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A Resource-efficient Placement of Edge Servers for
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Abstract—Against the backdrop of global carbon neutrality
and low-carbon agriculture, the urgency to promote low-carbon
agricultural consumer electronics through the integration of
sustainable computing is increasingly evident. Edge servers, with
their high efficiency and low latency characteristics, have become
a crucial component of sustainable computing. Using their local
deployment and low-latency advantages, edge servers enable a
real-time decision optimization system, optimize energy-efficient
resource scheduling, reduce carbon emissions in the agricultural
production process, and thereby facilitate low-carbon agriculture.
However, for edge computing to deliver efficient, low-latency,
and low-energy services, it must rely on the strategic allocation
of edge servers. Suboptimal deployment strategies can result
in elevated network delays, diminished service reliability, and
higher levels of carbon output. The problem of identifying
the most effective locations for deploying a limited number
of edge servers, while addressing key performance concerns
such as latency, reliability, and environmental impact under
practical constraints, is commonly known as the kESP problem.
Recent research has addressed issues such as high latency, low
robustness, and carbon emission reduction in edge computing
networks, but has yet to simultaneously reduce latency, improve
robustness, and optimize computing resources while lowering
carbon emissions. To tackle this challenge, we introduce the
kESP-PSO approach, designed to mitigate high latency, enhance
service reliability, and reduce carbon emissions by determining
an efficient deployment strategy for edge servers. Specifically,
kESP-PSO method incorporates a Particle Swarm Optimization
(PSO) algorithm, which iteratively refines the location of edge
servers based on the spatial distribution of base stations and
mobile users across the target region. Through this mechanism,
kESP-PSO is capable of theoretically deriving the most effective
configuration of edge server placements. Extensive experiments
on Melbourne and Shanghai Telecom data sets demonstrate
that the proposed method significantly reduces carbon emissions
compared to baseline approaches, while also optimizing comput-
ing resources and effectively supporting low-carbon agricultural
consumer electronics.

Index Terms—Edge server placement, low-carbon agriculture,
delocalization, constrained optimization problem, integer pro-
gramming.
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THE widespread adoption of agricultural consumer elec-
tronics has significantly advanced the intelligence of

agricultural production, resulting in higher efficiency and
improved quality. In the context of global carbon neutrality
and the development of low-carbon sustainable agriculture,
integrating sustainable computing into the design of agricul-
tural consumer electronics enables next-generation products to
contribute more effectively to low-carbon, green and sustain-
able agriculture, particularly in terms of energy consumption,
efficiency, environmental impact [1], and resource recycling
[2]. Edge servers have become a pivotal solution for sustain-
able computing, attributed to their capability of streamlining
computing resources and minimizing carbon footprints [3], [4].
However, achieving these benefits through edge computing
[5]–[7] depends on the proper placement of edge servers
[8]. Suboptimal placement can result in elevated latency,
reduced reliability, and higher carbon emissions within the
edge computing network.

The challenge of Edge Server Placement (ESP), which
involves deciding where to position edge servers subject to
certain constraints, poses a significant and intricate difficulty.
Existing studies primarily focus on computation offloading
[9], [10], optimizing resource allocation [11], and reducing
carbon emissions, such as minimizing mobile user latency
[12], [13], maximizing throughput, improving base station
load balancing [14], increasing operator profits [15], enhancing
data allocation rationality [16], and reducing carbon emissions.
Recently, research has begun to explore the k Edge Server
Placement (kESP) problem. Given a set of candidate locations
for deploying edge servers within a specific region, the main
goal of these studies is to minimize both the number of
required edge servers and their associated energy consumption
[17], while also reducing overall network latency or improving
system robustness, all within the bounds of budgetary con-
straints [18], [19]. However, these methods only consider edge
servers serving users based on the signal coverage of their
base stations [20], without considering signal transmission
between base stations through fiber connections or high carbon
emissions.

Existing research on minimizing the total edge server
units is deterministic under the scenario where base stations
transmit signals to each other. Reducing edge server energy
consumption [21], lowering overall network latency [22], and
enhancing overall robustness all assume Single Access Edge
Server (SAES) scenarios where base stations are independent,
information cannot be exchanged, and edge servers rely on the
signal coverage of the base station they connect to for service
provision. However, in the context of MES (Multi-access Edge
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Server), the modeling approach changes [23].
Some research has also begun to discuss the challenge of

positioning edge servers within the MES context [24], [25].
Considering the quantity of base stations and the connection
status between them within a specific range, these studies
primarily focus on optimizing server layout [26], reducing
information transmission latency [5], improving user experi-
ence [27], [28], minimizing server deployment [29], [30], and
increasing operator profits [31]. However, most of these studies
focus on reducing system latency [32] and do not consider
system stability and high carbon emissions [33]. In the MES
context, a larger number of users connect to edge servers
through base station connections. However, these connections
may be disrupted due to weather, connection abnormalities,
or other special circumstances. If an edge server is situated at
a base station that has only a single connection link to other
base stations, and this link fails, the server becomes effectively
isolated from the broader edge server network. As a result, it
reverts to functioning as a standalone access server. This has
a significant impact on the user experience of users connected
to this server. The base station housing the server possesses
enhanced robustness, the situation of reduced user experience
due to base station connection interruptions will be reduced.

To tackle the challenges of high latency, low reliability, and
elevated carbon emissions in edge computing networks, this
paper proposes an edge server placement model called kESP-
PSO, aimed at optimizing the deployment of edge servers.
The primary goal of kESP-PSO is to enhance user satisfaction
and minimize environmental impact by jointly optimizing
transmission delay, handover delay, base station robustness,
and the variance between neighboring base stations. The pro-
posed model integrates three core components: the user delay
module, the base station robustness module, and the adjacent
base station variance module. The user delay module targets
the reduction of both transmission and handover delays, with
the objective of improving overall user experience through
minimized communication latency. The base station robust-
ness module enhances the stability and dependability of the
edge network by strengthening the resilience of base stations
hosting edge servers. Lastly, the adjacent base station variance
module aims to reduce discrepancies between neighboring
base stations, promoting a more balanced spatial distribution
across the network. This uniformity facilitates effective load
balancing among edge servers, ultimately contributing to re-
duced carbon emissions and optimized resource utilization.

Summary of Contributions.To the best of our knowledge,
this paper constitutes the initial scholarly examination of the
kESP-TSRN issue. The key contributions of this work are
outlined below:
• We are the first to consider the balance between trans-

mission delay, switching delay, a variance of nearby base
stations, and base station robustness when formulating a
kESP strategy.

• We frame the kESP-TSRN issue as a constrained opti-
mization challenge and demonstrate its complexity by
relating it to a 0-1 integer linear programming problem.

• We propose a method for solving the kESP-TSRN prob-
lem, called kESP-PSO, which utilizes integer program-

ming and Particle Swarm Optimization algorithm.
• An extensive set of experiments is conducted on a widely

recognized real-world dataset to evaluate the performance
of kESP-PSO in comparison with four established ap-
proaches.

II. RELATED WORK

The widespread adoption of agricultural consumer elec-
tronics has greatly enhanced the intelligence of agricultural
production, leading to increased efficiency and improved
quality. However, many of the core technologies in these
products lack sufficient emphasis on optimizing computing
resources and minimizing carbon emissions. By incorporating
sustainable computing into the design of agricultural consumer
electronics, the next generation of these products can make
a more substantial contribution to low-carbon, green, and
sustainable agriculture. This includes advancements in en-
ergy efficiency, reduced environmental impact, and improved
resource recycling. Edge computing has emerged as a vital
approach in sustainable computing, offering the dual benefits
of optimizing computing resources and significantly reducing
carbon emissions. In recent years, research on the Edge Server
Placement (ESP) problem has been scarce. Most studies have
focused on reducing the energy consumption of edge servers
[31], [32], optimizing server performance [26]–[29], [34]–[36],
and improving user experience [18], [37]–[40].As far as we are
aware, no studies to date have examined the balance between
the performance, robustness, and carbon emissions of edge
servers within a MES context.

