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Abstract
Anewway of encoding a non-self-adjoint Jacobi matrix J by a spectral measure of |J |
together with a phase function was described by Pushnitski–Štampach in the bounded
case. We present another perspective on this correspondence, based onWeyl functions
instead of moments, which simplifies some proofs and generalizes the correspondence
to the unbounded case. In particular, wefind a bijection between proper Jacobimatrices
with positive off-diagonal elements, and a class of spectral data. We prove that this
mapping is continuous in a suitable sense. To prove injectivity of the map, we prove
a local Borg–Marchenko theorem for unbounded non-self-adjoint Jacobi matrices in
this class that may be of independent interest.

1 Introduction

Half-line Jacobi matrices

J =

⎛
⎜⎜⎜⎝

b0 a0 0
a0 b1 a1 0
0 a1 b2 a2 0
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are most often studied in the formally self-adjoint setting an > 0 and bn ∈ R, and
a central object in their spectral theory is the canonical spectral measure associated
with the cyclic vector δ0. By a classical result known as Favard’s theorem, this is a
bijective correspondence between bounded self-adjoint Jacobimatrices and compactly
supported probability measures on R.

Pushnitski–Štampach [14] studied the more general setting of bounded non-self-
adjoint Jacobi matrices, with coefficients an > 0 and bn ∈ C, and described a bijective
correspondencewith a newkindof spectral data for J : a pair (ν, ψ)where ν is a spectral
measure for |J | and ψ a phase function. More precisely, ν is a positive measure on
[0,+∞) and ψ ∈ L∞(ν) a function with |ψ | ≤ 1 ν-a.e. such that

〈δ0, f (|J |)δ0〉 =
∫

[0,+∞)

f dν, ∀ f ∈ Bb(R), (1.1)

〈δ0, J f (|J |)δ0〉 =
∫

[0,+∞)

s f (s)ψ(s)dν(s), ∀ f ∈ Bb(R). (1.2)

We denote the set of bounded Borel functions on R by Bb(R) and use the convention
that inner products are linear in the second parameter. Since sψ(s) appears in the
integral (1.2), the value ψ(0) is arbitrary, and to ensure uniqueness, a value of ψ(0)
must be fixed. Since we will make use of the odd extension of ψ to R, we find it
natural to set ψ(0) = 0. The same authors studied this setting from the perspective of
symmetric anti-linear operators in [13].

In this paper, we study unbounded, non-self-adjoint Jacobi matrices, with Jacobi
parameters a = (an)n∈N0 ∈ (0,∞)N0 and b = (bn)n∈N0 ∈ C

N0 . We emphasize that
the diagonal parameters bn are complex valued, and that the coefficient sequences
are not assumed to be bounded. Accordingly, J is an unbounded operator on �2(N0),
which we take to act on the maximal domain

D(J ) =
{
u ∈ �2(N0) |

∞∑
n=1

|an−1un−1 + bnun + anun+1|2 < ∞
}

.

This is commonly called the maximal operator. We will also denote it by J (a, b)
when we need to emphasize the Jacobi parameters a, b. Let us denote by �2c(N0) the
set of compactly supported sequences in �2(N0) and denote by J0 = J0(a, b) the
restriction of the operator J = J (a, b) to the domain D(J0) = �2c(N0). Its closure J0
is commonly called the minimal operator.

In [1], Beckermann introduced the class of proper complex Jacobi matrices with
coefficients an, bn ∈ C, an �= 0, and studied their connections to formal othogonal
polynomials: a matrix is said to be proper if J = J0. We also note that in the formally
self-adjoint setting an > 0, bn ∈ R, a Jacobi matrix is proper if and only if it is limit-
point, making operators in this class a natural point of departure from the perspective
of direct spectral theory, as well as moment problems, since in the self-adjoint setting
being limit point corresponds to determinacy of the associated moment problem, cf.
[17]. We also note that Beckermann and Smirnova [2] shows that a complex Jacobi
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matrix is proper if and only if it corresponds to a determinate moment problem in a
suitably generalized sense. While this notion of determinacy will not be relevant to us
here, it may serve to further motivate the study of proper Jacobi matrices as a point of
departure in the unbounded setting. Furthermore, in Section 2, we find that a sufficient
condition for being proper is that a ∈ �∞(N0); in particular, this condition is satisfied
for discrete Schrödinger operators with complex, unbounded potentials.

The operator J is closed and densely defined, so by von Neumann’s theorem, J ∗ J
is self-adjoint on the natural domain {u ∈ D(J ) | Ju ∈ D(J ∗)}. We denote by

|J | = √
J ∗ J

its (positive) square root, which is self-adjoint; in particular, the Borel functional
calculus in (1.1), (1.2) is still well-defined. The following theorem constructs the
direct spectral map; it is a generalization of [14, Theorem 2.2]. The proof follows
similarly, with some extra care taken regarding domains.

Theorem 1.1 Let a = (an)n∈N0 ∈ (0,∞)N0 and b = (bn)n∈N0 ∈ C
N0 and suppose

J (a, b) is proper. There is a uniqueν on [0,+∞) such that (1.1) holds. There existsψ ∈
L∞(ν) with norm ≤ 1 (as element of L∞(ν)) such that (1.2) holds. After normalizing
by ψ(0) = 0, ψ is unique.

Given a pair (ν, ψ) as above, we denote by ψo the odd extension of the function
ψ : [0,+∞) → C to the real line, and νe the even extension of the half-line probability
measure ν to the full-line: the unique measure which is even and whose pushforward
under x �→ |x | is ν. Then we consider the matrix-valued measure μ given by

dμ =
(

1 ψo

ψ∗
o 1

)
dνe (1.3)

for f ∗ denoting the complex conjugate of f , and similarly for elementwise conjugation
of a sequence in C

N0 . We will always assume that μ is related to (ν, ψ) in this
way; in particular, μ is always a matrix measure of the form (1.3), with the even/odd
symmetries described here. We will refer to the pair (ν, ψ), or the matrix measure μ,
as the spectral data of J .

In order to state our main theorem, we will need to define a subclass of non-
degenerate and determinate matrix measures. A matrix measure μ̃ with all moments
finite is called determinate if it is uniquely determined by its moments, and non-
degenerate if any matrix polynomial P(·) ∈ C

2×2 vanishing under the matrix inner
product defined by μ̃ is trivial,

∫

R

P(x)∗dμ̃(x)P(x) = 0 
⇒ P(x) = 0 ∀x ∈ R. (1.4)

A sufficient condition for determinacy is exponential decay of tails, we offer a proof
of this in Lemma 2.8. More generally, determinacy of the trace measure is sufficient,
but not necessary for determinacy of the matrix measure, cf. [3, Corollary 3.7] and the



  194 Page 4 of 30 B. Eichinger et al.

ensuing discussion. Non-degeneracy is equivalent to the existence of a sequence of
sequence (Pn)n≥0 of orthonormal polynomials [3, Theorem 4.6]. By [14, Lemma 6.1],
a matrix measure of the form (1.3) for νe of infinite support is always non-degenerate.

From a non-degenerate measure with all moments finite, one may form a block
Jacobi matrix by assembling the coefficients appearing in the three term recurrence
satisfied by a sequence of orthonormal polynomials into a tri-diagonal block matrix
J, which may be viewed as an operator on the domain of compactly supported �2(N0)

sequences. Building on earlier results [9], Krein’s work [8] shows that J constructed
this way has at least one deficiency index 0 if and only if μ is determinate, see [10,
Theorem 3] for an english translation. We define completely determinate measures to
be the subset of non-degenerate measures with all moments finite that produce J with
both deficiency indices 0. We note that this notion is well-defined, since different J
matrices corresponding to different orthonormal sequences differ by conjugation by a
diagonal unitary operator, leaving the deficiency indices unchanged.

Definition 1.2 Let μ̃ be a non-degenerate matrix measure with all moments finite. We
say μ̃ is completely determinate if the associated block Jacobimatrices have deficiency
indices both equal to 0.

Remark 1.3

(1) Our choice of terminology is inspired by complete determinacy being both a
strengthening of the criterion for determinacy following from Krein’s work, mak-
ing this class a subset of the set of determinate non-degenerate matrix measures,
as well as the already established definition of “complete indeterminacy," where
both deficiency indices are maximized, cf. [7].

(2) As discussed below [10, Theorem 2], reality of the coefficients of J is sufficient
to conclude equality of the deficiency indices. This is by Von Neumann’s theorem
[15, Theorem X.3]. Generally, by the same argument, determinacy combined with
a conjugation symmetry of the associated J is sufficient to ensure equality of the
deficiency indices at 0 and complete determinacy.

