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Abstract—Driven by the need to better reflect and understand
audience quality of experience content providers and deliverers
are no longer solely using models for the Mean Opinion Score
but also the opinion score distribution. In tandem, motivated
by the desire to understand how these models predict the QoE
and which features contribute positively to it, there has been
increased emphasis on explainable QoE modelling. Recently the
advantages of directly explainable models - where model outputs
can be explained using the inputs and the model’s inner workings-
have been championed. These models provide clear insights
into how different features contribute positively, or negatively,
to QoE. To date, research into directly explainable methods
has focussed on MOS, rather than opinion score distribution,
modelling. To bridge this gap we discuss the feasibility of using
multinomial logistic regression for directly explainable MOS
modelling, demonstrating our approach on a short form streamed
video dataset and showing that it compares favourably to other
explainable methods.
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I. INTRODUCTION

As [1] describe, the ways in which we stream and view
video content has become increasingly complex. This has led
to a demand for new QoE models that accurately reflect viewer
experience, as traditional standards models for streamed video
assume that the content is viewed in a standardised way,
which is often not the case. This, in turn, gives media creators
and providers an inaccurate understanding of their audiences
perceptions and their Quality of Experience (QoE).To over-
come this issue machine and deep learning methods have been
employed for data-driven QoE modelling. These take results
from a subjective test, and information about the content,
network conditions, or viewer and train a QoE model.

Motivated by the desire to better understand audience ex-
periences, there has been growing interest in modelling the
distirbution of opinion scores rather than the traditional Mean
Opinion Score (MOS) value for example the works of [2],
[3] and [4]. Unlike the MOS this provides probabilities that a
viewer will give a particular rating - typically on the 5-point
ACR scale, outlined in ITU Rec. P.910 [5]. The advantage of
this is that it models the spread of opinion scores, capturing
the varied experiences of the audience and the subjectivity of
their ratings. As such it allows content providers and deliverers
to better model their audiences perceptions.

In parallel, and continuing this trend towards better un-
derstanding of QoE, the explainability of QoE models has
received increasing attention [6], [7]. As outlined by [8], there

are two types of explainable model: a directly explainable
model, where it is clear from the fitted model itself how
inputs map to outputs, and so which features best explain the
model prediction; and a black-box model that is explainable
through post-hoc procedures such as SHAP or LIME values.
[8] argue that the directly explainable approach is preferable
as it provides clear conclusions as to which features are most
influential on the QoE, and how the model arrived at an output.
In contrast post-hoc testing can be misleading as it is a global
approximation over all inputs and so can either be wrong due
to model misfit, or unrepresentative of particular scenarios.

To date, however, the focus of directly explainable mod-
elling has been on explaining models for the MOS, rather than
opinion score distributions. Given the aforementioned benefits
of distribution modelling in this short paper we seek to bridge
this gap. To do this we discuss the use of multinomial logistic
regression for QoE modelling and answer two questions:

1) How can opinion score distributions be modelled in
an directly explainable way, identifying which features
explain why a user has given a certain rating?

2) How does this approach compare to other opinion score
distribution modelling methods?

The benefit of directly explainable modelling for opinion score
distributions is that the practitioner is able to identify which
variables have most influence on a given rating - answering the
question of “why that rating” - without the need to rely upon
potentially inaccurate post-hoc approximations. This gives an
understanding as to which features positively, or negatively,
influence QoE.

II. RELATED WORK

As [9] and [10] discuss, in the era of big data there has
been significant interest in using both machine and deep
learning methods to model QoE for video quality assessment.
Whilst traditionally attention focussed on MOS modelling
[11], [12], there has been a growing interest in opinion
score distribution modelling. Example works for video quality
assessment include [13], [14], [15] and [16], with the latter
two approaches also using a regression model for probability
prediction related to multinomial logistic regression but not
focussing on explainability. Similarly, contributions for image
quality assessment include those of [17], [18] and [19].

Recently, there has been an emphasis on explainable mod-
elling for QoE estimation [20]. This is where the models
themselves, or quantities derived from them, are used to



explain why an input gives a particular output, or identify
which features are important for predicting model outputs. As
[8] explain, the ideal approach to this would be where the
model coefficients themselves allow the user to explain the
important features in the model, or how an input leads to an
output. [8] demonstrate this explainability using regression to
model the MOS, and [21], [6] use decision trees.

Beyond the directly explainable approaches, several authors
have also considered post-hoc approximations for model ex-
plainability including SHAP and LIME values, or permutation
testing. Examples of authors using SHAP include [22], [23],
[24], LIME include [25], [26], and [27] use permutation
testing as part of their random forest approach. As discussed
in the Introduction, however, these post-hoc approximations
can be inaccurate, and are often aggregated globally over
all inputs and so can be misleading when used to interpret
individual settings. This may give practitioners an incomplete
understanding of what influences their viewer’s QoE.

