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ABSTRACT
Drought can have long-lasting legacy effects on terrestrial ecosystems via persistent shifts in soil microbial community structure 
and function. Yet, the role drought intensity plays in the formation of soil-mediated drought legacies and in determining plant 
and microbial responses to subsequent droughts is unknown. Here, we evaluate how soil-mediated drought legacies shaped by 
the intensity of an initial drought event influence plant and microbial communities in the following year and their response to 
a subsequent experimental drought. We determined these responses in two model grassland communities with contrasting re-
source acquisition strategies. We found that the intensity of the initial (i.e., past) drought shaped the composition, network struc-
ture and functioning of soil microbial communities, with stronger effects on prokaryotes than fungi. Moreover, drought intensity 
determined soil-mediated legacy effects on plant responses to a subsequent drought: increasing past drought intensity decreased 
the drought resistance of the slow-strategy plant community and reduced productivity overshoot in the fast-strategy community 
after re-wetting. Our findings demonstrate that increasing drought intensity can lead to distinct legacies in soil microbial com-
munity composition and function with impacts on plant responses to future droughts.

1   |   Introduction

Extreme droughts are becoming more intense and frequent 
with climate change (IPCC 2023) and threaten to irrevocably 
change the structure and functioning of terrestrial ecosystems. 
Recent evidence shows that increasing drought intensity can 
lead to abrupt changes in plant and soil microbial community 
composition and functioning, e.g., carbon (C) and nitrogen 
(N) cycling (Bardgett and Caruso  2020; Cordero et  al.  2023; 

Ingrisch et al. 2023; Oram et al. 2023, 2025). Moreover, apart 
from initial adverse effects of drought, evidence is mounting 
that drought causes lasting effects (i.e., legacies) that have 
consequences for plant and soil microbial communities and 
modify their responses to subsequent drought (Müller and 
Bahn 2022; Vilonen et al. 2022; Xi et al. 2022). The intensity 
of a drought is likely a crucial driver of drought legacy effects 
on plant and microbial communities, governing the extent to 
which they recover to their initial state. Differences in drought 
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intensity could also underlie why some previous studies have 
found drought legacy effects (Canarini et al. 2021; De Long, 
Jackson, et al. 2019; De Long, Semchenko, et al. 2019), while 
others have not (De Nijs et al. 2019; Rousk et al. 2013). Thus, 
explicitly considering drought intensity could improve our 
ability to predict ecosystem drought response with ongoing 
increases in drought severity and recurrence. Furthermore, 
there is mounting evidence that soil-mediated legacies drive 
the overall effect of climatic legacies (De Long, Jackson, 
et al. 2019; De Long, Semchenko, et al. 2019). Here, we deter-
mine how increasing drought intensity shapes soil-mediated 
drought legacy effects on grassland plant and soil microbial 
(prokaryote and fungal) communities, soil functioning, and 
their response to a subsequent drought event.

Soil-mediated drought legacies manifest as changes in soil 
microbial community composition and function that persist 
post-drought (Canarini et  al.  2021; Kaisermann et  al.  2017; 
Leizeaga et  al.  2021; Meisner et  al.  2018). Previous research 
has shown that drought leaves legacy effects on soil function-
ing, decreasing soil multifunctionality (enzymatic activities, 
soil carbon and nutrient pools and microbial biomass stoichi-
ometry) (Canarini et al. 2021) and reducing soil respiration in 
the year following drought (Lellei-Kovács et al. 2025). While 
drought legacy effects on microbial community composition 
have been reported to improve microbial community resis-
tance to subsequent drought (Canarini et  al.  2021; Leizeaga 
et al. 2021; Tang et al. 2023) by selecting for microbial drought 
tolerance traits (Evans and Wallenstein  2014; Ochoa-Hueso 
et  al.  2018), the legacies of more intense droughts could 
compromise microbial community resistance and recovery. 
Increasing drought intensity has been shown to induce a sud-
den shift in bacterial and fungal community composition, re-
ducing microbial community complexity, leading to impaired 
functioning, and reducing bacterial regrowth after a subse-
quent drought (Cordero et al. 2023). These abrupt shifts could 
alter the strength and direction of the longer-term drought ef-
fects on microbial and plant communities and their responses 
to subsequent stress. Therefore, a better understanding of how 
drought intensity shapes microbial and plant responses to 
subsequent drought stress is crucial to predict grassland func-
tioning with an increasingly extreme climate.

Soil drought legacies are potentially mediated by the plant 
community's position on the resource economic spectrum, 
i.e., whether the plant community prioritises defense or fast 
growth (Grime 1977; Reich 2014). A plant community's strat-
egy could affect drought legacies for two main reasons: dif-
ferences in the initial microbial community that they foster 
(Semchenko et al. 2018; Spitzer et al. 2021; Sweeney et al. 2021) 
and differences in plant drought response (Ingrisch et al. 2018; 
Oram et  al.  2023; Pérez-Ramos et  al.  2013), which likely 
has knock-on effects for the microbial community (Fahey 
et al. 2020; Koyama et al. 2018; Williams and de Vries 2020). 
For instance, slow-strategy grassland plant communities are 
known to harbour soil communities with a higher fungal-to-
bacterial ratio, compared to fast-strategy plant communities 
(de Vries et al. 2012; Orwin et al. 2010). Fungi are generally 
more drought resistant, with less pronounced shifts in their 
community composition than bacterial communities in re-
sponse to drought (Cordero et  al.  2023; de Vries et  al.  2018; 

Oram et  al.  2025; Preece et  al.  2019). Furthermore, slow-
strategy plant communities have generally higher drought 
resistance than fast-strategy plant communities, i.e., their 
productivity is less affected by drought (Ingrisch et al. 2018; 
Oram et al. 2023; Pérez-Ramos et al. 2013). What remains un-
known is whether fast- and slow-strategy plant communities 
alter soil drought legacies and whether this is affected by in-
creasing drought intensity.

In an outdoor mesocosm experiment, we determined the soil 
legacy effects of increasing drought intensity on grassland 
plant and soil microbial (prokaryote and fungal) communi-
ties and their responses to a drought in the subsequent year 
(Figure  1). Using two model grassland plant communities 
with contrasting strategies, we investigated whether plant re-
source acquisition strategy (fast-strategy versus slow-strategy) 
modulates the soil legacy effects of increasing drought in-
tensity. We hypothesized that: (1) increasing drought inten-
sity leaves increasingly pronounced soil legacy effects on the 
composition and function of the soil prokaryote and fungal 
community in the subsequent year; (2) increasing drought 
intensity leaves more pronounced soil legacy effects in fast-
strategy, compared to slow-strategy plant communities; and 
(3) soil legacies of increasing drought intensity will decrease 
microbial and plant community resistance to and recovery 
from a subsequent drought.

2   |   Materials and Methods

2.1   |   Experimental Design

To test our hypotheses, we set up a 2-year factorial, fully ran-
domised outdoor mesocosm experiment in the Botanical 
Garden of the University of Innsbruck, Austria (47°16′04.1″ N 
11°22′46.3″ E) with three experimental treatments: soil-
mediated drought legacy (the effect of a drought intensity gra-
dient imposed in the first year, i.e., 2020), drought or control in 
the second year (i.e., 2021), and plant community strategy (fast 
or slow resource acquisition strategy).

In the first year, we exposed two model plant communities (a 
fast- and a slow-strategy community) to a gradient of increas-
ing drought intensity for 3 weeks. The gradient included 10 steps 
in soil water deficit (SWD) ranging from well-watered controls 
(20% SWD) to severely droughted (98% SWD). We replicated 
only the control treatment to have a well-defined baseline, while 
the droughted levels were not replicated and followed a gradient 
design (Kreyling et al. 2018). Thus, the drought intensity gradi-
ent included 14 pots—a control (replicated 5 times) and 9 levels 
of increasing drought intensity (unreplicated). After exposure 
to the 3-week drought intensity gradient (20%–98% SWD) in 
August 2020, communities were re-wet to their control weight 
at 20% SWD and allowed to recover and overwinter. We estab-
lished four identical gradients for each plant community, which 
would serve as the legacy soil for the second year of the experi-
ment. Thus, per plant community, gradients would be exposed 
to either drought or control treatment in year 2 and harvested 
at either peak drought or recovery (7 weeks after re-wetting in 
year 2). In total, the experiment had 112 pots (2 plant commu-
nities × 4 drought gradients of 14 pots); see Figure 1, top panel.



3 of 22

In the second year, we harvested the soil from each pot, re-
moved the plants (see below), and transplanted newly germi-
nated plant individuals to isolate soil-mediated legacy effects 
of increasing drought intensity from legacies that operate via 
the plants (e.g., plant physiological or maternal legacies). This 
allowed us to specifically investigate the soil-mediated legacy 
effects of increasing drought intensity on plant and soil mi-
crobial responses to a subsequent drought (Figure 1, bottom 
panel).

2.2   |   Pre-Experiment: Establishing the Soil 
Drought Legacy Treatment (Year 1)

In 2020, we grew two model plant communities (a fast and a 
slow resource acquisition strategy plant community) in 7 L 
mesocosms (21 cm Ø, 25 cm height); see Oram et al. (2023) for 
a complete description of the methods. Perennial plant spe-
cies common to European mesotrophic grasslands were se-
lected based on their traits related to their resource acquisition 

FIGURE 1    |    Experimental design. Two model plant communities with contrasting resource acquisition strategies (a fast and a slow strategy) were 
established in May 2020 (n = 112) and exposed to a gradient of increasing drought intensity for 3 weeks in August 2020. The gradient had 10 steps, 
ranging from well-watered controls (20% SWD, replicated five times) to communities that were severely droughted (98% SWD). We replicated the 
control treatment five times per plant community to have a well-established baseline. The drought intensity treatment followed a gradient design, 
i.e., without replication per drought intensity level. Top panel: In the first year, we established four identical drought intensity gradients per plant 
community to enable destructive sampling at two timepoints in the second year. This resulted in 112 experimental units (mesocosms) in total: Each 
gradient consisted of 5 controls (replicated) and a gradient of 9 levels of increasing drought intensity × fast- or slow-strategy plant communities × 
drought or control in 2021 × 2 timepoints in 2021 (peak drought and recovery). After the 3-week drought period in 2020, all communities were re-
wet to 20% SWD and left to recover and overwinter. Bottom panel: In 2021, we isolated the soil-mediated legacies of increasing drought intensity 
by removing aboveground biomass and sieving soil to 1 cm to remove most of the root biomass. This legacy soil was then returned to its mesocosm, 
and new seedlings of the same plant species were transplanted. After establishment, communities were exposed to a subsequent 3-week drought or 
maintained at 20% SWD as a control. One set of mesocosms was destructively harvested to determine plant and soil microbial community responses 
at peak drought, and one set was re-wet to 20% SWD and harvested after 7 weeks to determine plant and microbial recovery responses.
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strategy: the fast-strategy community included species with high 
specific leaf area, high leaf nitrogen concentration and low leaf 
dry matter content, and the slow-strategy community included 
species with opposite trait values (Reich  2014). Communities 
were assembled based on a priori trait values reported in the 
literature (Baxendale et al. 2014; De Long, Jackson, et al. 2019; 
De Vries and Bardgett  2016) and confirmed in August 2020 
(Oram et al. 2023). The fast-strategy community included the 
grasses Lolium perenne, Dactylis glomerata, Phleum pratense 
and the forbs: Plantago lanceolata, Leontodon hispidus, Rumex 
acetosa. The slow-strategy community included the grasses: 
Anthoxanthum odoratum, Briza media, Festuca rubra and the 
forbs Leucanthemum vulgare, Campanula rotundifolia and 
Prunella vulgaris.

