 3.9 30.8 3.5 2.2 31.1

a17:0 4,962 100.0 89.6 84.7 44.4 4.3 27.4 0.6 3.1 43.7

i14:0 3,902 100.0 94.9 93.8 37.8 4.2 21.5 0.0 1.8 51.2

i15:0 6,883 100.0 89.7 86.1 47.0 3.9 32.0 3.5 2.2 32.5

i16:0 6,860 100.0 90.5 86.9 47.2 3.9 32.6 3.5 2.2 32.6

i17:0 6,665 100.0 89.6 85.9 45.3 4.0 30.7 3.6 2.3 31.4

c16:0–10Me GP bacteria (act.) 5,401 100.0 97.8 93.4 46.1 3.1 31.2 0.6 1.9 41.4

c17:0–10Me 4,394 100.0 98.2 92.7 47.5 4.9 28.5 0.0 1.6 50.2

c18:0–10Me 5,694 100.0 87.6 83.4 39.1 2.9 24.8 0.6 1.8 39.3

All available PLFAs 6,923 100.0 89.7 86.2 46.8 3.8 32.3 3.5 2.2 32.3

Enzymes

β-glucosidase C acquisition 6,487 99.9 66.5 59.2 86.4 9.3 51.9 16.3 6.1 22.4

Cellobiohydrolase 2,638 100.0 75.6 75.3 89.2 0.0 56.4 23.2 11.2 4.1

Leucine aminopeptidase N acquisition 3,278 99.8 76.9 62.4 92.6 17.4 59.8 30.5 6.3 20.9

N-acetylglucosaminidase 5,110 99.8 59.2 49.8 84.4 11.1 42.3 20.8 5.8 18.4

Acid phosphatase P acquisition 4,445 100.0 85.3 74.7 90.8 12.4 67.4 23.9 8.9 12.2

All available enzymes 6,657 99.9 67.3 60.1 86.3 9.1 52.3 16.0 6.0 22.9

Table 1.  Data available for 14 of the most commonly assessed PLFAs and five of the most commonly measured 
enzymes. Microbial groups and nutrient acquisition type classifications are putative only and specific to 
soil samples, based on information from Willers, et al.11, Joergensen57 and Dick24. GN = Gram-negative, 
GP = Gram-positive, act. differentiates Gram-positive bacteria that are actinobacteria. The number of samples 
available for each PLFA/enzyme and all available PLFAs/enzymes in the database is shown alongside the 
percentage of those samples for which metadata are available. C and N refer to soil carbon and nitrogen, 
moisture = gravimetric soil moisture content, BD = soil bulk density, and elev. = elevation.
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Soil enzyme activities were measured using a variety of incubation temperatures ranging between 8 °C and 
37 °C (Fig. 4). Assay incubation temperature data are available for 91% of samples (6,025). More details on 
the variation in assay temperature and its potential influence on activity rates are provided in the Usage Notes 
section.

Usage Notes
All samples are georeferenced, and so data at the pixel level relating to climate50,52, soil properties53, and land 
cover54, for example, could be extracted from publicly-available global geospatial layers. Many samples contain 
field-collected metadata (Table 1), but for those that do not, available geospatial layers could also be used to 
fill in gaps. However, users should be aware that these geospatial layers are predictions associated with various 
uncertainties55.

