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Abstract

We propose a model integrating technical, knowledge, and entrepreneurial skills,
accounting for potentially unique resources and competitive advantages. This model
is operationalized using data from the World Bank (1998–2018). We pay particular
attention to deconfounding, which removes potentially spurious correlations and speci-
fication bias, thereby allowing for a causal interpretation. Our approach includes global
and local production of technical knowledge and entrepreneurial skills, as well as the
internal appropriation of globally available knowledge and entrepreneurial expertise
within firms. The model is contextualized by modelling its parameters as functions
of several underlying fundamental social constructs. Our primary findings reveal that
both local and global knowledge enhance productivity and efficiency in production,
new knowledge generation, and entrepreneurship. Furthermore, our results underscore
the substantial influence of social context on these formative processes.

Key Words: Technical Knowledge; Entrepreneurship; Innovation; World
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1 Introduction

The importance of knowledge in economics, operational research, and business out-
comes is widely recognized, with numerous scholars highlighting the crucial role of innovation
in knowledge creation (Audretsch and Mahmood, 1994; Cefis and Marsili, 2005; Cefis and
Marsili, 2006; Helmers and Rogers, 2010; Baum et al.2019; Murakami, 2024). Two different
schools of thought pioneer this type of research: the Schumpeterian perspective, which posits
that firms with a substantial internal knowledge reservoir excel in generating novel insights,
and the Marshallian viewpoint According to the Schumpeterian notion (Schumpeter, 1952),
entrepreneurs revolutionize production by exploiting new inventions or untried technologi-
cal possibilities to create new commodities, innovate old ones, open new supply sources, or
establish new market outlets. This view is shared more commonly by the Austrian school.,
which suggests that external knowledge spillovers enhance the breadth and coherence of a
firm’s knowledge base, as formally examined by Antonelli and Colombelli (2015). Knowledge
serves as both an input and output in production (Weitzman 1996, 1998), where existing
knowledge can be recombined to yield new insights. Antonelli and Colombelli (2015) intro-
duce the concept of the knowledge cost function as a framework that estimates the cost of
acquiring and utilizing knowledge, incorporating factors such as R&D expenditure, patent
stock, firm age, and regional characteristics.1 This literature emphasizes that a firm’s access
to both external and internal knowledge influences the cost of knowledge acquisition and
utilization in promoting technological progress. Empirical findings from Kelly and Hageman
(1999) and Antonelli and Colombelli (2015) support the Marshallian hypothesis, suggesting
that the quantity and composition of external knowledge and a firm’s internal knowledge
repository significantly impact the reduction of knowledge acquisition costs.

Studies by Cohen and Levinthal (1989, 1990), Saviotti (2007), Quatraro (2010, 2012),
and Jones (1995) demonstrate the non-uniform distribution of knowledge externalities and
firm-specific knowledge inputs across regions. The process of knowledge generation often
arises from pursuing new technologies, emphasizing the importance of experiential learning.
Through this iterative process, firms develop effective R&D strategies by analyzing past ex-
periences, which leads to innovation. This dual role of knowledge, serving both as an input
and an output, deepens our understanding of its complexity in the production process, as
discussed by Doraszelski and Jaumandreu (2013). Following this discussion, it is evident
that entrepreneurship parallels the distribution and utilization of knowledge in economic
activities. Entrepreneurship involves identifying new opportunities and serves as both an
input and an output of the production process. It integrates knowledge of best practices
and strategies with effective experimentation to achieve business success. Successful en-
trepreneurship can reduce the average cost of production by efficiently managing available
resources. 2

Antonelli and Colombelli (2015) and Colombelli et al. (2013) concentrate on firms
engaged in R&D investment. However, it’s crucial to recognize that knowledge acquisition
extends beyond patents and R&D activities, encompassing various other forms of innovation
essential for business performance. In addition to entrepreneurial skills and firm-specific re-
sources that create competitive advantages, another type of knowledge is crucial for general
business performance. This knowledge involves qualitative practices influenced by market
operations, a dynamic process that uncovers new opportunities, recognizes competitive ad-
vantages, and identifies supply and demand imbalances. It encompasses experience and
the development of entrepreneurial and organizational cultures, fostering responsiveness to
market signals 3.

1See Crépon, Duguet and Mairesse (1998) for a similar discussion.
2Any new entrepreneurial initiative like any new R&D project involves substantial risks and extensive

use of resources, which is why the view of Marshallian externalities tends to receive more empirical support
(Antonelli and Colombellim 2015).

3This type of “knowledge” is compatible with the writings of the Austrian School of Economics (Hayek
(1937, 1945). Refer to Kirzner (1997, 1999) for an in-depth discussion of the topic.
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Innovation-driven technical knowledge from R&D activities and firm-specific knowl-
edge, including business models and organizational strategies, are integral to business suc-
cess. Shane (2003) argues that entrepreneurial opportunities are recognized through the
value of new information received, contributing to the broader understanding of knowledge
and innovation. Firms that succeed in innovation enhance the productivity of other peers
in the same cluster and influence those outside of it, with effects extending beyond regional
boundaries over time. While the Hayek-Mises-Kirzner type of knowledge influences firms
to pursue specific R&D avenues, the Schumpeterian or Marshallian paradigms often garner
more empirical support. Understanding the impact of these paradigms on business perfor-
mance and productivity is crucial, as it reveals which R&D products enhance productivity
and how knowledge diffuses throughout the business sector. Despite these complexities,
achieving profitability remains the primary goal for all firms, regardless of their focus on
innovation.

In market-based economies, the price mechanism plays a central role in driving inno-
vation efforts and entrepreneurial discoveries, thriving on technological advancements from
innovating firms. As technical and entrepreneurial knowledge move in tandem, the cost
function of non-innovating firms is shaped by ’entrepreneurial capital’ and the externali-
ties from the R&D activities of innovating firms. Meanwhile, innovating firms are guided
by productivity and the ’entrepreneurial capital’ of non-innovating firms, which identify
business opportunities that enhance productivity in both sectors. Ultimately, ’success’ for
the innovating sector is defined by the market value of its products, recognized by other
entrepreneurs as opportunities.4

The main contribution of this paper is the introduction of a novel production model
that incorporates entrepreneurial skills and innovation through a multiple-input, multiple-
output approach. Our analysis builds on Barney’s (1991) resource-based model, assuming
heterogeneous firms in managerial practices, in-house innovation efforts, and risk attitudes.
These differences allow firms to develop competitive advantages and compete in various
market niches.5 Our model encapsulates the production of goods and services, innova-
tion, and entrepreneurial skills. In estimating our model for a sample of over 200 countries
spanning sixty years, we quantify resource wastage and the impact of productivity shocks.
We emphasize the importance of market mechanisms by addressing model specification er-
rors and potential non-causality from confounding factors. We contextualize the model
by incorporating social context variables, which remain vital without losing their causal
interpretation. Empirically, the estimated deconfounding factors correct for model misspec-
ification bias caused by omitted variables and nonlinearities. Our key findings suggest that
firms shape competitive advantages by exploiting unique resources driven by both domestic
and global competition. Cross-country effects resulting from changes in global knowledge
and entrepreneurial practices also significantly enhance firm-specific resources. The extent
to which firms learn from the innovation efforts of others depends on their absorptive ca-
pacity, underscoring the importance of firm heterogeneity in accumulating knowledge and
entrepreneurial capital. Overall, our findings offer new insights into the Schumpeterian
and Marshallian perspectives, underscoring their complementary roles in generating new
knowledge.

Methodologically, we address the challenge that deconfounding the effects of unique
resources, entrepreneurship, and knowledge skills at the firm level is not feasible. These re-
sources are heavily contextualized within market-based mechanisms, making them difficult
to measure at the micro level. However, at the aggregate level, it is possible to proxy these
variables. While we cannot measure knowledge appropriation resources and their effects at
the micro level, we can assess their contribution at the macro level, which is perhaps more

4The rationale for these ideas can be traced back to von Mises (1949), who posited that the market
operates primarily due to the speculating entrepreneur’s pursuit of increased profits through the production
process.

5See Fiol(1991, 2001); Talluri et al.(2003); Abbasi and Kaviani(2016) for empirical applications of het-
erogenous resource-based models.
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crucial for growth and welfare implications (Lucas, 2009). At this higher level of aggregation,
we can evaluate the role of unique resources in shaping a country’s competitive advantage,
which is essential for specialization and international trade in a globalized economic environ-
ment. Specifically, for a country with low absorptive capacity (e.g., low tertiary education
investment), our estimates show that a 10% increase in global innovation boosts produc-
tivity by only 0.3%, compared to 1.2% in high-capacity countries. Our study aligns with a
broader literature that focuses on holistic paradigms such as the business ecosystem (Moore,
1993), the innovation ecosystem (Adner, 2006), the entrepreneurial ecosystem (Prahalad,
2005), and the knowledge-based ecosystem (van der Borgh et al., 2012).6

The structure of the paper is as follows: Section 2 elaborates on all aspects of the
conceptual model. Section 3 outlines the data sources, econometric specifications, and
presents the findings. Section 4 offers a detailed discussion of the results, including general
and group-specific policy implications derived from the model. Section 5 concludes the
paper.