III. METHODOLOGY

A. Background and Mathematical Notation

Mathematically, we consider a set of n videos that have been
rated by m viewers in a subjective test, with yij representing
the jth viewer rating for the ith video in the test. Furthermore
we let xi = {xik}Kk=1 be the K model features for the
ith video. Our model uses the random variable Yij for the
absolute category rating of the jth user for the ith video.
Under this model the opinion score probabilities given the
data are P (Yij = r | {xik}Kk=1), 1 ≤ r ≤ 5; this can be
interpreted as the probability that the jth user gives a rating of
r to the ith video. We assume that the Yij | {xik}Kk=1 follow
an underlying opinion score distribution. This distribution
captures the probability of a user giving a particular rating
to a video given the viewing conditions.

B. QoE Modelling With Multinomial Logistic Regression

Under the assumption that each test subject rates a video
independently of another subject a viable approach for esti-
mating the opinion score distribution is to use multinomial
logistic regression. For each of the r ratings in the subjective
test this model contains a set of weights for the K viewing
condition factors. These weights are denoted by {βr,k}, and
can be estimated using the regression modelling. The opinion
score probabilities for the ith video are then given by:
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Here βr,0 is the intercept term, and so xi,0 = 1 for all i.
The weights of this model can be estimated from a sample of

Fig. 1. Plot showing predicted and observed distribution of opinion scores
for videos streamed at 10Mbit/s in 1080p subject to 0.2% packet loss.

data using maximum likelihood - for details see for example
[28].

Once the regression model has been estimated it can be used
as a model for understanding and predicting QoE based on new
input. To predict the opinion score distribution for a new video
with features xN+1 we would compute P (Yi = r |xN+1)
using equation (2), for each 1 ≤ r ≤ 5.

C. Explainability

To obtain the most important features one analyses the ex-
ponentiated values of the model coefficients, Rr,k = exp(βr,k)
[29]. The value of Rr,k measures how much the kth feature
affects the likelihood of a user giving a video a rating of r
compared to the baseline rating, which in this case is r = 1.
If Rr,k > 1 then the kth feature makes a rating more likely
to be r rather than 1, whilst if Rr,k < 1 then it is less likely.

The value of this is that a practitioner can easily identify
which factors contribute positively, or negatively, to their QoE.
As a practical example, content deliverers and providers will
be most interested in large values of R4,k and R5,k as these
are the features that are most likely to increase the probability
that the viewer gives a rating of 4 or 5. Alternatively if every
coefficient is much less than 1 then the feature most influences
a rating of 1, and so negatively affects QoE.

D. Explaining Model Fit

To further support practitioners in explaining the suitability
of their QoE model, goodness-of-fit testing can be performed
to establish theoretical guarantees on the accuracy of the
estimated QoE model. This is achieved through a likelihood
ratio test that compares the fitted model with a null model
containing only an intercept term and no other features [28].
The statistic for this test, D, is given by

D = 2 (Lfitted − Lnull.) (3)

Here Lfitted is the log-likelihood of the fitted model using the
procedure outlined in this section, and Lnull is a multinomial
logistic regression fitted using only an intercept term. For a



sample of observations with estimated probabilities P (Yi |xi)
this is equal to
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If D > χ2
(K)(R−1)(0.95), where χ2

(K)(R−1)(0.95) represents
the 95th quantile of the χ2 distribution with (K) × (R − 1)
degrees of freedom, then there is evidence that the fitted model
is a significantly better fit for the data. Here R = 5.

IV. CASE STUDY

To demonstrate the feasibility of this explainable modelling
approach we analyse data from a short-form streamed video
subjective test produced by [30], which has not yet been
analysed in the QoE modelling literature. This dataset contains
424 10 second reference videos that haven been presented
to 60 test subjects using a video streaming testbed, giving
a total of 25440 ratings. The videos cover a mix of static and
dynamic shots, are delivered in 1080p, 1440p, and 4K, and
contain a range of impairments caused by packet loss in the
streaming session. The dataset contains the following features:
bitrate, resolution, % of lost packets, ranging from 0% to 1%
across the session, and two full reference metrics, Structural
Similarity Index and the VMAF.

A. Model Fit

We split the streaming video dataset into a 50:50 train-
test split along the videos - so 212 videos are in the train
set, and 212 are in the test set. In terms of sample size,
various rules have been proposed for the minimum required
for multinomial logistic regression. As described by [31] 10
samples per predictor is sufficient, and so in this case we
would need 200 videos. We then fit the multinomial logistic
regression to the training data using all five features after they
have been standardised to [0, 1]. Using the likelihood ratio test
we obtain D = 14931.78, and this exceeds the critical value
of the χ2

20 distribution, which is 31.41, and so there is strong
evidence that the estimated model is a good fit to the data.