Seedlings were germinated in field soil, and then in May 
2020, two individuals per species (12 individuals in total per 
mesocosm) were transplanted into the mesocosms, which 
were filled with field soil provided by the Botanical Garden, 
University of Innsbruck. The soil was classified as sandy loam: 
53.5% sand (50–2000 μm), 35.6% silt (2–50 μm) and 10.8% clay 
(< 2.0 μm). Initial chemical properties were as follows: 7.57% 
organic matter (loss on ignition method, 550°C), 0.29% total 
N, 1.10 g kg−1 plant available P, 3.58 g kg−1 plant available kg−1 
K, and a pHCaCl2 of 7.67. See Oram et al. (2023) for a descrip-
tion of the methods. Prior to filling the mesocosms, the soil 
was sieved to 1 cm to homogenise and remove large stones. 
The soil water content was determined at field capacity (gwater 
gfresh soil

−1) and the mesocosm weight at 80% field capacity (i.e., 
20% SWD) was recorded.

The soil drought legacy treatment was established by expos-
ing the communities to a gradient of increasing SWD over a 
period of 3 weeks (July 21st–August 13th, 2020), Figure  S1. 
The SWD gradient ranged from 20% (well-watered, corre-
sponding to a soil moisture of 0.266 gwater gfresh soil

−1) to 98% 
(severely droughted, 0.020 gwater gfresh soil

−1). The SWD gradi-
ent was maintained by weighing the mesocosms 5 to 7 times 
per week, and watering to weight. On August 14, 2020, all me-
socosms were re-wet to their weight at 20% SWD over 3 days, 
which was maintained until the end of the growing season. 
Mesocosms remained outside over the winter period. The ef-
fects of increasing drought intensity on plant and microbial 
communities and plant–soil C cycling in 2020 (year 1) are re-
ported in (Oram et al. 2023, 2025) and are not discussed fur-
ther in this paper.

2.3   |   Focal Experiment: Determining Soil 
Legacy Effects of Increasing Drought Intensity 
on Plant and Microbial Response to Subsequent 
Drought

In 2021, we determined how the soil legacies of increasing 
drought intensity in 2020 (year 1) affected plant and micro-
bial response to a subsequent drought, compared to con-
trol conditions (i.e., in year 2, 2021), in plant communities 
with a fast or slow resource acquisition strategy. Climatic 
conditions throughout the experiment in 2021 are reported in 
Figure S2.

2.3.1   |   Soil Preparation

We isolated the soil legacy effects of increasing drought intensity 
by removing the plant's above- and belowground biomass from 
the soil. Aboveground biomass that had grown since October 
13, 2020, was harvested on May 10, 2021, sorted per species, 
dried at 60°C for 3 days and then weighed. Belowground (root) 
biomass was removed by sieving the fresh soil with a 1 cm 
sieve. To minimise the effects of sieving on soil aggregates, we 
chose not to use a smaller sieve, and thus, a small fraction of 
fine roots remained in the soil. Roots were collected, washed 
over a 0.5 mm sieve, dried at 60°C for 7 days and weighed. 
Sieves and the workspace were washed and disinfected with 
70% ethanol between each mesocosm. The moisture content of 
the legacy soil was determined, and the legacy soil from each 
mesocosm was stored in plastic bags in a cool room (10°C) for 
2 days. Because some legacy soil was lost during sieving, we 
first added 0.78 kg (dry weight equivalent) of the non-legacy 
field soil (i.e., the soil that we initially used to fill the meso-
cosms in 2020) that was steamed at 90°C for 6 h. We then added 
5.0 kg (dry weight equivalent) of fresh legacy soil on top. We 
stacked the soils rather than mixing them to avoid diluting the 
legacy soil. In this way, the mesocosms were properly filled and 
the plants would first have contact with the legacy soil only. 
Mixing ‘conditioned’ soil with steamed or sterilised soil is a 
common practice in plant–soil feedback and climate-feedback 
experiments, generally adding less conditioned soil (5%–30%) 
than sterilised soil (Crawford and Hawkes  2020; Pernilla 
Brinkman et al. 2010; Spitzer et al. 2022; Xi et al. 2022). Thus, 
we are confident that by adding a much larger amount of condi-
tioned soil than steamed soil, we did not compromise the biotic 
soil drought legacies. Soil moisture was adjusted to 80% of field 
capacity (20% SWD), and the weight recorded.

2.3.2   |   Plant Communities

Seeds were surface sterilised with a 1:1 household bleach: tap 
water for 20 min and then rinsed thoroughly with tap water 
before germinating in field soil (the same soil that was used in 
the mesocosms in 2020). Two-week-old seedlings were trans-
planted into the mesocosms on May 17–18, 2021. Due to poor 
B. media germination, the number of species was reduced to two 
forbs and two grasses per community: L. perenne, D. glomerata 
(grasses) and P. lanceolata, L. hispidus (forbs) in the fast-strategy 
community, and A. odoratum, F. rubra (grasses) and L. vulgare, 
P. vulgaris (forbs) in the slow-strategy community. These species 
were dominant in terms of aboveground biomass in 2020 (Oram 
et al. 2023). Three individuals per species were used so the den-
sity remained 12 individuals per mesocosm (346 individuals/
m2). Seeds were commercially sourced: D. glomerata, F. rubra 
and L. perenne from Barenbrug BV, the Netherlands and A. odo-
ratum, L. vulgare, P. lanceolata, L. hispidus and P. vulgaris from 
Jelitto, Germany.

2.3.3   |   Drought and Control Treatments

To experimentally induce a drought, we installed a rainout 
shelter over all mesocosms from July 13, 2021, to August 4, 
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2021. The rainout shelter was made from an aluminium frame 
2.5 m high covered with light- and UV-B-permeable plastic 
(Lumisol clear AF, Folitec, Westerburg, Germany, light trans-
mittance c. 90%). Control mesocosms were maintained at 20% 
SWD by watering to weight approximately 5 times per week 
(Figure S3). We destructively harvested half of the mesocosms 
on August 4, 2021, to determine soil responses to drought at 
peak drought. The other half of the mesocosms was kept intact 
to monitor recovery responses. The droughted mesocosms in 
this set were re-wet to 20% SWD over 3 days (August 4–August 
6, 2021).

2.3.4   |   Above- and Belowground Biomass

Species-specific aboveground biomass was harvested from all 
mesocosms on July 6th, 2021 (n = 112), at peak drought (August 
3–4, 2021, n = 112) and at recovery (7 weeks after re-wetting, 
September 22nd, 2021, n = 56). At each harvest, we cut abo-
veground biomass to 3 cm above the soil surface, dried it at 
60°C for 4 days, and weighed it. These harvests were needed 
to standardise the aboveground biomass before the drought 
treatment and to quantify the drought/control treatment effects 
on plant biomass during drought and recovery. While cutting 
could have altered rhizodeposition immediately before the 
drought treatment started (Rajper et  al.  2024; Xu et  al.  2025), 
potentially masking some of the soil drought legacy effects, it 
should have also reduced differences in plant-biomass-related 
rhizodeposition effects in all mesocosms at the onset of the year 
2 drought treatment. We determined belowground biomass at 
peak drought and recovery by washing the soil from the roots 
in the mesocosms using a 0.5 mm sieve, drying it at 60°C for 
at least 5 days and weighing it. Plant community resistance and 
recovery were determined by dividing community aboveground 
biomass in the year 2 drought treatment by the aboveground bio-
mass in the year 2 control treatment growing in soil that had 
been maintained at 20% SWD in year 1. Thus, our continuous 
baseline (sensu Ingrisch and Bahn 2018) was the plant commu-
nities growing in soil that were in the control treatment in 2020 
and that were in the control treatment in 2021.

2.3.5   |   Soil Sampling

Soil was sampled directly prior to harvesting soil to set up the 
experiment to test soil legacies in the spring (April 30, 2021, 
n = 28), at peak drought (August 3, 2021, n = 56) and at recovery 
(September 23, 2021, n = 56). At the spring sampling, we took 
two soil cores (2 cm Ø, 25 cm depth, i.e., to the bottom of the me-
socosm) to conserve soil for the experimental setup; at the peak 
drought and recovery campaigns, we took five soil cores. For all 
samplings, soil from the cores was pooled per mesocosm and 
sieved to 2 mm. A sub-sample of soil for total soluble nitrogen 
(NO3 + NO2 and NH4), dissolved organic carbon (DOC) and dis-
solved organic nitrogen (DON), potential extracellular enzyme 
activity (pEEA) and basal and substrate-induced respiration 
analysis was stored in coolers with icepacks on the sampling day 
and then at 4°C until analysis, which took place within the fol-
lowing 7 days. A sub-sample of soil for amplicon sequencing of 
the microbial community was frozen on dry ice and then stored 
at −80°C until analysis. Sieves and soil cores were washed with 

water, dried and then disinfected with 70% ethanol between 
each mesocosm.

2.3.6   |   Soil Functioning

We measured potential hydrolytic and oxidative enzymatic 
activities and soluble C and N fractions in fresh soil as indica-
tions of soil C and N cycling capacity. Potential activity of β-
glucosidase (pGLC) and β-N-acetylglucosaminidase (pNAG) 
was measured photometrically using pNP-linked substrates 
(Jackson et al. 2013). Urease (pURE) was analysed by measuring 
ammonium production after urea addition to the soil (Cordero 
et  al.  2019). Peroxidase (pPER) and phenoloxidase (pPOX) ac-
tivities were measured by photometrically determining the ox-
idation of L-3,4-dihydroxyphenylalanin (L-DOPA) (Sinsabaugh 
and Linkins 1988). See Supporting Information methods for a 
full description.

