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Fixed-node diffusion quantum Monte Carlo (FN-DMC) is a widely-trusted many-
body method for solving the Schrödinger equation, known for its reliable predic-
tions of material and molecular properties. Furthermore, its excellent scalability
with system complexity and near-perfect utilization of computational power makes
FN-DMC ideally positioned to leverage new advances in computing to address in-
creasingly complex scientific problems. Even though the method is widely used as
a computational gold standard, reproducibility across the numerous FN-DMC code
implementations has yet to be demonstrated. This difficulty stems from the diverse
array of DMC algorithms and trial wave functions, compounded by the method’s
inherent stochastic nature. This study represents a community-wide effort to assess
the reproducibility of the method, affirming that: Yes, FN-DMC is reproducible
(when handled with care). Using the water-methane dimer as the canonical test
case, we compare results from eleven different FN-DMC codes and show that the
approximations to treat the non-locality of pseudopotentials are the primary source
of the discrepancies between them. In particular, we demonstrate that, for the same
choice of determinantal component in the trial wave function, reliable and repro-
ducible predictions can be achieved by employing the T-move (TM), the determinant
locality approximation (DLA), or the determinant T-move (DTM) schemes, while
the older locality approximation (LA) leads to considerable variability in results.
These findings demonstrate that, with appropriate choices of algorithmic details,
fixed-node DMC is reproducible across diverse community codes—highlighting the
maturity and robustness of the method as a tool for open and reliable computational
science.

1 Introduction
The credibility of a scientific result hinges on its reproducibility; independent and equiv-
alent experiments should lead to the same conclusion. Achieving reproducibility is, how-
ever, not easy. There are several historical examples from both social and natural sci-
ences [1–4] that have served to illustrate its challenges, and substantial ongoing effort
is dedicated to addressing this so-called “reproducibility crisis” [5, 6]. The problem of
reproducibility is particularly pertinent within computational experiments in the hard
sciences, where different computational codes should ideally lead to the same predic-
tion. Nonetheless, reproducibility can be compromised by small algorithmic differences,
undocumented approximations, and undetected bugs in the simulation software or its de-
pendencies (numerical libraries, compilers etc.). Determining the source of discrepancies
can be difficult, e.g., due to restricted source code availability [2, 7–9].

Here, we consider reproducibility in the context of the many-electron Schrödinger
equation [10], fundamental to the quantum mechanical description of matter, and its
countless applications to physics, chemistry, biology, engineering, and materials science.
In this context, the topic of reproducibility has been recently addressed [11, 12] in two
seminal papers for density functional theory (DFT) – the work-horse of materials science.
However, despite its widespread success, DFT often falls short of providing the necessary
quantitative, and sometimes qualitative, description of key complex systems. Fortunately,
advances in hardware, algorithms, and fundamental theories are paving the way for the
routine application of methods beyond the accuracy of DFT. The scope of these methods
has recently broadened significantly beyond simple benchmarks, towards an extensive
description of molecules, surfaces and condensed phases [13–18] that can include complex
dynamics facilitated by machine learning potentials [19–26].
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Several quantum many-body approaches have been developed as alternatives to DFT
for electronic structure calculations, particularly in systems where strong correlation or
high accuracy is essential. Methods such as GW [27, 28], dynamical mean-field theory
(DMFT) [29,30], coupled cluster theory [31,32], and auxiliary-field quantum Monte Carlo
(AFQMC) [33–36] have been successfully applied to both molecular and condensed-phase
systems. More recently, full configuration interaction quantum Monte Carlo (FCIQMC) [37,
38] and neural network-based quantum Monte Carlo [39–41] methods have also gained
attention. However, among the quantum Monte Carlo methods, real-space fixed-node
diffusion Monte Carlo (FN-DMC) remains the most widely used approach in materials
science and quantum chemistry, offering a compelling balance between accuracy, scal-
ability, and methodological maturity. Its use of explicitly correlated many-body wave
functions and its favorable scaling with system size make it particularly attractive for
benchmarking and systematic studies. For these reasons, this work focuses on FN-DMC
and its reproducibility across a variety of independently developed community codes.