We may now state our main theorem, proving that conditions (1.1), (1.2), (1.3)
produce a bijection between proper Jacobi operators J and completely determinate
matrix measures μ of the form (1.3).

Theorem 1.4 The correspondence between J and its spectral data μ determined by
(1.1), (1.2), (1.3) is a bijection between the set of proper Jacobi matrices J (a, b), with
all an > 0, bn ∈ C and the set of completely determinate matrix measures μ of the
form (1.3).

Remark 1.5 As discussed above, measures of the form (1.3) are non-degenerate pro-
vided the trace measure has infinite (in the sense of cardinality) support [14, Lemma
6.1].

This extends a bijection of Pushnitski–Štampach [14], who considered bounded J
and compactly supported ν. We follow the central idea of their paper, to embed J into
a self-adjoint block operator. However, our proofs are different, as they rely on matrix
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Weyl functions and the theory of Herglotz functions instead of moments. This allows
us to offer some additional intuition for the phase functionψ . From our perspective,ψ
appears as one of the off-diagonal entries of a matrix probability measure that arises
as the canonical spectral measure for a block Jacobi matrix unitarily equivalent to
the self-adjoint block matrix formed through J . Such measures may be written as
dμ = W (·)dνe(·) with W (·) ∈ C

2×2 having constant trace νe almost everywhere,
withW ≥ 0 forcing |ψ | ≤ 1. We compute that the diagonals ofW are equal, meaning
that only νe and ψ are needed to parametrize μ; and νe is precisely the even extension
of ν, the spectral measure for |J | described above.

To define the fundamental object in our work, we will use the following pair of
vectors:

e0 := δ0, e1 := J ∗δ0,

which is a cyclic set for J ∗ J (see Theorem 2.6). We use the notation

RA(z) = (A − z)−1

for the resolvent of an operator A at the point z ∈ C. We encode J by the 2× 2 matrix

M(z) = (Mi, j (z))
1
i, j=0, Mi, j (z) = 〈e j , RJ∗ J (z)ei 〉. (1.5)

This is a matrix Herglotz function; just as the Weyl m-function is a basic tool for
self-adjoint Jacobi matrices, the Weyl matrix M is a central object in this paper. We
prove the following counterpart of a local Borg–Marchenko theorem for unbounded
non-self-adjoint Jacobi matrices. This theorem will be used to prove the injectivity
portion of Theorem 1.4. For w ∈ C \ [0,+∞), we abbreviate the matrix exponential
by

w
σ3
4 =

(
w1/4 0
0 1/w1/4

)
, arg(w1/4) ∈ (0, π/2).

Theorem 1.6 Let J , J̃ , be unbounded proper Jacobi matrices with Jacobi parameters
(an)n∈N0 , (ãn)n∈N0 ∈ (0,∞)N0 , (bn)n∈N0 , (b̃n)n∈N0 ∈ C

N0 , andWeylmatrix functions
M, M̃ defined by (1.5). Suppose N ≥ 2. Then the following are equivalent:

(1) For a fixed sequence w j , and an ε > 0 so that arg(w j ) ∈ [ε, 2π − ε], we have
∥∥∥∥w

σ3
4
j

(
M(w j ) − M̃(w j )

)
w

σ3
4
j

∥∥∥∥ = O(w−N
j ), j → ∞. (1.6)

(2) an = ãn and bn = b̃n for all n ≤ N − 2.
(3) For every ε > 0, and w in the sector arg(w) ∈ [ε, 2π − ε], we have

∥∥∥w
σ3
4

(
M(w) − M̃(w)

)
w

σ3
4

∥∥∥ = O(w−N ), w → ∞. (1.7)
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Simultaneously and independently, Pushnitski and Štampach have examined this
question in the setting of Schrödinger operators [12]. Earlier results of this flavor
in non-self-adjoint settings [4, 18] used a different function (a scalar Weyl function
that isn’t Herglotz) and the results were conditional on asymptotic similarity along
“admissible" rays. Our M matrix serves as a different kind of extension of the Weyl
function of the self-adjoint theory.

In [14], the authors also prove their bijection is a homeomorphism. In the unbounded
setting, this statement is essentially more delicate on both on the direct and inverse
side, as we will comment on further below. Broadly, the operators are only closed and
there is not a natural notion of convergence for them, while on the inverse side, the
measures are not compactly supported. However, we recover the following continuity
statement for the direct spectral map.

Theorem 1.7 The bijection between J and its spectral data (ν, ψ) given by Theo-
rem 1.4 is continuous in the following sense. Let aN , a∞ ∈ (0,∞)N0 and bN , b∞ ∈
C
N0 , and suppose J (aN , bN ), J (a∞, b∞) are proper. If J (aN , bN ) → J (a∞, b∞)

in the sense that for all k ∈ N0,

J (aN , bN )δk → J (a∞, b∞)δk, N → ∞, (1.8)

then for all h ∈ C0(R) := {h ∈ C(R) : limx→±∞ h(x) = 0},

lim
N→∞

∫

[0,+∞)

h(x)dνN (x) =
∫

[0,+∞)

h(x)dν(x),

lim
N→∞

∫

[0,+∞)

h(x)ψN (x)dνN (x) =
∫

[0,+∞)

h(x)ψ(x)dν(x).
(1.9)

Finally we prove criteria characterizing self-adjointness of J , as well as the case
bn ≡ 0 in terms of the phase function ψ . These are analogs of parts ii) and iii) of [13,
Theorem 2.6]. The proofs are of a similar flavor; the main differences are our proofs
rely on resolvents and coefficient stripping instead of a combinatorial lemma.We note
that the remaining parts of this theorem depend on a polar decomposition for bounded
operators found in [6].

Theorem 1.8 Let a = (an)n∈N0 ∈ (0,∞)N0 and b = (bn)n∈N0 ∈ C
N0 and suppose

J (a, b) = J is proper. Then:

(i) J is self-adjoint if and only if ψ(s) ∈ R for ν-a.e. s ≥ 0.
(ii) bn = 0 for all n ≥ 0 if and only if ψ(s) = 0 for ν-a.e. s ≥ 0.

As noted above, the main inspiration for this work is [14], and we follow their idea
of embedding J into a simple self-adjoint operator that is unitarily equivalent to a
block Jacobi operator. The direct and inverse spectral theory of these latter operators
is well-studied and may be leveraged to prove direct and inverse spectral results for
J . We note that in addition to extending this work to the unbounded setting, where
there are the usual technical obstacles, the perspective taken below shortens many of
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the proofs of their main theorems in the bounded case, in particular avoiding some
combinatorial lemmas in that work in favor of coefficient stripping. Furthermore, it
provides a more general correspondence.

The paper is organized as follows. In Section 2,we state and prove some preliminary
results on the operator theory for J , and state unbounded extensions of the two main
technical inputs we use from [14] that allow for the definition of the direct spectral
map (Theorem 1.1). We also prove Theorem 1.8 in this section. In Section 3, we
consider block Jacobi matrices and study the interplay between a certain form of their
coefficients and certain symmetries of their Weyl matrices. In Section 4, we prove
a simple connection between the matrix M defined above, and the Weyl matrix R
for a block Jacobi matrix related to J , and we prove Theorem 1.6, Theorem 1.4,
Theorem 1.7, and 1.8.

2 Preliminary Results

For u, v ∈ �2(N0) we define the Wronskian by

Wn(u, v) = an(un+1vn − unvn+1).

Lemma 2.1 For all u, v ∈ D(J (a, b)), the limit

W+∞(u, v) = lim
n→∞ Wn(u, v) (2.1)

is convergent and

W+∞(u, v) = 〈J (a, b∗)u∗, v〉 − 〈u∗, J (a, b)v〉. (2.2)

Proof Let u, v ∈ D(J (a, b)). Then u∗, v∗ ∈ D(J (a, b∗)), so by the Cauchy-Schwarz
inequality, the sequence

(J (a, b∗)u∗)∗nvn − un(J (a, b)v)n

is summable. By direct calculation, it is equal to Wn(u, v) − Wn−1(u, v), with the
convention W−1 = 0. By telescoping, the limit (2.1) is convergent and (2.2) holds. ��
Lemma 2.2 For any coefficient sequences with an > 0, bn ∈ C,

J0(a, b)∗ = J (a, b∗). (2.3)

In particular, J (a, b)∗ = J (a, b∗) if and only if W∞(u, v) = 0 for all u, v ∈
D(J (a, b)).