Soluble N and C fractions were determined by shaking 7.5 g of 
fresh soil in 30 mL of 1 M KCl for 1 h at 300 rpm on a horizontal 
shaker (IKA KS 260 basic). Soil suspensions were centrifuged 
(1218 × g for 10 min) and filtered (Whatman 1 filter paper, pre-
washed with 10 mL 1 M KCl). Extracts were stored at 4°C until 
analysis, which took place within 48 h. NO3 + NO2 and NH4 
were measured on a San++ Continuous-Flow Analyser (Skalar, 
Netherlands). DOC and DON were measured with a TOC-L/
TNM-L (Shimadzu, Japan).

Substrate-induced respiration was determined on an EGA61-
Soil respiration device (ADC BioScientific, UK). Fresh soil (40 g 
dry weight equivalent) was filled into acrylic glass tubes, closed 
with polystyrene foam pads, and aerated with a continuous 
stream of ambient air (humidified and tempered to 22°C). The 
CO2 released from the samples was recorded for 16 h to calcu-
late the basal soil respiration (μg CO2 g−1 dw h−1). Subsequently, 
glucose (1.5%, w/w dry weight) was added to the samples, and 
the CO2 release was recorded for a further 8 h to determine 
substrate-induced respiration. The maximum CO2 release was 
used to calculate the microbial biomass (μg C g−1 dw) (Anderson 
and Domsch 1978).

2.3.7   |   Microbial Communities

DNA was extracted from fresh-frozen soil using the DNeasy 
PowerSoil Pro Kit (Qiagen, Germany), and then the 16S rRNA 
(prokaryotes) and ITS (fungi) marker genes were sequenced on 
Illumina NextSeq and MiSeq platforms, respectively. Prokaryote 
community composition was determined by sequencing the V4–
V5 region of the 16S rRNA marker gene with primer pair 515F 
and 926R (Walters et al. 2016). We targeted ITS2 to determine 
fungal community composition using primer pair ITS86F–ITS4 
(Vancov and Keen 2009). For complete details, see Supporting 
Information Methods.

We used DADA2 to filter, trim, merge paired-end reads, remove 
chimaeras and construct amplicon sequence variants (ASVs) 
(Callahan et al. 2016). Taxonomy was assigned using the SILVA 
138.1 taxonomy database for prokaryotes (Quast et al. 2012) and 
the UNITE version 9.0 taxonomy database for fungi (Nilsson 
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et  al.  2019). Rarefaction curves indicated that there was ade-
quate coverage and sequencing depth (Figure S4). Raw sequenc-
ing data were deposited in the NCBI Sequence Read Archive 
(SRA) and are accessible under the BioProject ID (available upon 
publication).

2.4   |   Data Analysis

Statistical analysis was carried out in R version 4.3.0 and higher 
(R Core Team  2024). Data exploration was carried out in ti-
dyverse (Wickham and RStudio 2023), and figures were made 
with ggplot (Wickham et  al.  2023) and cowplot (Wilke  2020). 
To facilitate analysis that required categorical explanatory vari-
ables, we added the soil legacy group factor by dividing the 2020 
SWD gradient into three levels: control (20% SWD in 2020, n = 5 
mesocosms per plant community per timepoint), mild drought 
(40%–75% SWD, n = 4 mesocosms per plant community per 
timepoint) and severe drought (80%–98% SWD, n = 5 mesocosms 
per plant community per timepoint). We chose the cutoff at 76% 
SWD because this is where the thresholds in plant community 
aboveground biomass (productivity) occurred in 2020 (Oram 
et al. 2023). Including the 80% SWD level in the mild drought 
legacy group did not affect the outcome of any of the statistics.

2.4.1   |   Soil Microbial Community α- and β-Diversity

Prokaryote and fungal α-diversity of each community was es-
timated using the function estimate_richness from phyloseq 
version 1.16.2 (McMurdie and Holmes 2013). The effects of soil 
legacy group (control, mild drought, or severe drought in 2020) 
or soil legacies of increasing drought intensity (i.e., the drought 
intensity gradient in year 1/SWD in 2020), drought or control in 
2021/year 2, plant community (fast or slow resource acquisition 
strategy) and all 2-way interactions on prokaryote and fungal 
α-diversity (Shannon diversity) with linear mixed effects mod-
els using the function lme from the R-package nlme (Pinheiro 
et al. 2023). Models were simplified by removing non-significant 
interactions, and the model with the lowest Akaike Information 
Criterion (AIC) value was retained. Models were checked 
for residual normality and homoscedasticity using the func-
tion check_model() from the package performance (Lüdecke 
et al. 2023).

The effects of the soil legacy group (drought or control in year 
2), plant community resource acquisition strategy and all 2-way 
interactions on the prokaryote and fungal β-diversity were de-
termined with PERMANOVA using the adonis2() function from 
the R-package vegan (Oksanen et al. 2022). Data were first cen-
tred log ratio (CLR-transformed), and Euclidean distances were 
used in PERMANOVA (thus, Atchinson distances were used to 
establish differences between communities). We determined dif-
ferences between levels of the soil legacy group factor using pair-
wise multilevel comparisons with the function pairwise.adonis 
from the package pairwiseAdonis (Martinez Arbizu  2020). 
Redundancy analysis (constrained ordination) was carried out 
on CLR transformed data using the function rda(), from the 
R-package vegan (Oksanen et al. 2022) to determine the effect 
of plant and soil variables on fungal or prokaryote community 
composition. We first included the following variables: SWD 

2020, aboveground biomass, belowground biomass, N-NO3
−, 

N-NH4
+, DOC, DON and microbial biomass. We then used the 

function ordi2step from the R-package vegan to determine the 
final model using forward variable selection based on model ad-
justed-R2. Models were tested for global and term significance 
using the function anova.cca() and collinearity of terms with 
vif.cca(), both from the R-package vegan.

The effects of soil legacies of increasing drought intensity (the 
drought intensity gradient in year 1/SWD 2020), drought or con-
trol in year 2, plant community resource acquisition strategy 
and all 2-way interactions on the relative abundance of micro-
bial phyla and families were determined in linear models using 
the function lm. Models residuals were visualised and checked 
for normality and homogeneity of variance using the func-
tions check_model from the package performance (Lüdecke 
et  al.  2023), Levene's test using the function leveneTest from 
package car (Fox et al. 2023), and Anderson-Darling test (ad.test) 
from package nortest (Gross and Ligges  2015). In line with 
Cordero et al. (2023), p values were adjusted with the Benjamini-
Hochberg adjustment (Benjamini and Hochberg 1995) using the 
R function p.adjust.

2.4.2   |   Network Analysis

We used co-occurrence network analysis to determine struc-
tural changes in the prokaryote and fungal community in re-
sponse to the past drought intensity. Data were first filtered to 
exclude ASVs with a relative abundance of < 0.00025% and ASVs 
that were present in < 5 experimental units. Co-occurrence 
networks were constructed per soil legacy group (control, mild 
drought, or severe drought in 2020), timepoint (peak drought or 
recovery in year 2) and kingdom (prokaryote or fungal) using 
CLR-transformed read counts. To infer co-occurrence patterns, 
we used an inference method to estimate the conditional inde-
pendence between any two nodes, rather than using traditional 
correlational approaches, which overestimate direct links via 
the implicit effect of indirect correlations (Kurtz et  al.  2015). 
We estimated conditional independence using Meinshausen 
and Buhlmann's neighbourhood estimation method, which we 
implemented with the function spiec.easi from the R-package 
SpiecEasi (Kurtz et al. 2015). Optimal stability parameters were 
selected using the StARS selection approach. The validity of 
each co-occurrence network was checked with the function get-
Stability from the package SpiecEasi. Networks were visualised 
using the adj2igraph function from igraph (Csárdi et al. 2024).

We derived three network properties that capture network com-
plexity (transitivity, modularity and within:between link ratio) 
and one property that captures network stability (robustness). 
Transitivity, calculated using the function transitivity() from ig-
raph (Csárdi et al. 2024), is a clustering coefficient that measures 
the probability that adjacent nodes are connected. Modularity, 
calculated using the function cluster_fast_greedy() from igraph 
(Csárdi et al. 2024), identifies the presence of dense subgraphs 
(modules) and is a measure of how compartmentalised a net-
work is. High modularity indicates that nodes are more con-
nected within than between sub-groups, also known as network 
community structure. In ecology, networks with high modular-
ity have been found to be more stable because perturbations to 
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individual nodes tend to be confined to the main community 
or module to which the node belongs, thereby not propagating 
throughout the network (Stouffer and Bascompte  2011; Yuan 
et al. 2021). The within: between link ratio calculates the ratio 
between connections between nodes within a module and 
connections between nodes in other parts of the network. We 
calculated robustness as a measure of network stability using 
the function ‘robustness’ from the R-package brainGraph 
(Watson 2020). Robustness is the ability of a network to with-
stand targeted removal of nodes (i.e., its ability to withstand 
‘disturbance’) (Barabási 2016). The function performs a targeted 
attack on the network and calculates the size of the largest com-
ponent after node removal. We calculated the area under the 
size ~ node removal robustness curve as our indication of robust-
ness, where a larger area indicates a more robust (i.e., a more 
stable) network.

Network patterns may simply emerge from the stochastic associ-
ations between nodes (i.e., the randomness or chance that nodes 
co-occur). Therefore, we assessed the structural, non-stochastic 
role of node identity on the observed network patterns by gener-
ating a set of random networks based on fluctuating constraints 
using a maximum entropy approach (Caruso et  al.  2022). We 
then determined if our observed networks were significantly 
different from random by comparing them with a random net-
work ensemble (999 random network models derived using a 
canonical, undirected, binary configuration model), Caruso 
et  al.  (2022). Network properties were extracted from each of 
the 999 random networks, and a z-score was calculated to de-
termine the direction and magnitude of divergence between the 
observed network and the null model distribution of the random 
network ensemble (Caruso et al. 2022). For approximately nor-
mally distributed metrics, a z-score above or below two or more 
SD of the mean would imply that the observed network metrics 
have a probability of being observed in the ensemble below 0.05. 
In other words, a significant z-score would imply that the degree 
sequence alone is not sufficient to explain network patterns and 
that node identity in our observed networks matters to network 
structure.

