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Abstract

Designing protection mechanisms to safeguard against ever-changing environmental

processes requires the accurate estimation of future extreme hazards combined with

reliable measures of their uncertainty. This thesis uses the peaks-over-threshold (POT)

framework of extreme value modelling to provide high-quality tail inferences. The fun-

damental problem with POT analyses is selecting the threshold to characterise extreme

values, with inferences sensitive to the choice. We develop improved methodology for

threshold selection and for quantifying the uncertainty of this selection in tail inferences.

Even for independent and identically distributed data, threshold selection is a diffi-

cult task. Existing approaches can be subjective, sensitive to tuning parameters, or rely

on asymptotics, resulting in suboptimal performance in practice. We develop a novel,

objective, and effective methodology to automate threshold selection and propagate its

uncertainty through to high quantile inference. We extend these approaches to handle

non-identically distributed data with smooth generalised additive model formulations

for the threshold and excess distribution parameters.

We adapt the methodology to address requirements for important applications. For

coastal flooding, we focus the goodness-of-fit metric on the upper tail to ensure that the

selected thresholds lead to accurate fitting to the most extreme observations. For mod-

elling induced earthquakes, we use geophysical covariates regarding the measurement

network and stresses induced by gas extraction, to form spatio-temporal threshold and

excess distribution parameter functions. We develop a powerful estimator for a key
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quantity in seismicity modelling, the magnitude of completion. This estimator reduces

the uncertainty and provides stronger evidence of a finite upper-endpoint than in pre-

vious research. We expand our uncertainty algorithms to account for the unknown

model-covariate formulation and incorporate this uncertainty in inference for future

endpoint summaries and quantile estimates relevant for design standards. Our meth-

ods have much wider applicability for inference for other induced seismicity contexts

and wider environmental hazards.
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Chapter 1

Introduction

1.1 Motivation

Accurate modelling and forecasting of extreme values is important for a wide variety of

applications in areas such as finance, actuarial science, engineering, and environmental

science. In particular, with the continued escalation in the volatility of weather and

environmental phenomena due to the effects of climate change and global warming,

providing accurate, informative estimates of expected hazards, along with meaningful

quantifications of the uncertainties in such estimates, has become absolutely essential.

Natural hazard events such as storms, wildfires, coastal and river flooding, and earth-

quakes can pose severe threats to infrastructure and populated areas, depending on the

quality of defences in place and the magnitude, frequency and type of the hazard.

Earthquakes pose a significant threat to infrastucture and populations with inad-

equate defences in place. For example, on 28th March 2025, central Myanmar was

struck by a magnitude 7.7ML earthquake, measured in local magnitude, a logarith-

mic scale used to measure earthquake severity. The earthquake was followed by an

aftershock of magnitude 6.4ML 12 minutes later. The combined impact left the city of

Mandalay with significant damage including numerous collapsed buildings and bridges

1
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and unfortunately, caused multiple fatalities and injuries in the local populations. The

underlying physical processes that generate earthquakes are highly complex. Modelling

such processes is complicated further by limitations in the measurement equipment.

Hence, advanced statistical approaches are necessary to provide informative estimates

of future hazards. The area of statistical seismology has a large focus on modelling

tectonic earthquakes resulting from movement in the tectonic plates deep below the

Earth’s surface. For such modelling, there is usually a wealth of large magnitude earth-

quakes observed across a large space and time window (Panakkat and Adeli, 2007;

Zhuang et al., 2012; Kagan and Jackson, 2016).

While the magnitude and frequency of environmental hazards are continuously af-

fected by the changing climate, anthropogenic processes can also contribute to increased

risk more directly for certain environmental phenomena. We are interested in modelling

induced earthquakes, the generating processes of which are directly affected by human

activity. While these earthquakes have similarities with tectonic earthquakes, they

present a variety of unique modelling challenges and opportunities. Induced earthquake

catalogues typically do not contain the quantity of large magnitude events observed in

tectonic datasets, in fact, the catalogues overall are generally significantly smaller. Fur-

thermore, the events occur with much smaller magnitudes which can pose an extra

difficulty for accurate detection, location and measurement, especially for the smaller

magnitudes in the catalogue. Despite the smaller magnitudes, the events occur at much

shallower depths relative to tectonic earthquakes and so, for an equivalent magnitude,

induced earthquakes can cause much more damage in a more localised region.