Proof Vectors u, w ∈ �2(N0) satisfy 〈u, J0v〉 = 〈w, v〉 for all v ∈ �2c(N0) if and only
if 〈u, J0δk〉 = 〈w, δk〉 for all k ∈ N0. This in turn is equivalent to wk = ak−1uk−1 +
b∗
k uk + akuk+1 for k ∈ N0, taking the convention u−1 = 0 for the sake of brevity.
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Since w ∈ �2 by assumption, this is in turn equivalent to u ∈ D(J (a, b∗)) with
J (a, b∗)u = w, verifying (2.3).

Thus, J0(a, b) ⊂ J (a, b) implies J (a, b)∗ ⊂ J0(a, b)∗ = J (a, b∗). Then (2.2)
implies that

D(J (a, b)∗) = {u∗ ∈ D(J (a, b∗)) | W∞(u, v) = 0 ∀v ∈ D(J (a, b))},

and the characterization is proven. ��
As an immediate Corollary, we may prove that for Jacobi matrices with an > 0,

Beckermann’s [1] definition of proper matrices is equivalent to J (a, b)∗ = J (a, b∗).

Corollary 2.3 A Jacobi matrix J (a, b) with an > 0 and bn ∈ C obeys J (a, b)∗ =
J (a, b∗) if and only if

J0(a, b) = J (a, b). (2.4)

Proof Both directions will use that since J0(a, b) = (J0(a, b)∗)∗, we have after taking
adjoints of both sides of (2.3),

J0(a, b) = J (a, b∗)∗.

If J is proper,

J (a, b∗)∗ = J (a, b).

since J (a, b) is closed. Thus, (2.4) holds. Similarly, if (2.4) holds, then

J (a, b) = J0(a, b) = J (a, b∗)∗ 
⇒ J (a, b)∗ = J (a, b∗)

taking adjoints and using that J (a, b∗) is closed. ��
The following condition shows, in particular, that discrete Schrödinger operators

(an ≡ 1) are always proper:

Corollary 2.4 If supn an < ∞, the operator J (a, b) is proper.

Proof Assume supn an < ∞. For any u, v ∈ �2(N), by the Cauchy–Schwarz inequal-
ity, the sequence Wn(u, v) is in �1(N) so limn→∞ Wn(u, v) = 0. ��

We will now prove unbounded analogs of certain statements from [14], starting
with an unbounded version of [14, Lemma 3.2]:

Lemma 2.5 Let T be a densely defined closed operator. Then, for all bounded Borel
functions f ∈ Bb(R) and all ψ ∈ D(T ), ϕ ∈ D(T ∗), we have f (|T |)ψ ∈ D(T ),
f (|T ∗|)ϕ ∈ D(T ∗), and

T f (|T |)ψ = f (|T ∗|)Tψ, T ∗ f (|T ∗|)ϕ = f (|T |)T ∗ϕ. (2.5)



A Weyl Matrix Perspective on Unbounded Non-Self-Adjoint... Page 9 of 30   194 

Proof Consider the set M of functions g ∈ Bb(R) such that for all ψ ∈ D(T ), we
have g(T ∗T )ψ ∈ D(T ) and

Tg(T ∗T )ψ = g(T T ∗)Tψ. (2.6)

This set is a subalgebra ofBb(R) and it contains resolvents: if z ∈ C\R andψ ∈ D(T ),
then η = RT ∗T (z)ψ ∈ D(T ∗T ) ⊂ D(T ), soψ = (T ∗T−z)η implies T ∗Tη ∈ D(T ),
Tψ = T T ∗Tη − zTη, and finally Tη = RTT ∗(z)Tψ . Moreover, if gn ∈ M are
uniformly bounded and converge pointwise to g, then g ∈ M , since T is closed. Thus,
M = Bb(R).

Setting f (s) = g(s2) gives the first half of (2.5), while the second half comes from
exchanging T with T ∗ in the argument. ��

With this in hand, we may now prove the unbounded analog of [14, Theorem 2.1]:

Theorem 2.6 The set δ0, J ∗δ0 is a cyclic set for |J |, i.e.,

C|J |(δ0, J ∗δ0) := Span{R|J |(z)δ0, R|J |(z)J ∗δ0 : z ∈ C \ R} = �2(N) (2.7)

In particular, the multiplicity of the spectrum of |J | is at most 2. Moreover, δ0 is a
maximal vector for |J |, i.e., its spectral measure is a maximal spectral measure for
|J |.

Proof Denote the closure of the span by V . By a density argument, cf. [11, Lemma
8.44] for every bounded Borel function f , V contains f (|J |)δ0 and f (|J |)J ∗δ0.

Now assume that ψ ∈ D(|J |2n) and c ∈ N, and denote fc(x) = x2n if |x | ≤ c
and fc(x) = 0 otherwise. Then by dominated convergence, fc(|J |)ψ → |J |2nψ as
c → ∞. In particular, |J |2nδ0, |J |2n J ∗δ0 ∈ V .

As noted in the proof of [14, Lemma 3.1], each δ j may be written as a finite linear
combination of the elements |J |2nδ0 and |J |2m J ∗δ0, for n,m ≥ 0, so δ j ∈ V for all
j . Since V is closed, V = �2(N0).
Finally, we show δ0 is maximal. Let w be a maximal vector for |J |, which is

guaranteed to exist by the spectral theorem. Let B ⊂ [0,+∞) be a Borel set, and
suppose δ0 ∈ ker(χB(|J |)) = ran(χB(|J |)⊥, then in particular, for z ∈ C \ R,

0 = 〈δ0, χB(|J |)R|J |(z)w〉 = 〈δ0, R|J |(z)χB(|J |)w〉
= 〈R|J |(z∗)δ0, χB(|J |)w〉.

Similarly, we have

〈R|J |(z)J ∗δ0, χB(|J |)w〉 = 〈R|J |(z)χB(|J |)J ∗δ0, w〉
= 〈R|J |(z)J ∗χB(|J ∗|)δ0, w〉

using Lemma 2.5. So that
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〈R|J |(z)J ∗δ0, χB(|J |)w〉 = 〈R|J |(z)J ∗χB(|J ∗|)δ0, w〉
= 〈R|J |(z)J ∗χB(|J |)δ0, w〉 = 0

where we use that J ∗δ0 = (Jδ0)
∗ and the assumption. By (2.7), χB(|J |)w = 0, and

by maximality, χB(|J |) ≡ 0, so that δ0 is a maximal vector. ��
Consider ν, defined as above as the spectral measure for |J | for the vector δ0, we

have the following lemma.

Lemma 2.7 The measure ν has infinite support (in the sense of cardinality) and finite
moments:

∫

[0,+∞)

xkdν(x) < ∞, k ∈ N0. (2.8)

Proof If ν was supported on a finite set of points, there would exist a nontrivial poly-
nomial p such that p = 0 ν-a.e.. Supposing such a polynomial p exists, and taking
this polynomial to be even, we may write p(x) = q(x2), and we have

‖q(|J |2)δ0‖2 =
∫

|q(x2)|2 dν(x) = 0.

Owing to the tridiagonal structure of J , we have

|J |2kδ0 −
k−1∏
j=0

a2j δ2k ∈ Span{δ j | 0 ≤ j ≤ 2k − 1},

Due to this, if q is a polynomial of degree m, then 〈δ2m, q(|J |2)δ0〉 �= 0. In particular,
for any nontrivial polynomial q, q(|J |2)δ0 �= 0, leading to contradiction.

Since |J |2 preserves �2c(N0), δ0 ∈ D(|J |2k) for every k ∈ N0. In particular, by
the spectral theorem, there exists ψ ∈ �2(N) such that δ0 = (|J |2 − i)−kψ . By the
functional calculus, spectral measures of δ0 and ψ for |J | are related by

dν = 1

|x2 − i |2k dμψ

so μψ(R) = ‖ψ‖22 < ∞ implies
∫
x4k dν(x) < ∞. ��

We can now establish the direct spectral map, generalizing [14, Theorem 2.2].