FN-DMC is an accurate state-of-the-art computational approach for solving the Schrödinger
equation for a variety of systems, including molecules, solids, and surfaces. This method
obtains the electronic ground-state by performing an imaginary-time evolution from a
starting trial wave function ΨT(R). Within the Born-Oppenheimer approximation, R
consists of the real space positions of all the electrons. Typically, ΨT(R) is the product
of an antisymmetric function (e.g., a Slater determinant or a sum of Slater determi-
nants [42]) and a symmetric, positive function, called the Jastrow factor [43]. The Jas-
trow factor is explicitly dependent on electron-electron and electron-nucleus distances,
and able to directly capture a significant fraction of the electronic correlation.

The FN-DMC projection is achieved with an ensemble of electron configurations,
known as walkers, which evolve according to the imaginary-time Green function [44],
yielding a drift-diffusion process over discrete imaginary time steps, τ , to stochastically
sample the ground-state wave function; the stochastic uncertainty is then inversely pro-
portional to the square root of the number of samples. The main approximation in
FN-DMC is that the fixed-node wave function is constrained to have the same nodal
surface as ΨT(R), in order to avoid the so-called fermion sign problem. [45] This intro-
duces a variational error in the computed ground state energy. For single-reference sys-
tems, this error is typically small even for simple single determinant trial wave functions
built from DFT. FN-DMC exhibits almost perfect efficiency on modern supercomput-
ers [46–48] and a cubic scaling per Monte Carlo step with system size [49], making it
often the only computationally affordable method beyond DFT for treating large con-
densed phase systems with more than 100 atoms. Over time, numerous algorithmic
improvements have enhanced the accuracy, efficiency, and stability of FN-DMC. These
advances have enabled the successful application of FN-DMC to a wide array of problems
across the natural sciences, including the calculation of the energies of condensed phases
and large molecules [14, 15, 18, 50–52], the binding of molecules on surfaces [17, 53–58],
phase diagrams [20, 59–65], reaction barrier heights [66–70], spin-polarized uniform elec-
tron gas [71], two-dimensional electron liquid [72], lithium systems [73], electronic and
optical properties of delafossites [74], defect formation energies [75,76], calculation of en-
ergy derivatives [77–79], radical stabilization energies [80], excited states [81–90], training
of quantum machine learning models [91], electron-positron interactions [92], polymor-
phism [93–95], electronic band gaps [96], Landau-level mixing in quantum dots [97], lo-
calization in quantum dots and quantum wires [98–101], nearly exact density functional
quantities [102,103] and more. Recent progress in the use of neural networks as trial wave
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functions for FN-DMC [104–106] has served to boost its accuracy and potential future
uptake even further.

There are numerous QMC codes currently used for research, many of which have been
under development for over a decade. Each makes somewhat different algorithmic and
implementation choices, such as the use of different Jastrow factors and methods for eval-
uating single-particle orbitals. In this study, we compare eleven such codes and provide
details of the algorithmic and implementation choices in Section S8 of the Supplementary
Information (SI). This diversity raises open questions on the reproducibility of FN-DMC.
If FN-DMC is to be widely accepted as a highly accurate reference method, it is impor-
tant that consistent results can be obtained from these different FN-DMC codes. With
this goal in mind, the present work represents a collaborative effort among the users and
developers of eleven distinct FN-DMC codes, to rigorously assess the reproducibility of
FN-DMC.