A key quantity for induced earthquake modelling is the magnitude of completion,

mc, which is the smallest earthquake magnitude which can be detected and recorded

with certainty if it occurs at a particular location and time. The value of mc varies

in space and time and relates directly to the density and sensitivity of the geophone

network used to detect them. For the Groningen gas field in the Netherlands, the specific
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induced earthquake catalogue of interest in this thesis, it is conventionally accepted that

since 1995, a conservative estimate of the magnitude of completion is 1.5 ML across

the whole region and period. However, with investment in the geophone network,

the ability to detect smaller magnitudes events has improved, i.e., the magnitude of

completion has reduced. Thus, an estimate of mc is needed which allows for spatial

and temporal variability, ensuring that this investment is not made redundant. We

discuss the Groningen gas field further in the next section and detail our approaches

for estimation of the magnitude of completion in Chapter 5.

The fewer observations in the induced earthquakes context also poses difficulties

for parameter estimation and comparison of models and so, exploiting as much of

the available data and information in a statistical model for induced earthquakes is of

paramount importance. There are also unique opportunities, in this context, due to the

direct relation between human activity and induced seismicity. As a result, for induced

seismic catalogues, detailed records are typically kept of the human activity relating

to such processes. Geophysicists combine such records with geological knowledge and

geophysical models to estimate relevant physical covariates with good descriptive po-

tential which we can utilise to improve statistical models. Furthermore, the geophysical

models can be used to provide estimates of these covariates into the future under dif-

ferent scenarios - these can be utilised to provide useful future hazard estimates from

statistical models. Induced seismicity could potentially be reduced or stopped with the

right adjustments to the activity causing it, e.g., in Groningen, prior to the termination

of extraction, in an attempt to reduce the seismic hazard, changes were made to the

method of gas extraction to extract more evenly across the field and throughout the

year. Failing this, improved infrastructure, designed to the standards derived from the

resulting estimates of such models, can reduce the hazard to a safe level.

The ability to alter the process generating such earthquakes also presents a further

modelling challenge in the form of covariate dependence which must be incorporated
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into the model, in this low-data setting. Moreover, improvements to the networks of

geophones used to detect, locate and measure the magnitude of induced seismic events

enables the detection of smaller magnitude earthquakes. This leads to a problem of

missing data from times and locations where the network was too sparse or insensitive

to detect, with probability one, the magnitudes of the missing events, i.e., events below

the magnitude of completion. Accounting for such changes in both the earthquake

generating process and the detection systems poses the major challenge in modelling

induced seismicity, which we address in Chapter 5.

The main goal with modelling induced seismicity, and with the environmental phe-

nomena mentioned above, is to provide meaningful estimates of future extreme hazards

to contribute to more informed decision-making on the actions or interventions neces-

sary to ensure the risk to infrastructure or population is at an acceptable level. Typical

approaches for induced seismicity modelling rely on the Gutenberg-Richter law for

earthquakes (Gutenberg and Richter, 1956) which states that earthquake magnitudes

are exponentially distributed. This tends to lead to over-estimation of the upper-tail

of induced magnitudes and also, assumes an identical distribution which is unlikely to

be accurate for induced earthquake catalogues with known dependence on covariates.

Across a variety of applications, when interested in estimates of extreme hazards be-

yond what we have already observed, we tend to focus on accurately modelling the

most extreme observations. In any setting, this poses a challenge: By definition, such

rare events do not occur often and so, within the observational window, usually only

a small number of extreme observations are available. Extreme value theory (Coles,

2001; Leadbetter et al., 2012; Dey and Yan, 2016) is an area of statistics focussed on this

particular problem and provides a powerful and robust framework which provides mod-

els focussed on the most extreme observations of a dataset and importantly, enables a

mathematically-justified basis for the estimation of hazard levels beyond what we have

previously observed. As a result, extreme value analysis has become instrumental in
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guiding the design of hazard protection infrastructure.

The most widely-used extreme value approach is the peaks-over-threshold (POT)

framework (Davison and Smith, 1990) which fits a model to the observations in a dataset

which exceed a suitably high threshold. Within this framework, the most fundamental

challenge is the selection of the threshold that defines which observations are deemed

extreme and thus, used in model fitting. This problem is fundamental to any threshold-

based extreme value modelling approach regardless of the hazard of interest. Developing

improved generic methodology for the estimation of this fundamental quantity is the

main focus of this thesis, and features across all chapters. Although induced seismicity

is a key driver of the methodological development in this thesis, we demonstrate the

versatility of our techniques by applying them to other environmental applications. In

Chapter 4, we adapt the methodology for the specific requirements of risk assessments

for coastal flooding. In Chapter 6, we apply our methodology with key adjustments to

simulated data from a global data challenge (where the truth is unknown).