To establish the accuracy of the fitted model we use the
test dataset features to predict the opinion score distributions,
recording a MSE of 0.092. We will compare this against
other distribution prediction methods in the next section,
however to identify the comparative accuracy of each fitted
distribution with the observed distribution we use a Chi-
Squared Test, finding no evidence at the 5% level that any
predicted distribution is different to the observed. We show a
predicted and observed distribution comparison in Figure 1.

In terms of explainability we present the coefficients Rr,k

in Table 1. Given the very small values of Rr,k for packet loss,
notably for higher rating scores, packet loss can be identified
as having the most negative impact on QoE. For a rating of 2
and 3 the most influential factors are the SSIM and resolution,

Rr,k Bitrate Resolution Packet
Loss SSIM VMAF

2 0.69 1.17 0.49 3.85 0.25
3 0.74 1.07 0.48 3.04 0.25
4 0.74 0.95 0.12 0.03 1.51
5 0.19 0.50 0.01 0.01 6.86

TABLE I
COEFFICIENTS Rr,k EXPLAINING THE IMPORTANCE OF THE FEATURES IN

THE MODEL FITTED TO THE STREAMED VIDEO DATA.

however the coefficients are smaller for 4 and 5 are so these
features can be explained as improving QoE but to a limited
extent. For the higher QoE ratings the coefficients show that
the VMAF is the most influential factor, suggesting that this
metric provides the best indicator of high QoE.

B. Comparing To Other Data-Driven OS Distribution Models

Although our analysis indicates that the multinomial logistic
regression provides a good fit to our dataset, we must also
assess how it compares to other opinion score distribution
modelling tools. We test against several state of the art
methods: a Support Vector Machine with a cubic kernel, a
Random Forest, an MLP neural network, a mixture of binary
regressions as proposed by [15] for distribution modelling,
and a decision tree. Note the latter two methods are directly
explainable. We fit each of these models to the streamed video
dataset and present a comparison of the Mean Square Error
(MSE) and Mean Kullback Leibler Divergence (Mean KLD)
in Table 2. The former is the mean sum of squared difference,
and the latter the mean KL divergence, between the predicted
and observed probabilities for each video.

Method MLR SVM RF NN BRs DT
MSE 0.092 0.755 0.092 0.087 0.389 0.120

Mean KLD 0.70 2.62 0.72 0.71 5.53 0.77
TABLE II

TABLE COMPARING THE MSE AND MEAN KULLBACK-LEIBLER
DIVERGENCE FOR MULTINOMIAL LOGISTIC REGRESSION (MLR),

SUPPORT VECTOR MACHINE (SVM), RANDOM FOREST (RF), NEURAL
NETWORK (NN), BINARY REGRESSIONS (MBRS), AND DECISION TREE

(DT) MODELS FITTED TO THE STREAMING DATASET.

From the results in Table 2 we see that our approach has
outperformed the other directly explainable methods, and the
SVM, and is competitive with more complex tools such as
the random forest and neural network. This gives further
confidence that our proposed approach is valuable for QoE
modelling as it not only estimates the opinion score distribu-
tions in an explainable manner but it performs similarly to
other state-of-the-art methods.

V. CONCLUSION

We have demonstrated the feasibility of data-driven and
explainable modelling for opinion score distributions using a
multinomial logistic regression. This method allows practition-
ers to understand which input features explain why a viewer
has given a certain rating. We have also shown how this model
performs favourably compared to other directly explainable
models, and competetive with alternative tools that require
post-hoc explanations on a video dataset that has not yet been



analysed in the QoE literature. That said, it is important to
note that these results are for only one dataset, and that this
dataset contains only 424 videos (although 25440 datapoints),
and so further work is to verify these conclusions on a broader
variety of/larger datasets. Two additional avenues of research
are: to build on [7] and explore how LLMS could be used to
automate the distribution model explanations, or to investigate
how ensembles of directly explainable tools could be used for
more accurate and explainable QoE modelling.
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mos: an in-depth look at qoe via better metrics and their relation to
mos,” Quality and User Experience, vol. 1, pp. 1–23, 2016.

[4] M. Seufert, “Fundamental advantages of considering quality of experi-
ence distributions over mean opinion scores,” in 2019 Eleventh Inter-
national Conference on Quality of Multimedia Experience (QoMEX),
2019, pp. 1–6.

[5] Recommendation ITU-T P. 910, “Subjective video quality assessment
methods for multimedia applications,” International Telecommunication
Union, 2023.
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