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Abstract
Landslides are a type of sudden and highly destructive geological hazard. Traditional detection methods often suffer from
delayed response and low efficiency. In recent years, deep learning-based object detection techniques have attracted increasing
attention in disaster recognition tasks, particularly transformer-based detection models, which exhibit significant advantages
in global feature modeling. However, landslide targets in remote sensing imagery often present challenges such as large-scale
variation, blurred boundaries, and texture interference. To address these issues, this study proposes an improved detection
algorithm based on the RT-DETR-r18 framework by integrating multiple specialized modules. First, the DDC3 module is
designed to enhance the recognition of fine boundaries and local textures, thereby improving the feature extraction capacity of
the backbone network. Second, an Efficient Additive Attention (EAA) mechanism is introduced to suppress redundant infor-
mation and strengthen the model’s focus on critical regions, improving detection precision. Finally, the CGAFusion module
is employed, which utilizes a triple-attention strategy to collaboratively regulate feature weights. This module enhances the
model’s ability to filter salient features while preserving global contextual information, leading to more accurate landslide
edge detection. A dual-class dataset comprising landslides and storms is constructed from multi-source imagery for evalua-
tion. The experimental results show that the proposed method outperforms existing models in several dimensions including
mAP@0.5 and F1 score, demonstrating strong detection accuracy. Code is available at https://github.com/sanyauChenCoder/
Landslide_02.git.
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1 Introduction

Landslides, as a common type of geological disaster, pose
serious threats to human life, property, and ecological sta-
bility [1]. Under triggering conditions such as heavy rainfall
and earthquakes, landslides are often characterized by sud-
den onset, concealment, and destructive impact. Timely and
accurate identification of landslide-affected areas is cru-
cial for disaster early warning and emergency response.
Conventional landslide detection methods mainly rely on
field surveys or manual interpretation of high-resolution
remote sensing imagery. These approaches are typically
labor-intensive, time-consuming, and lack automation, mak-
ing them insufficient for practical applications that demand
rapid response and large-scale coverage.

In recent years, with the advancement of deep learn-
ing technologies, convolutional neural network (CNN)-based
object detection methods have demonstrated significant
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potential in natural disaster monitoring. In particular, one-
stage detectors such as the YOLO (You Only Look Once)
series have been widely adopted in the recognition of land-
slides, debris flows, floods, and other disaster scenarios,
due to their high detection speed and deployment flexibil-
ity. While these methods have achieved notable improve-
ment landslide detection efficiency in practical applications,
they still face challenges in complex environments involv-
ing structural diversity, large-scale variations, and blurred
imagery. These issues often result in missed detections and
false positives, revealing limitations in feature representation
capabilities.

To tackle the aforementioned challenges, researchers have
explored the integration of Transformer architectures to
improve global context modeling in detection tasks. Trans-
formers offer inherent advantages in capturing long-range
dependencies and contextual relationships, making them
well suited for complex scene understanding. RT-DETR
(Real-Time Detection Transformer), which integrates Trans-
former mechanisms with a convolutional backbone, has
emerged as a promising framework balancing real-time per-
formance and semantic modeling. For example, Fan et al.
[2] introduced the ETGC2-Net architecture, which combines
an Enhanced Transformer (EFormer) with a Graph Convolu-
tional Network (GCN), guided by superpixel segmentation to
construct graph structures, thereby improving the accuracy
and stability of landslide detection. However, the complex
structure of the model incurs high deployment costs, limiting
its application on resource-constrained platforms. Ren et al.
[3] proposed a shallow landslide recognition method based
on an improved Otsu algorithm and multi-feature threshold-
ing, which yielded clear results but was restricted by the use
of samples from a single region, thus limiting generaliza-
tion. Chen et al. [4] developed a dual-branch convolution
transformer network (CTDNet), which achieved excellent
performance on the Landslide4Sense dataset. Nevertheless,
its performance is highly dependent on dataset-specific
features, raising concerns about cross-region adaptability.
Tang et al. [5] employed the SegFormer architecture for
earthquake-induced landslide identification, which achieved
high detection accuracy, although the computational bur-
den introduced by the Transformer architecture affected
real-time applicability. Gao et al. [6] proposed the OMV-
HDL method, which integrates YOLOv5 and DETR models
through optimal and multi-view fusion strategies, substan-
tially improving the detection of old landslides. However,
the method also significantly increased the complexity of
training anddeployment. Li et al. [7–9] explored transformer-
based multi-scale fusion and dictionary-driven unfolding
models to improve detail preservation in pan-sharpened
imagery, although thesemethods often incur higher computa-
tional cost or exhibit weaker spectral retention. Despite these

advances, many existing models suffer from increased com-
plexity, poor adaptability across regions, or insufficient edge
detail extraction. Building upon these insights, this study
aims to address three persistent challenges in landslide detec-
tion: (1) insufficient capture of fine-grained edge features, (2)
ineffective suppression of irrelevant background noise, and
(3) instability in multi-scale feature representation. To this
end, we propose an improved RT-DETR-r18-based architec-
ture incorporating three complementary modules: DDC3 for
enhancing spatial detail extraction, EAA for efficient global
attention, and CGAFusion for robust multi-scale integration.
The main contributions are as follows:

1. First, the DDC3 module is designed to enhance the
backbone network’s ability to perceive and recognize
fine boundaries and local textures in the image, thereby
improving the accuracy and completeness of feature rep-
resentation from the source.