When utilising such threshold models, parameter estimates and the subsequent in-

ferences or hazard estimates, as well as the uncertainties of such quantities, can be

highly sensitive to the choice of threshold. In this thesis, we develop methods to select

this threshold which improve upon the leading existing approaches in the context of

independent and identically distributed (IID) data in Chapter 3.

For the context of induced seismicity, with appropriate model setup, the extreme

value threshold can be used as an estimator for the magnitude of completion. With

the exponential distribution a special case of the POT framework, there is a clear

link which can be drawn. In this thesis, in Chapter 5, we also develop a specialised

method to select a spatio-temporal threshold function of unknown formulation for the

more complex context of induced seismicity. In this context, selecting the threshold

at the appropriate level is of even more importance. Making use of as much of the

available information without overly biasing the model due to the missing data below
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the magnitude of completion is key in providing useful future hazard assessments. The

methodology developed for this specialised context is also easily applicable to other

datasets exhibiting covariate dependence and/or data missing-not-at-random. In the

following section, we provide some background on the specific catalogue of induced

earthquakes for which we develop our methodology.

Typically, when applying extreme value methods in practice, uncertainty is quanti-

fied by treating the threshold as fixed and propagating parameter estimation uncertainty

through to inference using standard approaches. However, given the fundamental re-

lationship of the unknown threshold to the resulting inference, omitting this aspect of

uncertainty can lead to misleading and potentially, underestimated hazard forecasts.

In this thesis, in Chapter 3, we develop methods to incorporate the uncertainty in the

threshold estimation through to quantile inference. This aspect of uncertainty is also

vital to include in the induced seismicity context due to the unknown formulation of the

magnitude of completion across space and time. We also detail approaches to account

for the uncertainty in the estimation of the magnitude of completion and its spatio-

temporal formulation. These methods again are widely applicable to other contexts as

a way to account for threshold estimation uncertainty and the uncertainty in the form

of covariate dependence within the model.

1.2 The Groningen gas field

In 1959, the Groningen gas field in the Netherlands was discovered. It is estimated that

the reservoir contained nearly 3000 billion cubic metres (bcm) of gas when discovered

and today, Groningen still remains one of the largest natural gas fields in the world.

Extraction from the gas field began in 1963 operated by the Dutch Petroleum Society

(Nederlandse Aardolie Maatschappij, NAM), a joint operation between Royal Dutch

Shell and Exxon Mobil. The gas field is located in the north-east of the Netherlands
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spanning numerous populated towns and villages. With this in mind, the region has

been monitored for low seismic events resulting from gas extraction since 1986. The

network of geophones used to detect, locate and record the magnitude of such events is

owned by the Royal Netherlands Meteorological Institute (KNMI). This network was

not sufficient to detect and locate events to a meaningful degree of accuracy until April

1995, the start date of the earthquake catalogue we utilise in our analysis. Continued

investment in this network beyond this date has improved detection ability over time

and allowed for deeper understanding of induced seismicity. The region now has the

highest resolution geophone network on the planet.

While magnitudes of induced earthquakes are typically significantly lower than tec-

tonic earthquakes, e.g., the largest earthquake recorded in the Groningen gas field was

3.6ML in August 2012, induced earthquakes occur at shallow depths and thus, can

lead to significant damage. As of now, despite much of the gas reserves remaining,

gas extraction has ceased at Groningen, partially due to similarly large events of mag-

nitude 3.4ML occurring in January 2018 and May 2019, after steps had been taken

to mitigate induced seismicity. However, despite the cessation of extraction, accurate

modelling and forecasts of induced seismicity are still vital in maintaining the safety of

the surrounding areas as seismic events will still occur.