A key obstacle to the reproducibility of FN-DMC comes from the use of non-local pseu-
dopotentials (NLPPs), which increase the efficiency of the method for systems with heavy
atoms. [107–109] While all-electron FN-DMC calculations are possible for light atoms,
the computational cost increases steeply with atomic number, scaling approximately as
O(Zα) with α between 5.5 and 6.5, depending on the method details [107,108,110]. As a
result, pseudopotentials are essential for practical FN-DMC applications involving heav-
ier elements. NLPPs allow one to solve the Schrödinger equation solely for the valence
electrons, by substituting the full local nuclear potential with a smooth non-local po-
tential near the nuclei. In general, NLPPs hinder reproducibility in electronic structure
methods, as NLPPs constructed in different ways can lead to somewhat different predic-
tions. NLPPs are a potential source of non-reproducibility in FN-DMC even when the
same NLPPs are used, because non-local pseudopotential operators create an additional
sign problem in the projector beyond the one that is always present for fermionic cal-
culations. To avoid this sign problem, these operators must be “localized”, [111] or at
least partially localized, [112] on a wave-function. A natural choice is to localize them
on the trial wave-function ΨT(R), introducing a dependence on both the determinantal
and the Jastrow components of the wave function. Since the Jastrow factor is different
in the different codes and its parameters are stochastically optimized, yielding possible
noise and reproducibility issues, some authors choose to localize only on the determinan-
tal component. [108,113–116] This removes the dependence on the Jastrow factor at the
cost of losing the desirable property that the treatment of the pseudopotential is exact in
the limit of exact ΨT. To summarize, there are currently four localization schemes: the
locality approximation (LA) [111, 117], the T-move (TM) approximation [112, 118, 119],
the determinant locality approximation (DLA) [108, 113–116], and the determinant T-
move (DTM) approximation [116]. These four schemes (LA, TM, DLA and DTM) result
in somewhat different projected wave-functions and therefore different total energies of
physical systems.

As computational science matures, reproducibility and transparency are increasingly
recognized as critical features of robust methodology. FN-DMC, while a powerful and
widely used method, has historically lacked comprehensive cross-code validation. This
work takes a step toward establishing that foundation by systematically comparing the
four localization algorithms across eleven FN-DMC codes (named alphabetically): Amolqc,
CASINO [46], CHAMP-EU [120], CHAMP-US [121], CMQMC, PyQMC [122], QMC=Chem
[123, 124], QMCPACK [48, 125], QMeCha [126], QWalk [127], and TurboRVB [47, 128].
Different forms of Jastrow factor are necessarily tested as part of this evaluation.
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We specifically consider the cases of the total energies of a methane molecule, a water
molecule, and a methane-water dimer, and the corresponding interaction energy. We
selected the water–methane dimer as a test case not only for its modest size—which
allows tight statistical convergence—but also because it spans two different interaction
regimes. It involves both weak intermolecular interactions (with a binding of only 27 meV)
and intramolecular energetics, enabling a sensitive probe of algorithmic consistency across
codes. In addition, it is a prototype of more complex systems such as methane clathrates,
important for gas storage and transportation. We show that consensus across all eleven
codes can be made when utilizing the TM, DLA and DTM approximations, particularly
following careful control of the discretized time step.

2 Results and Discussion
First, we compute the interaction energy of the methane-water dimer using the eleven
codes for the four different localization schemes (where available). The interaction energy
of the methane-water dimer,

Eint = E[methane–water]− E[methane]− E[water], (1)

is defined as the difference between the energy of the complex, E[methane–water], minus
the sum of the energies of the isolated water E[water] and methane E[methane] monomers
(see the Methods section for details on the geometries and the DMC simulation set-up).
All the interaction energies are extrapolated to the zero time-step limit according to the
procedure described in the SI and in Ref. [129].