2. Second, the Efficient Additive Attention (EAA) mecha-
nism is introduced to enhance the response strength of
key regions through linear complexity attention oper-
ations. This effectively suppresses interference from
redundant targets, improving detection accuracy and
robustness.

3. Finally, the CGAFusion module is introduced, inte-
grating channel attention, spatial attention, and pixel
attention mechanisms to achieve collaborative regula-
tion of multi-dimensional information. While ensuring
contextual integrity, it improves the selectivity and dis-
criminative power of the fused features, significantly
enhancing landslide edge extraction and region segmen-
tation performance.

2 Related work

2.1 Evolution of object detection algorithms:
fromYOLO to transformer

Object detection technology, as the core engine of landslide
recognition models, has evolved from traditional two-stage
methods based on sliding windows and manual feature
extraction to lightweight and efficient end-to-end detection
frameworks. With the rapid development of deep learn-
ing, the YOLO (You Only Look Once) series [10–20]
has become one of the mainstream solutions for geohaz-
ard detection, especially landslide recognition tasks, due to
its end-to-end training, high-speed inference, and flexible
deployment. YOLOv5 introduced the Cross-Stage Partial
(CSP) module in its backbone network to enhance feature
representation and improve gradient flow efficiency across
the network. YOLOv8 further optimized the backbone and
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feature fusion networks (Neck), improving detection perfor-
mance for small objects. These improvements have made
the YOLO series models outstanding in most natural image
tasks, offering high detection speed and accuracy. However,
in high-resolution remote sensing images with sparse tar-
gets and complex backgrounds, YOLO models face new
challenges. Landslide targets typically exhibit characteris-
tics such as blurred boundaries, irregular shapes, and weak
textures, making it difficult for local convolutional recep-
tive fields to effectivelymodel long-range dependencies. This
results in missed detections and false positives in practical
applications, affecting the overall recognition performance.
To overcome the limitations of CNN structures in mod-
eling global relationships, Transformer architectures have
gradually been introduced into the field of object detection.
DETR (Detection Transformer) was the first to apply the
encoder–decoder structure from natural language processing
to visual tasks, discarding traditional anchor box mecha-
nisms and leveraging self-attention mechanisms to enhance
global modeling capabilities. Subsequent methods, such as
Deformable DETR and DN-DETR, optimized training con-
vergence speed and spatial feature localization ability while
retaining the advantages of global perception, thus expanding
their applicability in real-world tasks.

RT-DETR [21], as an improved version designed for
real-time detection scenarios, integrates lightweight convo-
lutionalmodules and a streamlinedTransformer architecture,
achieving a good balance between detection speed and
modeling capability. This model has shown excellent per-
formance in multi-class natural image recognition tasks
and provides a feasible structural foundation for landslide
detection in remote sensing fields. However, in practical
applications, RT-DETR still faces issues such as insufficient
shallow edge feature extraction and insensitivity to blurry tar-
gets. These problems are particularly evident when dealing
with landslide regions characterized by complex structures
and significant scale variations, where recognition perfor-
mance exhibits fluctuations. Therefore, the key challenge in
current research is how to further optimize the structure to
enhance the model’s ability to finely perceive landslide tar-
gets while maintaining its real-time advantages.

2.2 Bidirectional feature pyramid network

BiFPN (Bidirectional Feature Pyramid Network) [22] is a
structurally optimized and highly efficient feature pyramid
network. The core idea of BiFPN is to establish bidirectional
fusion paths betweenmulti-scale features, both top down and
bottom up, while introducing a learnable weight mechanism
to improve the quality of feature interactions. The network
takes feature layers with different resolutions (from P3 to P7)
as input, where low-level features contain rich spatial details

and high-level features provide stronger semantic abstrac-
tion.

In the top-down path, high-level semantic features are
passed down to lower levels and fusedwith low-level features
to enhance their semantic representation. In the bottom-
up path, low-level features are upsampled and recombined
with high-level features to supplement spatial details. In
each fusion step, BiFPN uses a learnable weighted addition
method instead of the traditional direct summation, ensuring
the model can dynamically adjust the importance of features
at different scales. Furthermore, this structure strengthens
cross-layer informationflow throughwell-designed skip con-
nections, while avoiding redundant computation paths, thus
effectively controlling computational costs while improving
accuracy.