The Groningen region is fault-closed and tectonically stable meaning that all earth-

quakes can be attributed to the physical characteristics of the reservoir and its rela-

tionship with the human activity. The gas reservoir is located at a depth of 2.6-3.2km

below the surface and is composed of a porous rock structure filled with gas from the

carboniferous layer below. Combined with the pre-existing fault structure of the reser-

voir, pore pressure depletion due to gas extraction and the resulting compaction of the

reservoir under the additional stresses are considered the key factors in inducing seismic

events in the Groningen region. As gas is removed through wells, the remaining gas

redistributes slowly across the reservoir to equalise areas of high and low pressure. As
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this pressure in the pore space redistributes, it can put additional stresses on the rock

structure which can lead to compaction. This compaction can place additional stresses

on faults and if these stresses reach a limiting stress, the fault can slip and cause seismic

activity. Even after the cessation of extraction, the gas continues to slowly redistribute,

changing stresses on the rock structure and potentially inducing further seismic events.

This complex geophysics is beyond the remit of a statistical model, but is captured in

numerical models used by geophysicists which provide an informative, spatio-temporal

covariate, known as the Kaiser stress, which has been demonstrated in statistical ap-

proaches to be useful in describing the intensity of earthquake occurrences and their

magnitudes. Physically-motivated projections of this covariate into the future can also

be used in statistical models for future hazard estimates under extraction scenarios.

1.3 Overview of thesis

This thesis has three main objectives; firstly, to develop improved methods for the

selection of an appropriate modelling threshold when utilising a threshold-based ex-

treme value model in a variety of contexts; secondly, to quantify the uncertainty in the

threshold estimation procedure and to propagate this through to inference; thirdly, to

improve the statistical modelling of induced earthquake magnitudes and provide useful

future hazard estimates for the specific application of the Groningen gas field.

This thesis aims to preserve the integrity of the papers that have been submitted for

publication. As a result, each of the main chapters of novel research corresponds to a

submitted paper. Hence, each of those chapters has overlap with the broader literature

review of the thesis.

Chapter 2 provides an overview of the existing methods for modelling univariate ex-

treme values. We introduce the two key extreme value models of maxima and threshold

exceedances under the IID assumption and then, outline how such models can be ad-
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justed when the IID assumption is relaxed.

Chapter 3 details our novel methodology for the automated selection of a threshold

for univariate extreme value modelling for IID random variables. Threshold selection is

a fundamental problem in any threshold-based extreme value analysis. While models

are asymptotically motivated, selecting an appropriate threshold for finite samples is

difficult and highly subjective through standard methods. Inference for high quantiles

can also be highly sensitive to the choice of threshold. Too low a threshold choice

leads to bias in the fit of the extreme value model, while too high a choice leads to

unnecessary additional uncertainty in the estimation of model parameters. We develop

a novel methodology for automated threshold selection that directly tackles this bias-

variance trade-off. We also develop a method to account for the uncertainty in the

threshold estimation and propagate this uncertainty through to high quantile infer-

ence. Through a simulation study, we demonstrate the effectiveness of our method for

threshold selection and subsequent extreme quantile estimation, relative to the lead-

ing existing methods, and show how the method’s effectiveness is not sensitive to the

tuning parameters. We apply our method to the well-known, troublesome example of

the River Nidd dataset. This chapter is published as Murphy et al. (2025) with an

accompanying Github repository (Murphy et al., 2023) detailing the implementation of

our methodology. Alongside the published paper, there is a large online supplementary

material including more detailed description of methods and additional simulation ex-

periments, analyses and results. The description of methods in this supplementary has

been used in the literature review of this thesis while the additional analyses are shown

in Appendix A.

Chapter 4 builds upon the work of Chapter 3 to develop an extension of the au-

tomated threshold selection method for a systematic application to coastal flood risk.

Peaks over threshold techniques are commonly used in practice to assess coastal flood

risk, with the threshold often still selected through rule of thumb or subjective methods.
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Using the data-driven method of Chapter 3 for this specific application led to thresh-

old choices with resulting fits inadequate at the most extreme observations. We adapt

our methodology of Chapter 3 to focus the threshold selection on capturing the most

extreme values in the upper tail, at the cost of additional uncertainty in subsequent

inference. We apply our method to a global data set of coastal observations, where

we illustrate the robustness of our approach and compare it to the methods developed

in Chapter 3. Material related to this chapter has been submitted for publication as

Collings et al. (2025).