Because the database includes data collected over 30 years (1989 to 2019), there is potential to conduct 
time-series analyses. For example, some densely sampled countries contain samples spanning 6 to 25 years 
(Fig. 5). Additionally, 298 of the unique sampling locations (8%) contain data from more than one time point 
(unique month-year combinations), with the highest number of time points for a single location being 17. 
Time-series analyses are becoming increasingly important to track the response of organisms to global change 
factors, and such datasets are highly valuable56.
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1.5 times the interquartile range. Biomes are ordered according to the median value across all 14 PLFAs. 
Numbers show the sample size in each category.
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One important property of PLFA content measurements is that they are additive. As mentioned earlier, dif-
ferent PLFAs can be associated with different microbial functional groups, such as fungi, Gram-negative bacte-
ria, actinobacteria, and other Gram-positive bacteria11,13,57. PLFA measurements that are markers of the same 
group can therefore be summed to estimate biomass of those groups and the ratios of different groups exam-
ined. However, the accuracy of some commonly used classifications has been questioned10,11. For example, it is 
recognised that the PLFA 16:1ω5, sometimes used as a marker of arbuscular mycorrhizal fungi, also occurs in 
significant amounts in bacteria58,59. Also, some PLFAs can be good indicators of certain groups in some (agro)
ecosystems, but not others10. For example, 18:1ω9 can be a good indicator of fungi in soils under forest but not 
agricultural land use10. It is important that data users review the latest literature and be aware of any potential 
errors with classifications.

The magnitude of enzyme activities measured in soils can be strongly influenced by several methodologi-
cal parameters, in particular assay temperature, pH, and substrate concentration60–64. It is important that the 
impact of different assay conditions on enzyme activity is considered when analysing and interpreting these data, 
because whilst there are recommendations for best practices in soil enzyme activity assays65 these are not always 
strictly adhered to62. We made the assumption that soil enzyme activities were assayed at non-rate limiting sub-
strate concentrations (i.e., activities approximate maximum catalysis rate (Vmax)), which is recommended22,66 to 
ensure that the activity assayed is independent of substrate-concentration67. As a result, soil enzyme activities 
assayed at non-rate liming activities reflect inherent differences in activity (Vmax) of a soil sample62. Confirming 
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that substrate concentrations approximate Vmax requires soil sample-specific substrate saturation curves to be 
calculated62,68. We assume in good faith that individual labs have confirmed that the substrate concentrations 
used achieve Vmax, which can vary by soil as well as assay conditions such as buffer and temperature22,68,69.

Similarly, as enzyme activities are standardised by maximizing activity, we assume that individual researchers 
confirmed for their soils that the use of assay pH70, substrate concentration22,62 and matrix (e.g., buffer)68 ensure 
maximization of assayed activity. Though there are multiple issues with assumptions made in assay conditions 
that maximize activities68,70, such assumptions are ubiquitous in soil enzyme activity assays. Thus, this is a poten-
tial issue that impacts all soil enzyme activity data and not just our dataset. Our dataset reflects the best possible 
quality to-date in the field, even though there are methodological improvements needed71.

Though most researchers standardise enzyme activity assay by using assumed assay conditions that maxim-
ise activities to measure the maximum potential activity23,72, others perform assays under temperature and pH 
conditions that match those at the locations at which the samples were collected, in an attempt to better assess 
in situ activities22,23. For some research questions, this may be the more appropriate approach71. The methods 
used to assay soil enzyme activities in our database include a mix of both approaches, which reflects the reality 
of methodology diversity in soil enzyme activity assays used by researchers globally. To ensure transparency and 
enable interpretation of enzyme activities based on assay conditions, we have provided all the metadata available 
for each sample (e.g., assay temperature and pH) as well as soil properties so that database users can incorporate 
these variables into models in a way that is most appropriate for the analyses being performed. For example, it 
is possible to use temperature sensitivity models (e.g., Arrhenius equations) to normalize activity for different 
enzymes based on known enzyme kinetics60. To date, no well-established standardisation methods currently 
exist that take into account the full complexity of the assay parameters of temperature, matrix type and substrate 
concentration that may impact absolute values of assayed enzyme activities62,64,73. This is a clear need for soil 
enzymology.

Finally, users should be aware of the biases in the database towards certain geographical regions and climatic 
zones. The impact of both geographical and climatic biases on model outputs should be carefully explored when 
conducting any analysis74. Data thinning or other bias correction approaches may be required. Additionally, 
many PLFAs and enzyme activities contain measurements from multiple samples collected at the same location, 
and so users must decide on the most appropriate way to treat these values.

Code availability
Code used to conduct technical validation analyses and create the figures is available on Figshare48.
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