2.4.3   |   Soil Microbial Community Functioning and Soil 
Physicochemical Properties

We used a constrained ordination of pEEA (pGLC, pNAG, pPOX, 
pPER, pURE) and soluble soil nitrogen (NO3

− and NH4
+) as a 

proxy for soil microbial community functioning, using the func-
tion rda() from the R-package vegan on scaled data (mean ± 1). 
The effects of soil legacy group (control, mild drought or severe 
drought in 2020), drought or control in year 2, and plant com-
munity (fast or slow resource acquisition strategy) and all 2-way 
interactions on multivariate ‘soil functioning’ were determined 
with PERMANOVA using the function adonis2() from the R-
package vegan (Oksanen et al. 2022). The effect of continuous 
variables (SWD in 2020 and measured response variables) was 
determined with the function anova.cca() from the R-package 
vegan (Oksanen et al. 2022). As above, we began with the same 
set of variables for the peak drought and recovery timepoints 
in year 2: SWD 2020, belowground biomass, aboveground bio-
mass, microbial biomass, DOC, prokaryote and fungal commu-
nity composition (PCA scores, Figure S12), and prokaryote and 

fungal α-diversity (Shannon Index). For the spring timepoint 
(i.e., before the drought treatment in year 2) we began with the 
variables listed above, excluding the prokaryote and fungal 
community α- and β-diversity as we did not carry out amplicon 
sequencing at this timepoint. We simplified the models using 
stepwise forward selection with the function ordi2step from the 
package vegan based on adjusted R2. Explanatory variables were 
checked for collinearity with the function vif.cca() from the R-
package vegan.

The effects of soil legacy group, drought, or control in year 2, plant 
community resource acquisition strategy, and all 2-way interac-
tions on the pEEA of individual enzymes and soil physicochem-
ical properties (soluble N and C) were tested with linear mixed 
effects models using the function lme (Pinheiro et al. 2023). Each 
model was simplified by stepwise removal of non-significant in-
teractions, and the model with the lowest AIC value was retained. 
Model fit was checked with check.model() from the R-package 
performance (Lüdecke et al. 2023). Model significance was tested 
with ANOVA, and post hoc tests on significant factors were car-
ried out using the emmeans() function from the R-package em-
means (Lenth et al. 2023).

2.4.4   |   Plant Community Resistance and Recovery

The effect of soil legacies of increasing drought intensity 
(drought intensity in year 1) on the resistance to and recovery 
of plant community productivity (community aboveground 
biomass) from the drought in year 2 was determined with 
generalised additive models (GAM) using the function gam () 
from the R package mgcv (Pedersen et al. 2019). We modelled 
the following relation:

where �0 represents the intercept, �1(plant community) the effect of the 
plant community resource acquisition strategy (fast or slow), 
�1(SWD 2020) the overall effect of the soil water deficit in 2020, and 
f1(SWD 2020, plant community) the interactive effect between the 
soil water deficit in 2020 and plant community resource acqui-
sition strategy. When a significant interaction was detected, we 
determined the effect of the soil water deficit in 2020 within 
each plant community resource acquisition strategy by model-
ling the relation (where plant community is considered an or-
dered factor: fast- or slow-strategy):

Model fit was checked using gam.check() from the R-package 
mcgv (Pedersen et  al.  2019). Models with different smoothers 
and families were compared using AIC, and the best fit model 
(lowest AIC) was retained.

We determined how the soil legacy effects of increasing drought 
intensity (SWD in 2020) influenced plant community resistance 
and recovery to the drought in year 2 with rank (Spearman) cor-
relations. We related the soil variables that we measured in the 
control treatment at the peak drought and recovery timepoints 
in year 2 to plant community drought resistance and recovery 
(respectively). This allowed us to isolate the influence of soil 

Y = �0 + �1(plant community) + �1(SWD 2020) + f1(SWD, plant community)

Y = �0 + �1(plant community) + f1(SWD, plant community)
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biotic and abiotic legacies of increasing drought intensity on 
the productivity response of a plant community to drought. We 
used complete-linkage hierarchical clustering on the values of 
the correlations to cluster variables in the heatmap to visualise 
which measured variables had similar relationships with plant 
community resistance and recovery.

3   |   Results

3.1   |   Soil Legacies of Increasing Drought Intensity 
Affect Prokaryote and Fungal Community 
Composition

We found that soil legacies of drought in year 1 significantly 
affected soil prokaryote and fungal community composition 
throughout year 2, became more pronounced with increasing 
past drought intensity (i.e., with increasing SWD in 2020), and 
were stronger in the prokaryote than in the fungal community 

(Figure  2a–d, PERMANOVA results are reported in Table  S1, 
anova.cca results for the RDA are reported in Table  S2). 
Prokaryote and fungal α-diversity (Shannon index) in year 2 was 
not affected by soil legacies of increasing drought intensity in 
year 2 (Figure S5, Table S3).

In line with shifts in prokaryote community composition 
(Figure 2a,b), we found that soil legacies of increasing drought 
intensity affected the relative abundance of prokaryote phyla 
and families in year 2 (Figure S6, Table S4). Throughout the ex-
periment, communities exposed to a severe drought in year 1 
and no drought in year 2 (i.e., the control treatment in year 2) 
had significantly higher relative abundance of Crenarchaeota 
and lower relative abundance of Proteobacteria (Figure S6a,b). 
The relative abundance of the ammonium-oxidising archaea 
(AOA) Nitrososphaeraceae was significantly higher in soil 
that had experienced a severe drought in year 1, while the rel-
ative abundance of the ammonium-oxidising bacteria (AOB) 
Nitrosomonadaceae was significantly lower (Figure  S6e,f, 

FIGURE 2    |    Prokaryote and fungal community compositional responses to soil legacies of increasing drought intensity (soil water deficit in year 1, 
SWD 2020), drought or control in year 2, and plant community resource acquisition strategy (fast or slow) at peak drought in year 2 (a, c) and 7 weeks 
after re-wetting (recovery, b, d). The effects of soil legacy group (control, mild drought, or severe drought in year 1), drought or control in year 2, plant 
community resource acquisition strategy (fast or slow strategy), and all interactions were determined with PERMANOVA using adonis2 (Table S1). 
Significance of measured variables (arrows) was tested with anova.cca (p < 0.05*, p < 0.001***) and includes SWD 2020, aboveground biomass, soil 
nitrate (nitrate), dissolved organic nitrogen (DON) and microbial biomass (see Table S2 for statistical output).
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Table S4). At the recovery timepoint in year 2 (7 weeks after re-
wetting), the relative abundance of Actinobacteriota increased 
and Acidobacteriota decreased in communities that had expe-
rienced a severe drought in year 1, compared to the control in 
year 1 (Figure S6b).

Regardless of exposure to the drought in year 2, the relative 
abundance of fungal phyla or families was not affected by 
soil legacies of increasing drought intensity (Figure S6c,d,g,h, 
respectively). Thus, while fungal community composition 
was affected by soil legacies of increasing drought intensity 
(Figure  2c,d), there were no significant differences in rel-
ative abundance at the phyla or family levels between the 
control, mild drought, or severe drought treatment in year 1 
(Figure S6c,d,g,h, respectively).

3.2   |   The Drought in Year 2 Affected Prokaryote 
and Fungal Communities Regardless of Soil 
Legacies of Increasing Drought Intensity

The drought in year 2 significantly affected prokaryote and 
fungal community composition at peak drought and recovery 
(Figure  2a–d). At the peak drought timepoint in year 2, we 
found that the year 2 drought treatment significantly inter-
acted with soil legacies of increasing drought intensity (control, 
mild drought or severe drought in year 1), adonis2: p = 0.046, 
Figure  2a. Despite the significant interaction effect, we found 
that the year 2 drought significantly shifted prokaryote com-
munity composition regardless of the intensity of the previous 
drought, with only small differences in effect size (Table  S1). 
Based on RDA analysis, the effect of the drought in year 2 on 
prokaryote community composition was associated with a de-
crease in soil microbial biomass (Figure 2a, Table S2). The year 2 
drought significantly affected the relative abundance of most of 
the dominant prokaryote families (Figure S6e). Similar to the ef-
fects of the soil drought legacies, the drought in year 2 decreased 
the relative abundance of Nitrosomonadaceae (Figure  S6e). 
The responses of prokaryote family relative abundance to the 
drought in year 2 were not affected by soil legacies of increasing 
drought intensity (i.e., there were no significant interaction ef-
fects; Figure S6, Table S4).

At the recovery timepoint in year 2 (7 weeks after re-wetting), 
prokaryote community composition significantly differed be-
tween communities that had experienced the year 2 drought and 
those maintained at control soil moisture (Figure 2b, Table S2). 
This was related to lower dissolved organic nitrogen (DON) in 
the droughted communities, compared to the control (Figure 2b, 
Table S2). There was no significant effect of soil legacies of in-
creasing drought intensity on the recovery response of the pro-
karyote community in year 2 (i.e., no significant interactive 
effect between soil drought legacy and drought in year 2). Soil 
legacies of increasing drought intensity significantly affected 
the recovery response of Actinobacteriota, in terms of relative 
abundance, from the year 2 drought (Figure S6b, Table S4). The 
relative abundance of Actinobacteriota significantly increased 
following the year 2 drought if the community had experienced 
a mild or severe drought in year 1, while its relative abundance 
remained the same if the community was a control in year 1 
(Tukey posthoc test: p < 0.001 for drought vs. control year 2 in 

communities with a mild or severe drought in year 1, p = 0.4699 
for drought vs. control year 2 in communities with a control in 
year 1). The year 2 drought significantly affected the relative 
abundance of most of the dominant prokaryote families at recov-
ery (Figure S6f). At the recovery timepoint, we found that pro-
karyote α-diversity (Shannon index) was significantly higher in 
communities exposed to the year 2 drought and re-wetting event 
compared to those maintained at control conditions (Figure S5).

Fungal community composition significantly differed between 
the year 2 drought and control treatments at peak drought and 
recovery (Figure  2c,d, respectively; Table  S2). Neither plant 
community resource acquisition strategy nor soil drought leg-
acies affected the response of fungal community composition 
to the drought in year 2 (i.e., we detected no significant 2-way 
interactions). The variables that best explained shifts in fun-
gal community composition were microbial biomass at peak 
drought, which decreased in the year 2 drought treatment 
(Figure 2c), and aboveground biomass and soil nitrate at recov-
ery, which were higher in the fast-strategy plant communities 
than the slow-strategy plant communities (Figure 2d). The rela-
tive abundance of fungal families Mortierellaceae, Glomeraceae 
and Ceratobasidiaceae significantly increased when exposed to 
the year 2 drought, compared to the control (Figure S6g). Seven 
weeks after re-wetting the year 2 drought, the shift in fungal 
community composition was related to increased N-NO3

− in 
post-droughted communities (Figure  2d, Table  S2). However, 
the year 2 drought no longer significantly affected the relative 
abundance of fungal phyla or families 7 weeks after re-wetting 
(Figure S6d,h, respectively).