Chapter 5 extends the methodology developed in Chapter 3 and builds upon the

work of Varty et al. (2021) to develop an automatic selection procedure for a spatio-

temporal magnitude of completion for induced earthquake modelling. Seismic activity

arising from gas injection/extraction underground poses a significant hazard to the sur-

rounding infrastructure and populations. Efficiently estimated models of the upper tail

of the earthquake magnitude distribution, that can vary with intervention strategies,

are vital for understanding such hazards into the future. To this end, we utilise an

extreme value model by employing a new procedure for the automatic selection of a

parametric spatial-temporal threshold function, utilising knowledge of changes in the

measurement network. This threshold function choice excludes data from the analysis

that are subject to sampling bias. We propose novel methods to propagate the uncer-

tainty in the threshold estimation and the choice of covariate formulation through to tail

inference. We apply our methodology to the catalogue of induced earthquakes from the

Netherlands’ Groningen gas field, with our methods delivering clear improvements over

existing analyses and providing the first quantification of the different sources of uncer-

tainty in such estimates. The methodology has the potential to be useful for a range

of novel extreme value contexts where data are missing due to measurement equipment

limitations, where parametric models are used for the threshold, and in accounting for

threshold uncertainty in subsequent inference.
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Chapter 6 introduces a variety of methods to capture the extremal behaviour of com-

plex environmental phenomena where flexible techniques for modelling tail behaviour

are required. We introduce a variety of such methods, which were used by the Lan-

copula Utopiversity team to tackle the EVA (2023) Conference Data Challenge. This

data challenge was split into four challenges, labelled C1-C4. Challenges C1 and C2

comprise univariate problems, where the goal was to estimate extreme quantiles for a

non-stationary time series exhibiting several complex features. For these, we propose

a flexible modelling technique, based on generalised additive models, with diagnostics

indicating generally good performance for the observed data. Challenges C3 and C4

concern multivariate problems where the focus was on estimating joint probabilities. For

challenge C3, we propose an extension of available models in the multivariate literature

and use this framework to estimate joint probabilities in the presence of non-stationary

dependence. Finally, for challenge C4, which concerns a 50-dimensional random vector,

we employ a clustering technique to achieve dimension reduction and use a conditional

modelling approach to estimate extremal probabilities across independent groups of

variables. This chapter has been published as André et al. (2025).

Chapter 7 concludes with a summary of the contributions of this thesis and dis-

cussing the limitations of the presented methods and potential avenues for future work.



Chapter 2

Literature review

2.1 Introduction

In this chapter, we outline the extreme value methods relevant throughout the rest of

the work in this thesis. In a variety of applications, such as hydrology or sports (Coles

et al., 2003; Spearing et al., 2023), interest lies in the behaviour of data lying in the tails

of a distribution. In such contexts, data values can be quite sparse and thus, standard

statistical approaches are not particularly useful. Extreme value theory is a growing

branch of statistics which provides asymptotically-justified frameworks for modelling

the most extreme values of a distribution. It is applicable and quite reliable when

events are scarce (Reiss and Thomas, 2007; Coles, 2001). Most importantly, it provides

convenient methods for extrapolation beyond levels which have already been observed,

making such frameworks invaluable when hazard and risks assessment of future extreme

values is of paramount importance, e.g., in finance (Smith, 2003), flood risk analysis

D’Arcy et al. (2023), or nuclear regulation Murphy-Barltrop and Wadsworth (2024).

Below, we describe the two most common approaches for univariate extreme value

analysis. We first look at these approaches in the context of independent and identi-

cally distributed (IID) random variables. Then, we focus on the peaks-over-threshold

12
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framework which is the basis for all of the work in this thesis. We present the exist-

ing approaches used for extending this framework for identically-distributed variables

changing with covariates. We explore existing approaches for the selection of the thresh-

old in this framework, which is the most fundamental challenge of this area and the

main focus of this thesis.

All of the developed methods in this thesis are concerned with modelling a univariate

process. There is also a growing body of research in multivariate and spatial extreme

value analysis (Wan and Davis, 2019; Heffernan and Tawn, 2004; Wadsworth and Tawn,

2013; Mhalla et al., 2019; Murphy-Barltrop et al., 2024; Schlather and Tawn, 2003;

Shaby and Reich, 2012; Richards et al., 2022); we foresee our methodologies being

useful for these contexts but we do not explore them in this thesis.