A. Server Placement Optimization Strategy in Single Access
Edge Service (SAES) Environment

In the SAES environment, the optimization of deploying
edge servers at base stations can be classified into two
primary groups:1) Aiming to position servers to enhance
the quality of experience for mobile users by reducing in-
formation transmission delay [18]. In particular, Cui et al.
[18] set out to identify an edge server placement strategy
that maximizes coverage and robustness from the perspective
of mobile operators. To tackle this challenge, the authors
proposed integer programming algorithms and approximation
algorithms to address it.2) Seeking to determine a collection
of deployment sites to enhance server functionality [34],
[36]. In particular, Zhang et al. [36] focused on tackling
the challenge of server placement in the context of online
social networking platforms, with consideration for the time
expense associated with server-to-server communication. In
the context of content distribution networks (CDNs), Huang
et al. [34] proposed a methodological approach to pinpoint
optimal locations for CDN nodes. This strategy emphasizes
enhancing coverage efficiency to reduce end-to-end latency
across the network. The above server placement methods are
aimed at reducing transmission delay, improving robustness,
and optimizing performance. However, these methods are all
in the context of ECC, that is, edge servers can only provide
services through independent base stations connected to them.
However, with the advancement of technology, the concept
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of MES has been proposed, that is, edge servers can connect
to multiple base stations for data transmission. This way, the
server placement method in the SAES environment will not be
able to successfully complete the expected goals. Moreover,
these methods do not take into account the reduction of carbon
emissions in edge service networks.

B. Server Placement Optimization Strategy in Multi-Access
Edge Service (MES) Environment

Optimizing edge server placement at base stations in the
MES environment can be divided into two primary categories:
1) Optimizing server placement to reduce information trans-
mission delay and improve service quality [28], [29]. Specifi-
cally, Mazloomi et al. [29] proposed an RL-based framework
to tackle the challenges of edge server deployment and task
distribution in Mobile Edge Computing. The algorithm can
simultaneously minimize network latency and the number
of edge servers. In their work, Zhao et al. [28] explored
optimal edge server deployment approaches within mobile
edge computing environments, focusing on mitigating signal
interference and improving overall service delivery quality.
They introduced an approach that utilizes graph partitioning
(GP) and the Upper Confidence Bound (UCB) algorith, effec-
tively improving service quality.2) Finding a set of placement
locations to reduce server energy consumption [31], [32].
Specifically, Asghari et al. [32] aimed to reduce access delay,
improve load balancing, and increase server energy efficiency.
They divided the network’s geographic region into multiple
small regions and used a Coral Reef Optimization (CRO)
algorithm for local resource allocation in each region. Li et al.
[31] aimed at minimizing access delay while maximizing the
profit of the edge service provider. They developed a method
grounded in Particle Swarm Optimization (PSO) to optimize
profits by introducing a weighting factor q to balance access
latency and base station allocation, ensuring access delay while
maximizing the profit of the edge provider. However, these
methods primarily focus on reducing latency, improving user
service quality, and reducing the carbon emissions of edge
servers. Nevertheless, they do not address the robustness of
the edge server network.

Although previous methods have demonstrated their supe-
riority, they still face limitations in the context of sustainable
agricultural consumer electronics. Specifically, they are unable
to minimize the carbon footprint of edge servers while si-
multaneously ensuring their performance and robustness. The
method introduced in this study addresses this issue by op-
timizing the trade-offs between transmission delay, switching
delay, base station robustness, and the variance of nearby base
stations through the PSO algorithm. This enables the final edge
server placement decision to not only reduce carbon emissions
but also ensure the performance and robustness of the edge
servers.

III. PROBLEM FORMULATION

This study seeks to identify the best positioning of edge
servers by utilizing the location information of base stations
and mobile users within a specified range. This approach helps

reduce latency, enhance the robustness of edge computing
networks, and simultaneously decrease carbon emissions.

The latency of edge computing networks is affected by
transmission delay and handover delay. Transmission delay
is the communication lag at the user’s access base station
and the edge server, which affects the user’s experience
under normal circumstances. Handover delay determines the
latency difference incurred when users switch to a different
edge server under special circumstances, reflecting the gap in
user experience between special and normal situations. The
robustness of base stations significantly influences the overall
network reliability. Deploying edge servers on highly robust
base stations enhances the resilience of the edge computing
network accordingly. Carbon emissions are affected by the
distribution characteristics of neighboring base stations. An
imbalance in the count of base stations connected to an edge
server can lead to uneven server loads, resulting in increased
power consumption across the edge service network and
consequently higher carbon emissions. Given n base stations
B = {bs1, . . . , bsn}, we choose k of these as the deployment
sites for edge servers ES = {es1, . . . , esk}, which corre-
sponds to the server placement decision p = {p1, . . . , pn}.
Based on the coverage zones of the base stations, we choose
m mobile users U = {u1, . . . , um}. The best approach to
solving the kESP-TSRN problem seeks to minimize the trade-
off among transmission delay, handover delay, the variance of
neighboring base stations, and base station robustness.

TSRN(p)

= α
√
wtT (p)α + wsS(p)α + wrR(p)α + wnN(p)α.

(1)

The optimization objective of the kESP-TSRN problem is
to:

minimiz TSRN(p). (2)

Due to the time constraints associated with traditional
optimization methods, which often become impractical when
dealing with large-scale data, we adopt a Particle Swarm Op-
timization (PSO) algorithm to iteratively approach the optimal
solution. To ensure that edge servers are deployed at base
stations, we assign each edge server to its nearest base station
after every iteration. Table 1 summarizes the key symbols and
notations used throughout this paper.

IV. METHOD

A. Overview

In this section, we introduce the kESP-PSO method, de-
signed to improve the rationality of edge server placement.
This approach aims to reduce latency in edge computing
networks, enhance system reliability, and simultaneously lower
the carbon emissions of edge service networks. The kESP-
PSO method comprises three key components: the user delay
module, the base station robustness module, and the nearby
base station variance module. The overall workflow of the
algorithm is illustrated in Fig. 1.
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TABLE I: Key Notations

Notations Meanings

bsi ith base station
besi base station preferred edge server esi
B limited collection of base stations
c(bsi) number of base stations connected to

base station bsi
cov(bsi) coverage area of bsi
E set of edges
E1

bsi
preferred edge server for base station bsi

E2
bsi

alternate edge server for base station bsi
l(bsi, bsj) length between bsi and bsj
L matrix of length between base stations
m fixed number of mobile users
n fixed number of base stations
k bounded set of edge servers
di deployment strategy for base stations bsi
d a kESP-TSRN set
esk the edge server at position k
S limited collection of edge servers
s(esi) number of base stations selecting edge server

esi as their primary edge server
sl(bsi, bsj) shortest length between bsi and bsj
SL matrix of shortest length between

base stations
ui mobile user ui

Fig. 1: Flow of kESP-PSO algorithm

B. User Delay Module

In edge computing networks, a mobile user’s computation
request is initially transmitted to the base station to which
they are connected. Subsequently, the base station forwards
the data to an edge server via communication links such as
fiber optics. A certain amount of delay is introduced during
the data transmission between the base station and the edge
server. If the distance between them is excessive, the resulting
latency can significantly degrade the user experience. The
alternative edge server serves as a secondary option, typically
the second closest to the base station. When the primary
edge server experiences software failures or its computational
resources are heavily utilized, preventing it from processing
offloading requests, the base station switches to the alternative

edge server to ensure service continuity. However, if the
alternative edge server is located at a considerable distance
from the base station, this may lead to a notable increase
in service latency, negatively impacting agricultural consumer
electronics that rely on real-time connectivity. Moreover, the
increased distance between the base station and the alternative
edge server also results in higher energy consumption during
signal transmission, thereby contributing to elevated carbon
emissions from the edge service network. Therefore, kESP-
PSO method uses transmission delay and handover delay to
evaluate the user experience. A mobile user uj can only
transmit data to the base station bsi if uj is covered by bsi.
The connection between a mobile user and a base station can
be represented as:

ui ∈ cov(bsi),∀uj ∈ U, ∀bsi ∈ B. (3)

Base station bsi can only transmit data if there is a connec-
tion with another base station bsj . The connection between
base stations can be represented as:

bsj ∈ cov(bsi),∀bsi ∈ U,∀bsj ∈ B, (4)

where bsj is called the connected base station of bsi.
The set of connected base stations for bsi is represented

as N(bsi). According to (4), a connection matrix for all base
stations can be constructed to represent the connectivity of
each base station bsi to bsj . Given n base stations B =
{bs1, · · · , bsn}, the connection distance matrix is defined as:

L =

l(bs1, bs1) · · · l(bs1, bsn)
...