3.3   |   Fungal α-Diversity and Community 
Composition Differed Between Plant Communities 
With Slow or Fast Resource Acquisition Strategies

Plant communities with a slow resource acquisition strategy fos-
tered significantly higher fungal α-diversity than fast-strategy 
communities in both the control and drought treatments at the 
‘peak drought’ timepoint in year 2 (Figure  S5b). Fungal com-
munity composition also significantly differed between plant 
communities with a slow or fast resource acquisition strategy 
throughout the experiment (Figure 2c,d, respectively). The plant 
community resource acquisition strategy did not affect the re-
sponse of the fungal community, in terms of composition, to 
the year 2 drought (i.e., no significant interaction, Figure 2c,d). 
Plant community resource acquisition strategy did not affect 
prokaryote α-diversity (Figure S5, Table S3) or prokaryote com-
munity composition (Figure 2a,b, Table S1). Nor did the plant 
community resource acquisition strategy modify soil legacy 
effects or the year 2 drought effects on prokaryote α-diversity 
or composition (i.e., we found no significant interactive effects 
between the plant community resource acquisition strategy and 
drought in year 1 or year 2) (Figure 2a,b, Figure S5a).

3.4   |   Soil Legacies of Drought Intensity Affected 
Microbial Co-Occurrence Network Structure

We constructed co-occurrence networks (Guseva et al. 2022) to 
determine how increasing drought intensity in year 1 affected 
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prokaryote and fungal community structure in year 2 (Figures 3 
and 4, respectively). Network analysis identifies groups of sim-
ilarly responding (co-occurring) taxa and provides information 
about structural characteristics such as complexity and stability 
(Barberán et al. 2012). We validated that network structure re-
sponded to soil legacies of increasing drought intensity because 
of node (i.e., taxa) identity rather than randomly by compar-
ing observed network structural features to the distribution of 
999 null models (the null model ensemble) following Caruso 
et al. (2022).

Prokaryote community network structure was significantly dif-
ferent from the null model ensemble, indicating that the links 
between nodes and node identity, rather than chance, drove 
network structure (Figure 5). At the peak drought and recovery 
timepoints in year 2, prokaryote networks in soil that had expe-
rienced a mild or severe drought in year 1 had higher network 
modularity and transitivity and a larger ratio of within:between 
links than prokaryote networks in soil that had experienced 
control conditions in year 1 (Figure  5a–c, respectively). This 
indicates that prokaryote networks that had a soil legacy of a 
severe drought were more complex than prokaryote networks 
in soil that was maintained at control conditions in year 1. 
Prokaryote network stability (i.e., network robustness) was sig-
nificantly higher than the null model ensemble, indicating that 

the non-random node arrangement and linkages increased net-
work stability (Figure 5d). The prokaryote network that had a 
soil legacy of severe drought in year 1 was less robust than pro-
karyote networks that had a soil legacy of mild drought or con-
trol conditions in year 1 at the peak drought timepoint in year 
2 (Figure 4d). At the recovery timepoint in year 2, the network 
that had a soil legacy of severe drought in year 1 was less robust 
than the network that experienced control conditions in year 1 
(Figure 5d).

Fungal networks were significantly more modular than the null 
model ensemble, indicating non-random co-occurrence and 
network module membership. Fungal networks in soils exposed 
to a mild or severe drought in year 1 were less modular than 
the fungal network in soil that experienced a control in year 1 
(Figure 5e). Only the fungal network in soil that experienced a 
control in year 1 had significantly higher transitivity than the 
null model ensemble, indicating that the connectedness of fun-
gal networks in soil exposed to a mild or severe drought in year 
1 is random (Figure  5f). Similarly, fungal network robustness 
only differed from the null model ensemble in the soils exposed 
to a severe drought or control in year 1 at the peak drought 
timepoint in year 2 (Figure 5h). Overall, fungal networks were 
less affected by soil drought legacies, in line with our find-
ings that soil drought legacies have less pronounced effects on 

FIGURE 3    |    Soil legacies of past drought intensity (control, mild drought, or severe drought in year 1) affected prokaryote co-occurrence network 
structure. Prokaryote networks at peak drought in year 2 in soil that had experienced (a) a control, (b) a mild drought, or (c) a severe drought in year 
1, and at the recovery timepoint in year 2 that experienced (d) a control, (e) a mild drought, or (f) a severe drought in year 1. Networks are grouped by 
module (different colours). The size of the points/nodes indicates the relative abundance of the specific taxa, and the number of nodes/taxa in each 
network is specified in the caption.
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fungal community composition than on prokaryote communi-
ties (Figure 2c,d).

To define putative common functioning of subsections of the 
network, we clustered similarly responding microbial taxa 
into modules. Prokaryote network modularity was signifi-
cantly different from the null model ensemble (Figure 5a), in-
dicating non-random module membership (Caruso et al. 2022). 
We identified shifts in the nitrifier community in the network 
modules. Specifically, we found that AOB taxa (members of the 
Nitrosomonadaceae and Nitrospiraceae families) were gener-
ally present in the same module, while AOA taxa (members of 
the Nitrosospheraceae family) were present in other modules at 
both timepoints (Figures S7 and S8). At the recovery timepoint 
in year 2, this difference was especially pronounced in the pro-
karyote networks in soils that had experienced a mild or severe 
drought in year 1 (Figure S8b,c, respectively). This indicates that 
AOB responded differently than AOA to soil legacies of increas-
ing drought intensity.

Fungal membership in the largest modules (Figure 4) differed 
depending on the soil drought legacies (Figure S9). At the peak 
drought timepoint in year 2, taxa within the Mortierellaceae 
family dominated the second largest modules in all net-
works (Figure  S9a–c), while taxa from the Mortierellaceae 

family were less present at the recovery timepoint in year 2 
(Figure S9d–f).

3.5   |   Soil Legacies of Increasing Drought Intensity 
Affected Soil Functioning in Year 2

We found that soil legacies of increasing drought intensity sig-
nificantly affected soil functioning throughout year 2 (Figure 6, 
Table S5). In the spring prior to the year 2 drought treatment, 
we found that soil functioning depended on soil legacies of in-
creasing drought intensity (SWD 2020) and plant community 
aboveground biomass (Figure 6a; Table S5a). This was also visi-
ble in the univariate relationships, where pGLC significantly in-
creased in soil that had been exposed to a mild or severe drought 
in year 1 (Figure S10d, Table S6), and pNAG significantly de-
creased in soil that was exposed to a severe drought, compared 
to a control in year 1 (Figure S10e, Table S6).

The year 2 drought significantly affected soil functioning at 
peak drought (Figure  6b, Table  S5b). This was regardless of 
soil legacies of increasing drought intensity, i.e., there were no 
significant interactive effects on multivariate soil functioning 
(Figure  6b, PERMANOVA, Table  S5). We found a significant 
interaction between plant community resource acquisition 

FIGURE 4    |    Soil legacies of past drought intensity (control, mild drought, or severe drought in year 1) affected fungal co-occurrence networks. 
Fungal networks at peak drought in year 2 in soil that had previously experienced (a) a control, (b) a mild drought, or (c), a severe drought in year 
1, and at the recovery timepoint in year 2 that experienced a (d) control, (e) a mild drought, or (f) a severe drought in year 1. Modules are indicated 
in different colours. The size of the points indicates the relative abundance of the taxa in the network, and the number of taxa/nodes per network is 
indicated in the caption.
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strategy and soil drought legacies; however, soil legacies had 
a similar effect on multivariate soil functioning in both plant 
communities (Figure  6b, Table  S5). We found that in year 2, 

the drought increased N-NH4
+ (Figure S10i, Table S6) and de-

creased N-NO3
−, microbial biomass carbon, pNAG, the potential 

activity of phenol oxidase (pPOX, Figure S10, Table S6), and the 

FIGURE 5    |    Soil drought legacies (drought intensity in year 1) affected co-occurrence network topography. Network properties of prokaryote 
(a–d) and fungal (e–h) networks from communities in soil that had experienced either a control, mild drought, or severe drought in year 1 at the year 
2 drought's peak drought or recovery timepoints. Points indicate the value of the observed network property; coloured dashed lines between points 
are for visual aid only and do not imply a statistical relationship. The z-score denotes the difference between the observed network property and the 
null model ensemble. Values above 1.96 or below −1.96 (the dotted grey lines) indicate that the observed model property is significantly different 
from random. Modularity (a, e) indicates how modular the network structure is, while transitivity (b, f) is a measure of clustering, where higher val-
ues indicate a more modular or clustered network. The ratio of within-to-between module links (c, g) shows how connected a node (taxa) is to other 
taxa within the same module or to taxa in other parts of the network (between modules). Robustness (d, e) is the ability of the network to withstand 
targeted removal of nodes without collapsing. A higher value indicates a more stable network.

FIGURE 6    |    Soil legacies of past drought intensity affected soil functioning in year 2. Constrained ordination (RDA) showing effects of soil 
legacies of increasing drought intensity (control, mild drought, or severe drought in 2020), plant community resource acquisition strategy (fast or 
slow), and drought (or control) in year 2 on soil functioning (a) in the spring before the drought in year 2 (b) at peak drought year 2 and (c) at re-
covery year 2 (7 weeks after re-wetting). Points indicate the potential extracellular enzyme activity (pEEA) of five enzymes: β-glucosidase (GLC), 
β-N-acetylglucosaminidase (NAG), urease (URE), peroxidase (PER) and phenoloxidase (POX) and the soluble nitrogen (N-NO3

− and N-NH4
+) in 

each mesocosm. We first included the same set of explanatory variables in each model and determined the best model with forward selection based 
on model adjusted R2 (see Methods). Final explanatory variables in the models were: soil water deficit in 2020 (SWD 2020), and plant community 
aboveground biomass (Aboveground biomass), belowground/root biomass (Belowground biomass), microbial biomass and dissolved organic car-
bon (DOC). A star indicates significance of the explanatory variable (arrow), tested with anova.cca. Significance of the independent variables (soil 
legacies of drought intensity, drought year 2 and plant community resource acquisition strategy) are indicated as follows: P < 0.001***, p < 0.01**, 
p < 0.05*. All interactions were tested and if significant, are reported in the figure. For full statistical output, see Table S5.
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potential activity of peroxidase (pPER, Figure S10p, Table S6). 
Soil legacies of increasing drought intensity tended to affect the 
response of pGLC (Figure S6l, Table S6) and pURE (Figure S10n, 
Table S6) to drought in year 2. In both cases, we found that the 
year 2 drought significantly decreased pGLC and pURE only 
when the soil was maintained at control conditions in year 1. 
Based on constrained ordination, we found that soil legacies of 
increasing drought intensity (SWD in 2020) and microbial bio-
mass explained significant variation in soil functioning at peak 
drought in year 2 (Figure 6b, Table S5e).