Through this mechanism, BiFPN builds a more discrimi-
native and adaptable feature pyramid that effectively supports
multi-scale object detection tasks. It has demonstrated excel-
lent performance in tasks such as classification and bounding
box regression and is considered one of the representative
structures in the field of multi-scale feature fusion.

2.3 RT-DETR-r18model

The core architecture of RT-DETR-r18 consists of four main
components: the backbone feature extractionnetwork, hybrid
encoder, IoU-aware query selection, and decoder. The back-
bone network, typically implemented using convolutional
neural networks such as ResNet18, is responsible for extract-
ing multi-scale features from the input image. One of the key
innovations ofRT-DETR-r18 lies in its hybrid encoder,which
significantly reduces computational complexity by decou-
pling intra-scale interactions and cross-scale feature fusion.
Specifically, the Attention-based Intra-scale Feature Interac-
tion (AIFI)modulewithin the hybrid encoder applies a single
layer of multi-head self-attention only to the last stage of fea-
tures output by the backbone, in order to capture high-level
semantic information. Meanwhile, the Cross-scale Comple-
mentary FeatureMerging (CCFM)module adopts a structure
similar to FPN + PAN, fusing the output of the AIFI module
with the second-to-last and third-to-last feature maps from
the backbone to produce enhanced multi-scale feature repre-
sentations.

3 Method design

This study proposes an enhanced landslide detection algo-
rithm based on the RT-DETR-r18 framework to improve the
detection accuracy of landslide targets in complex natural
scenes. Instead of simple modular stacking, the three compo-
nents—DDC3, EAA, and CGAFusion—are integrated with
complementary functions following a top-down structural
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Fig. 1 Improved RT-DETR-r18 network architecture

logic. These modules are designed to enhance low-level
edge and texture features, suppress irrelevant noise through
global attention mechanisms, and refine multi-scale feature
representations via collaborative attention. The integration
maintains the real-time inference capability ofRT-DETR-r18
while systematically optimizing three key aspects: backbone
feature extraction, global semanticmodeling, andmulti-scale
feature fusion. This design accommodates the variation in
scale,morphology, and semantic complexity characteristic of
landslide targets. TheDDC3module utilizes depthwise sepa-
rable convolutions and cross-channel residual connections to
enhance the extraction of local texture and edge information
in the backbone. The EAA module introduces an additive
attention mechanism that enables efficient global context
modeling with reduced computational complexity, address-
ing the challenge of long-range dependencies and blurred
boundaries in landslide imagery. The CGAFusion mod-
ule incorporates spatial, channel, and pixel-level attention
mechanisms to alleviate feature misalignment and seman-
tic confusion during multi-scale fusion, thereby improving
the discrimination of target regions. Figure 1 illustrates the
overall architecture of the improved RT-DETR-r18 network.
The network processes the input image through the DDC3-
enhanced backbone, applies global semantic refinement
via the EAA module within the Transformer encoder–de-
coder structure, and performs final multi-scale integration
through the CGAFusion module to generate detection and
segmentation outputs. The design emphasizes a sequential,

hierarchical flow of features and establishes functional coor-
dination among the modules to improve overall detection
performance.

3.1 DDC3module

In landslide-related remote sensing recognition tasks, tar-
gets often exhibit characteristics such as blurred boundaries
and complex texture variations, which limit the ability of
traditional convolutional neural networks to extract multi-
scale contextual information and local structural details. To
enhance the feature representation capability of the model,
this study proposes the DDC3 module, designed to improve
the model’s ability to recognize geophysical targets while
maintaining network lightweight.

As shown in Fig. 2, the input feature X first undergoes
a standard convolutional layer for preliminary transforma-
tion, adjusting the channel count and extracting low-level
local features. The feature then passes through the main
path, composed of n cascaded DWR-DRB [23, 24] modules.
Each DWR-DRB module adaptively enhances contextual
information at different receptive fields while boosting local
feature extraction capabilities. After passing through mul-
tiple DWR-DRB modules, the main branch integrates the
extracted features through a convolutional layer. Simulta-
neously, the input also passes through a shortcut branch,
using a single convolution to match the channel dimensions.
The outputs of the main and shortcut branches are fused by
element-wise addition, and the fused features undergo a 1 ×
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Fig. 2 DDC3 module

1 convolution for channel projection, resulting in the final
output feature X.