Proof of Theorem 1.1 Themeasure ν is, by (1.1), the spectralmeasure of δ0 with respect
to |J |. For f ∈ Bb(R), we note that f (|J |) = g(J ∗ J ) for g(s1/2) = f (s), s ≥ 0, a
bounded Borel function. So, f (|J |)δ0 ∈ D(J ∗ J ) ⊆ D(J ), and the left hand side of
(1.2) makes sense for f ∈ Bb(R). We prove the estimate

|〈J f (|J |)δ0, δ0〉| ≤
∫

[0,+∞)

s| f (s)|dν(s) (2.9)
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for a dense set of f ∈ L1(sdν(s)), from which the result will follow by duality. Let
f ∈ Cc(0,∞). Then, factoring f (s) = | f (s)|1/2 f (s)1/2 for

f (s)1/2 :=
{
f (s)/| f (s)|1/2, f (s) �= 0

0, f (s) = 0

and for s > 0 set

h(s) = s−1/2| f (s)|1/2, g(s) = s1/2 f (s)1/2

with h(0) = g(0) = 0. h and g are bounded and continuous on [0,+∞) and f (s) =
h(s)g(s). By Lemma 2.5, we have

〈J f (|J |)δ0, δ0〉 = 〈Jg(|J |)h(|J |)δ0, δ0〉 = 〈g(|J ∗|)Jh(|J |)δ0, δ0〉

since h(|J |)δ0 ∈ D(J ∗ J ) ⊆ D(J ), because h(s) = h̃(s2) for a h̃ ∈ Bb(R) and all
s ≥ 0. Thus,

|〈J f (|J |)δ0, δ0〉| = |〈Jh(|J |)δ0, g(|J ∗|)∗δ0〉| ≤ ‖Jh(|J |)δ0‖‖g(|J ∗|)∗δ0‖

by the Cauchy-Schwarz inequality. We may conclude since

‖Jh(|J |)δ0‖2 = 〈h(|J |)δ0, J ∗ Jh(|J |)δ0〉 =
∫

[0,+∞)

s2|h(s)|2dν(s)

=
∫

[0,+∞)

s| f (s)|dν(s)

and using the antiunitary equivalence of |J | and |J ∗| under complex conjugation,

‖g(|J ∗|)∗δ0‖2 = 〈g(|J |)δ0, g(|J |)δ0〉 =
∫

[0,+∞)

|g(s)|2dν(s) =
∫

[0,+∞)

s| f (s)|dν(s)

giving (2.9). Thus, the linear functional f �→ 〈J f (|J |)δ0, δ0〉 is bounded by 1 on a
dense subset of L1(sdν(s)), and so extends to a linear functional with the same bound
on L1(sdν(s)), while Bb(R) ⊆ L1(sdν(s)) by Lemma 2.7. In particular, there is a
unique ψ ∈ L∞(sdν(s)) such that (1.2) holds. Setting the normalization ψ(0) = 0
extends ψ ∈ L∞(ν) uniquely. ��

Finally, we prove the sufficiency condition mentioned in the introduction, making
use of the well-known scalar condition of exponential tails, cf. [16, Corollary 4.11].
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Lemma 2.8 For a matrix measure dμ, assume that

∫

R

eε|x |dTr(μ)(x) < ∞ (2.10)

for some ε > 0. Then, dμ is a determinate measure. In other words, if

∫

R

xkdμ =
∫

R

xkdμ̃, ∀k ∈ N0 (2.11)

for a matrix measure dμ̃ with finite moments, then dμ̃ = dμ.

Proof The Radon–Nikodym decomposition of a matrix measure with respect to its
trace (see, e.g., [11, Lemma 6.37]) gives representations

dμ̃(x) = W̃ (x)dTr(μ̃)(x), dμ(x) = W (x)dTr(μ)(x)

for W̃ ,W ≥ 0 and Tr(W ) = 1 a.e. Tr(μ̃), Tr(μ) respectively. For v ∈ C
2, we have by

the Cauchy-Schwarz inequality:

∫

R

eε|x |v∗W (x)vdTr(μ)(x) < ∞

and the scalar measure v∗W (x)vdTr(μ)(x) is determinate, so that (2.11) implies

∫

R

xkv∗W (x)vdTr(μ)(x) =
∫

R

xkv∗W̃ (x)vdTr(μ̃)(x),

so that for any v ∈ C
2, v∗WvdTr(μ) = v∗W̃vdTr(μ̃). By the polarization identity,

for any u, v ∈ C
2, u∗WvdTr(μ) = u∗W̃vdTr(μ̃), so μ = μ̃. ��

3 Block Jacobi Matrices with a Symmetry Condition

We consider block Jacobi matrices with 2 × 2 blocks,

J =

⎛
⎜⎜⎜⎝

B0 A0 0
A∗
0 B1 A1 0
0 A∗

1 B2 A2 0
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ (3.1)

It is assumed that det A j �= 0 and B∗
j = Bj . We will also assume that J is self-adjoint

with the maximal domain D(J) ⊂ �2(N0) given by the set of u such that Ju ∈ �2(N0).
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Definition 3.1 The Weyl matrix function for J isR : C \ R → C
2×2 defined by

Ri, j (z) : = 〈δi , (J − z)−1δ j 〉, i, j ∈ {0, 1}

We denote by S+ the right shift operator S+ek = ek+1 on �2(N0) and consider
the once stripped block Jacobi matrix J1 = (S∗+)2JS2+ and its Weyl matrix R1. The
Schur complement formula implies the coefficient stripping formula for block Jacobi
matrices, cf. [5, Proposition 2.14]:

Lemma 3.2 [Matrix coefficient stripping] TheWeyl matrices of J and its once stripped
matrix J1 are related by

R1(z) = −A−1
0 (R(z)−1 − B0 + z)(A∗

0)
−1 (3.2)

Our goal is to relate the following particular form of the 2 × 2 blocks,

A j =
(
0 a j

a j 0

)
, Bj =

(
0 b j

b∗
j 0

)
(3.3)

to a particular symmetry of the Weyl matrix.
By general principles, R is a matrix Herglotz function, i.e., it obeys

1

2i
(R(z) − R(z)∗) > 0, z ∈ C\R.

Thus,R has an integral representation involving a 2× 2 matrix measure on R; we are
interested in the case when this matrix measure has a particular symmetry:

Definition 3.3 We say a matrix valued Herglotz function F is symmetric if it may be
written as a Stieltjes transform of the following form:

F(z) =
∫

R

(
1 ψo(x)

ψ∗
o (x) 1

)
dνe(x)

x − z

for νe an even probability measure on R, and ψo an odd function satisfying |ψ | ≤ 1
νe almost everywhere.

Lemma 3.4 Let the Weyl-Matrix R corresponding to a block Jacobi matrix be sym-
metric in the sense of Definition 3.3. Then it has the nontangential asymptotics in
C+ := {z ∈ C : Im (z) > 0}:

R(z) = − I

z
− B0

z2
− A0A∗

0 + B2
0

z3
+ O(z−4), z → ∞, arg z ∈ [α, π − α] (3.4)

for any α > 0, and the first diagonal/off-diagonal entries have the form:

B0 =
(
0 b0
b∗
0 0

)
, A0 =

(
0 a0
a0 0

)
U1
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for U1 a unitary matrix and

b0 =
∫

R

xψo(x)dνe(x), a0 =
√√√√

∫

R

x2dνe(x) − |b0|2 > 0. (3.5)

Proof In a sector arg z ∈ [α, π − α], α > 0, symmetry of R leads to nontangential
asymptotics as z → ∞,

R(z) = −
n−1∑
j=0

z− j−1
∫

R

x j
(

1 ψo(x)
ψo(x)∗ 1

)
dνe(x) + O(z−n−1) (3.6)

due to the geometric expansion

−1

x − z
=

n−1∑
j=0

x j

z j+1 + xn

zn(x − z)

and the estimate |x − z| ≥ Im z ≥ sin α|z|.
In particular, since R1 is of this form, R1(z) = − 1

z I + O(1/z2), z → ∞ for
arg(z) ∈ [α, π − α] for some α > 0. Using the coefficient stripping formula (3.2) in
the form R(z) = (B0 − z − A0R1(z)A∗

0)
−1 gives

R(z) = −1

z

(
I − 1

z
(B0 − A0R1(z)A

∗
0)

)−1

= −1

z

(
I + B0

z
+ A0A∗

0 + B2
0

z2
+ O(1/z3)

)
.

Equating coefficients, we see that

B0 =
∫

R

x

(
1 ψo(x)

ψo(x)∗ 1

)
dνe(x) =

(
0 b0
b∗
0 0

)

where b0 = ∫
R

xψo(x)dνe(x), since the measure is even. Similarly,

A0A
∗
0 =

∫

R

x2
(

1 ψo(x)
ψo(x)∗ 1

)
dνe(x) − B2

0 =
(
a20 0
0 a20

)

for

a20 :=
∫

R

x2dνe(x) −
∣∣∣∣∣∣

∫

R

xψo(x)dνe(x)

∣∣∣∣∣∣

2

≥ 0
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by the Cauchy-Schwarz inequality and since ‖ψo‖∞ ≤ 1; we set a0 to be the nonneg-
ative square root of this quantity.