2 The model

2.1 Conceptual Framework

Markets and market mechanisms moderate the relationship between the R&D and
the non-R&D sector. Firms within these sectors are interconnected; R&D firms generate
technical knowledge, driven by the needs of the non-R&D sector, which in turn impacts this
sector. For non-R&D firms to effectively appropriate this knowledge, significant effort and
resources are necessary.

In this feedback mechanism, knowledge is both an input and an output, which is also
the case for entrepreneurship and unique resources. Entrepreneurship also helps in moder-
ating the relationship between markets, on the one hand, and firms in the two sectors, on
the other.Unique resources contribute to a firm’s entrepreneurial capacity, and this capac-
ity, in turn, influences markets and the market mechanism, and also has a direct impact on
production in the non-R&D sector. Our conceptual model is summarized in Figure 1.

6Ecosystems are understood as socio-economic vortexes rather than as merely district or regional con-
cepts (Becattini, 2003).
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Figure 1: Conceptual Model

Notes: A double arrow indicates both an input and output.

The operative process of knowledge and entrepreneurial capital (Kt) appears in Fig-
ure 2. Knowledge serves as both an input and an output, though not simultaneously. The
transformation and recombination of existing knowledge into new forms require time. Cer-
tain inputs are combined with external knowledge, complemented by contributions from
internal knowledge itself. Additionally, resources related to absorptive capacity (appropri-
ation resources) facilitate the appropriation of external knowledge and its transformation
into internal knowledge capital.

Figure 2: Knowledge production
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To make use of external knowledge, a company needs to have the right technology
to absorb and apply that knowledge effectively. This allows the company to turn that
knowledge and entrepreneurial skills into real-world business and economic benefits. The
company’s technological know-how is valuable only when it leads to new products or im-
provements in processes that other businesses can use. This transformation is made possible
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by putting in the appropriate effort and resources to assimilate the knowledge. The diagram
in Figure 2 also shows that this knowledge can spread and have important effects on the
wider economy.

The importance of productivity and efficiency underscores the transformation of in-
puts into outputs, as highlighted by Crépon et al. (1993). The estimation of production
functions encounters the issue of simultaneity bias, which describes the bias that arises due
to the relationship between input selection and unobserved productivity shocks included in
the error term (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015;
Gandhi et al., 2020). Our empirical methodology addresses these endogeneity problems
in estimating production and transformation functions. Next, we present our benchmark
estimation framework, including all necessary amendments.

2.2 A simplified technology

There is a vector kit ∈ Rdk of quasi-fixed inputs and a vector xit ∈ Rdx of variable
inputs that can be changed in the short-run. Decision making units are denoted by i ∈
{1, . . . , n} and time periods by t ∈ {1, . . . , T}. Outputs are in vector yit ∈ Rdy . Production
possibilities are described by a transformation function of the form

g(yit;β(g)) = f(kit, xit;β(f)) + vit + ωit − uit, (1)

where β(g) and β(f) are parameter vectors, g(yit;β(g)) can be considered as “generalized
output” under joint production, f(kit, xit;β(f)) is a usual production function which depends
on both quasi-fixed and variable inputs7, vit represents statistical noise, ωit is productivity
and uit ≥ 0 represents technical inefficiency in production (efficiency is defined as rit = e−uit

following Kumbhakar and Lovell(2000)). Most behavioral assumptions lead to first-order
conditions of the form

xit = Φ(kit, ωit, uit;β(Φ)) + ξxit, (2)

where Φ is a vector function that relates the K inputs to quasi-fixed inputs, productivity,
and inefficiency. Moreover, β(Φ) is a vector of unknown parameters, and ξxit is an error term
supported in Rdx . Relative to previous solutions to the endogeneity problem, 8 our approach
allows for deviations from the first-order conditions in the form of error terms ξ(x)

it . We do
not make particular behavioral assumptions opting instead for Φ to be a flexible vector
function, which allows us to accommodate a wide range of behavioral assumptions.9

2.3 Entrepreneurship

Entrepreneurship is associated with several variable inputs xE,it ∈ RdxE and quasi-
fixed inputs denoted kE,it ∈ RdkE and, as it is a multi-dimensional concept, there are several
outputs, say yE,it ∈ RdyE . Our general transformation function is

gE(yE,it;β(gE)) = fE(kE,it, xE,it, yE,i,t−1, zE,it;β(fE)) + ξEit + ωEit − uEit , (3)

where β(gE) and β(fE) are vectors of unknown parameters, ξEit is an error term, kE,it denotes
7Within our joint production framework, assuming a separate production function is not appropriate.

The current general transformation function is known as the “distance function” (Kumbhakar and Lovell,
2000, pp. 28–32) of the general form D(xit, yit) = 1. Output-oriented distance functions are linearly
homogeneous in outputs and input-oriented distance functions are linearly homogeneous in inputs. Under
the separability assumption, (1) is consistent both with an output-oriented and an input-oriented distance
function. In the present study, we adopt an output-oriented distance function of the production technology
which is defined generically by the following production possibilities set T = {(x, y)|xcan producey}.

8Previous studies usually assume control input function, either investment or materials in (2) that can
be inverted in terms of ωit, and can be used to approximate for unobserved productivity shocks.

9A method of sieves (Olley and Pakes, 1996; Levinsohn and Petrin, 2003) is used to approximate this
unknown function. This involves the assumption: Φ(k, ω, u;β(Φ)) =

∑P

i=1

∑P

j=1

∑P

h=1β(Φ),i,j,hk
iωjuh,

where similar terms are omitted.
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quasi-fixed inputs used in the entrepreneurial process, and zE,it is a vector of variables that
mediate the formation of entrepreneurial capital. Entrepreneurial outputs at period t − 1
become entrepreneurial inputs in period t. Parameters ωEit , uEit denote productivity and
inefficiency in the entrepreneurial process.

2.4 Innovation

Innovation depends on inputs xI,it and outputs yI,it that are produced according to
the transformation function

gI(yI,it;β(gI )) = fI(kI,it, xI,it, yI,i,t−1, zI,it, β(fI )) + ξIit + ωIit − uIit, (4)

where β(gI ) and β(fI ) are vectors of unknown parameters, ξIit is an error term, kI,it denotes
quasi-fixed inputs used in the entrepreneurial process and zI,it is a vector of variables that
mediate the formation of innovation capital. Innovation outputs at period t − 1 become
innovation inputs in period t. Parameters ωIit, uIit denote productivity and inefficiency in
the innovation process.

Similar to (2) we express with analogous notation the endogenous vector function
that relates K inputs to quasi-fixed inputs and the other latent parameters as:

xE,it = Φ(E)(kE,it, ωEit , uEit , zE,it;βΦ(E)) + ξEit , (5.1)

xI,it = Φ(I)(kI,it, ωIit, uIit, zI,it;βΦ(I)) + ξIit, (5.2)

Innovation inputs encompass R&D-related activities and variables that describe the
dynamic transformation from R&D into knowledge and innovations that can be utilized for
practical applications or related business purposes.

2.5 A more focused technology

In the presence of innovation and entrepreneurship, the transformation function is
modified as follows.

g(yit;β(g)) = f(kit, xit, yI,i,t−1, yE,i,t−1, yI,i,t−1 × yE,i,t−1;β(g)) + vit + ωit − uit, (6)

where the main change relative to (1) is that innovation and entrepreneurship outputs

(yI,i,t−1, yE,i,t−1) are now used as inputs, potentially influencing both productivity and inef-

ficiency. Here, yI,i,t−1 and yE,i,t−1 represent local and global knowledge inputs, respectively,

and their interaction, yI,i,t−1×yE,i,t−1, capturespotentialcomplementaritiesbetweenabsorptivecapacityandinternationalspillovers.Tospecifyfurthertheproductivityprocess, weassumeitfollowsaMarkovprocess : ωit =

αi+ρωωi,t−1 +y′
I,i,t−1γ1 +y′

E,i,t−1γE+ξωit, (7) where αi represents individual effects, ρω is an

autoregressive coefficient, and γL, γG are coefficient vectors for local and global innovation,

respectively. The interaction term (yI,i,t−1 × yE,i,t−1) reflects the synergy between local

innovation capacity and global spillovers. Finally, ξωit is an error term.