2.2 Extreme value theory

In general, statistical modelling techniques aim to describe and predict the typical

values of a process. For a wide range of contexts, interest lies in values which are

not typical, values which lie far from the central tendencies of a process, values about

which we usually have far less information. Values such as this lie in the lower or upper

tails of a process/distribution and are usually termed extreme values. To describe the

behaviour of extreme values, statistical models focused on the tails of a distribution,

rather than on the main body, are required. Usual statistical techniques rely on a large

number of typical observations and so are not appropriate when concern lies with small

numbers of extreme observations.

Extreme value theory provides asymptotically justified models for the tails of a

probability distribution. These models are focused on the extreme observations lying

in the tail of the distribution and thus are usually fitted solely to these observations so as

not to be affected by the central values. Most importantly, extreme value models allow
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for extrapolation beyond observations and so are vital for hazard protection against

levels of a process which have not already been observed.

This section provides background for the asymptotic justification of the two most

widely-used univariate extreme value models; the block-maxima approach and the peaks-

over-threshold approach.

2.2.1 Block maxima approach

The block maxima approach (Coles, 2001) splits data into predefined blocks, often taken

as a year, extracts the maxima from each block and models these maxima using a gen-

eralised extreme value distribution. The probabilistic justification for this, summarised

in Leadbetter et al. (2012), is as follows.

Consider a sequence of independent and identically distributed random variables

X1, ..., Xn with distribution function F and let Mn = max{X1, ..., Xn}. To obtain the

distribution for Mn, theoretically, we can derive this simply as:

Pr(Mn ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x) = (F (x))n.

As F is unknown, problems arise when using standard techniques for the estimation of

F with the goal of estimating Mn. Any small discrepancies in any parametric model

choice for F lead to large deviations in F n and thus, in the distribution of Mn.

To avoid this issue, we instead approximate F n directly with a flexible family models

for F n as n → ∞. To avoid convergence of the distribution of Mn to a point mass on

the upper end point of F , we first use sequences of constants {an > 0} and {bn} to

renormalise Mn as :

M∗
n =

Mn − bn
an

.

The Extremal Types Theorem (Fisher and Tippett, 1928) states that if there exists
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sequences of constants {an > 0} and {bn} such that

Pr(M∗
n ≤ x) = [F (anx+ bn)]

n → G(x) as n→ ∞, (2.2.1)

with G a non-degenerate limit distribution, then G belongs to one of the Fréchet,

Gumbel or negative Weibull families which, under the Unified Extremal Types Theorem

(Jenkinson, 1955), make up special cases of a single flexible family of models known as

the generalised extreme value (GEV) distribution such that:

G(x) = exp

(
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

)
, (2.2.2)

with w+ = max(w, 0), µ ∈ R the location parameter, σ > 0 the scale parameter, and

ξ ∈ R the shape parameter.

A justification of the GEV is given in Leadbetter et al. (2012) while estimation and

uncertainty quantification of the GEV parameters via maximum likelihood estimation

are covered in Coles (2001). The shape parameter ξ defines the tail behaviour of the

GEV. For ξ < 0, the GEV corresponds to the light-tailed negative Weibull distribution

which has a finite upper end point. Whereas for ξ ≥ 0, the distribution is unbounded

with ξ = 0 corresponding to a Gumbel distribution which has an exponential upper tail

and ξ > 0 leading to the heavy-tailed Fréchet distribution.

A critical property of the GEV distribution is the max-stability property which

states that, for anym ∈ N, there exists αm > 0 and βm such thatGm(αmx+βm) = G(x),

x ∈ R. Hence, taking the maxima of a variable that follows the GEV distribution,

results in a random variable which is itself also GEV, subject to a change in location

and scale parameter values, but with the same shape parameter. The GEV family of

distributions is the only family which satisfies this useful property. More specifically,
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given that distribution (2.2.2) holds exactly for large n, then we have,

Pr(Mn ≤ x) = G

(
x− bn
an

)
= G̃(x)

where G̃ corresponds to the GEV distribution with adjusted location and scale param-

eter values. The max-stability property is analogous to the sum-stability property of

the central limit theorem, which motivates the wide use of the Gaussian distribution as

a model for finite sample means. The max-stability property allows for the modelling

of maxima in practice where data are split into blocks of equal length and the maxima

within each block are then considered as realisations from a GEV, given by G̃.