At the recovery timepoint of the year 2 drought, soil functioning 
differed between plant communities and was affected by soil 
legacies of increasing drought intensity and the drought in year 
2 (Figure 6c, Table S5c). There were soil legacies of increasing 
drought intensity, indicating that the past drought did not affect 
the recovery response of multivariate soil functioning (Figure 6c, 
Table S5c). Based on constrained ordination, SWD 2020, below-
ground biomass, DOC and microbial biomass explained signif-
icant variation in soil functioning (Figure  6c, Table  S5f). The 
recovery response of pPER to the drought in year 2 was modi-
fied by soil legacies of increasing drought intensity (Figure S10x, 
Table S6). When the soil had been exposed to a mild or severe 
drought in year 1, there was overcompensation in pPER follow-
ing the drought in year 2 (Figure S10x, Table S6). Compared to 
the slow-strategy communities, fast-strategy plant communities 
had significantly lower N-NH4

+ (Figure S10q, Table S6), pPOX 
(Figure  S10w, Table  S6), and pPER (Figure  S10x, Table  S6) 

and significantly higher N-NO3
− (Figure S10r, Table S6). Fast-

strategy plant communities also had significantly lower mi-
crobial biomass carbon in soil that had experienced the mild 
drought in year 1 (Figure S10s, Table S6).

3.6   |   Past Drought Intensity Affected Plant 
Community Response to the Second Drought

Soil legacies of increasing drought intensity (SWD 2020) sig-
nificantly affected plant community resistance to and recovery 
from the drought in year 2, and this effect depended on plant 
community resource acquisition strategy (Figure  7, Table  S7). 
Soil legacies of increasing drought intensity decreased slow-
strategy resistance of aboveground biomass to drought in year 
2 and reduced the overshoot of aboveground biomass in the 
fast-strategy community afterwards (Figure  5, Table  S7). The 
plant community with a slow resource acquisition strategy was 
significantly more resistant to the year 2 drought than the fast 
resource acquisition strategy plant community, while there was 
no difference in post-drought overshoot between the plant com-
munities (Figure 7, Table S7).

We determined whether soil legacies of increasing drought inten-
sity predict plant community response to a subsequent drought 
by relating soil variables measured in control mesocosms in year 
2 (and thus, variation is caused only by soil drought legacies) to 
the resistance and recovery of plant community aboveground 

FIGURE 7    |    Soil legacies of increasing drought intensity (soil water deficit in 2020/year 1) affected plant community productivity response to 
drought in year 2. Effects of the soil water deficit in 2020 on (a) the resistance of aboveground biomass at the peak drought in year 2, and (b) the 
recovery of aboveground biomass 7 weeks after re-wetting in year 2. Baseline normalised resistance and recovery were calculated using the mean 
aboveground biomass of communities that were maintained at control conditions (soil water deficit of 20% in year 1 and control in year 2) as the con-
tinuous baseline following Ingrisch and Bahn (2018). Resistance was quantified after 3 weeks of drought, and recovery was quantified 7 weeks after 
re-wetting. The dashed line at 1.0 indicates no difference in aboveground biomass between drought and control treatments in year 2. Significance 
was tested using generalised additive models to account for nonlinear responses following Ingrisch et al. (2023). The effect of soil water deficit in 
2020, plant community resource acquisition strategy, and their interaction were tested, and a second model tested the effect of soil water deficit with-
in each plant community to understand the significant interaction effect. p < 0.05*, p < 0.01**, p < 0.001***; for statistics, see Table S7.
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biomass using Spearman rank correlations (Figure 8). At peak 
drought in year 2, we found that decreases in soil N-NH4

+ were 
significantly negatively related to slow-strategy community 
drought resistance. While the soil legacies of increasing drought 
intensity did not significantly affect fast-strategy drought re-
sistance in year 2 (Figure  7), we found that soil drought leg-
acy effects on pGLC were significantly negatively related to 

fast-strategy community resistance, while pURE and microbial 
biomass tended to be negatively related (Figure 8). Higher ni-
trate and total dissolved carbon were significantly positively re-
lated to fast-strategy community resistance. Seven weeks after 
re-wetting, we found that prokaryote community composition 
(PC2 axis scores, Figure S11) was significantly related to fast-
strategy community recovery. We also found that increasing 

FIGURE 8    |    Rank correlations between soil drought legacy effects on soil variables in control conditions in year 2 and plant community resistance 
and recovery from the year 2 drought. We related soil variables measured in the control treatment in year 2, i.e., communities that had experienced 
the drought intensity gradient in year 1 but no drought in year 2, to the resistance and recovery of community aboveground biomass in fast and slow-
strategy plant communities in year 2. In this way, we can determine how soil drought legacy effects predict plant community response to subsequent 
drought. The order of the soil variables measured in the year 2 controls (y-axis) was determined by complete-linkage clustering according to their 
correlations with plant community resistance and recovery. Colours indicate the direction of the Spearman rank correlation, from negative (red) 
to positive (blue), and stars indicate the significance: p < 0.05*, p < 0.01**. We used principal component analysis to capture prokaryote and fungal 
community composition (see Figure S7), shown here as fungi PC1, PC2 and prokaryote PC1, PC2. The Shannon Index was used to quantify the alpha 
diversity of prokaryotic and fungal communities (see Figure S1). As measures of microbial community functioning, we include potential extracellu-
lar enzyme activity: β-glucosidase (pGLC), β-N-acetylglucosaminidase (pNAG), urease (pURE), peroxidase (pPER) and phenoloxidase (pPOX), and 
soluble nitrogen pools (nitrate, N-NO3

− and ammonium, N-NH4
+) and dissolved organic carbon (DOC) and total dissolved carbon (TC) as measures 

of the nitrogen and carbon pools, respectively.
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fungal alpha diversity (Shannon index, Figure S5) was related 
to lower overshoot in the fast resource acquisition strategy plant 
community. Fungal community composition (PC2 axis scores, 
Figure S11) was significantly negatively related to fast resource 
acquisition strategy community overshoot (Figure 8). Slow re-
source acquisition strategy community recovery (overshoot) 
was not significantly related to any of the soil variables we 
measured, and thus, soil legacies of increasing drought inten-
sity on soil abiotic and biotic parameters could not explain slow 
resource acquisition strategy recovery of aboveground biomass 
(Figure 8).

4   |   Discussion

We found that increasing the intensity of a past drought shaped 
soil legacy effects on soil microbial community structure and 
function. Moreover, soil legacies affected plant community 
response to a subsequent drought: increasing past drought in-
tensity decreased resistance of the slow resource acquisition 
strategy plant community and decreased the recovery of the 
fast resource acquisition strategy plant community from a sub-
sequent drought. These findings advance our understanding of 
drought legacy effects on plant and soil microbial communities 
by isolating drought legacy effects via the soil and demonstrat-
ing how the impact of soil drought legacies depends on past 
drought intensity.

4.1   |   Drought Intensity Shapes Soil Legacy Effects 
on Soil Microbial Communities

The impact of the soil drought legacies on prokaryote and fun-
gal communities increased with increasing past drought in-
tensity. Additionally, the soil drought legacy effects were more 
pronounced in prokaryote than fungal communities. This is 
broadly in line with our previous findings that the concurrent 
(initial) effects of increasing drought intensity are stronger in 
bacterial than in fungal communities (Oram et  al.  2025) and 
that bacterial communities are more drought sensitive than fun-
gal communities (de Vries et al. 2018; Ochoa-Hueso et al. 2018; 
Preece et al. 2019). Fungal communities have also been reported 
to be less responsive to long-term precipitation legacies (Tang 
et al. 2023).

We found that soil legacies of increasing past drought inten-
sity increased prokaryote network complexity and decreased 
network stability. This is in contrast to the classical ecological 
theory that complexity begets stability (MacArthur  1955) and 
recent research showing increases in bacterial network com-
plexity result in increased network stability (Yuan et al. 2021). 
We found that prokaryote networks became more complex due 
to higher modularity with increasing past drought intensity, 
with more links within than between modules, creating dense 
subgroups within the network. This modular structure suggests 
that taxa within these large sub-groups (modules) respond simi-
larly to environmental variation caused by the soil drought lega-
cies, leading to both coupling and decoupling of taxa responses. 
Consequently, when a disturbance occurs, large sections of the 
network respond in tandem, making the network highly dy-
namic, more stochastic and less stable (In 't Zandt et al. 2023; 

May 1974, 197). As such, our findings provide evidence that an 
increased drought intensity leads to soil legacy effects that re-
duce the stability of soil prokaryote networks in response to sub-
sequent disturbances, including drought.

We identified shifts in the nitrifier community, from a higher 
abundance of AOB under low past drought intensity to a higher 
relative abundance of AOA under high past drought intensity. 
These shifts were apparent both in the prokaryote β-diversity 
and in the network structure, where the clustering of AOB and 
AOA increased with increasing past drought intensity. Similar 
decreases in Proteobacteria (the phylum including AOB) in 
grasslands with drought history have been reported (Canarini 
et  al.  2021); however, our finding of increased AOA (and 
Crenarchaeota) abundance following severe drought contrasts 
with previous studies that reported drought-associated declines 
in AOA abundance (Séneca et al. 2020; Thion and Prosser 2014). 
In our study, the soil legacy effects of increasing drought inten-
sity on AOA may have developed in the recovery period follow-
ing the drought intensity gradient in year 1 because of shifts 
in plant community composition to a more grass-dominated 
system (de Vries et al. 2018; Oram et al. 2025). AOA have been 
found to be more abundant than AOB in the rhizosphere of 
grass species (compared to forbs), likely due to their preference 
for lower ammonium concentrations. This trait allows AOA to 
outcompete AOB in the rhizospheres of plants with high N de-
mand, where ammonium availability tends to be lower (Thion 
et al. 2016).

Overall, soil legacies of past drought intensity affected fungal 
community composition. However, this effect was less pro-
nounced than in prokaryote communities, and we found no 
significant shifts in the relative abundance of individual fun-
gal families or phyla and small effects of soil drought legacies 
on fungal network structure. This is broadly in line with de 
Vries et  al.  (2018), who found that drought destabilises bac-
terial but not fungal networks, and the finding that fungi are 
more drought tolerant than bacteria (Barnard et al. 2013). Our 
findings are the first to demonstrate that soil legacies of in-
creasing drought intensity have more muted effects on soil 
fungal communities, compared to prokaryote communities.