We note that two results are reported for the TurboRVB code, namely TurboRVB
(DMC) and TurboRVB (LRDMC). TurboRVB (DMC) refers to the standard FN-DMC
algorithm with time step discretization and available with the T-move scheme. How-
ever, production simulations of FN-projection in TurboRVB are typically performed with
the lattice regularized DMC (LRDMC) [118, 130], which is an alternative approach to
DMC. In particular, LRDMC is based on a lattice regularization of the many-electron
Hamiltonian over a spatial mesh, and the ground state is projected out via the Green
function Monte Carlo method [131–133]. The zero mesh-size limit of the LRDMC pre-
diction is equivalent to the zero time-step limit of DMC, and is therefore also included
in this work. We also note that the T-move approximation itself comes in four different
versions as briefly discussed in the SI but, when presenting the TM results, we will not
distinguish between them because they differ only at finite time step, while we report
here the extrapolated values at zero time step, where they are equivalent.

The computed methane-water interaction energies are shown in Fig. 1. We plot the
FN-DMC interaction energy computed with each code with a colored circle. In addition,
the average among the interaction energies computed with different codes is reported
with a gray dashed line, and its statistical error with a shaded gray region. The average
value and its statistical error are computed as the mean value and the standard deviation
of the probability distribution reported in Eq. 2, discussed later on in the manuscript.
We compare the prediction of FN-DMC to the value computed by coupled cluster theory
with single, double, triple, and perturbative quadruple excitations [CCSDT(Q)], which
is expected be highly accurate for weak intermolecular interactions [134] (details of the
calculation are reported in Sec. S3 of the SI). Despite using only a single determinant
in the trial wave functions and a DFT nodal surface for simplicity, broadly speaking,
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Figure 1: FN-DMC interaction energy of the methane-water dimer with four different
methods. The black dashed horizontal line indicates the reference value of −27 meV
computed with CCSDT(Q). The gray dashed line is the average among the interaction
energies computed with different codes, and the shaded area is its statistical error bar.
The energy differences between the various codes are much larger when the LA scheme is
employed, compared to the narrower energy range obtained with TM, DLA, and DTM.
The computed averages always match the CCSDT(Q) value within the statistical error
bar.
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the FN-DMC is in excellent agreement with CCSDT(Q) (black dashed line). However,
a strikingly large spread of predictions across different codes is obtained when using the
LA. In contrast, the TM, DLA, and DTM methods show a much narrower spread of the
interaction energies.

The data reported in Fig. 1 allows us to estimate a probability distribution of the
interaction energy for each analyzed method. In particular, we write the DMC energy
estimated with the code i and the method α (α =LA, TM, DLA, DTM) as Eα,i, and
its statistical error bar as σα,i. Following the central limit theorem, we expect each
DMC estimate to be distributed according to a normal distribution, with mean Ēα,i and
standard deviation σ̄α,i. Since we do not know Ēα,i and σ̄α,i, we use here the current
estimates Eα,i and σα,i and define the probability distribution of the energy E for the
method α as:

Pα(E) =
1

Nα

∑
i∈ codes

1√
2πσ2

α,i

e
−

(E−Eα,i)
2

2σ2
α,i , (2)

where Nα is the number of codes for which the localization method α is evaluated. The
mean, µα, and the variance, σ2

α, of the energy for the distribution Pα(E) are respectively:

µα =

∫
EPα(E) dE =

1

Nα

∑
i∈codes

Eα,i, (3)

and
σ2
α =

∫
(E − µα)

2Pα(E) dE =
1

Nα

∑
i∈codes

σ2
α,i +

1

Nα

∑
i∈codes

(Eα,i − µα)
2. (4)

In particular, the variance takes into account both the statistical error bar of each FN-
DMC evaluation (σα,i) and its deviation from the mean value (Eα,i − µα).

The probability distributions are plotted in Fig. 2. When the LA is employed, the
probability distribution is spread across a large energy range of 25 meV, with a standard
deviation of 7meV. The agreement across different codes significantly improves with
the TM, DLA and DTM schemes, with the probability distributions showing a quite
localized peak (standard deviation of ca. 2meV or less) centered on −27 meV, −29 meV
and −28meV respectively. The DTM scheme gives the narrowest distribution, centered
on −28 meV, with a standard deviation of ca. 1 meV, but since only four out of the
eleven codes implemented DTM this is of limited significance. Overall, the analysis of
the probability distributions showcases that algorithms more sophisticated than LA need
to be employed to guarantee reproducibility among different FN-DMC codes.