. . .
...

l(bsn, bs1) · · · l(bsn, bsn)

 , (5)

where l(bsi; bsj) shows the physical separation between the
base stations bsi and bsj calculated based on their coordinates.
l(bsi; bsj) = ∞ if and only if there is no connection between
bsi and bsj .

Given n base stations B = {bs1,· · · , bsn} and the connec-
tion distance matrix L, the shortest distance matrix for base
stations is defined as:

SL =

sl(bs1, bs1) · · · sl(bs1, bsn)
...

. . .
...

sl(bsn, bs1) · · · sl(bsn, bsn)

 , (6)

where sl(bsi; bsj) represents the shortest path distance be-
tween base stations bsi and bsj . This distance is calculated
by modeling the base stations and their interconnections as an
undirected graph structure, and then using the Floyd-Warshall
algorithm based on this graph. sl(bsi; bsj) = ∞ if and only
if there is no connecting path between bsi and bsj .

The placement decision di ∈ 0, 1 for base station bsi
signifies if an edge server is deployed at bsi. If an edge server
is deployed at bsi, then di = 1. Otherwise, di = 0.

Based on the shortest distance matrix for base stations and
the placement decisions, considering n base stations B =
{bs1,· · · , bsn}, the connection distance matrix L, and the
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placement decisions for k servers d = (d1, · · · , dk), the base
station-server connection distance matrix is defined as:

BS =

s(bs1, bs1) · d1 · · · s(bs1, bsn) · dn
...

. . .
...

s(bsn, bs1) · d1 · · · s(bsn, bsn) · dn

 . (7)

Based on the base station–server connection distance ma-
trix, for a given base station bsi, its transmission delay is
determined by the shortest distance to the base station that is
connected to the preferred edge server es1, i.e., |c(bsi)|. The
transmission delay of a base station is calculated as follows:

T (bsi) = s(bsi, E
1
bsi). (8)

According to the base station-server connection distance
matrix, given a base station bsi, its handover delay is evaluated
through the minimum distance to the base station linked with
the alternative edge server es2 and the minimum distance
to the base station linked with the preferred edge server
es1. When the preferred edge server fails, the base station
will offload tasks to the alternative server, i.e., |s(bsi)|. The
handover delay of a base station is calculated as follows:

S(bsi) = s(bsi, E
1
bsi)− s(bsi, E

2
bsi). (9)

Based on the transmission delay of the base stations, given
an edge server esi, the transmission delay of esi is evaluated
by the transmission delay of its neighboring base stations, i.e.,
|c(esi)|. The transmission delay of the edge server is calculated
as follows:

T (esi) =
∑

T (besi). (10)

Based on the handover delay of the base stations, given an
edge server esi, the handover delay of esi is evaluated by the
handover delay of its neighboring base stations, i.e., |s(esi)|.
The handover delay of the edge server is calculated as follows:

S(esi) =
∑

S(besi). (11)

For a kESP problem with the goal of user delay, the goal
is to reduce both transmission latency and handover latency,
which can be defined as follows:

minimize
√
T (d)2 + S(d)2, (12)

C. Base Station Robustness Module

In edge computing networks, edge servers deliver services
to mobile subscribers by exchanging data with other base
stations through the base stations where they are deployed.
In cases where the base station containing an edge server has
few connection paths to other base stations and these paths
are interrupted due to failures, the edge server will be unable
to connect to other base stations and provide edge computing
services, resulting in users who originally offloaded data to
this server needing to offload to other servers. This not only
leads to a degraded user experience but may also cause other
edge servers to fail due to insufficient computing resources,
potentially leading to the collapse of the entire edge service
network. Therefore, base station robustness is an important
component of system robustness. In the kESP-PSO method,

the number of connection channels of base stations needs to
be considered, where the placement of edge servers serves as
a metric for assessing the robustness of the edge computing
network.

With respect to a base station bsi, the network robustness
at the base station level is assessed by the number of base
stations connected to bsi, calculated as follows:

R(bsi) = C(bsi). (13)

Given an edge server esi, the network robustness at the edge
server level is assessed by the robustness of the base station
bsi where it is deployed, calculated as follows:

R(esi) =
∑

R(besi). (14)

For a kESP problem with the goal of base station robustness,
the objective is to maximize the base station robustness,
defined as follows:

minimiz R(d). (15)

D. Nearby Base Station Variance Module

In sustainable computing services, carbon emissions are a
critical metric. In edge computing networks, carbon emissions
are primarily determined by electricity consumption. The
power consumption of these networks consists of two main
components: one tasked with signal delivery and the other with
facilitating the functioning of edge servers delivering services.
The power consumption associated with signal transmission
is measured by the user latency module, which calculates the
spatial distance from the user to the edge server. This distance
directly impacts the power consumption during transmission.
The energy usage of edge servers is measured by the adjacent
base station variance module. Edge servers, even in an idle
state without performing any computing tasks, still consume a
significant amount of power, which can reach up to 60% of full
load power. The computational workload of an edge server is
directly influenced by the number of base stations that connect
to it. Through the strategic deployment of edge servers, it
becomes feasible to balance the distribution of connected base
stations across servers, thereby achieving a more efficient
allocation of computational resources. To assess the uniformity
of this deployment, the adjacent base station variance module
quantifies the number of base stations associated with each
edge server. This metric facilitates a more equitable distribu-
tion of processing tasks among edge servers. Such an approach
not only supports effective load balancing, minimizing energy
waste caused by underutilized or idle servers, but also reduces
handover latency at base stations that may result from server
overloading. As a result, the overall robustness of the edge
computing network is enhanced, contributing to lower service
latency and improved system performance.

According to the base station-server connection distance
matrix, the definition of the count of nearby base stations is
as follows:

Given n base stations B = {bs1,· · · , bsn}, the connection
distance matrix L, and the placement decisions for k servers
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d = (d1, · · · , dk), the count of nearby base stations can be
calculated as follows:

nn(esi) = s(esi) · di. (16)

Given the edge server placement strategy d = (d1,· · · ,
dk), the variance of nearby base stations for the edge server
is assessed by setting the number of base stations where
esi is located as the preferred base station. The variance of
neighboring base stations can be computed as follows:

N(esi) = c(esi). (17)

The mathematical expression for the variance of nearby base
stations, which serves as the primary optimization target in the
kESP problem,m is defined as follows:

minimiz N(d). (18)

E. Optimization Strategy

In the kESP-PSO framework, the optimal placement of
edge servers aims to minimize TSRN , where T and S
are influenced by the spatial relationship between mobile
users and edge servers, while R and N are determined by
the spatial distribution of base stations relative to the edge
servers. Consequently, the overall value of TSRN is jointly
affected by mobile users, base stations, and edge servers.
However, given that the positions of mobile users and existing
infrastructure are fixed in practical deployment scenarios, the
value of TSRN becomes entirely dependent on the selected
locations for the edge servers.

In the kESP-PSO approach, we initially relax the constraint
that edge servers must be collocated with base stations and
instead treat them as independent points distributed across
the deployment area. Under this assumption, the resulting
TSRN value from a given edge server placement is solely
determined by the positions of the edge servers. To address
this optimization problem, we model it as a Particle Swarm
Optimization (PSO) problem, in which the locations of edge
servers are continuously refined to minimize the TSRN met-
ric associated with the placement decision. After each iteration
updates the coordinates of the edge servers, each server is then
assigned to the nearest base station. The location of this base
station becomes the updated position for the corresponding
edge server. The TSRN value of an edge server is influenced
by its relative spatial relationship with the associated base
station. By leveraging the PSO algorithm, it becomes feasible
to identify the optimal geographical location for deploying
each edge server. Mapping the edge server to the closest base
station ensures that its actual deployment location remains
as close as possible to the computed optimal position. This
strategy effectively maximizes the performance of the overall
edge server network in terms of TSRN , thereby enhancing
system efficiency and service quality.