3.2 Efficient additive attentionmodule

In landslide remote sensing images, the target–background
interference is complex, which places high demands on the
model’s global modeling and key region perception capabili-
ties. Although traditional self-attention mechanisms possess
global perception abilities, they incur high computational
costs. To improve modeling efficiency and feature focus-
ing capability, this study introduces the Efficient Additive
Attentionmodule.By replacing complexmultiplicationoper-
ations with an additive attention mechanism, the module
utilizes learnable vectors for efficient global feature extrac-
tion, enhancing the model’s response to target and edge
regions while reducing computational overhead.

Efficient Additive Attention [25] is an efficient atten-
tionmechanism that reduces computational complexity from
quadratic to linear by avoiding expensive matrix multiplica-
tion operations, making it particularly suitable for real-time
visual applications on resource-constrained mobile devices.
As shown in Fig. 3, its implementation process is as fol-
lows: First, the input feature matrix x is transformed into
query and key matrices Q and K , implemented through
matrices Wq and Wk, with parameters Q, K ∈ R

n×d , Wq ,
and Wk ∈ R

d×d . Then, the query matrix Q is multiplied
by a learnable parameter vector wa , learning the attention
weights of the query to generate the global attention query
vector α = Q ·wa/

√
d . Next, based on the learned attention

weight α, the query matrix Q undergoes weighted pooling to

obtain a single global query vector q =
n∑

i=1
αi Qi . Afterward,

element-wise multiplication is performed to allow interac-
tion between the global query vector q and the key matrix K ,
forming the global context representation x̂ = Q+T (K ∗q),
where T is a linear transformation. The final output represen-
tation is the sum of the querymatrix Q and the global context
representation learned through the linear transformation.

Fig. 3 Efficient Additive Attention module

3.3 CGAFusionmodule

To further enhance the information interaction efficiency and
fusionquality betweenmulti-source features, this study intro-
duces the CGAFusion module. This module employs spatial
attention (SA), channel attention (CA), and pixel attention
(PA) mechanisms to achieve guided fusion across branches,
effectively strengthening the collaborative expression ability
between shallow details and deep semantics.

As shown in Fig. 4, the implementation process of the
CGAFusion [26] module includes the following steps: First,
the CGA module generates spatial importance maps (SIMs)
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Fig. 4 CGAFusion module

for each channel. The CGA module utilizes spatial attention
and channel attention mechanisms to generate spatial atten-
tion weights and channel attention weights, which are then
fused to obtain a rough SIM. Next, guided by the content
of the input features, operations such as channel shuffling
and group convolutions are applied to refine the rough SIM,
generating channel-specific fine SIMs. Subsequently, both
low-level and high-level features from the encoder are input
into the CGA module to obtain spatial weights, and these
weights are used to compute a weighted sum of the low-level
and high-level features. Then, a residual connection is used to
add the input features to the fused features, enhancing feature
information flow, mitigating the gradient vanishing problem,
and simplifying the learning process. Finally, the fused fea-
tures are projected through a 1 × 1 convolutional layer to
obtain the final features. Through this process, CGA fusion
effectively integrates both detail and semantic information
within the image.

4 Experiment

4.1 Dataset

The dataset used in this study consists of twomain categories:
landslides and storms, with all images manually annotated to
ensure accuracy and consistency. Existing landslide recog-
nition datasets often rely on high-resolution remote sensing
images; however, such data struggle to realistically reflect the
complex environmental features at the time of a landslide
event, as shown in the sample images in Fig. 5. Addi-
tionally, the processing of remote sensing images requires
substantial computational resources, limiting their feasibil-
ity in real-time applications. To overcome these issues, this
study constructed a multi-domain landslide image dataset
consisting of a total of 4,735 images. Of these, 77.8% are
frame-extracted images from news reports and live videos,
while 22.2% are drone remote sensing images, enhancing
the model’s generalization and adaptability in complex natu-
ral scenes. Given the high-speed sliding characteristics of
the landslide process, the data construction used a frame
extraction strategy with frame extraction intervals set at 1 s,

1.5 s, and 2 s to preserve key dynamic features. Further-
more, considering that some images suffer from issues such
as watermarks, blurriness, or occlusions by buildings, 1125
images were subject to offline augmentation, representing
24% of the total data. This dataset offers significant advan-
tages in terms of dynamics, realism, and diversity, providing
a more representative set of training samples for landslide
detection tasks in complex terrain conditions.

4.2 Experimental platform

The experiments were conducted on a well-equipped com-
puting platform, using the deep learning framework PyTorch
1.10.0 with Python 3.8, running on an Ubuntu 20.04 system
environment. GPU acceleration was implemented through
CUDA 11.3. During training, a single NVIDIA RTX 4090
GPU with 24GB of memory was used, along with an AMD
EPYC 7T83 64-core processor (including 22 virtual cores)
and 90 GB of system memory. This setup provided efficient
computational power, accelerating the model’s convergence
speed and overall training process.