Moreover, det A0 �= 0 implies a20 �= 0. Thus, by the polar decomposition of A0,
there exists a unitary U such that

A0 =
(
a0 0
0 a0

)
U =

(
0 a0
a0 0

)(
0 1
1 0

)
U

and setting U1 = ( 0 1
1 0 )U completes the proof. ��

We record the following general facts about Stieltjes transforms of a complex mea-
sure.

Lemma 3.5 Let ρ be a complex measure on R and let

m(z) =
∫

R

dρ(x)

x − z
, z ∈ C \ R.

Then,

m(z) = ±m(−z) ⇐⇒ dρ(x) = ∓dρ(−x), (3.7)

and

m(z)∗ = m(z∗) ⇐⇒ dρ(x)∗ = dρ(x). (3.8)

where dρ(−x) denotes the pushforward of ρ under the map x �→ −x.

Proof By Stieltjes inversion (see, e.g., [11, Lemma 7.65]), the Stieltjes transform
uniquely determines the complex measure, so (3.7) follows from

m(−z) =
∫

R

dρ(x)

x + z
=

∫

R

dρ(−x)

−x + z
=

∫

R

−dρ(−x)

x − z
.

Similarly,

m(z)∗ =
∫

R

dρ(x)∗

x − z∗

so that by Stieltjes inversion again, we have (3.8). ��
Weprove the following lemma, which, alongwith an inductive argument, will allow

for the proof of Theorem 1.6:
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Proposition 3.6 Suppose that the Weyl matrix R corresponding to a block Jacobi
matrix J is symmetric in the sense of Definition 3.3. Suppose further that the first
off-diagonal term A0 is of the form (3.3) for a0 > 0. Then the Weyl matrix R1
corresponding to the once stripped block Jacobi matrix J1 = (S∗+)2JS2+ satisfies

R1(z) = −1

|a0|2
(

det(R(z))−1R0,0(z) + z − det(R(z))−1R1,0(z) − b∗
0− det(R(z))−1R0,1(z) − b0 det(R(z))−1R1,1(z) + z

)
. (3.9)

In particular, R1 is also symmetric.

Proof SinceR1 is a Weyl matrix for a block Jacobi matrix, it is the Stieltjes transform
of a matrix measure μ satisfying μ(R)i, j = 〈δ j , δi 〉 so μ(R) = I.

Decomposing μ with respect to the positive measure Tr(μ), we may write dμ =
W dTr(μ) for W : R → C

2, with Tr(W ) = 1 and W ≥ 0 Tr(μ)-a.e., so that

R1(z) =
∫

R

W (x)dTr(μ)(x)

x − z
(3.10)

Using (3.2) and denoting the entries ofR byRi, j , we may use the form of A0 and B0
found in Lemma 3.4 and denoting σ1 = ( 0 1

1 0 ), we may compute

R1(z) = −σ1

a0

(
det(R(z))−1

( R1,1(z) −R0,1(z)
−R1,0(z) R0,0(z)

)
−

(
0 b0
b∗
0 0

)
+ zI

)
σ1

a∗
0

= −σ1

|a0|2
(

det(R(z))−1R1,1(z) + z − det(R(z))−1R0,1(z) − b0
− det(R(z))−1R1,0(z) − b∗

0 det(R(z))−1R0,0(z) + z

)
σ1

= −1

|a0|2
(

det(R(z))−1R0,0(z) + z − det(R(z))−1R1,0(z) − b∗
0− det(R(z))−1R0,1(z) − b0 det(R(z))−1R1,1(z) + z

)

yielding (3.9).
By (3.7) of Lemma 3.5 and our assumption that R is symmetric, the entries R0,0

andR1,1 are odd, and equal, whileR0,1 andR1,0 are even. Thus, the determinant ofR
is even, and by our computation above, the diagonal entries ofR1 are odd and equal,
while the off-diagonal entries are even. Thus, we may conclude by Lemma 3.5 that
the diagonal entries are Stieltjes transforms of an even complex measure νe, while the
off-diagonal entries are Stieltjes transforms of an odd complex measure. Comparing
to (3.10), and Stieltjes inverting, we have

dνe = W0,0 dTr(μ) = W1,1 dTr(μ),

so that by the normalization Tr(W ) = 1, we haveW0,0 = W1,1 = 1/2 Tr(μ)-a.e., and

νe = 1
2Tr(μ)

a probability measure since μ(R) = I. Meanwhile, writing W0,1 = W ∗
1,0 = ψo, we

see |ψo| ≤ 1 νe-a.e. since W is positive definite Tr(μ)-a.e. ��



A Weyl Matrix Perspective on Unbounded Non-Self-Adjoint... Page 17 of 30   194 

4 Coefficient Stripping

The central idea of [14] is to embed the non-self-adjoint J into a block matrix

J =
(

0 J (a, b)
J (a, b∗) 0

)
, D(J) = D(J (a, b∗)) ⊕ D(J (a, b)). (4.1)

By the previous section, if J = J (a, b) is proper, J is self-adjoint on �2(N0) ⊕
�2(N0), and J is the closure of the operator

J0 = J0(a, b) =
(

0 J0(a, b)
J0(a, b∗) 0

)
, D(J0) = �2c(N0) ⊕ �2c(N0).

Moreover, conjugation by the unitary map

V : �2(N0) → �2(N0) ⊕ �2(N0), V δ2 j = δ j ⊕ 0, V δ2 j+1 = 0 ⊕ δ j ,

turns this into J = V ∗JV which has the form of a block Jacobi matrix (3.1) with 2×2
blocks of the form (3.3). Denoting by J0 the restriction of J to �2c(N0), if J is proper,
then J is the closure of J0.

We derive the following relationships between the Weyl matrix R for J, the quan-
tities Mi, j defined by (1.5), and the spectral data (ν, ψ) of J :

Proposition 4.1 For z ∈ C\R,

R(z) =
(
zM0,0(z2) M1,0(z2)
M0,1(z2) zM0,0(z2)

)
(4.2)

and

R(z) =
∫

R

(
1 ψo(x)

ψo(x)∗ 1

)
dνe(x)

x − z
. (4.3)

In particular, (ν, ψ) uniquely determine the matrix-valued Herglotz function R.
Moreover, the diagonal entries of M are related by

zM0,0(z
2) = 1

z
(−1 + M1,1(z

2)). (4.4)

Proof From (1.1), (1.2) we obtain the following integral representations for the entries
of M :

M0,0(z
2) = 〈e0, (J ∗ J − z2)−1e0〉 = 〈δ0, (J ∗ J − z2)−1δ0〉

=
∫

[0,+∞)

dν(x)

x2 − z2
,
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and

M0,1(z
2) = 〈e1, (J ∗ J − z2)−1e0〉 = 〈δ0, J (J ∗ J − z2)−1δ0〉

=
∫

[0,+∞)

xψ(x)dν(x)

x2 − z2
.

and

M1,0(z
2) = 〈e0, (J ∗ J − z2)−1e1〉 = 〈δ0, (J ∗ J − z2)−1 J ∗δ0〉

= 〈δ0, J (J ∗ J − (z2)∗)−1δ0〉∗ =
∫

[0,+∞)

xψ∗(x)dν(x)

x2 − z2
,

For the bottom right entry, we compute

M1,1(z
2) = 〈e1, (J ∗ J − z2)−1e1〉 = 〈δ0, J (J ∗ J − z2)−1 J ∗δ0〉

= 〈δ0, (J J ∗ − z2)−1 J J ∗δ0〉

by Lemma 2.5. Denoting the anti-unitary operator C : �2(N0) → �2(N0), Cψ = ψ∗,
we have C JC = J ∗ as operators, so that since Cδ0 = δ0,

〈δ0, (J J ∗ − z2)−1 J J ∗δ0〉 = 〈Cδ0, (J J
∗ − z2)−1 J J ∗Cδ0〉

= 〈δ0,C(J J ∗ − z2)−1CC J J ∗Cδ0〉∗
= 〈δ0, (J ∗ J − (z∗)2)−1 J ∗ Jδ0〉∗
= 〈δ0, (J ∗ J − z2)−1 J ∗ Jδ0〉

so that by (1.1), we have

M1,1(z
2) =

∫

[0,+∞)

x2dν(x)

x2 − z2
.

By the above integral representations for M0,0 and M1,1, a direct verification using
ν(R) = 1 gives (4.4).