The TSRN calculation formula generated by the edge
server esi is as follows:

TSRN(esi)

= α
√
wtT (esi)α + wsS(esi)α + wrR(esi)α + wnN(esi)α

(19)

The historical locations and TSRN of edge server esi are
recorded in the sets Lesi and Resi , respectively. Lesi and Resi

are defined as follows:

Lesi = {l1esi , · · · , l
n
esi}, (20)

Resi = {r1esi , · · · , r
n
esi}, (21)

where lnesi represents the location of edge server esi after the
nth location update, and rnesi represents the TSRN of edge
server esi after the nth location update.

The locations and historical TSRN for every individual
edge server within the set are recorded in the sets Lm and Rm

after the location update. Lm and Rm are defined as follows:

Lm = {l1m, · · · , lnm}, (22)

Rm = {r1m, · · · , rnm}, (23)

where Ln
m represents the position of the nth edge server

within the server ensemble after the mth data update, and Rn
m

represents the TSRN of the nth edge server within the server
ensemble after the mth data update.

The TSRN generated by edge server esi can be calculated
by its transmission delay, handover delay, base station robust-
ness, and nearby base station variance, as follows:

kvj+1
esi = wvjesi +c1r1(Lim−xj

esi)+c2r2(Lgm−xj
esi), (24)

where Lim represents the global optimal solution, indicating
the server location with the minimum TSRN in the current
server layout. Ljm represents the historical optimal solution,
indicating the location of the server with the minimum TSRN
during the update process of the location of the edge server.

With the existing edge server layout as the initial solution,
the PSO method computes the next-generation positions of
edge servers through an iterative updating mechanism. The
updated location of each edge server can be formulated as
follows:

xj+1
esi = xj

esi + vj+1
esi . (25)

where vjesi = Lj
esi - Lj−1

esi , xj
esi = Lj

esi , Rim denotes the
historical optimal position of edge server bsi, where the
minimum TSRN value was achieved, and Rgm represents
the location of the edge server that achieved the minimum
TSRN after the nth position update. vj+1

esi , vjesi , R
m
i − xj

esi ,
Rgm - xj

esi are all vectors.
The following formula is applied to allocate each edge

server to the nearest base station:

xj+1
esi = L(nbs), (26)

Constraint Condition:

xj+1
esi ̸= xj+1

esk
, (27)

where L(nbs) searches for the base station closest to the
updated location of the edge server and checks if it meets
the constraint conditions. If the selected base station violates
these constraints, the search continues until the most suitable
base station is found.

The sets Lj+1
esi , Rj+1

esi , Li
j+1, Ri

j+1 will be updated by the
following formulas:

Lesi(j + 1) = xj+1
esi . (28)
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Algorithm 1. kESP-PSO

Input:Iteration number R,
base station dataset, user dataset, number of edge servers.
OutputEdge server placement strategy.
1.Initialize space;
2.Randomly assign edge servers to base stations;
3.while r<R do
4. for n edge servers do
5. Calculate the TSRN of edge servers.
6. Calculate the historical optimal solution and the global

optimal solution of the edge server.
7. Update of each edge server by incorporating its

the historical optimal solution, the global optimal solution,
the and an inertia-based velocity component.

8. Update the position of edge servers
according to (25);

9. Place edge servers on base stations according to
(26);

10. Update Lj+1
esi ;

11. Update Rj+1
esi ;

12. Update Li
j+1;

13. Update Ri
j+1;

14. end for
15. r ← r+1;
16.end while
17.return Li

j+1;

Resi(j + 1) = TSRN(esi). (29)

Lj+1(i) = xj+1
esi . (30)

Rj+1(i) = TSRN(esi). (31)

F. Feasibility Analysis

The PSO algorithm converges to the optimal solution on
the premise that the expected value of the variance of particle
positions reaches a certain location, meaning it converges to
the Dirac delta function. Moreover, the second moment of the
average velocity tends to zero.

H(n) :=

(
−w

2k

)2

|p̄n − E [p̄n]|2

+
3

2

∣∣V̄n

∣∣2 + 1

2

(
3c1
k

+
(−w)2

k2

) ∣∣p̄n − ¯Rim

∣∣2
+

−w

2k

∣∣p̄n − E [p̄n] , V̄n

∣∣+ −w

k

∣∣p̄n − R̄im, V̄n

∣∣ ,
(32)

The last two terms are necessary for the technique. Ac-
cording to the equivalence of Lemma 1, it can be proven that
E[H(n)] and E[|p̄n −E[p̄n]|2 + |V̄n|2 + |p̄n − ¯Rim|2] decay at
the same rate.

Lemma 1 The decay rate of H(n) is the same as that of
|p̄n − E[p̄n]|2 + |V̄n|2 + |p̄n − ¯Rim|2, which indicates

1

2

(
−w

2k

)2

|p̄n − E [p̄n]|2 +
1

2

∣∣V̄n

∣∣2 + 3c1
2k

∣∣p̄n − R̄im

∣∣2
≤ H(n)

≤ 5

2

((
−w

2k

)2

+ 1 +
3c1
k

+
−2w2

k2

)
·
(
|p̄n − E [p̄n]|2 +

∣∣V̄n

∣∣2 + ∣∣p̄n − R̄im

∣∣2) .
(33)

Lemma 2 The position that minimizes TSRN is
p̄n, R̄im, V̄n . Then H, as defined in (32), satisfies

d

dn
E[H(n)] ≤ w

2k
E
[∣∣V̄n

∣∣2]
−

(
− (c1 + 2c2)w

(2k)2
−
(

9c22
−wk

+
−3c1w

(2k)2

)
6e−αE

E
[
exp

(
−αE

(
Ȳn

))])
· E
[
|p̄n − E [p̄n]|2

]
−
(
− (c1 + c2)w

k2
+ κθ

(
3c1
k

+
(−w)2

k2

)
+

8κ2w

k

+
c22w

2k2c1
− 9c22

−wk
−
(

9c22
−wk

− 3c1w

(2k)2

)
12e−αE

E
[
exp

(
−αE

(
Ȳn

))])
· E
[∣∣p̄n − Ȳn

∣∣2] .
(34)

Proof: Let δp̄n := p̄n − E [p̄n] . We can obtain

d

dn
E
[
|δp̄n|2

]
= 2E

[〈
δp̄n, V̄n

〉]
. (35)

By applying Itô’s formula and Young’s inequality, we can
deduce

d

dn
E
[∣∣V̄n

∣∣2]
≤−

(
−2w

k
− c2

εk

)
E
[∣∣V̄n

∣∣2]
+

εc2
k

E
[
|yα (Rgm)− p̄n|2

]
− 2c1

k
E
[[
V̄n, p̄n − Ȳn |

]
, ∀ε > 0.

(36)

Using Itô’s formula, we can conclude

d

dn
E
[〈
δp̄n, V̄n

〉]
≤E

[∣∣V̄n

∣∣2]
+

w

2k

d

dn
E
[
|δp̄n|2

]
− c1 + 2c2

2k
E
[
|δp̄n|2

]
+

c1
2k

E
[∣∣R̄im − yα (Rgm)

∣∣2] ,
(37)

In the second line, when C is a constant, we can use
E [⟨δp̄n, C⟩] = 0 as well as Eq. (34) to expand the expression.
After rearranging the inequality, we get the following result

−w

2k

d

dn
E
[
|δp̄n|2

]
+

d

dn
E
[〈
δp̄n, V̄n

〉]
≤ E

[∣∣V̄n

∣∣2]− c1 + 2c2
2k

E
[
|δp̄n|2

]
+

c1
2k

E
[∣∣R̄im − yα (Rgm)

∣∣2] .
(38)

Applying Itô’s formula again, we get

d

dn
E
[∣∣p̄n − R̄im

∣∣2]
≤ 2E

[(
p̄n − R̄im, V̄n

)]
− 2κθE

[∣∣p̄n − R̄im

∣∣2] . (39)
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Finally, based on Itô’s formula and Young’s inequality, we
can conclude the following constraint

d

dn
E
[〈
p̄n − R̄im, V̄n

〉]
≤ −

(
c1 + c2

k
− 8κ2 − c22

2kλ1

)
E
[∣∣p̄n − R̄im

∣∣2]
+

3

2
E
[∣∣V̄n

∣∣2]+ c1
2k

E
[∣∣yα (Rgm)− R̄im

∣∣2]
+
w

k
E
[
⟨p̄n − R̄im, V̄n

〉]
.