2.6 Knowledge and innovation

Given innovation outputs yI,it,, external knowledge Kit is unobservable. Following
our previous discussion, there is a feedback relationship between external and internal in-
novation which can be captured via the following model:
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Kit = ηKi + ρKKi,t−1 + y′
I,itγK + ξKit , (9.1)

yI,it = λIKit + ξy
I

it , (9.2)

where ξKit and ξy
I

it are error terms, λI is a vector of loadings, which represent how lagged
external innovation loads on the various innovation output indicators, ηKi represents indi-
vidual effects, and ρK is an autoregressive parameter that represents persistence in the state
of aggregate knowledge. A similar process is adopted for entrepreneurial capital:

Eit = ηEi + ρEEi,t−1 + y′
E,itγE + ξEit , (10.1)

yE,it = λEEit + ξy
E

it . (10.2)

Systems (9.1)-(9.2) and (10.1)- (10.2) allow for feedback effects between external and
internal innovation and entrepreneurial capacity, respectively.

2.7 The role of markets

As illustrated in Figure 1, our central thesis posits that markets facilitate knowledge
conversion into innovation, which is subsequently utilized by the business sector. Therefore,
this intermediation plays a crucial role in (6), where market mechanisms inform businesses
about the value of any given innovative or entrepreneurial practice, thereby influencing its
adoption. Therefore, in principle, yI,i,t−1, yE,i,t−1 have a role in (6) after they have been
“filtered out” by the experience of several entrepreneurs and the market mechanism as a
whole. 10 This proposition suggests that entrepreneurs implement innovation influenced
by their market perceptions, resulting in significant diversity in initial business practices.
Despite the elusive nature of the Austrian concept of “entrepreneurial opportunity” it is
influenced by both local and global innovation, domestic and foreign markets, and the
dynamic interaction between knowledge and innovation.

Therefore, we theorize the main testable hypothesis as:[
yIit
yEit

]
=

L∑
l=1

ΛlM̃i,t−l + ξI,Eit , (11)

where Λl is a matrix of unknown coefficients, ξI,Eit is a vector error term, and M̃i,t−l denotes
lagged values of the “market” (1 ≤ l ≤ L). We allow for several lags (L) because the
process of determining the actual value of an innovation or entrepreneurial practice in specific
organizational contexts naturally requires time. As the market is unobserved, its definition
relies on several relevant indicators which we denote xM,it:

M̃it = ηM̃i + ρM̃M̃i,t−1 + x′
M,itγM̃ + ξM̃it , (12)

where ηMi denotes individual effects, γM is a vector of unknown parameters, ξM̃it is an error
term, and ρM̃ reflects persistence in market perceptions. In the aggregate, this formulation
reflects Shane’s (2000) importance of prior knowledge of the market as it is transformed into
the (posterior) realization of an “entrepreneurial opportunity”.

2.8 Inefficiency

Finally, we consider inefficiency in the production of final goods in (6), innovation
in (4), and entrepreneurship in (3). Inefficiency represents unrealized capabilities given the

10For example, prior knowledge of customer problems will influence the discovery of products and services
to exploit new technology in mitigating them (Shane, 2000, p. 452).
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levels of inputs or the amount of waste in real resources that could have been saved by
engaging in efficient production. 11 Our econometric specification for inefficiency bears
resemblance to (7), namely

ψit = αi + ρψIψi,t−1 + z′
itγψ + ξψit, (15.1)

ψIit = αIi + ρψIψIi,t−1 + y′
I,i,t−1γψI ,1 + y′

E,i,t−1γψI ,2 + ξψ
I

it , (15.2)

ψEit = αEi + ρψEψEi,t−1 + y′
I,i,t−1γψE ,1 + y′

E,i,t−1γψE ,2 + ξψ
E

it , (15.3)

where zit is a vector of variables that affect inefficiency in economy-wide production, gener-
ically ψit = ln rit

1−rit
, rit = e−uit represents technical efficiency defined in (0, 1] and γs

represent vectors of unknown parameters. This formulation allows changing variables from
a non-negative error component (uit ≥ 0) to a quantity like ψit = ln rit

1−rit
, which can be

defined along the real line, and has a natural interpretation as a log odds ratio (also known
as Fisher’s transformation).

2.9 Appropriating mechanisms

Even innovations or entrepreneurial practices that have passed through the “filter”
of market mechanisms ((11)) and feedback mechanisms ((9.1), (9.2), (10.1), (10.2)) be-
come integrated into production through specific appropriation technologies. Therefore, the
presence of yI,i,t−1 and yE,i,t−1 in (6) overlooks the fact that such resources require appro-
priation. Appropriation technology entails time, real resources, and costs, and is contingent
upon current organizational hierarchies and cultures at the firm level. Essentially, external
resources must be “re-produced” to become suitable for the firm’s operative process, or they
may need to be adapted to fit the organizational and operational context. To model the
appropriation process, we further modify (6) as follows:

g(yit;β(g)) = f(kit, xit, φIit ⊙ y∗
I,t−1, φ

E
it ⊙ y∗

E,t−1, yI,i,t−1, yE,i,t−1;β(f)) + vit
+ωit − uit),

(16)

where y∗
I,t−1 and y∗

I,t−1 are counterparts of yI,i,t−1and yE,i,t−1 and denote global innovation
and entrepreneurial outputs. The operator ⊙ denotes Hadamard (element-wise product)
and φIit, φEit represent access to external innovation and entrepreneurship, respectively. By
definition, φIit, φEit ∈ (0, 1] as they represent rates of external knowledge adoption and best
practices. As the values of these parameters are bounded between zero and one we assume
the following models.

φIit = F(τit, zI,it;β(φI )), (17.1)

φEit = F(τit, zE,it;β(φE)), (17.2)

where F is any distribution function (for example, the standard normal), β(φI ) and β(φE)
are vector of unknown parameters and τit represents a time trend (i.e. τit = t for all i and
t).12

11It should be noted that resource wastage is not unrelated to specific mechanisms for appropriating
external knowledge, innovation, and best entrepreneurial practices.

12A simple example of an appropriation function is φI
it = 1

1+e−bit (bi > 0) which indicates a logistic-like
“rate of adoption” of new technological innovations. The rate at which this adoption or appropriation takes
place (bi) is a function of the organizational structure and the “portability” of new technology (expressed
in relative terms).
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The processes of productivity are written as:

ωIit = αIi + ρω,Iω
I
i,t−1 + y′

I,i,t−1γI,1 + y′
I,i,t−1γI,2 + ξω

I

it , (18.1)

ωEit = αEi + ρω,Eω
E
i,t−1 + y′

E,i,t−1γE,1 + y′
E,i,t−1γE,2 + ξω

E

it . (18.2)

The inefficiency equations are written as:

ψit = αi + ρψ,iψi,t−1 + y′
I,i,t−1γI,1 + y′

E,i,t−1γI,2 + ξψ
I

it , (19.1)

ψIit = αIi + ρψI ,iψ
I
i,t−1 + y′

I,i,t−1γI,1 + y′
E,i,t−1γI,2 + ξψ

I

it , (19.2)

ψEit = αEi + ρψE ,iψ
E
i,t−1 + y′

I,i,t−1γE,1 + y′
E,i,t−1γE,2 + ξψ

E

it . (19.3)

2.10 Global knowledge and global entrepreneurial practices

To define global measures of knowledge/innovation (K∗) and entrepreneurship (E∗
t ),

we have to rely on country-specific indicators of Kit and Eit. Global knowledge and en-
trepreneurship are persistent processes, so we assume:

K∗
t = ρK∗K∗

t−1 +
n∑
i=1

δK∗,iKit + ξK
∗

t , (20.1)

E∗
t = ρE∗E∗

t−1 +
n∑
i=1

δE∗,iEit + ξE
∗

t , (20.2)

where ρK∗ and ρE∗ are autoregressive coefficients, δK∗,i and δE∗,i are weights attached to
country-specific knowledge and entrepreneurial stock, and ξK∗

t , ξE∗

t are error terms. For the
weights we assume

δK∗,i ≥ 0 (i = 1, . . . , n),
∑n
i=1 δK∗,i = 1,

δE∗,i ≥ 0 (i = 1, . . . , n),
∑n
i=1 δE∗,i = 1. (21)

Finally, the last part of the model set-up refers to the incorporation of socio-economic
variables in the specification of appropriating mechanisms (17.1) and (17.2). Moreover, firms
may not be able to appropriate all or part of the variables in vectors yI,it and yE,it and
may, instead, appropriate K∗

it and E∗
it,viz. the generalized constructs that are predicated

on innovation and entrepreneurship. This is a testable hypothesis to the alternative (16)

g(yit;β(g)) = f(kit, xit, φIitK∗
t−1, φ

E
itE

∗
t−1,Kit, Eit;β(f)) + vit

+ωit − uit.
(22)

Although both (22) and (16) are confronted with the same data, the former is more parsimo-
nious. We determine which specification better describes the data using formal statistical
procedures. Additionally, specification (??) allows for both domestic and globally available
knowledge, innovation, and entrepreneurial practices denoted by Kit and Eit, respectively.
Our model provides a formal and coherent framework for examining "entrepreneurial oppor-
tunity" and its transformation into market realizations, while also facilitating the interplay
between global and local knowledge.13

13Our framework provides a deeper understanding of the Austrian "black box", where previous knowledge
translates into the recognition of an "opportunity". This is accomplished through the use of appropriation
technology, which aligns with the Austrian narrative, even in the absence of formal testing beforehand.
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3 Data and empirical analysis

3.1 Data Sources

The measurement of knowledge, entrepreneurial activities, and innovation outcomes
are determined by the available data. As previously emphasised, firm-level data may provide
more insights into innovative firms and their R&D activities (or potential spillovers), while
aggregate data typically allow for identifying the operational processes involved in the forma-
tion of innovative, entrepreneurial, and knowledge constructs. The use of microdata makes
it possible to account for firm and unit heterogeneity, which is important in the decision-
making process of R&D. The absence of firm-level data may be a drawback in the empirical
implementation of our framework; however, from a global perspective, a holistic view is
more appropriate than focusing solely on specific firms or regions. Future researchers could
replicate our framework with a smaller number of countries but with greater within-country
disaggregation, in order to test whether the pattern of current results changes substantially.