We express the relevant entries of (J − z)−1 in terms of the Mi, j . By block matrix
inversion, we have

(J − z)−1ψ =
(

− 1
z + 1

z2
J (1/z J ∗ J − z)−1 J ∗ 1

z J (1/z J ∗ J − z)−1

1
z (1/z J

∗ J − z)−1 J ∗ (1/z J ∗ J − z)−1

)
ψ

for ψ ∈ D(J). Thus, with the notation δ00 := δ0 ⊕ 0, δ10 := 0 ⊕ δ0, we compute

R0,0(z) = 〈δ00, (J − z)−1δ00〉 = −1/z + 〈J ∗δ0, 1/z(J ∗ J − z2)−1 J ∗δ0〉
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= 1

z
(−1 + 〈e1, (J ∗ J − z2)−1e1〉) = 1

z
(−1 + M1,1(z

2)),

and similarly,

R0,1(z) = 〈δ00, (J − z)−1δ10〉 = 〈J ∗δ0, (J ∗ J − z2)−1δ0〉
= 〈e1, (J ∗ J − z2)e0〉 = M0,1(z

2).

and

R1,0(z) = 〈δ10, (J − z)−1δ00〉 = 〈δ0, 1/z(1/z J ∗ J − z2)−1 J ∗δ0〉
= 〈e0, 1/z(1/z J ∗ J − z2)−1e1〉 = M1,0(z

2),

and finally

R1,1(z) = 〈δ10, (J − z)−1δ10〉 = 〈δ0, (1/z J ∗ J − z)−1δ0〉
= zM0,0(z

2).

After setting 1
z (−1 + M1,1(z2)) = zM0,0(z2), this gives (4.2). Using a partial frac-

tion decomposition on the integral representations for Mi, j gives (4.3). By Stieltjes
inversion, the data (ν, ψ) uniquely determines R. ��

By the previous lemma, nontagential asymptotics for M andRmay be related. We
note that we have M(w) = O(1/

√
w) nontangentially inC \R, as may be seen either

through the relationship to R just proven, or through the integral identities for Mi, j

derived above.

Lemma 4.2 Fix sequences z j with arg(z j ) ∈ [ε, π − ε] for an ε > 0, and w j ∈
C\[0,+∞) with w

1/2
j = z j . Let J and J̃ be two block Jacobi matrices whose coef-

ficients have the form (3.3), and denote by R, R̃ be their Weyl matrix functions, and
let M, M̃ be defined by (1.5) corresponding to V JV ∗ = J, V J̃V ∗ = J̃ respectively.
Then,

∥∥∥∥w
σ3
4
j

(
M(w j ) − M̃(w j )

)
w

σ3
4
j

∥∥∥∥ = O(w−N
j ), j → ∞ (4.5)

for an N ∈ N if and only if

‖R(z j ) − R̃(z j )‖ = O(z−2N
j ), j → ∞. (4.6)

Proof By (4.2) and the relation (4.4),

‖R(z j ) − R̃(z j )‖ =
∥∥∥∥∥

(
z j (M0,0(z

2
j ) − M̃0,0(z

2
j )) M0,1(z

2
j ) − M̃0,1(z

2
j )

M1,0(z
2
j ) − M̃1,0(z

2
j )

1
z j

(M1,1(z
2
j ) − M̃1,1(z

2
j ))

)∥∥∥∥∥
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=
∥∥∥∥∥∥

⎛
⎝w

1/2
j (M0,0(w j ) − M̃0,0(w j )) M0,1(w j ) − M̃0,1(w j )

M1,0(w j ) − M̃1,0(w j )
1

w
1/2
j

(M1,1(w j ) − M̃1,1(w j ))

⎞
⎠

∥∥∥∥∥∥

=
∥∥∥∥w

σ3
4
j

(
M(w j ) − M̃(w j )

)
w

σ3
4
j

∥∥∥∥ .

Thus, (4.5) holds if and only if (4.6) is satisfied. ��
The following lemma allows for the computation of An and Bn through inductive

coefficient stripping, and is the final lemma needed before our proof of Theorem 1.6.

Lemma 4.3 Let J and J̃ be two block Jacobi matrices whose coefficients have the form
(3.3), and letR, R̃ be their Weyl matrix functions. Fix a sequence z j → ∞ as j → ∞
nontangentially in C+. Then, for k ≥ 2 we have

‖R(z j ) − R̃(z j )‖ = O(z−k−2
j ), j → ∞ (4.7)

if and only if A0 = Ã0, B0 = B̃0, and

‖R1(z j ) − R̃1(z j )‖ = O(z−k
j ), j → ∞. (4.8)

Proof Suppose (4.7) holds for a k ≥ 2. Then, we have

lim
j→∞ z�j (R(z j ) − R̃(z j )) = 0,

for � ≤ 3. Thus, by (3.4) of Lemma 3.4, B̃0 = B0, and

A0 = Ã0U ,

for U a unitary matrix. Since A0, Ã0 have the form (3.3) for a0, ã0 > 0, this implies
U = I and A0 = Ã0, after multiplying by Ã−1

0 . Thus, since

‖R1(z) − R̃1(z)‖ ≤ ‖A0‖‖A−1
0 ‖‖R(z)−1 − R̃(z)−1‖

≤ ‖A0‖‖A−1
0 ‖‖R(z)−1‖‖R̃(z)−1‖‖R(z) − R̃(z)‖

by the second resolvent identity, and

R(z j )
−1, R̃(z j )

−1 = −z j I + O(1), j → ∞,

by (3.4), we may conclude (4.8).
Similarly, for the converse, we have after rearranging (3.2) and using the assumption

that A0 = Ã0, B0 = B̃0,

‖R(z j ) − R̃(z j )‖ = ‖(A0R1(z j )A
∗
0 + B0 − z j )

−1 − (A0R̃1(z j )A
∗
0 + B0 − z j )

−1‖
= O(z−2

j )‖R1(z j ) − R̃1(z j )‖
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by the second resolvent identity, and since

(A0R1(z j )A
∗
0 + B0 − z j )

−1, (A0R̃1(z j )A
∗
0 + B0 − z j )

−1 = O(1/z j ), j → ∞.

Thus, by (4.8), we have that (4.7) holds along the same sequence.
��

We may now prove Theorem 1.6. Both statements make use of the relation given
by Proposition 4.1, and induction using Lemma 4.3.

Proof of Theorem 1.6 Let J , J̃ be proper and denote the corresponding functions by
M, M̃ , and denote by R and R̃ the Weyl-matrices for

V ∗JV = J, V ∗J̃V = J̃, (4.9)

respectively.Wewill repeatedly use that by Lemma4.2, the equation (1.6) is equivalent
to

‖R(z j ) − R̃(z j )‖ = O(z−2N
j ) (4.10)

with z j = w
1/2
j and arg(z j ) ∈ [ε, π − ε] for some ε > 0.

(1) 
⇒ (2). We proceed by induction on N . For the base case N = 2, by the
equivalence of (1.6) and (4.10), and Lemma 4.3, we have

A0 = Ã0, B0 = B̃0 (4.11)

so that a0 = ã0, b0 = b̃0. For the inductive step, we assume the claim holds at N ≥ 2,
in other words (1.6) holding along a fixed sequence with suitable argument implies
equality of the first N − 1 parameters. Now suppose

∥∥∥∥w
σ3
4
j

(
M(w j ) − M̃(w j )

)
w

σ3
4
j

∥∥∥∥ = O(w−N−1
j ), j → ∞. (4.12)

along a fixed sequence with w j → ∞ and arg(w j ) ∈ [ε, 2π − ε] for some ε > 0.
Then, by Lemma 4.2,

‖R(z j ) − R̃(z j )‖ = O(z−2N−2
j )

for z j ∈ C+, z2j = w j . Thus, by Lemma 4.3, we have (4.11), so that a0 = ã0 and

b0 = b̃0, and

‖R1(z j ) − R̃1(z j )‖ = O(z−2N
j ).

Now, using the equivalence given by Lemma 4.2, we have (1.6) for J and J̃ formed
through the once stripped matrices J1 = S∗+ J S+ and J̃1 = S∗+ J̃ S+, so that by the
inductive hypothesis, an = ãn and bn = b̃n for 1 ≤ n ≤ N − 1, completing the proof.
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(2) 
⇒ (3) is also proved by induction on N . For N = 2, we note that a0 = ã0
and b0 = b̃0 implies (4.11), so that by (3.4)

‖R(z) − R̃(z)‖ = O(z−4),

and the equivalence of Lemma 4.2 proves the base case. We now assume desired
implication holds at N : equality of the first N − 1 coefficients in a proper Jacobi
matrix implies (1.7) for the corresponding M .