4.3 Hyperparameter setting

All experiments were conducted with an input resolution of
640 × 640 pixels to balance detection accuracy and compu-
tational cost. The model was trained for 200 epochs using
a batch size of 16. Stochastic gradient descent (SGD) was
adopted as the optimizer, with an initial learning rate of
0.01, momentum set to 0.937, and a weight decay factor of
0.0005. The learning rate followed a cosine annealing sched-
ule with warmup during the first 3 epochs. The number of
worker threads for data loadingwas set to 4 to ensure efficient
throughput. These settings were applied consistently across
all experiments and baseline comparisons to ensure fairness
and reproducibility.

4.4 Evaluationmetrics

In this study, the evaluation metrics used include F1 score,
precision (P), recall (R), average precision (AP), and mean
average precision (mAP) [27]. Additionally, the number of
parameters (Parameters) was also considered. The formulas
for these metrics are as follows:

Precision = Tp
Tp + Fp

(1)

Recall = Tp
Tp + FN

(2)

AP =
∫ 1

0
P(R)dR (3)
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Fig. 5 Image sample

mAP = 1

n

n∑

i=0

AP(i) (4)

F1 = 2 × Precision × Recall

Precision + Recall
(5)

where Tp denotes the number of correctly detected targets,
Fp represents the number of incorrectly detected targets, FN
is the number of missed targets, n is the number of classes,
and AP(i) represents the average precision of the iii-th target
class.

5 Experimental analysis

5.1 Algorithm comparison results

To further validate the effectiveness and generalization
ability of the proposed model, this study conducts compar-
ative experiments with several representative object detec-
tion models. The selected baseline models include multi-
ple versions of the YOLO series (YOLOv5m, YOLOv5l,
YOLOv8m, YOLOv8l, YOLOv10l) and the RT-DETR-r18
model based on the Transformer architecture, covering both
convolution-based and attention-based detection methods.
To ensure a fair comparison, all models are trained and
evaluated under the same training parameters and dataset
settings. The evaluation metrics include precision, recall,
mean average precision at IoU 0.5 (mAP@0.5), and F1 score,
which comprehensively measure detection accuracy, robust-
ness, and the balance between false positives and missed
detections. The comparative results are summarized in Table
1.

Table 1 shows that our method achieves the highest per-
formance among all compared models, with accuracy, recall,
and mAP@0.5 reaching 76.5%, 67.4%, and 69.7%, respec-
tively, and an F1 score of 72.0%. Compared to YOLOv5m
and YOLOv5l, our method improves mAP by 1.0% and

0.7%, respectively. Although YOLOv10l has a slightly
higher accuracy (77.4%), its recall significantly drops to
52.9%, with an mAP of only 59.8% and an F1 score reduced
to 63.0%, resulting in overall poorer detection performance.
The performance of the YOLOv8 series models varies across
metrics. YOLOv8m shows relatively balanced performance,
but its mAP (68.1%) is lower than that of our method.
Although YOLOv8l has higher accuracy (75.9%), its recall
is lower (59.1%), limiting its overall detection accuracy. RT-
DETR-r18 matches our method in recall (67.4%) but has
lower accuracy (74.3%) and slightly lower mAP (66.2%),
indicating shortcomings in its overall detection accuracy
and feature representation capability. The comprehensive
comparison results demonstrate that ourmethod,whilemain-
taining high accuracy, effectively balances recall capability,
showing stronger detection robustness and generalization
across multiple target categories and scales. The leading
advantage in the F1 score further confirms the stability and
effectiveness of the proposed method in practical detection
scenarios.

To further validate the detection capability of the pro-
posed model on different target types, this study evaluates
the typical categories "landslide" and "storm" for single-
class assessments and compares the detection accuracy of
the proposed model with that of mainstreammodels for each
category. The results are shown in Table 2. In the "landslide"
category, YOLOv5l (64.2%) and YOLOv5m (63.8%) show
similar performance, with YOLOv8m achieving a detection
accuracy of 63.1%, slightly lower than the YOLOv5 series.
YOLOv8l further decreases to 59.4%, and YOLOv10l per-
forms the weakest in this category, with a score of only
52.4%. RT-DETR-r18 scores 62.0%, placing it at a moderate
level. In contrast, the proposed method achieves a detec-
tion accuracy of 65.0% in this category, outperforming all
the compared models and achieving the best performance.
In the "storm" category, the YOLOv8 series overall shows
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Table 1 Accuracy comparison of
different object detection models Algorithm Precision/% Recall/% mAP@0.5/% F1/%