(40)

Therefore, we have

d

dn
E[H(n)]

≤ −
(
−w

k
− 3c2

2εk

)
E
[∣∣V̄n

∣∣2]+ (c1 + 2c2)w

(2k)2
E
[
|δp̄n|2

]
−
(
− (c1 + c2)w

k2
+

8κ2w

k
+

c22w

2k2c1

+κθ

(
3c1
k

+
w2

k2

)
− 3

εc2
k

E
[∣∣p̄n − R̄im

∣∣2] i
+

(
3
εc2
k

+
3c1γ

(2k)2

))
E
[∣∣yα (Rgm)− R̄im

∣∣2] .
Lemma 3 By choosing PSO parameters, we ensure that

the coefficients of ·E
[
|p̄n − E [p̄n]|2

]
and ·E

[∣∣p̄n − Ȳn

∣∣2] in
inequality (34) are negative, thus achieving exponential decay
of E[H(t)].

c1 > 0, c2 > 6max

{
DY

t c1
4

, 0

}
,

κ > −
3c22
(
1 +DY

t

)
wθc1

,

and m < min

{
− wθ

16κ
,

c1w
2

18DY
t c22

}
,

(41)

Where we reduce DY
t = 12e−αE/E

[
exp

(
−αE

(
R̄im

))]
.

Theorem 1 Assume the initial data meets the requirements.
P1 µ1 > 0 with

µ1 : = − (c1 + 2c2)w

(2k)2

+

(
9c22
wk

+
3c1w

4k2

)
12e−αE

E
[
exp

(
−αE

(
R̄im

))] . (42)

P2 µ2 > 0 with

µ2 :=− (c1 + c2)w

k2
+ κθ

(
3c1
k

+
w2

k2

)
+

8κ2w

k

+
c22w

2k2c1
+

9c22
wk

+

(
9c22
wk

+
3c1w

(2k)2

)
24e−αE

E
[
exp

(
−αE

(
R̄im

))] .
(43)

P3 it holds

(
ακk

c1χ

(
CE + 2α2

)
+

24C2
Eκ

αχ3

)
E[H(0)]

E
[
exp

(
−α

(
E
(
R̄im

)
− E

))]
+

6κ

αχ

E
[
|∇E (p̄0)|2

]
E
[
exp

(
−α

(
E
(
R̄im

)
− E

))] < 3

32
,

(44)

where

χ :=
2

5

min {−w/(2k), µ1, µ2}
((−w/(2m))2 + 1 + 3c1/m+ 2(−w/m)2)

. (45)

E[H(t)] converges to 0 exponentially fast when t tends to
positive infinity.

Proof: First, define the time range

T := inf{t ≥ 0 : E
[
exp

(
−αE

(
R̄im

))]
<

1

2
E
[
exp

(
−αE

(
R̄im

))]
} with inf ∅ = ∞.

(46)

Since continuity implies N>0, we assert N = ∞, and then
we will prove this by contradiction.

d

dn
E[H(n)]

≤ −2

5

min {−w/(2k), µ1, µ2}
((−w/(2k))2 + 1 + 3c1/k + 2w2/k2)

E[H(n)]

=: −χE[H(n)],

(47)

In the inequality, we used the upper bound from Lemma 4.
The rate χ is implicitly defined, and 0 <χ< − w

m , where χ is
a positive number derived from preparatory conditions p1, p2.

E[H(n)] ≤ E[H(0)] exp(−χt). (48)

Begin to study the evolution of the function Y(n) =
E
[
exp

(
−αE

(
R̄im

))]
. According to Itô’s formula

d

dt
Y(t) ≥ −4ακe−αECE

· E
[∣∣p̄n − R̄im

∣∣2]− 4ακe−αEE[|∇E(p̄n)||p̄n−R̄im|],
(49)

By Young’s inequality, we note that
E
[
|∇E (p̄n)|

∣∣p̄n − R̄im

∣∣] ≤ e(χ/2)tα2E
[∣∣p̄n − R̄im

∣∣2] +

e−(χ/2)t/α2E
[
|∇E (p̄n)|2

]
. Therefore, we have

E
[
|∇E (p̄n)|2

]
= E

[∣∣∣∣∇E (p̄0) +

∫ n

0

∇2E (p̄s) V̄sds

∣∣∣∣2
]

≤ 2E
[
|∇E (p̄0)|2

]
+ 4C2

E tE[H(0)]

∫ n

0

exp(−χs)ds

= 2E
[
|∇E (p̄0)|2

]
+ 4C2

E tE[H(0)]
1

γ
(1− exp(−χt)).

(50)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

The penultimate step uses the explicit solution in Eq. (50).
Combining the above observations, we can obtain

d

dn
Y(n)

≥ −4ακe−αE
(
CE exp(−χn) + exp

(
−χ

2
n
)
α2
) 2k

3c1
E[H(0)]

− 4

α
κe−αE exp

(
−χ

2
n
)(

2E
[
|∇E (p̄0)|2

]
+

4C2
En

χ
E[H(0)]

)
.

(51)

By integrating Eq. (51), we know that t belongs to [0, T ]

Y(n)

≥ Y(0)− 4ακe−αE
(
CE

χ
+

2α2

χ

)
2k

3c1
E[H(0)]

− 4

α
κe−αE

(
2E
[
|∇E (p̄0)|2

] 2
χ
+

16C2
E

χ3
E[H(0)]

)
.

(52)

Reviewing the definition of Y and applying condition p3,
we infer that ∀n ∈ [0, N ], the following holds

E
[
exp

(
−αE

(
R̄im

))]
>

3

4
E
[
exp

(
−αE

(
R̄i0

))]
, (53)

This means there exists δ> 0 such that in [N,N + δ]
we have E

[
exp

(
−αE

(
R̄im

))]
≥ E

[
exp

(
−αE

(
R̄i0

))]
/2 ,

which contradicts the definition of N , hence N = ∞.
According to Eq. (48), we can deduce

E[H(n)] ≤ E[H(0)] exp(−χn)

and E
[
exp

(
−αE

(
R̄im

))]
≥ 1

2
E
[
exp

(
−αE

(
Ȳ0

))]
.

(54)

For some constant C>0, we get

E
[
|p̄n − E [p̄n]|2

]
≤ C exp(−χn),

E
[∣∣V̄n

∣∣2] ≤ C exp(−χn),

and E
[∣∣p̄n − R̄im

∣∣2] ≤ C exp(−χn).

(55)

By Jensen’s inequality

∣∣∣∣ ddtE [p̄n]

∣∣∣∣ ≤ E
[∣∣V̄n

∣∣]
≤ C exp(−χn/2) → 0

as n → ∞.

(56)

Therefore, we conclude that when n is sufficiently large,
meaning when the number of iterations is large enough, p can
reach the optimal solution. Thus, the PSO algorithm is capable
of finding the optimal placement of edge servers.

V. PERFORMANCE EVALUATION

This section presents a comprehensive evaluation of the
performance of kESP-PSO through experiments carried out
using popular real-world data sets.