Let J and J̃ be proper and suppose an = ãn , bn = b̃n for 0 ≤ n ≤ N − 1. We
denote by J1 and J̃1 the once stripped Jacobi matrices

J1 = S∗+ J S+, J̃1 = S∗+ J̃ S+

and we define

J1 =
(
0 J1
J ∗
1 0

)
, J̃1 =

(
0 J̃1
J̃ ∗
1 0

)

Then, applying the inductive hypothesis to J̃1 and J1, along with the equivalence
given by Lemma 4.2 yields

‖R1(z) − R̃1(z)‖ = O(z−2N ), (4.13)

for z → ∞ non tangentially in C+. Together with (4.11) and Lemma 4.3, we have

‖R(z) − R̃(z)‖ = O(z−2N−2) (4.14)

as z → ∞ nontangentially in C+. So, by Lemma 4.2 again, we see that

∥∥∥w
σ3
4

(
M(w) − M̃(w)

)
w

σ3
4

∥∥∥ = O(w−N−1), w → ∞

nontangentially in C \ [0,+∞), as required.
(3) 
⇒ (1) is trivial. ��
With this theorem in hand, the injectivity part of the proof of Theorem 1.4 is

quick. Using the work of [14], non-degeneracy of the measure μ follows. The proof
of surjectivity proceeds in two steps: first, given a completely determinate measure,
we we use right orthogonal polynomials to construct a block Jacobi matrix, which
by our hypothesis, corresponds to a unique operator that is the unique self-adjoint
extension guaranteed by complete determinacy. Since this operator is only defined up
to equivalence class, where the equivalence is given by conjugation by a block diagonal
unitary matrix, the second step ensures this equivalence class contains a matrix of the
correct form.

Proof of Theorem 1.4 If J is a proper Jacobi matrix, ν has infinite support and finite
moments by Lemma 2.7. By [5, Lemma 2.1], the definition of non-degeneracy (1.4)
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is equivalent to the definition used in [14]. Thus, by [14, Lemma 6.1], μ is non-
degenerate. Finally,μ is the spectral measure for a block Jacobi matrix with deficiency
indices (0, 0), so that μ is completely determinate.

Let J , J̃ be proper and assume they correspond to the same matrix measure. Then,
M(z) = M̃(z), so (1.6) holds for all N and J and J̃ have the same Jacobi parameters,
so that J = J̃ by Theorem 1.6.

It remains to prove surjectivity, i.e., that every 2×2 completely determinate matrix
measure with the right symmetries corresponds to a proper Jacobi matrix J . Let (ν, ψ)

be such that the corresponding μ is completely determinate. Using non-degeneracy,
we may consider a sequence of right orthonormal matrix polynomials pn with respect
to the measure

dμ(x) :=
(

1 ψo(x)
ψo(x)∗ 1

)
dνe(x).

Using the recurrence relation satisfied by the pn ,

xpn(x) = pn−1(x)A
∗
n−1 + pn(x)Bn + pn+1(x)An, n ∈ N0 (4.15)

with the convention that p−1(x) = 0,wemay assemble a block Jacobimatrix J0(A, B)

defined on �2c(N0) corresponding these coefficients. We note that J is only uniquely
determined up to equivalence class, where the equivalence is given by conjugation by
a block diagonal unitary matrix. By complete determinacy, J0(A, B) has deficiency
indices (0, 0 and is thus essentially self-adjoint, andwedenote its self-adjoint extension
by J = J0(A, B).

We first claim that dμ is the spectral measure for J: Let dμ̃ be the spectral measure
for J:

〈δ j , (J − z)−1δk〉 =
∫

R

1

x − z
dμ̃ j,k(x)

for 0 ≤ j, k ≤ 1 and z ∈ C \R. Then, by the spectral theorem, there is a unitary map

U : �2(N0) → L2(R2;C2, dμ̃),

with U(δ j ) = e j , 0 ≤ j ≤ 1 and

(UJψ)(x) = x(Uψ)(x)

for any ψ ∈ D(J). In particular, since

J�2c(N0) ⊆ �2c(N0) ⊆ D(J),



  194 Page 24 of 30 B. Eichinger et al.

we have

(UJnψ)(x) = xn(Uψ)(x) (4.16)

for any ψ ∈ �2c(N0) and n ∈ N0.
In what follows, it will be convenient to identify �2(N0) and �2(N0;C2) with the

basis

δ̂ j,k = δ j ek, j ∈ N0, k ∈ {0, 1}.

We may construct a sequence of orthonormal polynomials by examining U(δ̂n,k) for
k ∈ {0, 1}. We note that by the expression for the J:

(J f )n = A∗
n−1 fn−1 + Bn fn + An+1 fn+1, f ∈ �2(N0;C2), A−1 := 0,

and since the An are invertible, we have

span{δ̂ j,k : 0 ≤ j ≤ n, 0 ≤ k ≤ 1} = span{J j δ̂0,k : 0 ≤ k ≤ 1, 0 ≤ j ≤ n},

so that equation (4.16) implies U(δ̂n,k) are polynomials of degree at most n. Further-
more, by unitarity of the U , we have

〈U(δ̂n,k),U(δ̂m, j )〉 =
{
1, n = m, j = k

0, otherwise
(4.17)

so that the matrix polynomial qn made up of the columns U(δ̂n,0),U(δ̂n,1),

qn(x)0≤ j,k≤1 := e∗
jU(δ̂n,k)

are orthonormal. We relate them to the entries of Jnm with respect to the δ̂ basis:

(Jnm)0≤ j,k≤1 = 〈δ̂n, j , Jδ̂m,k〉 = 〈qn(x)e j , xqm(x)ek〉,
so that

Jn,m =
∫

R

qn(x)
∗dμ̃(x)xqm(x).

Thus, the qn satisfy the same recursive equation (4.15) as the pn , and since q0 = p0 =
I, we have qn ≡ pn .

Since the {pk : 0 ≤ k ≤ n} form a basis for the polynomials of degree at most n,
we may write for each n ∈ N0,

xnI =
n∑
j=0

C j,n p j (x)
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with a unique choice of C j,n . Then,

∫

R

xndμ̃(x) =
∫

R

xndμ(x) = C0,n .

Thus, by determinacy of the measure dμ, we have dμ = dμ̃.
We now show that the representative J may be chosen to have blocks of the form

(3.3) by inductively selecting blocks

Wj ∈ C
2×2,WjW

∗
j = I,

in the block diagonal unitary matrix

W =

⎛
⎜⎜⎜⎝

W0 0 0 . . .

0 W1 0 . . .

0 0 W2 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ ,

so that

W ∗
J(An, Bn)W = J(A′

n, B
′
n) =: J′

is a matrix of the correct form.
For the base case, we note that by Lemma 3.4, the entries A0 and B0 have the form

A0 =
(
0 a0
a0 0

)
U1, B0 =

(
0 b0
b∗
0 0

)
, a0 > 0,

for U1 a unitary matrix in C
2×2, so that selecting W0 = I and W1 = U∗

1 ensures A′
0

and B ′
0 are of the correct form (3.3).

We note that W0, . . . ,Wn only effect the first n block coefficients: A j , Bj for
0 ≤ j ≤ n. We suppose now that W0, . . . ,Wn+1 are selected so that A′

j , B
′
j are of

the form (3.3) for 0 ≤ j ≤ n. We show that we may select Wn+2 so that A′
n+1 and

B ′
n+1 are of the correct form. By Proposition 3.6 and the inductive hypothesis, the

Weyl-matrix Rn corresponding to the n-times stripped matrix J
′
n := (S∗+)2nJ′S2n+ is

also symmetric. Applying Lemma 3.4 to J′
n , we see

A′
n+1 =

(
0 a′

n+1
a′
n+1 0

)
Un+2, B ′

n+1 =
(

0 b′
n+1

(b′
n+1)

∗ 0

)
, a′

n+1 > 0,

for Un+2 a unitary matrix in C
2×2, so that we may select Wn+2 = U∗

n+2. So, by
induction, we may select W so that the equivalence class of J contains a matrix of the
correct form.
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Then, denoting the above sequences a = (a′
n)n∈N0 , b = (b′

n)N0 , we have

V J
′V ∗ = J =

(
0 J (a, b)

J (a, b∗) 0

)
,

so that (ν, ψ) is the spectral data of J (a, b) by Proposition 4.1. ��
For the proof of Theorem 1.7, we use a well-known result allowing for the conclu-

sion of strong resolvent convergence for self-adjoint operators from convergence on
a common core, along with a characterization of pointwise convergence of Herglotz
functions in terms of the weak convergence of their measures. On the inverse side,
the conditions (1.9) give pointwise convergence of the relevant Herglotz functions,
which only corresponds to convergence of certain matrix elements of the relevant
resolvent. This falls well short of strong resolvent convergence, making statements
about convergence of the coefficients an, bn out of reach.