YOLOv5m 75.5 66.3 68.0 71.0

YOLOv5l 72.2 68.5 69.0 70.0

YOLOv8m 71.3 64.8 68.1 68.0

YOLOv8l 75.9 59.1 65.9 67.0

YOLOv10l 77.4 52.9 59.8 63.0

RT-DETR-r18 74.3 67.4 66.2 70.0

Ours 76.5 67.4 69.7 72.0

Table 2 Average precision
comparison (AP%) of different
models on landslide and storm
targets

Classes Algorithms

YOLOv5m YOLOv5l YOLOv8m YOLOv8l YOLOv10l RT-DETR-
r18

Ours

landslide 63.8 64.2 63.1 59.4 52.4 62.0 65.0

storm 72.2 73.8 73.1 72.4 67.2 70.4 74.5

stable performance, with YOLOv8m and YOLOv8l achiev-
ing detection accuracies of 73.1% and 72.4%, respectively.
YOLOv5m and YOLOv5l achieve detection accuracies of
72.2% and 73.8%, slightly higher than the YOLOv8 series.
YOLOv10l also experiences a significant performance drop
in this category, with a score of only 67.2%. RT-DETR-
r18 performs at 70.4%. Among all models, the proposed
method achieves 74.5% in this category, which is the best
result. In summary, the proposedmethod achieves the highest
detection accuracy for both landslide and storm categories,
demonstrating excellent detection capability and robustness.

5.2 Result visualization

To further validate the classification performance of each
detection model on remote sensing images and their ability
to distinguish between different target categories, this study
introduces visualization techniques to analyze the model’s
prediction results. A normalized confusion matrix is used
to compare and display the classification performance of
YOLOv5l, YOLOv8m, YOLOv8l, YOLOv10l, RT-DETR-
r18, and the proposed method on the two core categories:
landslide and storm. The confusionmatrix effectively reflects
the model’s accuracy in category recognition and the sources
of errors, helping to reveal potential biases or limitations that
the model may encounter in practical applications.

To further compare the classification performance and
false detection control ability of each model on target cat-
egories, this study presents the normalized confusion matrix
diagrams, as shown in Fig. 6. The compared models include
YOLOv5l, YOLOv8m, YOLOv8l, YOLOv10l, RT-DETR-
r18, and Ours, with the analysis focusing on the two core

target categories: landslide and storm. In the landslide cate-
gory recognition, YOLOv10l performs the weakest with an
accuracy of only 0.49, misclassifying a large portion of the
background area as the target region, indicating lowboundary
discrimination ability. YOLOv5l, the YOLOv8 series, and
RT-DETR-r18 have landslide recognition accuracies in the
range of 0.64–0.75, but the false detection rates remain high.
In contrast, Ours achieves an accuracy of 0.75 in this cat-
egory, with background misclassification controlled below
0.24, significantly outperforming other models and demon-
strating stronger structural analysis and spatial suppression
capabilities. In the storm category, YOLOv10l also faces
severe background confusion, with a background misclas-
sification rate of 0.34, whereas the proposed method reduces
this value to 0.21, with a storm class recognition accuracy of
0.74, the highest among all models. This shows that the pro-
posedmodel not only leads in classification accuracy but also
exhibits a significant advantage in false detection suppres-
sion, effectively reducing the interference from background
noise, minimizing false detections, and improving detection
stability. Overall, Ours achieves the optimal detection per-
formance in both major categories.

To validate the effectiveness of the proposed improved
structure in enhancing detection performance, this study
compares theRT-DETR-r18model before and after improve-
ment and visualizes its detection performance using preci-
sion–recall (P–R) curves. The P–R curve, as an important
metric for evaluating object detection quality, reflects the
variation in precision at different recall rates, providing a
comprehensive assessment of the impact of the improved
structure on the model’s performance.

To further validate the improvement in detection per-
formance with the proposed module, this study plots the
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Fig. 6 Comparison of normalized confusion matrices for each model on landslide and storm categories: a YOLOv5l; b YOLOv8m; c YOLOv8l;
d YOLOv10l; e RT-DETR-r18; f Ours

precision–recall curves of the RT-DETR-r18 model before
and after enhancement, as shown in Fig. 7. The P–R curve
provides a more intuitive reflection of the model’s pre-
cision variation at different recall rates and quantitatively
demonstrates the stability and overall performance of object
detection. As seen in the figure, before the improvement,
the model’s mAP for the landslide and storm categories was
0.620 and 0.704, respectively, with an overall mAP@0.5 of
0.662.After introducing the improved structure, the precision
of both categories increased to different extents. Specifi-
cally, landslide precision increased to 0.650, storm precision
increased to 0.745, and the overall mAP@0.5 rose to 0.697,
with an improvement of 3.5%. Notably, in the high recall
rate range, the improvedmodel’s curve declinesmore slowly,

indicating stronger stability. The results show that the pro-
posed improvementmodule effectively enhances themodel’s
detection accuracy across different target categories and
strengthens its ability to recognize small and boundary tar-
gets in complex scenes.