In the current context, it is increasingly important to contextualise our results in
environments that transcend the boundaries of individual firms, sectors, and countries,
especially given the significant increase in access to technological opportunities and best
entrepreneurial (or managerial) practices brought about by globalisation. Spillover effects,
central to the modern theory of technological knowledge and R&D, can still be measured
at the aggregate level, reflecting their importance in creating and sustaining competitive
advantages, which should be evident in global trade. Additionally, growth and welfare
implications can be studied more thoroughly at this level (Lucas, 2009). This highlights the
crucial need to measure managerial, innovation, and knowledge practices across countries,
as demonstrated by Bloom et al. (2015, 2019).

We use data from the World Bank’s TCdata360 which is an initiative of the World
Bank Group’s Macroeconomics, Trade & Investment Global Practice (http://prosperitydata360.
worldbank.org/en/home). The TCdata360 is an unbalanced panel of more than 200 coun-
tries over the period 1955-2016 covering the following five broad categories: innovation,
investment, industrial sectors, trade and macroeconomic activity. We refer to the World
Bank (2024) for further details regarding data availability across countries and years.14 We
summarize the model’s structure and operationalization in Table 1.

Table 1: Definition of variables

Inputs Outputs
1. Gross capital formation∗ 1. GDP (agriculture)

2. Infrastructure∗ 2. GDP (manufacturing)
3. Imports, Creative goods 3. GDP (services)

4. Imports, Creative services 4. Exports, creative goods
5. Hours, low-skilled 5. Exports, creative services

6. Hours, medium-skilled 6. Other exports
7. Hours, high-skilled 7. Investments

8. Innovation∗ 8. Innovation
9. Entrepreneurship∗ 9. Entrepreneurship

Notes: ∗ denotes a quasi-fixed input.

14The creation of this comprehensive dataset signifies an initiative designed to support countries in
achieving the twin goals of the World Bank Group: eliminating extreme poverty, fostering prosperity, and
sustaining broad-based economic growth, with a primary focus on private sector-driven initiatives.
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Innovation and entrepreneurship are inputs and outputs, albeit not at the same time
as it takes time to diffuse and absorb good practices. Various inputs produce innovation
and have multiple dimensions summarized in Table 2.

Table 2: Definition of innovation inputs and outputs

Inputs Outputs
1. ICT use in business overview∗

2. Research and development expenditure (% of
GDP)∗

3. % of workforce in the ICT sector
4. Hiring and firing practices, 1-7 (best)∗

5. Firm-level technology absorption, 1-7 (best)∗

6. Researchers in R&D (per million people)∗

7. Imports of creative services
8. Intellectual property protection∗

9. Company spending on Research & Development∗

10. 5th pillar Higher education and training∗

11. University-industry collaboration in Research &
Development∗

12. Availability of scientists and engineers∗

13. GCI 4.0: Pillar 6: Skills∗

14. Extent of staff training∗

15. 9th pillar Technological readiness∗

16. Charges for the use of intellectual property,
payments (BoP, current US$)

17. Charges for the use of intellectual property,
receipts (BoP, current US$)

1. Annual growth rates of creative goods exports
2. Scientific and technical journal articles

3. Trademark applications, total
4. Value added in the ICT sector (%)

5. 12th pillar Innovation
6. Patent applications, nonresidents

7. ICT goods exports
8. Patent applications, residents

9. ICT Value added (%)
10. Trademark applications, direct nonresident

11. Trademark applications, direct resident
12. Values and shares of creative goods, exports

13. Triadic patent families
14. Values and shares of creative industries related

goods exports
15. Exports of creative services

Notes: ∗ denotes a quasi-fixed input.

The variables used to represent entrepreneurship and outcomes of market and social
context are presented in Table 5. Descriptive statistics for all variables are reported in the
Appendix.
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Table 3: Categorization of Variables

Entrepreneurship Markets Social Context
1. Entrepreneurial Culture∗

2. Access to Finance
3. Self-employed∗

4. Manufacturing by Business
Size∗

5. Entrepreneurial Markets∗

6. Entrepreneurial Policy∗

7. Gender Entrepreneurship∗

8. Entrepreneurial Activity

1. GCI 4.0: Innovation
ecosystem component
2. Extent of market

dominance
3. Intensity of local

competition
4. GCI 4.0: Efficiency of the

clearance process
5. GCI 4.0: Competition in

services
6. GCI 4.0: 7.B Foreign

competition
7. GCI 4.0: 7.A Domestic

competition
8. GCI 4.0: Distortive effect

of taxes and subsidies on
competition

9. GCI 4.0: Trade tariffs
10. GCI 4.0: Complexity of

tariffs

1. Unemployment, total (% of
total labor force) (modeled ILO

estimate) (WDI)
2. Life expectancy at birth,

female (years)
3. GINI index (World Bank

estimate)
4. Alternative and nuclear

energy (% of total energy use)
5. Poverty gap at $1.90 a day

(2011 PPP) (%)
6. Poverty gap at $3.10 a day

(2011 PPP) (%)
7. Poverty headcount ratio at
$1.90 a day (2011 PPP) (% of

pop.)
8. Poverty headcount ratio at
$3.10 a day (2011 PPP) (% of

pop.)
9. GCI 4.0: Pillar 5: Health

10. Gender / Percent of firms
with majority female ownership

11. Gender / Proportion of
permanent fulltime workers that

are female %
12. Gender / Percent of firms
with a female top manager

13. Do female and male
surviving spouses have equal

rights to inherit assets?
14. Does the government

support or provide childcare
services?

15. Does a woman’s testimony
carry the same evidentiary
weight in court as a man’s?

16. Are childcare payments tax
deductible?

17. Does the law mandate equal
remuneration for work of equal

value?
8. Does the law mandate

non-discrimination based on
gender in hiring?

19. Is there legislation on sexual
harassment in employment?

20. Registering property: Equal
access to property rights index
21. Starting a business: Cost -

Women / Men
22. Starting a business: Time -

Women / Men
23. Does the law prohibit

discrimination in employment
based on gender?

24. Starting a business:
Procedures - Women

25. Do married couples jointly
share legal responsibility for
financially maintaining the

family’s expenses?

Notes: ∗ denotes a quasi-fixed input.
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3.2 Model Specification

In the usual transformation of inputs “X” into outputs “Y” (1), our model includes
entrepreneurship and innovation both as inputs and outputs. Their implementation occurs
through the mediating role of the market. Innovation inputs are used to produce innovation
outputs which, in turn, affect innovation in the next period. A summary of our structural
model is presented in Figure 3.

Figure 3: Structure of the model
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         Outputs 

  

Innovation 

outputs  

Entrepreneurship  

Innovation inputs 
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𝑌 

Markets 
Entrepreneurship 

and Innovation 

Unique Resources 

Innovation outputs and entrepreneurship are interrelated, with unique resources of the
firm’s resource-based view associated with entrepreneurship. We acknowledge entrepreneur-
ship as both an input and output, influenced by market dynamics. Entrepreneurship may
also play a role in transforming innovation inputs to outputs indirectly through the market
system.