Careful consideration must be given to the choice of block size as there is a trade-off

between bias and variance; if the block size is chosen to be too small, approximation

by the limit result (2.2.2) is likely to be poor, leading to bias in estimation of param-

eters and more importantly, in extrapolation; while a large block size could lead to a

significant wastage of data, very few block maxima for the model fit, and thus large

estimation variance. Such considerations often lead to block sizes being chosen to be

one year in length. In some situations, only annual maxima may have been recorded,

making this choice of block size the only option. Once parameters are estimated, the

(1 − p)-quantile of the distribution can be calculated by letting G(xp) = 1 − p and

solving for xp such that:

xp =


µ− σ

ξ
[1− {− log(1− p)}−ξ], for ξ ̸= 0,

µ− σ log{− log(1− p)}, for ξ = 0.

The level xp is exceeded on average once every 1/p years and is termed a return level,

in this case, corresponding to a return period 1/p. Assuming block length of one-year,

xp refers to the level we expect to be exceeded by the annual maximum in any year

with probability p.
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Note that if interest lies in the extremes of the smallest values of a dataset, for

example, when applying extreme value methods to low temperatures (Fyodorov and

Bouchaud, 2008), the block maxima approach may still be used with an adjustment by

considering the minima of the process as maxima such that:

min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn).

A common problem with the block maxima approach is that as some blocks may have

larger numbers of extreme observations than others, by taking only the maximum within

each block, this may lead to a significant wastage of the useful extreme data. Another

problem may be encountered with this approach when wanting to model the distribution

of the extreme values in a situation where the extremal behaviour of the series of interest

may be related in some way to a covariate. The GEV is only appropriate in this scenario

if the covariate is changing slowly relative to the chosen block size. If covariates vary

significantly within blocks, the GEV’s within-block identical distribution assumption

will be violated. These two problems can be overcome by instead using threshold models

to model extreme tail behaviour.

2.2.2 Peaks over threshold

The more widely-used approach for modelling extremal behaviour is to define extreme

observations as those which exceed some appropriately high threshold u and to then

model both the rate at which exceedances of u occur and to model the distribution

of excesses of u. This method makes better use of more of the available data, avoids

wastage when multiple extreme events occur within a single block, as shown in Figure

2.2.1, and can be easily adapted to incorporate covariates.

To derive an asymptotic model for peaks over threshold, let X be a random variable
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Figure 2.2.1: Simulated daily data. Red crosses show the values in an annual maxima
extreme value analysis. Red line indicates threshold value u = 3.0, all exceedances of
which are used in a peaks over threshold or point process approach to extreme value
analysis.

with distribution function F . For any threshold u, we have:

Pr(X > u+ y|X > u) =
1− F (u+ y)

1− F (u)
for y > 0.

If the limiting behaviour of the block maxima of IID variables X1, . . . , Xn with

distribution function F (i.e., the same distribution as X) can be characterised by G (as

in (2.2.2)), then the scaled excesses of a threshold u, as u tends to the upper endpoint of

F , show corresponding limiting behaviour characterised by the family of distributions

known as the generalised Pareto distribution (GPD). For un(u) = bn + anu, with an, bn

satisfying limit (2.2.1), then, as n → ∞, un(u) → xF , where xF := sup{x : F (x) < 1}

is the upper endpoint of the distribution. Also, as n→ ∞, for x > u,

Pr(X > un(x)|X > un(u)) → 1−Hu(x) (2.2.3)
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where

Hu(x) =


1−

[
1 + ξ

(
x−u
σu

)]−1/ξ

+
ξ ̸= 0

1− exp
(

x−u
σu

)
ξ = 0

(2.2.4)

with (σu, ξ) ∈ R+ × R being the scale and shape parameters respectively and w+ =

max(w, 0). The threshold-invariant shape parameter is equal to that of the correspond-

ing GEV shape parameter for modelling block maxima while the threshold-dependent

scale parameter satisfies the property σu = σ+ξ(u−µ) with µ and ξ denoting the GEV

location and shape as in distribution (2.2.2). Smith (1989) provides explanation of the

relationship between the GEV and GPD, Coles (2001) provides outline justification for

the GPD in approximating threshold excesses while Pickands (1975) provides a formal

justification of the asymptotic model under weak conditions. Davison and Smith (1990)

overview the properties of the GPD.

The GPD shape parameter defines the tail behaviour of the distribution leading to

three sub-classes depending on the value of ξ:

1. For ξ > 0, the GPD is heavy-tailed and the distribution of the excess (X−u)|(X >

u) is Pareto with tail index 1/ξ.

2. For ξ = 0 (interpreted as the limit ξ → 0), (X − u)|(X > u) has an exponential

distribution with expectation 1/σu.