To further validate the recognition capability of different
object detection algorithms in real-world landslide scenarios,
relying solely on quantitative metrics (such as mAP, Preci-
sion, and Recall) has certain limitations. These metrics may
fail to comprehensively reveal the model’s performance in
terms of target boundaries, background interference, and cat-
egory discrimination in multi-source heterogeneous images.
Therefore, this study conducts a comparative analysis of
detection results in typical image samples through visu-
alization, aiming to intuitively present the strengths and
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Fig. 6 continued

Fig. 7 Precision–recall curves of RT-DETR-r18 before and after enhancement: a RT-DETR-r18; b improved RT-DETR-r18

weaknesses of each algorithm in real-world applications
from an image-level perspective. The focus is particularly
on the model’s responsiveness, missed detection issues, and
redundant detection problems in low-quality video frames,
highly complex remote sensing images, and multi-target
mixed scenarios. This approach provides perceptual insights
for subsequentmodel optimization andpractical deployment.

As shown in Fig. 8, the detection performance of
YOLOv5m, YOLOv5l, YOLOv8m, YOLOv8l, YOLOv10l,
RT-DETR-r18, and Ours is presented on multi-source
images. In the left two columns, the YOLOv5 series exhibits
weak responses to the landslide regions, with generally
low confidence scores and missed detections. For instance,
in Image 1, YOLOv5m only detects the landslide region

with a confidence score of 0.37, while other significant
sliding bodies are not captured. Furthermore, YOLOv8m,
YOLOv8l, YOLOv10l, and RT-DETR-r18 incorrectly iden-
tify the landslide targets as storms, showing significant
category confusion. RT-DETR-r18 detects stably in remote
sensing images but also exhibits redundant bounding boxes
and low confidence repeated annotations in video frames.
For example, in Image 2, multiple bounding boxes with
confidence scores below 0.3 are generated, causing unneces-
sary repeated detections that affect practicality. In contrast,
Ours demonstrates better robustness and accuracy across
multiple scenarios. The model not only accurately detects
landslide regions in remote sensing images but also main-
tains high confidence and fewer redundant bounding boxes
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Fig. 8 Detection performance of different algorithms on the landslide dataset

in video images. For instance, in Image 4, the model accu-
rately locates the forest landslide region with a confidence of
0.88 and avoids overlapping bounding boxes or false annota-
tions, outperforming baseline methods such as YOLOv5m,
YOLOv8l, and RT-DETR-r18. Additionally, the proposed
method exhibits stronger feature representation ability when

handling multi-scale targets and complex background inter-
ference, especially in multi-target dense or edge-blurred
scenarios, showing lower missed detection rates and better
box overlap accuracy. Somedetection algorithms are prone to
misjudgments, false alarms, or redundant boxes in environ-
ments with occlusion, smoke interference, and other factors,
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Fig. 8 continued

while our model effectively alleviates these issues. In sum-
mary, the visualization results demonstrate that the proposed
method outperforms existing mainstream methods in terms
of accuracy, localization precision, and detection stability,
with stronger adaptability to various scenarios, providing
more reliable technical support for intelligent landslide target
recognition.

5.3 Ablation study

To further validate the specific contribution of each module
to the overall detection performance, this study designs four
ablation experiments, progressively introducing the three
core modules: the CGAFusion multi-dimensional collabo-
rative attention module, the DDC3 backbone enhancement
module, and the EAA efficient additive attention module.
Under the condition of keeping other network structures and

training parameters consistent, each improvement is evalu-
ated for its effect on the model’s accuracy enhancement in
landslide and storm target detection.

Table 3 presents the results of the ablation experiments
for the four model configurations. Experiment 1 represents
the baselinemodel,RT-DETR-r18,without any improvement
modules, serving as the performance comparison baseline. In
Experiment 2, the CGAFusion module is added to the base-
linemodel, enablingmulti-dimensional attention capabilities
in the feature fusion stage, including channel, spatial, and
pixel attention. The detection accuracy improves from 66.2%
to 69.2%, with a significant increase of 3.0%, indicating
that the CGAFusion module plays a key role in cross-scale
semantic alignment and edge detail recognition. In Experi-
ment 3, the DDC3 module is further introduced to enhance
the backbone network’s spatial feature extraction capabil-
ities. Although accuracy slightly decreases from 80.2 to
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Table 3 Ablation experiment results