For the interest of clarity, we present the model indexing unknown parameters by “i”
to account for firm heterogeneity which is prevalent in production economics (Tsekouras et
al.2017). When we consider aggregate or global knowledge innovation (K∗

t−1) and global
entrepreneurship (E∗

t−1) along with their domestic counterparts, Kit and Eit, the aggregate
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transformation function is15

g(yit;β(g,i)) = f(kit, xit, φIitK∗
t−1, φ

E
itE

∗
t−1Kit, Eit;β(f,i)) + vit

+ωit(φIitK∗
t−1, φ

E
itE

∗
t−1;β(ω,i)) − uit(φIitK∗

t−1, φ
E
itE

∗
t−1;β(u,i)),

(23)

Innovation depends on inputs xI,it and outputs yI,it are produced according to the trans-
formation function

gI(yI,it;β(gI ,i)) = fI(kI,it, xI,it, yI,i,t−1, zI,it, β(fI ,i)) + ξIit + ωIit − uIit, (24)

For entrepreneurship, we have:

gE(yE,it;β(gE ,i)) = fE(kE,it, xE,it, yE,i,t−1, zE,it;β(fE ,i)) + ξEit + ωEit − uEit , (25)

Input endogeneity is accounted for as in (2), (5.1), and (5.2):

xit = Φ(kit, ωit, uit;β(Φ,i)) + ξxit, (26.1)

xE,it = Φ(E)(kE,it, ωEit , uEit , zE,it;βΦ(E,i)) + ξEit , (26.2)

xI,it = Φ(I)(kI,it, ωIit, uIit, zI,it;βΦ(I,i)) + ξIit, (26.3)

For knowledge, we have:

Kit = ηKi + ρK,iKi,t−1 + y′
I,itγK,i + ξKit , (27.1)

yI,it = λI,iKit + ξy
I

it ., (27.2)

For entrepreneurial capital, we have:

Eit = ηEi + ρE,iEi,t−1 + y′
E,itγE,i + ξEit , (28.1)

yE,it = λE,iEit + ξy
E

it . (28.2)

For the market mechanism, we have:[
yIit
yEit

]
=

L∑
l=1

Λl,iM̃i,t−l + ξI,Eit , (29)

where Λl is a matrix of unknown coefficients, ξI,Eit is a vector error term, and M̃i,t−l denotes
lagged values of (indicators related to) the “market” (1 ≤ l ≤ L). The optimal number of
lags (L) allowed is L = 2. 16 Since the market is unobserved its definition relies on several
relevant indicators denoted by xM̃,it:

M̃it = ηM̃i + ρM̃,iM̃i,t−1 + x′
M̃,it

γM̃,i + ξM̃it . (30)

The operationalization of (30) is shaped by the entrepreneur’s perspective. For the
Austrian school, the emphasis is on leveraging prior knowledge for discovery and market
outcomes. Essentially, the market reflects the aggregation of these individual knowledge
bases and the transformation of opportunities into tangible outcomes, as captured in xM̃,it.

The appropriation mechanisms are given as

15 All transformational functional forms are assumed to be Cobb-Douglas for ease of interpretation. The
posterior means and posterior standard deviations are reported in Panel B of Table 2.

16The value of lags, L, is determined by using the marginal likelihood criterion from Sequential Monte
Carlo.
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φIit = F(τit, zI,it;β(φI ,i)), (31.1)

φEit = F(τit, zE,it;β(φE ,i)), (31.2)

where F(·) stands for the standard normal distribution function.
Productivity equations are as follows:

ωit = αi + ρω,iωi,t−1 +Ki,t−1γω,1,i + Ei,t−1γω,2,i + ξωit, (32.1)

ωIit = αIi + ρωI ,iω
I
i,t−1 +Ki,t−1γωI ,1,i + Ei,t−1γωI ,2,i + ξω

I

it , (32.2)

ωEit = αEi + ρωE ,iω
E
i,t−1 +Ki,t−1γωE ,1,i + Ei,t−1γωE ,2,i + ξω

E

it . (32.3)

The main changes relative to previous formulations are that (i) innovation and en-
trepreneurial outputs are replaced with their lagged constructs (i.e. Ki,t−1 and Ei,t−1) in
(32.2) and (32.3), and (ii) Ki,t−1 and Ei,t−1 affect aggregate productivity in (32.1). There-
fore, process inefficiency depends on both innovation and entrepreneurial skills. We define
the inefficiency equations as:17

ψit = αi + ρψ,iψi,t−1 +Ki,t−1γω,1,i + Ei,t−1γω,2,i + ξψ
I

it , (33.1)

ψIit = αIi + ρψI ,iψ
I
i,t−1 +Ki,t−1γψI ,1,i + Ei,t−1γψI ,2,i + ξψ

I

it , (33.2)

ψEit = αEi + ρψE ,iψ
E
i,t−1 +Ki,t−1γψE ,1,i + Ei,t−1γψE ,2,i + ξψ

E

it . (33.3)

Finally, the formation of external knowledge and entrepreneurship is given as follows.

K∗
t = ρK∗,iK

∗
t−1 +

n∑
i=1

δK∗,iKit + ξK
∗

t , (34.1)

E∗
t = ρE∗,iE

∗
t−1 +

n∑
i=1

δE∗,iEit + ξE
∗

t , (34.2)

where ρK∗ and ρE∗ are autoregressive coefficients, δK∗,i and δE∗,i are weights attached to
reach country-specific knowledge and entrepreneurial stock, and ξK

∗

t , ξE∗

t are error terms.
For the weights, we assume

δK∗,i ≥ 0 (i = 1, . . . , n),
∑n
i=1 δK∗,i = 1,

δE∗,i ≥ 0 (i = 1, . . . , n),
∑n
i=1 δE∗,i = 1. (35)

The formulation of initial conditions in (34.1) and (34.2) is potentially significant.
Here, we adopt a Mundlak device to parameterize the initial conditions for date t = 0:

K∗
0 =

∑n
i=1 ϖK,iKi0 + ξK

∗

0 ; ϖK,i ≥ 0 (i = 1, . . . , n),
∑n
i=1 ϖK,i = 1,

E∗
0 =

∑n
i=1 ϖE,iEi0 + ξE

∗

0 ; ϖE,i ≥ 0 (i = 1, . . . , n),
∑n
i=1 ϖE,i = 1, (36)

where ϖK,i and ϖK,i are country-specific weights, and ξK∗

0 , ξE∗

0 are error terms.18 For M̃i0
in (30) we assume that they are unknown parameters.

17Equations 32.1 and 33.1 do not include determinants of inefficiency, zit.
18The Mundlak device formulates a generalization of both fixed and random effects. When ξK∗

0 = 0 we
obtain fixed effects, whereas ϖK,i = 0 (1 ≤ i ≤ n) we have pure random effects. In between, there is a
spectrum of special cases which generalize both fixed and random effects.
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3.3 Contextualization

So far, we’ve overlooked social context variables, yet they crucially shape technology,
innovation, and entrepreneurial outcomes, influencing productivity and inefficiency.19 Table
5 considers social context variables, zit ∈ Rdz ., which allow to specify a dynamic factor model

zit = Πiζit + ξzit,

ζit = Λiζi,t−1 + ξζit,
(37)

where Πi is a dz × m matrix of unknown parameters (factor loadings), ζit is an m × 1
vector of factors, ξzit is an error term supported in Rdz , Λi is an m×m matrix of unknown
parameters (dynamic factor loadings), and ξζit is an error term supported in Rm. The
dynamic factor model decomposes the dz contextual variables into m < dz country-specific
common factors that capture the main variation in social context. We estimate (37) in
advance (see footnote 21). Using marginal likelihoods and Bayes factors (Kass and Raftery,
1995; DiCiccio et al., 1997; O’Hagan, 1995) we find that the optimal number of factors is
m = 3. In our contextualization, θi ∈ Rd denotes the entire vector of unknown parameters
as follows:

θi =
T∑
t=1

Φtζit + ξθit, (38)

where Φt is d × m (t = 1, . . . , T ), contains unknown parameters, and ξθit is an error term
supported in Rd. In (38), the parameters become functions of the underlying contextual
variables. Given ζits, the remaining equations (23)–(36) of the model are estimated under
the assumption that contextualization of the various operative processes works through (38).
To estimate the model, 20 we use the Gibbs sampler of Markov Chain Monte Carlo (MCMC)
(Tierney, 1994) along with sequential Monte Carlo as in Creal and Tsay (2015) as the model
involves dynamic, nonlinear and latent variables (Andrieu et al., 2014).21

3.4 Causal interpretation

Before presenting results, we aim to minimize specification errors and ensure the
model has a causal interpretation. Numerous factors and assumptions in the model could
contribute to non-causality, ranging from missing variables to inappropriate functional
forms. For causal interpretation, it’s essential that (i) parameters of interest remain stable
when adding or removing concomitant variables (Pratt and Schlaifer, 1988); and (ii) the
model’s predictive ability doesn’t deteriorate with changes in concomitant variables. We
adopt Wang and Blei’s (2019) approach to deconfound the model. This method acknowl-
edges that apparent non-causality may arise from unobserved variables affecting correlations,
rather than direct causal relationships. Deconfounding involves proxying for such variables,
with Wang and Blei (2019) suggesting linear or quadratic factor models.

Dit
(N×1)

= A
(N×M)

ψit
(M×1)

+ ξDit , (39)

19For recent work on the social context of entrepreneurship, see Farny et al. (2019); Muñoz et al. (2019);
Muñoz& Kimmitt, (2019); Muñoz& Kibler (2016)).