Proof of Theorem 1.7 Suppose J N := J (aN , bN ) and J := J (a∞, b∞) are proper
and J N → J in the sense of (1.8). As before, the operators

JN =
(

0 J N

(J N )∗ 0

)
, J =

(
0 J
J ∗ 0

)

are self-adjoint with domains given by (4.1), with a common core �2c(N0) ⊕ �2c(N0).
Then, by the assumption (1.8), for ψ ∈ �2c(N0) ⊕ �2c(N0),

JNψ → Jψ,

so that JN → J in strong-resolvent sense. Thus, we have convergence of the Herglotz
functions R,RN corresponding to J = V ∗JV , JN = V ∗JNV :

RN (z) → R(z), z ∈ C \ R

where by (4.3),

RN (z) =
∫

R

(
1 ψN

o (x)
ψN
o (x)∗ 1

)
dνN

e (x)

x − z
=:

∫

R

WN (x)
dνN

e (x)

x − z
(4.18)

and

R(z) =
∫

R

(
1 ψo(x)

ψo(x)∗ 1

)
dνe(x)

x − z
=:

∫

R

W (x)
dνe(x)

x − z
. (4.19)

This implies convergence of the scalar Herglotz functions

v ∗RN (z)v → v ∗R(z)v,
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for any v ∈ C
2 and z ∈ C \ R. Thus, by [11, Proposition 7.28] we have the weak

convergence,

lim
N→∞

∫

R

h(x)v ∗WN (x)vdνN (x) =
∫

R

h(x)v ∗W (x)vdν(x) (4.20)

for any h ∈ C0(R). Specializing to v = e1 in (4.20) and using (4.18), (4.19) then gives

lim
N→∞

∫

R

h(x)dνN (x) =
∫

R

h(x)dν(x).

Meanwhile, applying the polarization identity to the sesquilinear forms u ∗WNv,
u ∗Wv gives the convergence

lim
N→∞

∫

R

h(x)e ∗
1 WN (x)e2dνN (x) =

∫

R

h(x)e ∗
1 W (x)e2dν(x)

⇐⇒ lim
N→∞

∫

R

h(x)ψN
o (x)dνN (x) =

∫

R

h(x)ψo(x)dν(x)

for any h ∈ C0(R), establishing convergence in the sense of (1.9). ��
Finally, we prove Theorem 1.8. The proofs of (i) and (ii) are similar, each relying

on (1.2) and Stieltjes inversion for the forward direction, and an inductive argument
using coefficient stripping for the converse.

Proof of Theorem 1.8 (i): Suppose J = J ∗. Then, f (|J |) and J commute for f ∈
B(R), so that for z ∈ C\R,

〈δ0, J R|J |(z)δ0〉∗ = 〈δ0, J R|J |(z∗)δ0〉

so that by (1.2), we have

⎛
⎜⎝

∫

[0,∞)

sψ(s)

s − z
dν(s)

⎞
⎟⎠

∗

=
∫

[0,∞)

sψ(s)

s − z∗
dν(s).

Then, by (3.8) of Lemma 3.5, we have

sψ(s)∗dν(s) = sψ(s)dν(s)

and ψ(s) = ψ(s)∗ for ν almost every s > 0. Finally, ψ(0) = 0 by our normalization,
yielding the claim.

Suppose now Im (ψ(s)) = 0 for ν-a.e. s ≥ 0. It suffices to show bn ∈ R for all
n ≥ 0. We proceed by induction on n.
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Let J = V ∗JV for J defined as in (4.1) and letR be the associatedWeyl-matrix. The
base case follows immediately from the formula for b0 given by (3.5) of Lemma 3.4
applied to J. Suppose now b j ∈ R for 0 ≤ j ≤ n. For j ≥ 1, denote by J j the matrix

J j =
(
0 J j
J ∗
j 0

)

for J j = (S∗+) j J S j
+, and denote by

J j = (S∗+)2 jJS2 j+ = V ∗J j V .

Finally, denote by R j the Weyl matrix corresponding to J j . By Proposition 4.1, we
may write

Rn+1(z) =
∫

R

(
1 ψn+1

o (x)
ψn+1
o (x)∗ 1

)
dνn+1

e (x)

x − z
(4.21)

for (νn+1, ψn+1) corresponding to (S∗+)n+1 J Sn+1+ . Since bn ∈ R for 0 ≤ j ≤ n, by
induction and the formula (3.9), the entries of Rn+1 satisfy

(Rn+1(z))
∗
i, j = (Rn+1(z

∗))i, j .

In particular, applying (3.8) to (Rn+1(z))0,1 and (Rn+1(z))1,0,we see Im (ψn+1
o (s)) =

0 for νn+1
e almost every s ∈ R. Applying Lemma 3.4, (3.5) to Jn+1 then gives bn+1 ∈

R.
(ii): Suppose bn = 0 for all n ≥ 0. Let � be the unitary diagonal operator with

coefficients

〈δ j ,�δk〉 = (−1)kδ j,k, j, k ≥ 0.

Since bn ≡ 0, we have �J� = −J , as well as J = J ∗. Thus, for z ∈ C \ R,

�(J ∗ J − z)� = �J 2� − z = J 2 − z,

so that �RJ∗ J (z)� = RJ∗ J (z). Then, since � is unitary and satisfies �δ0 = δ0, we
have

〈δ0, J RJ∗ J (z)δ0〉 = 〈�δ0,�J RJ∗ J (z)�δ0〉 = −〈δ0, J RJ∗ J (z)δ0〉

so that by (1.2),

∫

[0,+∞)

sψ(s)

s2 − z
dν(s) = 0, ∀z ∈ C \ R.
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Making the change of variables φ(s) = √
s, we have

∫

[0,+∞)

sψ(s)

s2 − z
dν(s) =

∫

[0,+∞)

√
sψ(

√
s)

s − z
dφ−1∗ ν(s) = 0

for all z ∈ C \ R. By Stieltjes inversion, we have
√
sψ(

√
s)dφ−1∗ ν = 0, so that

0 = φ−1∗ ν({s > 0 : ψ(
√
s) �= 0}) = ν({t > 0 : ψ(t) = 0}

and ψ(s) = 0 for ν-a.e. s > 0. Since ψ(0) = 0 by normalization, the claim is proved.
The converse follows similarly to the backwards direction of (i) immediately above,

and we borrow notation from there. Suppose ψ(s) = 0 for a.e. s ≥ 0. We have b0 = 0
by (3.5) of Lemma 3.4 applied to J. Suppose now b j = 0 for 0 ≤ j ≤ n. Since
ψ(s) = 0 for ν-a.e. s ≥ 0, we see by Proposition 4.1,

R0,1(z) = R1,0(z) = 0, z ∈ C \ R.

Since bn = 0 for 0 ≤ j ≤ n, by induction and the formula (3.9), the entries of Rn+1
satisfy

(Rn+1(z))0,1 = (Rn+1(z))1,0 = 0.

Stieltjes inversion and (4.21) then yields ψn+1
o (s) = 0 for νn+1

e -a.e. s > 0. Applying
Lemma 3.4, (3.5) to Jn+1 then gives bn+1 = 0, and by induction, the claim is proven.��
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11. Lukić, M.: A first course in spectral theory, vol. 226, American Mathematical Society, (2022)
12. Pushnitski, A., Štampach, F.: The Borg-Marchenko uniqueness theorem for complex potentials, in

preperation
13. Pushnitski, A., Štampach, F.: A functional model and tridiagnolaisation for symmetric anti-linear

operators, arXiv:2402.01237 (2024), 27p
14. Pushnitski, A., Štampach, F.: An inverse spectral problem for non-self-adjoint Jacobi matrices. Int.

Math. Res. Not. 2024(7), 6106–6139 (2024)
15. Reed, M., Simon, B.: Methods of modern mathematical physics, ii: Fourier analysis, self-adjointness.

Academic Press, Cambridge (1975)
16. Schmüdgen, K.: The moment problem, vol. 9, Springer, (2017)
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