Number Experiment Precision/% Recall/% mAP@0.5/%

1 RT-DETR-r18 74.3 67.4 66.2

2 RT-DETR-r18 + CGAFusion 80.2 66.6 69.2

3 RT-DETR-r18 + CGAFusion + DDC3 75.2 68.4 69.3

4 RT-DETR-r18 + CGAFusion + DDC3 + EAA 76.5 67.4 69.7

75.2%, the recall rate improves to 68.4%, and mAP con-
tinues to rise to 69.3%. This suggests that the DDC3 module
improves the perception integrity of landslide regions and
offers better adaptability to targets with blurred boundaries.
Experiment 4 introduces the EAAmodule on top of the previ-
ous improvements to further strengthen the global semantic
modeling ability. Without significantly increasing computa-
tional cost, theEAAmodule effectively enhances themodel’s
understanding of scene context relationships, leading to a
final mAP of 69.7%, with precision and recall of 76.5%
and 67.4%, respectively, achieving the best overall perfor-
mance across the four experiments. These results validate
the synergistic benefits of the three proposed modules in
landslide detection tasks. CGAFusion focuses on local fea-
ture fusion, DDC3 strengthens spatial structure modeling,
and EAA enhances global context representation. Together,
these modules improve the model’s detection accuracy and
robustness. The progressive improvements observed across
experiments suggest that the modules do not function in iso-
lation but build upon each other’s outputs. TheDDC3module
provides enhanced foundational features, which are more
effectively leveraged by the EAA’s selective global focus
mechanism. The CGAFusion module, in turn, synthesizes
these enriched and focused features into a cohesive represen-
tation. This layered synergy contributes to both performance
robustness and generalization capability, reflecting a deliber-
ate architectural design rather than arbitrarymodule stacking.

Table 4 presents the performance variations of the RT-
DETR-r18 model as the CGAFusion, DDC3, and EAAmod-
ules are gradually integrated. The original model exhibits
the highest frame rate, the lowest computational load, and
the smallest number of parameters, serving as a lightweight
and high-speed baseline. After introducing CGAFusion,
the model’s representational capacity is enhanced, but the
increased structural complexity leads to a decrease in frame
rate to 161.2 FPS, along with slight increases in GFLOPS
and parameters. With the addition of the DDC3 module,
GFLOPS increases to 60.1 and parameters grow to 21.6 mil-
lion, yet the frame rate remains unchanged, indicating that
the model maintains speed while gaining stronger feature
representation. Finally, the integration of the EAA module
results in a slight recovery of frame rate to 166.6 FPS, with a
marginal increase in GFLOPS to 60.3 and no further growth

in parameters, suggesting the module improves efficiency
or feature utilization. Overall, although model complexity
increases step by step, inference speed is well preserved. The
final version achieves a balance between improved accuracy
potential and real-time performance, making it suitable for
applications requiring both speed and effectiveness.

6 Conclusion

In response to the high-risk and highly sudden nature of land-
slides, a geological disaster, this study proposes a landslide
target detection algorithm based on an improved RT-DETR-
r18 structure. To address issues such as blurred target
boundaries, significant scale variations, and complex back-
ground interference in landslide images, key modules were
designed from the perspective of network structure optimiza-
tion to enhance detection performance andmodel robustness.
In the backbone network, a DDC3 module is designed to
effectively enhance themodel’s ability to extract fine-grained
features. For global perception, the Efficient Additive Atten-
tion (EAA) module is proposed to achieve global context
modeling at a lower computational cost, improving the repre-
sentation accuracy of landslide regions. In the feature fusion
stage, the CGAFusion module is introduced, integrating spa-
tial, channel, and pixel-level attention to effectively enhance
the model’s feature response capability to critical regions,
improving both global semantics and landslide boundary
localization and region segmentation accuracy. The exper-
imental section constructs a multi-source landslide dataset
based on real remote sensing imagery and video frame data.
Through comparisons with various mainstream detection
models such as theYOLO series andRT-DETR, the proposed
method demonstrates leading performance in mAP@0.5, F1
score, and false detection control. Further visualization and
confusion matrix analysis show that the method exhibits
stronger discriminative ability and stability in recognizing
both landslide and storm targets. Future research could fur-
ther explore: (1) more lightweight attention mechanisms to
adapt to edge devices, (2) time-series modeling for early
landslide warning, and (3) multi-task joint detection strate-
gies for landslides and multiple types of disaster targets.
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Table 4 Analysis of the impact of different module integration on the computational efficiency and parameter quantity of the model

number algorithms FPS (f/s) GFLOPS Params

1 RT-DETR-r18 181.8 56.9 19,874,328

2 RT-DETR-r18 + CGAFusion 161.2 59.2 20,428,193

3 RT-DETR-r18 + CGAFusion + DDC3 161.2 60.1 21,603,233

4 RT-DETR-r18 + CGAFusion + DDC3 + EAA 166.6 60.3 21,603,489

This study provides technical support for intelligent percep-
tion and emergency response to geological disasters and has
promising practical application prospects.
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