20 We model all error terms as independent, identically distributed normals with zero means and distinct
scale parameters σ, reparameterizing σ = es for unrestricted s. For model parameters, we adopt independent
Laplace priors p(θj) ∝ e−h̄|θj −ā|, with θj from the parameter vector, and set ā = 0, h̄ = 10 for diffuse
priors akin to LASSO for parameter proliferation (Zellner, 1971). Cobb-Douglas function parameters are
constrained non-negative, using rejection sampling for compliance (Terrell, 1996).

21We perform 150,000 MCMC iterations omitting the first 50,000 during the burn-in phase to mitigate the
possible impact of starting values. We employ 1,000 particles per MCMC iteration, a stable and adequate
choice validated by Creal and Tsay (2015). Geweke’s (1992) diagnostics assess MCMC convergence and
numerical behavior.
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where Dit consists, in our case, of lagged values of all observed variables, N is the number of
these variables, A is a matrix of unknown coefficients, M is the unknown number of common
factors, ξDit is an error term supported in RN , and the factors are ψit. The quadratic factor
model alternative to (39) is

Dit
(N×1)

= A
(N×M)

ψit
(M×1)

+ Ao
(N×M)

ψ2
it + ξDit , (40)

where Ao is a matrix of unknown parameters and ψ2
it denotes the squares of all elements of

ψit. Including interactions among factors, yield as another possible model the following.

Dit
(N×1)

= A
(N×M)

ψit
(M×1)

+ Ao
(N×M ′)

vech(ψitψ′
it)

(M ′×1)
+ ξDit , (41)

where vech(ψitψ′
it) denotes terms of the form ψit,jψit,k (1 ≤ k ≤ j ≤ M) excluding similar

terms (notice that M ′ = M(M+1)
2 ), assuming ψit = [ψit,j , 1 ≤ j ≤ M ]. Deconfounders

ψit are included in all model equations to act as “nuisance variables” whose purpose is to
ensure that the model is causal according to the (statistical) criteria we have adopted. The
predictive ability of a causal model is not compromised in different sub-samples of the data.
To mitigate specification errors or outliers, we follow Bühlmann (2014) using bootstrapped
samples D∗

(b) of size n′ < nT from the original data set (1 ≤ b ≤ B), where B is the total
number of bootstrapped samples, and use the corrected posterior

p∗(ϑ|D) = B−1
B∑
b=1

p∗(ϑ|D∗
(b)). (42)

The bagged posterior, as defined in (42), helps mitigate specification errors and out-
liers by addressing potential variations in model behavior across different sub-samples, in-
dicated by changes in the parameter (ϑ). While a causal model should not exhibit such
behavior, if it does, it suggests non-causality even after attempts at confounding using ψit
(as in equations (39), (40), or (41)). Despite this, if ψit constructions offer causal interpre-
tations, the bagged posterior approach can still be useful. If substantial differences persist,
causality may be questioned or accepted as a “working hypothesis," and statistical inferences
can be made using the bagged posteriors. However, researchers should remain open to the
possibility of alternative deconfounding methods being necessary in such cases.

We apply deconfounding techniques using (39), (40), and (41), finding that only the
full quadratic factor model (41) supports causal inferences. This conclusion is based on the
stability of marginal posterior densities of parameters and functions of interest when (i)
adjusting concomitants, (ii) across data sub-samples, and (iii) without compromising the
model’s predictive capability under conditions (i) and (ii). 22

We determine the optimal number of factors in (41) and (37) using marginal likelihood
from the sequential Monte Carlo procedure (Andrieu et al., 2014), with results detailed in
Table 4. Both models require m = 3,M = 4 factors. We focus solely on (41) due to failed
causal interpretation tests. 23

Table 4: Bayes factors for ARMA model selection

22For estimating of these models, see footnote 21. Using (41) the optimal number of deconfounding
factors, ψit, was M = 3. In Dit we have included squares and interaction terms of all continuous and
Likert-scaled variables in the data set. This practice is related to nonlinear principal components (Song and
Li, 2021).

23 Bayes factors indicate 7 factors for the linear factor model in (39) and 5 for the quadratic specification
in (40).
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panel data model ψit,1 ψit,2 ψit,3 ψit,4
AR(1) 1.000 1.000 1.000 1.000
AR(2) 7.44 0.025 0.001 44.43

ARMA(1,1) 32.55 0.001 0.001 2.55
ARMA(2,2) 71.82 0.001 0.001 0.517

Notes: Reported are Bayes factors in favor of a panel AR(1) model and against the other models listed. Therefore,
the Bayes factor of a panel AR(1) is normalized to one. Bayes factors less than 0.001 are set equal to 0.001.

3.5 Identifying unique resources?

As deconfounding factors equip the model with a causal interpretation without remaining
differences in bagged posteriors to reflect other specification errors, unique resources must
be measured differently. Our approach to identifying unique resources is based on the
assumption that they follow a path dependence (Tsekouras et al., 2017) that can be described
by an autoregressive process (Wibbens, 2019). If deconfounding factors ψit can be related
to a panel ARMA(1,1) model, this part could be attributed to the contribution of unique
resources. To show formally this relationship, we first assume the following profit equation

yt = xt + ξt,(1), (43)

where yt is profit, xt is an operating resource for which we have

xt = λ1xt−1 + ξt,(2). (44)

The model gives rise to an ARMA(1,1) model for yt. If we have higher-order resources

zt = λ2zt−1 + ξt,(3), (45)

and (44) is replaced with
xt = λ1xt−1 + zt + ξt,(4), (46)

which implies, in turn, an ARMA(2,2) model.
Our test results are summarized in Table 5. Based on this analysis, the first decon-

founding factor appears to support a panel ARMA(2,2) model, while the fourth factor is
consistent with a panel AR(2) model. The other deconfounding factors do not exhibit auto-
correlation. This suggests that second-order resources are captured by the first factor, and
first-order resources by the fourth factor. The coefficients of determination (R2, computed
as the squared correlation between actual and fitted values) for these two factors are 0.314
and 0.225, respectively. Therefore, any unique resources identified explain a relatively low
proportion of the variation in the deconfounding factors. This indicates that these factors
are primarily associated with correcting for specification errors (Shah and Bühlmann, 2018).
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Table 5: Additional robustness checks

Check DM (1995) Parameter
stability

Concomitants

Drop contextualization
in (38)

0.000–0.013 0.000–0.015 0.000–0.000

Drop market filter in
(29) and (30)

0.000–0.004 0.000–0.000 0.000–0.003

Set adoption rates in
(31.1) and (31.2) to

unity

0.000–0.000 0.000–0.000 0.000–0.006

Omit formulation in
(32.1)

0.000–0.007 0.000–0.000 0.000–0.003

Omit formulation in
(32.2)

0.000–0.002 0.000–0.004 0.000–0.005

Omit formulation in
(32.3)

0.000–0.013 0.000–0.003 0.000–0.000

Assume all ρ
parameters are zero

0.000–0.003 0.000–0.005 0.000–0.000

Notes: Reported are ranges of p-values (minimum to maximum). DM (1995) denotes the Diebold and Mariano
(1995) equal predictive ability test between the new model and the benchmark model in 1,000 alternative sub-
samples whose size is randomly selected between 10 and 100. “Parameter stability” examines parameter stability
across the different 1,000 alternative sub-samples. “Concomitants” adds a random number (selected between 1 and
5) of concomitant variables from the fiscal-monetary and policy uncertainty variables in each one of the different
1,000 alternative sub-samples. p-values less than 10−6 are set to zero.

Taking these coefficients of determination at face value, we extract a summary of
unique resources from ψit,1 and ψit,4 using their fitted values from the respective panel
ARMA(2,2) and AR(2) models. The distributions of the two factors, for all countries, are
shown in Figure 4.24 Panels (a) and (b) show the marginal posterior densities of ψit,1
and ψit,4 for all countries, with their bivariate density and contour plot in panels (c) and
(d). While panels (a) and (b) suggest data clustering, panels (c) and (d) identify at least
five distinct clusters, indicating a positive and nonlinear relationship between the two de-
confounding factors. Despite their a priori independence, deconfounding factors become
interdependent when conditioned on the data.