TABLE II: Experimental Settings

Data Sets K N M

EUA
Datasets Set#1.1 4 5,10,∼,30,35 80

Set#1.2 2,3,∼,8,9 20 80
Set#1.3 4 20 20,40,∼,140,160

Telecom Shanghai
Dataset Set#1.1 4 5,10,∼,30,35 80

Set#1.2 2,3,∼,8,9 20 80
Set#1.3 4 20 20,40,∼,140,160

A. Data Introduction

This study utilizes two datasets: EUA datasets [41], [42]
containing data on 1,465 actual base stations located in the
urban area of Melbourne, and Telecom Shanghai Dataset [31],
[43], [44] with data on 1,417 base stations in urban Shanghai.
Base station coverage areas are categorized as large, medium,
and small based on mobile user density within their range,
with corresponding radii of 8,000 to 7,000 meters, 3,000 to
2,000 meters, and 430 to 750 meters. Each base station’s
coverage area is randomly selected within its category. Base
station connections are established based on coverage areas,
with a connection established between two base stations if
one is within the other’s coverage area. Base stations need
to be connected to other base stations to ensure normal data
transmission. If a base station has a small number of external
connections, some base stations may interconnect, forming
a closed network, which contradicts the background of our
experiment. Therefore, we set a rule that if a base station has
fewer connections than one-seventh of the total number of
selected base stations, it will connect to the nearest base station
to meet the minimum requirement. In reality, base stations
located in city centers have a higher deployment density, serve
a larger number of users, and pose a greater challenge for
edge server placement algorithms. The experiment selected
data from 125 base stations in Melbourne’s central business
district and 164 base stations in Shanghai’s urban area based
on their coordinate information.

B. Parameter Settings

To evaluate the effectiveness of these nine methods, three
parameters were varied: 1) the count of base stations used for
positioning edge servers, as changes in the number of base
stations directly affect the choice of edge server placement
locations, which in turn influences decisions on the process
of deploying edge servers; 2) the total number of edge
servers, which affects the distribution of edge server coverage
areas; In scenarios characterized by a constrained quantity
of edge servers, how to allocate them reasonably so that
each user can access sufficient computing resources poses a
challenge for server placement algorithms; 3) The quantity
of mobile device users, which determines the load on each
edge server; The allocation strategy for edge servers under
low user density differs significantly from that required in
high-demand scenarios, necessitating an adaptive placement
algorithm capable of making intelligent and context-aware
resource distribution decisions. The weights for transmission
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Fig. 2: Assessment of Effectiveness under EUAdatasets experiments (Set #1).

delay, handover delay, base station robustness, and variance of
nearby base stations were set to be equal, i.e., w1 = w2 = w3=
w4 = 1/4. Based on the summary of previous experiments,
when the particle swarm iteration steps reach 800, a good
balance between computation time and result quality can be
achieved. Therefore, each experiment runs the particle swarm
optimization for 800 iterations. To ensure statistical reliability,
every experiment is executed repeatedly for 100 runs, and the
reported result represents the mean value across all trials.

C. Comparison Experiments

The experiments compare kESP-PSO with four other meth-
ods to evaluate their effectiveness: 1) a method compromising
between base station coverage and robustness (kESP-CR CP),
2) a method maximizing the overall profit of edge servers
(kESP-PA), 3) a method compromising between transmission
delay, throughput, and user density (kESP-UCB), and 4) a
method compromising between edge server coverage area and
edge server overlap area (kESP-LBSMEC).

· kESP-CR CP [18]: Considers a compromise between
edge server coverage and robustness.

· kESP-PA [31]: Considers maximizing the profit of edge
servers.

· kESP-UCB [28]: Considers a compromise between
transmission delay, throughput, and user density.

· kESP-LBSMEC [45]: Considers a compromise between
edge server coverage area and edge server overlap area.

Figure 2 compares the effectiveness of kESP-PSO with
kESP-CR CP, kESP-PA, kESP-UCB, and kESP-LBSMEC
in the experiment set #1. Overall, kESP-PSO achieves the
minimum TSRN-CP in all cases. kESP-PSO has an aver-
age advantage of 39.8081%, 32.39304%, 44.16238%, and
44.64895% over kESP-CR CP, kESP-PA, kESP-UCB, and
kESP-LBSMEC, respectively, over the course of experiment
sets #1.1, #1.2, and #1.3. In detail, as illustrated in Figure
2(a), within experiment set #1.1, kESP-PSO has advantages
of 39.84406%, 31.3656%, 42.41398%, and 42.99296% over
kESP-CR CP, kESP-PA, kESP-UCB, and kESP-LBSMEC,
respectively. As shown in Figure 2(b), within experiment set
#1.2, kESP-PSO has advantages of 37.90927%, 30.57407%,
42.30149%, and 42.4766% over kESP-CR CP, kESP-PA,

kESP-UCB, and kESP-LBSMEC, respectively. As shown in
Figure 2(c), within experiment set #1.3, kESP-PSO, ESP-
SR has advantages of 41.38031%, 34.83816%, 47.28061%,
and 47.94681% over kESP-CR CP, kESP-PA, kESP-UCB, and
kESP-LBSMEC, respectively.

Figure 3 compares the effectiveness of kESP-PSO with
kESP-CR CP, kESP-PA, kESP-UCB, and kESP-LBSMEC in
experiment set #2. Overall, kESP-PSO achieves the min-
imum TSRN-CP in all cases. kESP-PSO has an aver-
age advantage of 75.45565%, 62.20537%, 82.53591%, and
75.51733% over kESP-CR CP, kESP-PA, kESP-UCB, and
kESP-LBSMEC, respectively, over the course of experiment
sets #2.1, #2.2, and #2.3. In detail, as illustrated in Figure
3(a), within experiment set #2.1, kESP-PSO has advantages
of 72.84820%, 59.96922%, 80.23471%, and 73.94777% over
kESP-CR CP, kESP-PA, kESP-UCB, and kESP-LBSMEC,
respectively. As shown in Figure 3(b), within experiment set
#2.2, kESP-PSO has advantages of 64.90660%, 52.88316%,
75.89349%, and 67.68684% over kESP-CR CP, kESP-PA,
kESP-UCB, and kESP-LBSMEC, respectively. As shown
in Figure 3(c), within experiment set #2.3, kESP-PSO has
advantages of 87.000265%, 72.348301%, 90.377505%, and
83.769215% over kESP-CR CP, kESP-PA, kESP-UCB, and
kESP-LBSMEC, respectively.

D. Ablation Experiments

The experiments compare kESP-PSO with four other meth-
ods to evaluate their effectiveness: 1) a transmission delay-
oriented method (kESP-T), 2) a switching delay-oriented
method (kESP-S), 3) a base station robustness-oriented method
(kESP-R), and 4) a variance of nearby base stations-oriented
method (kESP-N).

· kESP-T: Considers only transmission delay, ignoring
switching delay, base station robustness, and variance of
nearby base stations.

· kESP-S: Considers only switching delay, ignoring trans-
mission delay, base station robustness, and variance of nearby
base stations.

· kESP-R: Considers only base station robustness, ignor-
ing transmission delay, switching delay, and variance of nearby
base stations.
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Fig. 3: Assessment of Effectiveness under Telecom Shanghai Dataset experiments (Set #2).
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Fig. 4: Assessment of Effectiveness under EUAdatasets experiments (Set #3).

· kESP-N: Considers only variance of nearby base sta-
tions, ignoring transmission delay, switching delay, and base
station robustness.