A key factor in DMC is the convergence with respect to the simulation time step.
The projection is only accurate for sufficiently small time step, requiring calculations at
various time steps τ to be performed and extrapolated to the limit τ → 0. The required
time step depends on both the system being studied and the accuracy of the trial wave
function. For this reason, we also analyze the dependence of the probability distribution
Pα(E) on the simulation time step and report it in Fig. 3. In particular, we consider the
case of the DLA, for which we have computed the interaction energy with several codes
at multiple time steps (τ = 0.04, 0.02, 0.01, 0.005, 0.0025 a.u.). We notice that, for a large
time step τ = 0.04 a.u., the DLA energy predictions are spread across a large energy
range of over 60 meV. Decreasing the time step leads to a significant reduction in the
distribution’s variance. At the time step of τ = 0.0025 a.u., the probability distribution
becomes very narrow, indicating agreement among different codes. We highlight here
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Figure 2: Probability distribution Pα(E) (Eq. 2) of the FN-DMC interaction energy of
the methane-water dimer for four different schemes for treating NLPPs. The probability
distribution for the LA method is spread across a large energy range of ca. 25 meV,
showing the disagreement among different codes. The probability distribution is instead
much narrower when the TM, DLA, and DTM algorithms are employed, implying the
agreement on the final estimate of the interaction energy among different codes. The
black vertical dashed line indicates the reference value computed with CCSDT(Q).

that the converged time step is system-dependent, and the time step behavior is highly
sensitive to different codes and approximations, as shown in the SI. Therefore, an analysis
of the convergence with respect to the simulation’s time step is important to achieve
a converged and reproducible FN-DMC energy, and a fair comparison across different
packages.

Finally, we focus on the FN-DMC total energies of the methane-water dimer and its
constituent monomers, which are the fundamental quantities entering the computation of
the interaction energy. In Fig. 4, we report the probability distribution Pα(E) of the total
energies extrapolated to zero-time step. As in the case of the interaction energy, we find
that the total energies computed in the TM, DLA, and DTM approximations differ much
less among the codes than when the LA is employed. Their distributions are significantly
narrower, displaying standard deviations in a range from 2.5 to 10 times smaller than
the LA case (e.g., in the water molecule σLA ∼ 2.5σDLA, and in the methane monomer
σLA ∼ 10σDTM). Moreover, the standard deviations σαs of the TM, DLA and DTM
total energy distributions are close to the theoretical minimum allowed by the precision
of the performed FN-DMC simulations, as σαs are mostly determined by the stochastic
error associated to the FN-DMC energy evaluations (between 10−4 and 10−5 Hartree, see
SI), so the first term on the right hand side of Eq. 4. This behavior is expected for the
DLA and DTM schemes that depend only on the determinant part of the wave functions
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Figure 3: Convergence with respect to the simulation time step of the probability dis-
tribution, as defined in Eq. 2, for the DLA. The probability distribution is spread over
a large energy range of over 20 meV at large time steps (τ > 0.01 a.u.), while a narrow
distribution is achieved only for the smallest time step (τ = 0.0025 a.u.). The black
vertical dashed line indicates the reference value computed with CCSDT(Q).

(identical in all calculations). Remarkably, despite using different Jastrow factors, all
codes yield very similar extrapolated total energies even with the TM scheme, which has
the desirable property of treating the pseudopotential exactly in the limit of an exact ΨT.