In line with our hypothesis, we found that soil legacies of in-
creasing drought intensity affected soil functioning, similar to 
drought legacy effects in field studies (Broderick et  al.  2025; 
Fuchslueger et al. 2016; Leizeaga et al. 2021). Soil legacies of 
increasing drought intensity reduced pNAG activity, increased 
pPOX activity and affected pURE and pPER responses to 
drought. Notably, the increase in pPOX and pPER activities 
with increasing past drought intensity suggests a shift in mi-
crobial community composition to microbes with the ability 
to degrade lignin. This finding, which is consistent with past 
work showing that drought legacies result in increased deg-
radation of more chemically complex substrates (Canarini 
et al. 2021), may be related to the release of easily degradable 
substrates following re-wetting of the past drought event, 
which was likely more pronounced with increasing drought 
intensity. Thus, in the second growing season, soil previously 
exposed to a severe drought could have lower availability of 
these easier-to-degrade carbon sources, i.e., a dampened Birch 
effect, as has been shown in previous research (Kaisermann 
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et al. 2017). In the longer term, increases in oxidative enzyme 
activity could lead to soil carbon losses and reduced soil carbon 
accumulation (Chen et al. 2018).

4.2   |   Plant Community Resource Acquisition 
Strategy Did Not Mediate Soil Drought Legacy 
Effects on Microbial Community Composition

In contrast to our second hypothesis, we found no significant 
interactive effects of plant community resource acquisition 
strategy and soil legacies of increasing drought intensity on pro-
karyote or fungal community composition or richness. This is 
surprising because fast- versus slow-strategy plants have been 
found to differ in their belowground carbon allocation and ni-
trogen uptake (Henneron, Cros, et al. 2020; Henneron, Kardol, 
et  al.  2020), which leads to diverging rhizosphere microbial 
communities (Guyonnet et al. 2017, 2018) that are predicted to 
differ in their drought responses (Williams and de Vries 2020). 
Our results show that the fast- and slow-strategy plant com-
munities fostered significantly different fungal communities. 
Previous research has found that plant strategy explains fun-
gal community composition (Semchenko et  al.  2018; Sweeney 
et al. 2021). The slow resource acquisition strategy plant com-
munity fostered a more diverse fungal community at the peak 
drought timepoint (higher α-diversity in both the drought and 
control treatments) and increased the abundance of the my-
corrhizal family Diversisporaceae (Redecker et al. 2013). Slow 
resource acquisition strategy plants are reported to be more re-
liant on mycorrhizal symbioses for nutrient uptake (Bergmann 
et al. 2020; Wen et al. 2022), which could explain why they fos-
tered a higher abundance of Diversisporaceae taxa. However, 
this result should be taken with caution, as we targeted the ITS2 
region in this study, which is not the optimal method to quan-
tify arbuscular mycorrhizal community composition (while it is 
robust for determining overall fungal community composition). 
Further, our study includes two model plant communities, and 
therefore the effect of plant community composition cannot be 
separated from the effect of resource acquisition strategy. A 
more robust test of plant strategy should consider the natural 
variation in fast versus slow-strategy communities by including 
effects that would include multiple plant species combinations 
within each resource acquisition strategy.

4.3   |   Past Drought Intensity Affects the Drought 
Responses of Plant Productivity, but Not Microbial 
Communities

We found that soil legacies of past drought intensity reduced 
slow-strategy plant resistance to the subsequent drought and 
fast-strategy plant overshoot 7 weeks after re-wetting. This find-
ing advances earlier research by isolating soil drought legacy 
effects on plant response to a subsequent drought and demon-
strates that these effects are driven by past drought intensity. 
Our results support earlier studies showing soil drought legacies 
affect plant growth (De Long, Semchenko, et al. 2019) and re-
sponse to a subsequent drought (Kaisermann et  al.  2017) and 
build on this research by providing clear evidence that drought 
intensity is a key driver of soil drought legacy effects on plant 
productivity and drought resilience.

We found that soil N-NH4
+ significantly predicted the drought 

resistance of slow resource acquisition strategy plant commu-
nities: soils with higher N-NH4

+ in the year 2 control treat-
ment were related to lower plant community resistance to the 
year 2 drought. Higher concentrations of N-NH4

+ could signal 
a reduction in nitrification, leading to decreased availability of 
N-NO3

− for plant uptake, thereby reducing drought resistance. 
Although nitrification rates were not directly measured, we 
observed shifts in nitrifier communities with increasing past 
drought intensity: AOB significantly decreased in relative abun-
dance, while AOA relative abundance increased (see discussion 
above). Thus, the potential of the prokaryote community to con-
vert NH4

+ to NO3
− may have been compromised in soils previ-

ously subjected to severe drought, resulting in reduced plant N 
uptake in soils and consequently lower drought resistance. Plant 
communities with a slow resource acquisition strategy may have 
been more affected than plant communities with a fast resource 
acquisition strategy because they maintained growth during 
drought periods (i.e., slow-strategy plants generally show higher 
drought resistance).

Our results show that variation in prokaryote community 
composition captured by the PC2 axis, rather than the domi-
nant variation represented by PC1, best predicted fast-strategy 
community overshoot. This suggests that specific microbial 
groups, rather than broad community shifts, are key pre-
dictors of plant recovery dynamics. Previous research has 
demonstrated that soil microbial community composition af-
fects the impact of drought on plant performance (Buchenau 
et al. 2022), with dry-adapted microbiota alleviating negative 
drought effects on plant biomass (O'Brien et al. 2018). However, 
soil legacies of severe drought intensity reduced the ability 
of the fast resource acquisition strategy plant community to 
overshoot (in terms of aboveground biomass), indicating that 
drought-induced changes in the prokaryote community com-
position dampen this response. Plants with a fast resource 
acquisition strategy are frequently shown to capitalise on the 
Birch effect—i.e., the increase in N availability shortly after 
re-wetting (de Vries et al. 2018; Lavallee et al. 2024). However, 
Birch effects (in terms of C and N) have been shown to be less 
pronounced when soils have previously experienced drought 
(Kaisermann et al. 2017). This reduction may be partly driven 
by drought legacy-induced shifts in the prokaryote community 
composition (see discussion above) and their ability to cycle 
C and N (Fuchslueger et  al.  2016; Hawkes and Keitt  2015). 
Consistent with this, we observed reduced activity of pNAG 
in soils previously exposed to severe drought. pNAG activity 
has been positively related to soil N (Cenini et  al.  2016), or-
ganic N acquisition by the microbial community (Sinsabaugh 
et al. 2009), N turnover (Burns et al. 2013) and gross N min-
eralisation rates (Darby et al. 2020), which could reduce plant 
N uptake during early recovery and may influence the magni-
tude of productivity overshoot later on.

In contrast to our hypothesis, soil legacies of increasing drought 
intensity did not affect prokaryote or fungal community re-
sponse to a subsequent drought. Previous research has shown 
that a history of repeated drought influences microbial response 
to subsequent drying and re-wetting events (De Nijs et al. 2019; 
Leizeaga et al. 2021; Tang et al. 2023), but also that this effect de-
velops over longer time scales rather than in response to a single 
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drought event (Canarini et al. 2021). Thus, with more frequent 
intense droughts, soil legacy effects on microbial responses to 
subsequent stress events are likely to become more pronounced. 
Regarding microbial community functioning, we found that in-
creasing the intensity of the past drought enhanced the pPER 
recovery from the subsequent drought. An increase in the po-
tential activity of lignin oxidises (such as peroxidase, pPER, 
or phenoloxidase, pPOX; see discussion above) can indicate a 
shift in the microbial community towards a greater abundance 
of organisms that can break down lignin. This shift can alter 
decomposition dynamics and soil C cycling (Janusz et al. 2017), 
leading to higher soil carbon losses and reduced soil carbon 
accumulation (Chen et  al.  2018). Additionally, we identified a 
buffering effect of soil legacies from past drought intensity on 
the activity of pURE and pGLC, which only decreased in micro-
bial communities that were not previously exposed to drought in 
year 1. This aligns with previous studies showing that drought 
legacies modulate microbial functional responses to subsequent 
droughts (Evans and Wallenstein 2012; Fuchslueger et al. 2016; 
Kaisermann et al. 2017) and provides evidence that increasing 
intensity of the past drought has lasting effects on soil function-
ing, increasing the functional capacity of microbial communi-
ties to degrade complex carbon sources.