Figure 4 compares kESP-PSO with kESP-T, kESP-S, kESP-
R, and kESP-N in terms of TSRN-CP in the experiment
set #1. Overall, kESP-PSO achieves the minimum TSRN-
CP, the theoretical minimum trade-off between transmission
delay, switching delay, base station robustness, and variance
of nearby base stations. Its performance significantly sur-
passes kESP-T, kESP-S, kESP-R, and kESP-N by 41.65133%,
71.30973%, 36.05192%, and 40.27124%, respectively. This
means kESP-PSO can find a kESP-TSRN strategy with
41.65133%, 71.30973%, 36.05192%, and 40.27124% more
TSRN-CP than kESP-T, kESP-S, kESP-R, and kESP-N, re-
spectively. Figure 4(a) illustrates that as the number of base
stations increases, the TSRN value gradually stabilizes. This
trend can be attributed to the fact that more base stations result
in smaller user groups, thereby reducing the number of users
connected to each individual base station. However, for edge
servers, although a higher number of base stations may lead to
an increased connection count, the total number of users they
serve remains relatively constant. The addition of more base
stations brings the placement of edge servers closer to their
ideal locations. Nevertheless, since the user population does
not change significantly, its influence on transmission delay,

handover delay, and variance among neighboring base stations
is minimal. In terms of base station robustness, increasing
the number of base stations can indeed improve system
resilience; however, the overall impact on TSRN remains
limited. Therefore, the growth in the number of base stations
has only a marginal effect on the TSRN metric. Figure
4(b) demonstrates that increasing the number of edge servers
results in a reduction in TSRN . This occurs because a larger
number of edge servers leads to a decrease in the number
of base stations assigned to each one, which in turn reduces
the number of users served by each edge server. As edge
servers are positioned closer to end users, both transmission
and handover delays are reduced. Moreover, the distribution
of edge servers becomes more balanced, lowering the variance
among nearby base stations. Consequently, expanding the
number of edge servers contributes to a decline in TSRN .
Figure 4(c) reveals that an increase in the number of users
leads to a noticeable rise in TSRN . This is primarily due to
the increased load on edge servers, as more users connect to
them, resulting in higher overall transmission and handover
delays. As a result, the TSRN value increases accordingly.

VI. CONDUCTION

In this study, we introduce an algorithm for edge server
deployment strategy based on 0-1 programming to address
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the challenges of high latency, low reliability, and high carbon
emissions in multi-user edge computing (MEC) scenarios. The
algorithm aims to enhance user experience while reducing
carbon emissions. By utilizing the Particle Swarm Optimiza-
tion Algorithm, the algorithm can find an optimal edge server
placement method that minimizes user latency for edge ser-
vices, fortifies the resilience of the edge server ecosystem, and
reduces server power consumption. Empirical findings show
that the kESP-PSO algorithm surpasses alternative approaches.
In the future, we will investigate server placement choices
under server capacity constraints and optimize the algorithm
to save computation time.

ACKNOWLEDGMENTS

This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 62372242
and Grant 92267104, Jiangsu Provincial Major Project on
Basic Research of Cutting-edge and Leading Technologies
under Grant BK20232032, the Natural Science Foundation
of Jiangsu Province under Grant BK20240692, the Natural
Science Foundation of the Jiangsu Higher Education In-
stitutions of China under Grant 24KJB520021, the Startup
Foundation for Introducing Talent of NUIST, the National
Students’ Platform for Innovation Training Program, and the
NUIST Students’ Platform for Innovation Training Program
XJDC202510300236.

REFERENCES

[1] J. Xu, H. Xiang, S. Zang, M. Bilal, M. Khan, and G. Cui, “A dqn-
based edge offloading method for smart city pollution control,” Tsinghua
Science and Technology, 2024.

[2] O. Rawlley, S. Gupta, K. Mahajan, and S. Rathore, “Green-emulto: A
next generation edge-assisted multi-level traffic orchestrator for green
computing in consumer autonomous vehicles,” IEEE Transactions on
Consumer Electronics, vol. 70, no. 4, pp. 7291–7301, 2024.

[3] X. Xu, F. Wu, M. Bilal, X. Xia, W. Dou, L. Yao, and W. Zhong,
“Xrl-shap-cache: an explainable reinforcement learning approach for
intelligent edge service caching in content delivery networks,” Science
China Information Sciences, vol. 67, no. 7, p. 170303, 2024.

[4] Y. Liang, M. Yin, W. Wang, Q. Liu, L. Wang, X. Zheng, and T. Wang,
“Collaborative edge server placement for maximizing qos with dis-
tributed data cleaning,” IEEE Transactions on Services Computing, pp.
1–15, 2025.

[5] X. Xu, X. Zhou, X. Zhou, M. Bilal, L. Qi, X. Xia, and W. Dou, “Dis-
tributed edge caching for zero trust-enabled connected and automated
vehicles: A multi-agent reinforcement learning approach,” IEEE Wireless
Communications, vol. 31, no. 2, pp. 36–41, 2024.

[6] X. Xu, H. Dong, L. Qi, X. Zhang, H. Xiang, X. Xia, Y. Xu, and
W. Dou, “Cmclrec: Cross-modal contrastive learning for user cold-start
sequential recommendation,” in Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2024, pp. 1589–1598.

[7] X. Xu, H. Dong, H. Xiang, X. Hu, X. Li, X. Xia, X. Zhang, L. Qi,
and W. Dou, “C2lrec: Causal contrastive learning for user cold-start
recommendation with social variable,” 2025. [Online]. Available:
https://doi.org/10.1145/3711858

[8] H. Xiang, X. Zhang, X. Xu, A. Beheshti, L. Qi, Y. Hong,
and W. Dou, “Federated learning-based anomaly detection with
isolation forest in the iot-edge continuum,” 2024. [Online]. Available:
https://doi.org/10.1145/3702995

[9] S. Goudarzi, S. A. Soleymani, M. H. Anisi, A. Jindal, F. Dinmoham-
madi, and P. Xiao, “Sustainable edge node computing deployments in
distributed manufacturing systems,” IEEE Transactions on Consumer
Electronics, vol. 70, no. 1, pp. 1471–1481, 2024.

[10] J. Jing, Y. Yang, X. Zhou, J. Huang, L. Qi, and Y. Chen, “Multi-uav
cooperative task offloading in blockchain-enabled mec for consumer
electronics,” IEEE Transactions on Consumer Electronics, vol. 71, no. 1,
pp. 2271–2284, 2025.

[11] M. K. Hasan, N. Jahan, M. Z. A. Nazri, S. Islam, M. Attique Khan,
A. I. Alzahrani, N. Alalwan, and Y. Nam, “Federated learning for
computational offloading and resource management of vehicular edge
computing in 6g-v2x network,” IEEE Transactions on Consumer Elec-
tronics, vol. 70, no. 1, pp. 3827–3847, 2024.

[12] B. Liu, H. Tian, Z. Shen, Y. Xu, and W. Dou, “A consortium blockchain-
based edge task offloading method for connected autonomous
vehicles,” ACM Trans. Auton. Adapt. Syst., 2024. [Online]. Available:
https://doi.org/10.1145/3696004

[13] Q. Qi, T. Shi, K. Qin, and G. Luo, “Completion time optimization in uav-
relaying-assisted mec networks with moving users,” IEEE Transactions
on Consumer Electronics, vol. 70, no. 1, pp. 1246–1258, 2024.

[14] X. Xia, Z. Wang, R. Sun, B. Liu, I. Khalil, and M. Xue, “Edge unlearning
is not “on edge”! an adaptive exact unlearning system on resource-
constrained devices,” in 2025 IEEE Symposium on Security and Privacy
(SP), 2025, pp. 2546–2563.

[15] Q. Li, X. Huang, B. Liu, P. Li, J. Zhang, and K. Chen,
“Cache-aware i/o rate control for rdma,” in Proceedings of the
9th Asia-Pacific Workshop on Networking, 2025, p. 9–16. [Online].
Available: https://doi.org/10.1145/3735358.3735376

[16] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp.
1784–1797, 2018.

[17] F. Zeng, Y. Ren, X. Deng, and W. Li, “Cost-effective edge server
placement in wireless metropolitan area networks,” Sensors, vol. 19,
no. 1, 2019.

[18] G. Cui, Q. He, F. Chen, H. Jin, and Y. Yang, “Trading off between
user coverage and network robustness for edge server placement,” IEEE
Transactions on Cloud Computing, vol. 10, no. 3, pp. 2178–2189, 2022.

[19] X. Xu, K. Meng, H. Xiang, G. Cui, X. Xia, and W. Dou, “Blockchain-
enabled secure, fair, and scalable data sharing in zero-trust edge-end
environment,” IEEE Journal on Selected Areas in Communications,
vol. 43, no. 6, pp. 2056–2069, 2025.