3 Methods
The interaction energy of the methane-water dimer is computed by subtracting the iso-
lated molecule energies from the methane-water complex, as defined in Eq. 1. The ge-
ometry of the dimer (shown in the SI) was obtained from Ref. [135]. The geometries of
the monomers are the same as in the dimer. In this study, in order to try to achieve
consistent results, all eleven codes were required to use the same correlation consistent
effective core potential (ccECPs) [136, 137] and the corresponding triple-zeta basis set
(ccECP-ccpVTZ), as well as a Slater-Jastrow wave function with a single Slater deter-
minant whose orbitals are obtained from DFT calculations using the Perdew-Zunger
parametrization [138] of the local-density approximation. For the methane-water dimer,
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Figure 4: Probability distribution Pα(E) (Eq. 2) of the FN-DMC total energy (Hartree)
of the methane-water dimer (left), methane (middle), and water (right), for four different
schemes to treat NLPPs. The bars under the distributions indicate the standard devia-
tion.

this was sufficient to obtain accurate results. Some of the codes exchanged wave function
data via the TREXIO library. [139] This choice ensures that any observed variation is
due to implementation-level or algorithmic factors rather than differences in the choice
of geometry, pseudopotential, basis set, or single-particle orbitals. Every code imple-
ments a slightly different parametrization of the Jastrow factor, but all codes include in
the Jastrow factor an electron-electron (e-e), an electron-nucleus (e-n), and an electron-
electron-nucleus (e-e-n) term. The variational parameters of the Jastrow factor have been
optimized by minimizing either the variational energy or the variance, according to the
recommended scheme within each code. The time steps employed in each simulation are
in the range 0.001 to 0.1 a.u. The final estimates reported in Fig. 1 were extrapolated to
the τ → 0 limit using the procedure described in the SI. Further details specific to each
code, the schemes used to deal with the localization error, the time step extrapolation,
and the tests on the size consistency error are reported in the SI.

4 Summary and Conclusions
In this work, we investigated the reproducibility of FN-DMC calculations across 11 popu-
lar QMC codes which differ in the details of the algorithms used. This study represents a
significant collaborative effort, involving more than 300 FN-DMC calculations, spanning
11 codes, multiple DMC time steps, and different pseudopotential localization schemes.
Our results establish FN-DMC as a robust reference method by demonstrating its repro-
ducibility.
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In particular, we conducted a thorough analysis of two key obstacles to FN-DMC
reproducibility, namely the use of NLPPs and finite time-step bias. We systematically
compared four localization schemes, LA, TM, DLA, and DTM, for the interaction energy
of the methane-water dimer and the total energies of the methane and water molecules
and of the dimer. We found that agreement in the interaction energy across all eleven
codes is achieved in the limit of zero time step when employing the TM, DLA, and DTM
approximations. Notably, we achieve agreement within a standard deviation of 3 meV
on the interaction energy of the methane-water complex, approximately two hundred
thousand times smaller than the total energy of the dimer. Larger discrepancies are
observed with the LA scheme. Agreement in total energies across codes is also achieved,
at sub-millihartree precision. In particular, the total energies with the TM, DLA, and
DTM schemes have a standard deviation among the codes which is smaller than 6 meV.
This agreement further reinforces the reproducibility of FN-DMC.

Looking ahead, extending this cross-code effort to periodic solids would be a natural
next step. However, such systems introduce additional layers of complexity—including
basis set periodization, Brillouin zone sampling, and finite-size corrections—that go be-
yond the scope of this initial benchmark. Moreover, as only a subset of the participating
codes currently support periodic boundary conditions, we deliberately focused here on
molecular systems in open boundary conditions to establish a controlled but challenging
comparison for FN-DMC reproducibility.

Supplementary Material
See the supplementary material for comprehensive details on the computational setup
used in this study, including the geometry of the systems, descriptions of the trial wave
functions, and specific parameters for each of the 11 FN-DMC codes. Additional data
are provided on time-step convergence studies, localization error analysis, interaction
and total energy comparisons. The file also includes technical implementation notes from
each code, information on Jastrow factor optimization, and complete tables of all raw
FN-DMC energies and statistical uncertainties used to generate the figures in the main
text.
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