5   |   Conclusions

Soil legacies of increasing drought intensity had increasingly 
pronounced effects on prokaryote and fungal community com-
position, restructured prokaryote networks and compromised 
their stability in the following year, with repercussions for soil 
functioning. We show that these soil legacies of increasing 
drought intensity affect the resistance and recovery of plant 
community productivity (aboveground biomass) to a subsequent 
drought, with responses varying according to plant community 
resource acquisition strategy. We also provide evidence that soil 
microbial communities and functions explain variation in plant 
community resistance and recovery from a subsequent drought. 
Our findings indicate that as intense droughts become more fre-
quent in our rapidly changing climate, soil legacy effects will 
play an increasingly prominent role in grassland functioning 
and stress responses.
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realised and target SWD. Figure S2: Climatic conditions throughout 
the experimental period in 2021. (A) Daily precipitation, (B) air tem-
perature and (C) vapour pressure deficit, (Year-Month-Day). Data were 
obtained from GeoSphere Austria (https://​data.​hub.​geosp​here.​at). 
Figure S3: Dry-down dynamics in 2021 for the fast- and the slow-
strategy communities in the control and the drought treatment during 
the 3-week drought period. Soil water deficit (SWD) indicates the per-
cent deficit from field capacity. Points are jittered for visualisation. 
Figure S4: Sequencing depth. Rarefaction curves of prokaryote (A, B) 
and fungal (C, D) taxa based on sequence reads in soil samples taken 
after 21 days of drought (peak drought) and 7 weeks after re-wetting (re-
covery). Species refers to the number of taxa; sample size indicates the 
number of reads. Each line represents one experimental unit/sample, 
indicated by the number in the square. Figure S5: Prokaryote and fun-
gal α-diversity (Shannon Index). The effect of soil legacies of increasing 
drought intensity (control, mild drought, or severe drought in year 1), 
plant community (fast- or slow-strategy), and drought (or control) in 
year 2 on the Shannon Index of prokaryote (A) or fungal (B) communi-
ties at peak drought in year 2 and the prokaryote (C) or fungal (D) com-
munities 7 weeks after re-wetting. Captions indicate significance based 
on ANOVA (see Table  S3 for complete statistical output). Figure S6: 
The relative abundance of prokaryote and fungal phyla and families. 
Soil legacies of increasing drought intensity (control, mild drought, or 
severe drought in year 1), drought or control in year 2, and their interac-
tive effects on the relative abundance of prokaryote and fungal phyla 
(A–D) and the 20 most abundant families, excluding ‘unknown’ fami-
lies (E–H) at the peak drought and recovery timepoints in year 2. Shades 
of the same colour indicate that the family belongs to the same phylum. 
Significance was tested using linear models and ANOVA (see Methods). 
Symbols beside the family name in the legend denote the significance of 
experimental treatments in the following order: Soil legacies of increas-
ing drought intensity in control conditions in year 2, soil legacies of in-
creasing drought intensity in drought conditions in year 2, the year 2 
drought versus control, and the interaction between soil legacies and 
the year 2 drought or control (p < 0.05*, p > 0.05−), see Table S4 for sta-
tistical output. Figure S7: Prokaryote network module membership at 
peak drought year 2. Prokaryote module membership in the largest six 
modules at the peak drought timepoint in year 2 in the networks ex-
posed to (A) a control, (B) mild drought and (C) severe drought in year 
1. The colour indicates the family (also indicated on the Y axis); the 
number beside the bar denotes the number of ASVs within each family. 
The title of each panel indicates the module number and the number of 
nodes (ASVs) included in that module. For aesthetic clarity, only the 10 
most abundant families (based on read number) are shown. Figure S8: 
Prokaryote network module membership at recovery year 2. Prokaryote 
module membership in the largest six modules at the recovery time-
point in year 2 in the networks exposed to (A) a control, (B) mild drought 
and (C) severe drought in year 1. The colour indicates the family (also 
indicated on the Y axis); the number beside the bar denotes the number 
of ASVs within each family. The title of each panel indicates the module 
number corresponding to that in Figure 2D–F, along with the number of 
nodes (ASVs) included in that module. For aesthetic clarity, only the 10 
most abundant families (based on read number) are shown in the fig-
ure. Figure S9: Fungal network module membership in year 2. Fungal 
module membership in the largest three modules per network at the 
(A–C) peak drought and (D–F) recovery timepoints in year 2, in fungal 
networks in soil that experienced either a control, mild drought, or se-
vere drought in year 1. The colour indicates the family (also indicated on 
the Y axis); the number beside the bar denotes the number of ASVs 
within each family. The title of each panel indicates the module number 
and the number of nodes (ASVs) included in that module. All families 
with membership in a module are shown. Figure S10: Soil functioning 
in year 2 (univariate relations). Soil ammonium (N-NH4), nitrate (N-
NO3), microbial biomass and the potential enzyme activity of β-
glucosidase (pGLC), β-N-acetylglucosaminidase (pNAG), urease 
(pURE), peroxidase (pPER) and phenoloxidase (pPOX) before the sub-
sequent drought (A–H), at peak drought (I–P) and at recovery (Q–X). 
Effects of the drought intensity in year 1 (called here soil legacy for brev-
ity: control, mild drought, or severe drought in 2020), the drought (or 
control) in year 2 (blue or yellow points), plant community (fast- or 

slow-strategy), and all 2-way interactions were tested with linear mod-
els (N-NH4, N-NO3, microbial biomass) and linear mixed effects models 
(all potential enzyme activities to account for laboratory replicates). 
Letters indicate significant differences between levels of a treatment 
based on a Tukey post hoc test. p < 0.05*, p < 0.01**, p < 0.001***. Figure 
S11: Principal component analysis of microbial communities in the con-
trol treatment in year 2 at the ‘peak drought’ and ‘recovery’ timepoints. 
Note that these communities were not exposed to the year 2 drought but 
were maintained at control soil moisture throughout year 2. Read num-
bers were centre log ratio transformed before principal component anal-
ysis using Euclidean distances. Shapes indicate the plant community 
(fast- or slow-strategy) and colour indicates the soil drought legacy (con-
trol, mild drought, or severe drought in year 1). Scores of the principal 
component axes (PC1, PC2) of prokaryote and fungal communities were 
used to explain the resistance and recovery of plant community abo-
veground biomass to the drought in year 2 (see Figure 8 in the main 
text). Figure S12: Principal component analysis of microbial communi-
ties. Data were centre log ratio transformed before principal component 
analysis using Euclidean distances. Prokaryote communities at peak 
drought (A) and recovery (C), and fungal communities at peak drought 
(B) and recovery (D). Shapes indicate the plant community (fast- or 
slow-strategy), shape fill indicates the drought (or control) in year 2 
(2021), and colour indicates the drought intensity in year 1 (control, 
mild drought, or severe drought in 2020). Scores of the principal compo-
nent axes (PC1, PC2) of each community in the subsequent drought 
treatment (filled shapes) were used to explain variation in soil function-
ing (Figure 6). Table S1: Prokaryote and fungal community composi-
tion. PERMANOVA (adonis2) showing differences in prokaryote and 
fungal community β-diversity at peak drought and recovery. The inter-
actions between soil legacies of increasing drought intensity (control, 
mild drought, or severe drought in year 1) and drought (or control) in 
year 2 that tended to affect community composition were further ex-
plored by dividing the dataset into the soil legacy groups (control, mild 
drought, or severe drought) and testing the effect of drought (compared 
to control) on prokaryote community composition. Table S2: Variables 
associated with prokaryote and fungal community composition. 
Significance of constrained ordination (RDA) on prokaryote and fungal 
community β-diversity at peak drought and recovery. Significance was 
tested using anova.cca() to determine the global model significance 
(‘Model’), the significance of each term (arrow) and the significance of 
each axis. Soil legacies of increasing drought intensity (soil water defi-
cit, SWD in 2020), microbial biomass, dissolved organic nitrogen 
(DON), community aboveground productivity (aboveground biomass, g 
m−2) and soil N-NO3

− (nitrate). Table S3: Prokaryote and fungal com-
munity α-diversity (Shannon Index). Prokaryote and fungal communi-
ties after 3 weeks of drought or control (peak drought) and 7 weeks after 
re-wetting (recovery) in year 2. The significance of plant community 
(fast- or slow-strategy plant community), soil legacies of increasing 
drought intensity (control, mild drought, or severe drought in year 1), 
drought (or control) in year 2, and all interactions were tested in linear 
models. Models were simplified to achieve the best-fit parsimonious 
model, and significance was determined with ANOVA. Table S5: Soil 
functioning in year 2 (multivariate relationships). (A) PERMANOVA 
(adonis2 output) showing the effect of soil legacies of increasing drought 
intensity (control, mild drought, or severe drought in 2020), the drought 
(or control) in year 2 and plant community (fast- or slow-strategy) on 
soil functioning in year 2 at three sampling points: the spring before the 
drought, at peak drought and at recovery. The interactions between soil 
legacies of increasing drought intensity and plant community were fur-
ther explored by dividing the dataset into the year 1 control, mild 
drought and severe drought treatments and testing the effect of plant 
strategy on soil functioning. (B) Significance of constrained ordination 
(RDA) on soil functioning in year 2 (Figure 6) in the spring before the 
drought, at peak drought and at recovery. Significance was tested using 
anova.cca() to determine the global model significance (‘Model’), the 
significance of each term (arrow) and the significance of each axis. Soil 
legacies of increasing drought intensity (SWD 2020), plant community 
aboveground biomass. Table S6: Soil functioning in year 2 (univariate 
relationships). The effects of soil legacies of increasing drought intensity 
(control, mild drought, or severe drought in 2020), the year 2 drought (or 
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control), plant community (fast- or slow-strategy), and all 2-way interac-
tions on individual soil functions: soil ammonium (N-NH4

+), nitrate (N-
NO3

−), microbial biomass carbon, and the potential enzyme activity of 
β-glucosidase (pGLC), β-N-acetylglucosaminidase (pNAG), urease 
(pURE), peroxidase (pPER) and phenoloxidase (pPOX) at three time-
points in year 2: before the drought, at peak drought and at recovery. 
Significance was tested with linear models (N-NH4

+, N-NO3
−, micro-

bial biomass) and linear mixed effects models (all potential enzyme ac-
tivities; the experimental unit was used as the random factor to account 
for laboratory replicates). Significant differences between levels of a 
treatment are based on a Tukey post hoc test. Table S7: The effect of soil 
legacies of increasing drought intensity (soil water deficit, SWD, in 
2020) on the resistance and recovery of plant community aboveground 
biomass to drought in year 2 (2021). Baseline normalised resistance and 
recovery were calculated using the mean aboveground biomass of com-
munities that were maintained at control conditions in both years as the 
continuous baseline (Ingrisch and Bahn 2018). Resistance was deter-
mined after 3 weeks of drought (peak drought) and recovery was deter-
mined 7 weeks after re-wetting. Generalized additive models (GAMs) 
were used to determine significant relations between the soil water defi-
cit in year 1 (SWD 2020) and resistance or recovery of fast- and slow-
strategy plant communities. The GAM model tested the effect of plant 
community (factor) and SWD 2020 (continuous) and their interaction 
on resistance or recovery in year 2. The significant interaction between 
SWD 2020 and plant community necessitated a second GAM, which 
tested the effect of SWD 2020 on resistance or recovery within each 
plant community. The Gamma (log = link) family was chosen to fit the 
GAMs as this resulted in the best fit. Table S8: Soil community struc-
ture and function relationships with plant resistance and recovery. 
Relationships between measured soil variables and year 2 drought resis-
tance and recovery of aboveground net primary productivity (ANPP) to 
the subsequent drought. Only resistance of plant communities that were 
destructively harvested at peak drought are included (i.e., in the experi-
mental units where soil parameters were measured, n = 28). 
Relationships were determined with GAM models to first establish if 
there was an interaction between the plant community and the mea-
sured variable, and then the relationships within each plant community 
were tested. The Gamma(log = link) family was chosen to fit the GAMs, 
as this resulted in the best fit. Table S4: The relative abundance of pro-
karyote and fungal phyla and families. Soil legacies of increasing 
drought intensity (control, mild drought, or severe drought in year 1), 
drought (or control) in year 2, plant community (fast- or slow-strategy), 
and their interactions on the relative abundance of prokaryote and fun-
gal phyla, and the 20 most abundant prokaryote and fungal families 
(excluding families that were ‘unknown’). We tested the effects of soil 
legacies, drought, plant community and their interactions at peak 
drought year 2 (after 4 weeks of drought) and at recovery (7 weeks after 
re-wetting). We used linear models and ANOVA with a Benjamini-
Hochberg adjustment (Benjamini and Hochberg 1995) using the R func-
tion p.adjust to correct p values for multiple comparisons. 
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