24Figures for specific countries are available from the authors upon request.
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Figure 4: Marginal posterior densities of confounding factors

Considering the fitted values from panel ARMA processes for the two deconfounding
factors (denoted ψ∗

it,1 and ψ∗
it,4), the results are reported in Figure 5. Although it is hard

to make a case out of Figure 5, there is a main group where the two unique resources are
positively correlated and another minor group where the correlation is negative but the
spread of the distribution is higher.
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Figure 5: Bivariate posterior densities of unique resources

Sample distributions of posterior mean estimates of productivity growth (defined as
ωit−ωi,t−1) and inefficiency are reported in panels (a) and (b) of Figure 6. Although techno-
logical knowledge (or innovation), and entrepreneurial productivity are, in general, positive,
there are substantial inefficiencies, particularly in the entrepreneurial formative processes.
Panels (c), (d), and (e) of Figure 6 depict contours of the sample distributions of posterior
mean estimated efficiencies and productivity in our key areas. Analysis reveals contrast-
ing associations: a negative link between inefficiency and productivity in technology, but a
positive relationship in both knowledge and entrepreneurship. In the latter sectors, produc-
tivity and inefficiency co-vary, suggesting efficiency improvements coincide with productivity
gains. Conversely, heightened productivity reduces inefficiency in technology, indicating a
decrease in technological slack with productivity growth. Higher productivity might elevate
inefficiency in monopolistic or oligopolistic markets, as resources become less constrained
and management prioritizes expansion over resource efficiency. 25

25This is known as Hick’s “quiet life hypothesis” (Hicks, 1935; Hart, 1983; Scharfstein, 1988; Schmidt,
1997; Bertrand and Mullainathan, 2003) but it is not confirmed when we examine the aggregate level. So,
management is concerned with the optimal use of resources even when productivity growth is positive.
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Figure 6: Sample distributions of posterior mean estimates of productivity and inefficiency

Our posterior mean estimates of aggregate knowledge and entrepreneurial skills, fil-
tered through Sequential Monte Carlo, are presented in Figure 7 with 95% Bayes probability
intervals. The stock of technological knowledge shows significant growth over time, while
aggregate entrepreneurial skills exhibit a generally positive trend, despite fluctuations and
a notable downturn during the subprime crisis (2008-2009).
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Figure 7: Aggregate knowledge and entrepreneurial skills

Notes: The shaded areas correspond to 95% Bayes probability intervals.

Country- specific knowledge production (Kit) and entrepreneurial practices (Eit) are
depicted in Figure 8 for selected countries and regions of the world. The evidence indi-
cates positive trends in the production of new knowledge across all selected countries and
regions, albeit at varying rates. Regarding country-specific entrepreneurial skills, panel (c)
countries demonstrate significant production, whereas production is notably lower in panel
(d) countries. How effective are appropriation technologies (of K∗

t and E∗
t ) is, of course, an

important issue, which can be addressed using (31.1) and (31.2). Posterior mean estimates
of adoption rates in 2018 are reported in Figure 9.
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Figure 8: Country- specific knowledge production (Kit) and entrepreneurial practices (Eit)
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Figure 9: Posterior mean appropriation rates (2018)
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Finally, we examine the influence of both firm-specific and aggregate forms of knowl-
edge and entrepreneurship on three types of inefficiency and productivity. Figure 10 presents
the marginal effects across all countries and years. Panels (a), (b), and (c) display the sample
distributions of posterior mean estimates for the marginal effects of firm-specific (Kit, Eit)
and aggregate (Kt, Et) knowledge and entrepreneurship on the three types of productivity.
Conversely, panels (d), (e), and (f) detail the marginal effects of these factors on the three
types of inefficiency.

Figure 10: Marginal effects

We examine various persistence parameters (ρ) and certain other factor loadings in
Figure 11, where marginal posterior densities of persistence parameters are illustrated. We
first average persistence parameters for all MCMC draws and provide the sample distribu-
tions of posterior mean estimates for each persistence parameter so that sample distributions
in Figure 11 reflect cross-country variation. The persistence parameters range approximately
between 0.80 and slightly less than unity, indicating that all formative processes are highly
persistent or path-dependent (Tsekouras et al., 2017). 26

26Without imposing stationarity conditions (viz. |ρ| < 1) it turns out that these formative processes are
stationary.
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Figure 11: Sample distributions of posterior mean estimates of persistence parameters

4 Further Discussion and Policy Insights

4.1 General Remarks

We utilize the causal properties of the model to address the following pivotal policy ques-
tions: (i) what are the cross-country effects of changes in global knowledge and entrepreneurial
practices? (ii) which countries are more important in driving global knowledge and en-
trepreneurial practices? (iii) what is the role of the social context? (iv) is it possible that
the configuration of unique resources changes when the social context changes?

In the event of a shift in global knowledge or entrepreneurial practices, we antici-
pate corresponding changes in the productivity and efficiency of technology, as well as in
the transformation functions of knowledge and entrepreneurship. Specifically, Figure 12
shows the marginal effects of a 10% (0.10) increase in global knowledge and entrepreneurial
practices in 2018. Figure 13 presents posterior means of factor loadings in equations (34.1)
and (34.2). The findings align with expectations, highlighting that the leading economies
of the U.S., U.K., France, Germany, Japan, and Korea are driving the diffusion of global
knowledge. 27

27Results for additional countries are available from the authors upon request.
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Figure 12: Marginal effects of a 10% (0.10) increase in global knowledge or entrepreneurial
skills

I. Marginal effects of a 10% (0.10) increase in global knowledge

II. Marginal effects of a 10% (0.10) increase in global entrepreneurship

To complement Figures 12 and 13, Table 4 provides a compact summary of the esti-
mated marginal effects of global and local knowledge on productivity growth and inefficiency
reduction. This tabular format highlights the relative importance of global spillovers com-
pared to country-specific factors and facilitates cross-country comparisons.

Table 4: Summary of marginal effects of global vs. local knowledge on productivity and
inefficiency

Global Knowledge Local Knowledge Notes
Productivity Growth 0.12 (0.05) 0.04 (0.03) Global dominates, sig. at 5%
Inefficiency Reduction 0.08 (0.04) 0.03 (0.02) Global stronger, robust
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Figure 13: Country scores in terms of contributions to global knowledge and entrepreneur-
ship

As an illustration of the policy relevance of these marginal effects, consider the expe-
rience of Korea and the United States. In Korea, targeted R&D tax incentives and sustained
government support for absorptive capacity in manufacturing sectors amplified the produc-
tivity gains from external technological spillovers. Similarly, in the United States, programs
such as the R&D Tax Credit have demonstrated how adoption incentives can translate es-
timated marginal effects into measurable innovation and growth outcomes. These examples
highlight that our framework can directly inform the design of national-level policies aimed
at fostering adoption and strengthening absorptive capacity, beyond a focus on specific firms
or regions.

Social context encapsulates the determinants of coefficients ζit in (38), necessitating
a complete re-evaluation and re-estimation of the entire system if these factors change by
a half standard deviation. In our experiment, we manipulated these factors 1,000 times,
each time utilizing varying values for ζit equivalent to half standard deviations. Then, we
recalculated the posterior means for both parameters and the functions of interest. Figure
14 shows the results of this experiment. Figure 15 shows the impact on unique resources
and the market index M̃it (30) following exogenous changes in our simulation experiment.
While unique resources appear to show minimal change with shifts in the social context,
the market, on the other hand, exhibits a positive response to these changes. The model’s
causal interpretability remains robust, as shown in Table 5, which confirms that every aspect
is essential even after excluding specific modules and reassessing our results. While our
aggregate-level identification strategy allows us to address causality via deconfounding in
high-dimensional settings, it inevitably limits analysis of firm-level behavioral heterogeneity.
Future research could extend this framework to microdata or firm-level panel structures to
better capture within-country differences in knowledge absorption, entrepreneurial function,
and organizational diversity.
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Figure 14: Changes in efficiency and productivity when social context changes

Figure 15: Effect of changes in social context on unique resources
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4.2 US and OECD Shocks through Generalized Impulse Response
Functions

In Figure 16, Panels (a) and (b) depict the generalized impulse response functions (GIRFs,
Koop et al., 1996; Pesaran and Shin, 1998) illustrating the global diffusion of knowledge
and entrepreneurial skills originating from the US. The graphs show the average cross-
country GIRFs in Kit and Eit after a standard deviation shock in the US-based metrics.
Panels (c) and (d) calculate the GIRFs for a similar shock originating from the OECD-
20, excluding the US. The diffusion dynamics differ significantly based on their origin.
Shocks originating from the US show a slightly longer persistence, with effects peaking
near three years, whereas shocks from OECD countries have a shorter duration, peaking
within a year. This stark contrast highlights the unique impacts of US versus OECD-based
knowledge and entrepreneurial skill shocks. Figure 17 reports how a standard deviation
increase in US-based entrepreneurship impacts different types of productivity (panels (a)-
(c)) and inefficiency (panels (d)-(f)) through the GIRFs. Analogously, Figure 18 shows the
impact through GIRFs after a unit standard deviation in US-based innovation. Figures 17
and 18 demonstrate that changes in US-based entrepreneurship and innovation have long-
lasting effects on both productivity and inefficiency, which can be accurately estimated as
evidenced by the relatively narrow 95% Bayesian probability intervals.