[20] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[21] Y. Li and S. Wang, “An energy-aware edge server placement algorithm
in mobile edge computing,” in 2018 IEEE International Conference on
Edge Computing (EDGE), 2018, pp. 66–73.

[22] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server place-
ment in mobile edge computing,” Journal of Parallel and Distributed
Computing, vol. 127, pp. 160–168, 2019.

[23] A. A. Vali, S. Azizi, and M. Shojafar, “Resp: A recursive clustering
approach for edge server placement in mobile edge computing,” ACM
Trans. Internet Technol., vol. 24, no. 3, Jul. 2024. [Online]. Available:
https://doi.org/10.1145/3666091

[24] A. Asghari and M. K. Sohrabi, “Server placement in mobile cloud
computing: A comprehensive survey for edge computing, fog computing
and cloudlet,” Computer Science Review, vol. 51, p. 100616, 2024.

[25] T. Wang, Y. Liang, X. Shen, X. Zheng, A. Mahmood, and Q. Z. Sheng,
“Edge computing and sensor-cloud: Overview, solutions, and directions,”
vol. 55, no. 13s, 2023.

[26] X. Zhang, Z. Li, C. Lai, and J. Zhang, “Joint edge server placement and
service placement in mobile-edge computing,” IEEE Internet of Things
Journal, vol. 9, no. 13, pp. 11 261–11 274, 2022.

[27] R. Li, Z. Zhou, X. Zhang, and X. Chen, “Joint application placement
and request routing optimization for dynamic edge computing service
management,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 12, pp. 4581–4596, 2022.

[28] Z. Zhao, H. Cheng, X. Xu, and Y. Pan, “Graph partition and multiple
choice-ucb based algorithms for edge server placement in mec envi-
ronment,” IEEE Transactions on Mobile Computing, vol. 23, no. 5, pp.
4050–4061, 2024.

[29] A. Mazloomi, H. Sami, J. Bentahar, H. Otrok, and A. Mourad, “Re-
inforcement learning framework for server placement and workload
allocation in multiaccess edge computing,” IEEE Internet of Things
Journal, vol. 10, no. 2, pp. 1376–1390, 2023.

[30] V. Tiwari, C. Pandey, A. Dahal, D. S. Roy, and U. Fiore, “A knapsack-
based metaheuristic for edge server placement in 5g networks with
heterogeneous edge capacities,” Future Generation Computer Systems,
vol. 153, pp. 222–233, 2024.

[31] Y. Li, A. Zhou, X. Ma, and S. Wang, “Profit-aware edge server
placement,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 55–67,
2022.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[32] A. Asghari and M. K. Sohrabi, “Multiobjective edge server placement
in mobile-edge computing using a combination of multiagent deep q-
network and coral reefs optimization,” IEEE Internet of Things Journal,
vol. 9, no. 18, pp. 17 503–17 512, 2022.

[33] S. Li, G. Liu, L. Li, Z. Zhang, W. Fei, and H. Xiang, “A review on
air-ground coordination in mobile edge computing: Key technologies,
applications and future directions,” Tsinghua Science and Technology,
2024.

[34] C. Huang, A. Wang, J. Li, and K. W. Ross, “Measuring and evaluating
large-scale cdns,” in ACM IMC, vol. 8, 2008, pp. 15–29.

[35] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the use and performance
of content distribution networks,” in Proceedings of the 1st ACM SIG-
COMM Workshop on Internet Measurement, ser. IMW ’01. New York,
NY, USA: Association for Computing Machinery, 2001, p. 169–182.

[36] Y. Zhang, D. Li, and M. Tatipamula, “The freshman handbook: A hint
for server placement in online social network services,” in 2012 IEEE
18th International Conference on Parallel and Distributed Systems,
2012, pp. 588–595.

[37] B. Li, M. Golin, G. Italiano, X. Deng, and K. Sohraby, “On the
optimal placement of web proxies in the internet,” in IEEE INFOCOM
’99. Conference on Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No.99CH36320), vol. 3, 1999, pp.
1282–1290 vol.3.

[38] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web
server replicas,” in Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat. No.01CH37213),
vol. 3, 2001, pp. 1587–1596 vol.3.

[39] E. Cronin, S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt, “Con-
strained mirror placement on the internet,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1369–1382, 2002.

[40] S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt, “Constrained
mirror placement on the internet,” in Proceedings IEEE INFOCOM
2001. Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat.
No.01CH37213), vol. 1, 2001, pp. 31–40 vol.1.

[41] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, “Optimal edge user allocation in edge computing with variable
sized vector bin packing,” in Service-Oriented Computing: 16th Inter-
national Conference, ICSOC 2018, Hangzhou, China, November 12-15,
2018, Proceedings 16. Springer, 2018, pp. 230–245.

[42] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and Y. Yang,
“A game-theoretical approach for user allocation in edge computing
environment,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 3, pp. 515–529, 2020.

[43] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C.-H. Hsu, “User
allocation-aware edge cloud placement in mobile edge computing,”
Software: Practice and Experience, vol. 50, no. 5, pp. 489–502, 2020.

[44] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A rein-
forcement learning approach,” IEEE Transactions on Mobile Computing,
vol. 20, no. 3, pp. 939–951, 2021.

[45] G. Cui, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang, “Location privacy
protection via delocalization in 5g mobile edge computing environment,”
IEEE Transactions on Services Computing, vol. 16, no. 1, pp. 412–423,
2023.

BIOGRAPHY SECTION

Yusen Wang is currently pursuing the B.S. degree
with the School of Software, Nanjing University
of Information Science and Technology, China. His
research interests include edge computing, cloud
computing, and Deep Learning.

Xiaolong Xu (Senior Member, IEEE) received the
Ph.D. degree in computer science and technol-
ogy from Nanjing University, China, in 2016. He
is currently a Full Professor with the School of
Soft-ware, Nanjing University of Information Sci-
ence and Technology. His research interest includes
Cloud Computing, Big Data, Edge Computing, Deep
Learning, and Federated Edge Learning . He has
published over 100 peer-review papers in inter-
national journals and conferences, including IEEE
TPDS, IEEE TKDE, IEEE TSC, ACM TOSN, IEEE

TITS, IEEE TII, ACM TOIT, ACM TOMM, ACM TIST, IEEE TVT, IEEE
IOT, IEEE TCC, IEEE TBD, IEEE TCSS, IEEE TETCI, Software: Practice
and Experience, World Wide Web journal, Information Sciences, Journal of
Network and Computer Applications, etc. He was selected as the Highly Cited
Researcher of Clarivate 2021, 2022 and 2023.

Ruoshui Wang WangRsMomo@gmail.com, School
of Software, Nanjing University of Information Sci-
ence and Technology.

Muhammad Bilal (Senior Member, IEEE) received
the Ph.D. degree in information and communication
network engineering from the School of Electronics
and Telecommunications Research Institute (ETRI),
Korea University of Science and Technology, in
2017. In 2023, he joined Lancaster University as
a Senior Lecturer (Associate Professor) with the
School of Computing and Communications. He is
a prolific author, known for his wide-ranging con-
tributions to numerous articles published in interna-
tionally renowned, top-tier journals. His pioneering

work has also led to the successful acquisition of multiple U.S. and Korean
patents. His research interests include network optimization, cyber security,
the Internet of Things, vehicular networks, information-centric networking,
digital twins, artificial intelligence, and cloud/fog computing.

Wei Liu received the B.S. degree in computer sci-
ence and technology engineering from the Nanjing
University of Information Science and Technology
in 2022, where he is currently pursuing the mas-
ter’s degree in software engineering. His research
interests include mobile edge computing, big data,
Internet of Things, and machine learning.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Guangming Cui received his Master’s degree from
Anhui University, China, in 2018 and his PhD
degree from Swinburne University of Technology,
Australia, in 2022, in computer science. Currently,
he is an associate professor at Nanjing University
of Information Science & Technology, China. He
has published more than 30 peer-reviewed articles in
international journals and conferences, including the
IEEE TMC, IEEE TPDS, IEEE TSC, IEEE TDSC,
JSAC, ICWS, ICSOC, etc. His research interests
include edge computing, service computing, mobile

computing, and software engineering.