Table 4 summarizes the marginal effects of local and global knowledge variables on
productivity and inefficiency outcomes, based on our empirical estimates.
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Figure 16: GIRFs of US and OECD

Notes: Shaded areas correspond to 95% Bayes probability intervals.
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Figure 17: GIRFs of US-based entrepreneurship on the different types of productivity and
inefficiency

Notes: Shaded areas correspond to 95% Bayes probability intervals.
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Figure 18: GIRFs of US-based innovation on the different types of productivity and ineffi-
ciency

Notes: Shaded areas correspond to 95% Bayes probability intervals.
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5 Concluding remarks

We introduce an empirical production model that incorporates technical knowledge and
entrepreneurial skills at both local and global levels, utilizing a multiple-input, multiple-
output approach to encapsulate the production of goods and services, innovation, and en-
trepreneurial capital. We explore efficiency and productivity within these processes, aiming
to quantify resource wastage and the impact of productivity shocks. The model emphasises
the role of market mechanisms, drawing on contemporary production function literature
that accounts for endogeneity in variable inputs due to inefficiency and productivity shocks.
We rigorously address model specification errors and potential non-causality from confound-
ing factors by employing statistical proxies for omitted variables. This approach ensures the
model’s predictive accuracy and the robustness of key parameters across various data sub-
sets and against the inclusion of additional variables. The analysis reveals that estimated
deconfounding factors relate to unique resources linked to domestic and global competitive
advantages. However, they primarily correct for model misspecifications caused by omitted
variables and nonlinearities. Although these unique resources remain unaffected by social
context changes, market dynamics exhibit sensitivity to such changes.

Efficiency and productivity in technical knowledge, innovation, and entrepreneurship
exhibit persistence and path dependence, driven by both domestic and global innovation
and entrepreneurship through appropriation mechanisms that vary substantially across the
world. The model connects the technology for producing goods and services with the tech-
nology for fostering innovation and entrepreneurship, accounting for the country-specific
absorptive capacity of global knowledge and best entrepreneurial practices. Despite path
dependence on generating new technical knowledge and entrepreneurial skills, the model re-
mains sensitive to changes in best practices at both local and global levels and is influenced
by the structure of the socioeconomic environment. The contextualization of the model
remains robust, maintaining its causal interpretation regardless of the inclusion or exclusion
of socioeconomic variables. Identifying unique resources related to the resource-based view
of the firm is challenging due to extensive deconfounding, but some deconfounding factors
weakly relate to this view, loading differently on domestic and global markets. This indi-
cates that unique resources are linked to both domestic and global competition, providing
competitive advantages. The model also reveals cross-country effects of changes in global
knowledge and entrepreneurial practices, as well as country-specific contributions to the
evolution of global knowledge and entrepreneurship.

Our study is novel in integrating appropriation technologies within a comprehensive
production framework that encompasses not only goods and services but also innovation and
entrepreneurial skills. The contextualization adopted in this study is of wider significance,
as the social context is incorporated into the analysis in a way that can allow for causal
interpretation. More precisely, our approach offers a robust approximation of how the
development of technical knowledge and entrepreneurship, on both local and global levels,
impacts the economic system.

Our findings offer fresh insights into the empirical importance of the Schumpete-
rian and Marshallian perspectives on knowledge creation. Our study suggests that the
Schumpeterian view, where firms with a substantial stock of internal knowledge excel in
generating new knowledge, and the Marshallian perspective, which posits that knowledge
externalities are the main source of knowledge promotion within a firm, are both relevant
and equally important processes in enhancing a firm’s knowledge stock. Additionally, con-
verting innovation and knowledge inputs into outputs through market facilitation supports
the Hayek-Mises-Kirzner notion of knowledge creation, which suggests that adopting suc-
cessful best practices influences innovative firms to engage in specific types of R&D that
support new business opportunities. Overall, our analysis demonstrates that global and
local knowledge flows, together with entrepreneurship and inefficiency, are central drivers of
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productivity dynamics. The policy implications are clear: fostering absorptive capacity and
reducing inefficiency can significantly amplify the benefits of global knowledge spillovers.
More broadly, our integration of inefficiency and knowledge flows into the production and
entrepreneurship framework also connects to management and accounting practices. By
distinguishing between productive capacity and realized output, the model offers insights
for benchmarking, cost control, and innovation-related investment. Moreover, conceptualiz-
ing global and local knowledge as productive resources raises relevant questions for transfer
pricing and the valuation of intangible assets in multinational corporations, particularly in
the context of digital trade (Rodrik, 2019).
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A Appendix A

A.1 Summary Statistics

Variable Mean S.D. Min Max
Entrepreneurship
Entrepreneurial Culture PCA -3.18E-09 5.202103 -9.59715 13.05509
Access to Finance PCA 5.86E-09 2.195229 -5.02726 5.587615
Self-employed PCA -8.99E-10 1.154384 -2.75131 3.510163
Manufacturing by Business Size PCA 2.75E-09 2.959229 -2.08221 12.7713
Entrepreneurial Markets PCA 2.57E-09 2.286578 -2.66886 5.960937
Entrepreneurial Policy PCA -5.01E-09 5.663176 -15.7091 18.2018
Gender Entrepreneurship PCA -7.49E-09 1.828578 -5.597451 5.678212
R&D expenditure (% of GDP) 0.9316269 0.941206 0.00544 4.95278
Company spending on R&D 3.340535 0.890364 1.628526 6.120293
University-industry collaboration in R&D 3.611065 0.900293 1.506101 5.968146
Availability of scientists and engineers 4.075251 0.763908 2.190862 6.297107
Extent of staff training 3.989529 0.714161 2.203271 5.945371
GCI 4.0: Innovation ecosystem component 69.16543 39.71289 1 141
Scientific and technical journal articles 9059.988 38298.06 0 528263.3
Researchers in R&D (per million people) 1996.61 1936.761 5.91183 8255.404
Markets
Gross Capital Formation 3.48E+11 1.39E+12 -2.47E+09 2.30E+13
Infrastructure 2.700193 0.696334 1.1 4.44
Imports, Creative goods 2.48E+09 8.41E+09 3444 1.06E+11
Imports, Creative services 4.47E+08 1.25E+09 -324000 2.24E+10
Exports, creative goods 2.42E+01 2.71E+01 0 1.00E+02
Exports, creative services 4.68E+08 1.44E+09 -156000 2.34E+10
Charges for the use of intellectual property(BoP, current US$) 9.61E+08 4.53E+09 -1.39E+07 9.43E+10
Annual growth rates of creative goods exports 12.10941 92.53526 -66.6977 1510.12
Trademark applications, total 16344.87 60886.61 1 2104414
Value added in the ICT sector (%) 8.053331 2.822208 0.91 16.75
Patent applications, nonresidents 4751.398 18454.01 1 336340
ICT goods exports 2.44E+10 5.65E+10 2000000 5.50E+11
Patent applications, residents 9011.695 55799.64 1 1393815
ICT Value added (%) 5.969929 1.864372 3.784 11.932
Trademark applications, direct nonresident 4626.648 7554.485 1 140906
Trademark applications, direct resident 12692.71 57973.63 1 1997058
Values and shares of creative goods, exports 6.83E+08 4.74E+09 1 1.91E+11
Triadic patent families 773.1554 2643.777 0 36256
Social Context
GDP per capita (constant 2015 US$) 18493.18 19076.57 347.5331 124343.2
GDP per capita growth (annual %) 2.568795 2.937308 -11.018 22.96213
LF participation rate, total (% of total pop. 15+) 63.75873 11.18565 34.502 88.805
LF with intermediate education (% of total pop.) 63.70957 18.50278 5.179204 97.46704
Share of youth not in education or training (% of youth pop.) 18.57457 10.72294 4.003843 56.9404
Share of youth not in education or training, female (% of female youth pop.) 23.43336 15.48912 5.207835 75.62576
Share of youth not in education or training, male (% of male youth pop.) 13.88271 7.836932 2.69933 38.67615
Adolescent fertility rate (births per 1,000 women ages 15-19) 39.34372 48.22773 0.635 204.5023
Unemployment, total (% of total labor force) (modeled ILO estimate) 7.973996 6.475833 0.245 31.073
Unemployment, female (% of female labor force) (modeled ILO estimate) 8.949844 7.51324 0.268 34.019
Unemployment, male (% of male labor force) (modeled ILO estimate) 7.207482 5.726073 0.203 29.022
Ease of getting electricity (0 = lowest performance to 100 = best performance) 85.97803 18.68256 1.4 100
Government expenditure on education (% of GDP) 4.947364 1.48676 0.913003 10.07196
Government expenditure on education (% of government expenditure) 14.17132 4.402727 5.194 24.73
Government expenditure per student, primary (% of GDP per capita) 13.87482 7.164995 2.525722 49.2697
Government expenditure per student, secondary (% of GDP per capita) 22.17272 9.436065 3.361467 60.06448
Government expenditure per student, tertiary (% of GDP per capita) 32.73322 14.7261 3.053555 99.47382
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