3. For ξ < 0, the GPD is light-tailed and has a finite upper end point at u− σu/ξ.

In practice, we assume that the above limit (2.2.3) holds for a suitably high threshold

un(u) = u with un(x) = x with x > u. We can then model the excesses of this threshold

as approximately GPD under this limiting tail model. We can then provide a model

for the X > u given by:

Pr(X > x) = λu

[
1 + ξ

(
x− u

σu

)]−1/ξ

+

(2.2.5)



CHAPTER 2. LITERATURE REVIEW 20

for x > u, where λu = Pr(X > u) is the threshold-exceedance rate.

Return levels for the GPD can be obtained similarly to the block maxima procedure.

To estimate the m-observation return level xm, for
1
m
< λu, we utilise equation (2.2.5)

and let Pr(X > xm) =
1
m
. Solving this equation for xm leads to:

xm =


u+ σu

ξ

[
(mλu)

ξ − 1
]
, for ξ ̸= 0,

u+ σu log(mλu), for ξ = 0,

which provides the value expected to be exceeded once every m observations. This

procedure may be adjusted to obtain return levels with return periods in terms of

years, i.e., to obtain the T -year return level, we set m = T n̄ where n̄ is the average

number of observations occurring in a year. Return levels of this type are typically

more useful in practice (Coles, 2001).

2.2.3 Inference for GEV and GPD

Based on the equations above, it is clear that estimating return levels requires the es-

timation of parameter values. Once the appropriate block length is determined for the

GEV or the appropriate threshold is selected for the GPD (discussed in Section 2.3),

either of the above extreme value frameworks can be fitted using likelihood-based or

Bayesian methods (Davison and Smith, 1990; Coles and Tawn, 1996). Numerical op-

timisation techniques are required to estimate the parameters for a likelihood-based

approach as closed forms are not available for the maximum likelihood estimators for

either model (2.2.2) or (2.2.4). This is also the case for the posteriors of the distribu-

tion in a Bayesian framework where some form of Markov-Chain Monte-Carlo (MCMC)

methods would be needed. Thus, Bayesian procedures for extreme value analysis can

be computationally intensive, however they do allow for expert knowledge to be incor-

porated into the modelling framework (Yue et al., 2025b). Bayesian methods also allow
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for convenient estimation of parameter uncertainty.

A potential difficulty with likelihood methods concerns the regularity conditions

which are required for the usual asymptotic properties associated with the maximum

likelihood estimators. These conditions do not hold for cases where the end-points of

the distribution are functions of the parameter values, i.e. µ − σ/ξ is the upper end

point when ξ < 0 for the GEV, and the lower end point when ξ > 0. For the GPD,

u − σu/ξ is the upper endpoint for ξ < 0. As a result, standard asymptotic likelihood

methods are not automatically applicable for ξ ∈ R. According to Smith (1985), there

are three cases to note:

• if ξ > −0.5, MLEs have the usual asymptotic properties;

• if −1 < ξ < −0.5, MLEs may be obtainable but do not have the standard

asymptotic properties;

• if ξ < −1, MLEs are unlikely to be obtainable, with the best estimator of the

upper endpoint being the sample maximum.

Typically, for most environmental applications, we see values of ξ in the range −0.4 <

ξ < 0.4, so these limitations of the MLEs are not a problem in practice (Coles, 2001).

For ξ > −0.5, standard confidence intervals can be generated under the assumption

of asymptotic normality (Smith, 1985). However, due to the typically small sample sizes

of datasets relevant to extreme value analysis, bootstrapping methods can be more

useful for uncertainty quantification (Healy et al., 2025). For the GPD, the natural

estimator for λu, the probability of an observation exceeding the threshold u, is λ̂u =

nu/n where n is the total number of observations and nu is the number of observations

exceeding the threshold u, i.e., this is the sample proportion of points exceeding u.

Furthermore, the number of exceedances of u follows a binomial distribution, Bin(n, λu),

so λ̂u can also be estimated as the MLE for λu.
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Standard diagnostic approaches are applicable for assessing the fit of the GEV and

GPD models. While there are no methods outside of the asymptotic justification to

verify the model’s ability for extrapolation, goodness-of-fit assessments for the already-

observed levels of the data provide an indication of whether the model will be appro-

priate further into the tail. Standard PP- and QQ-plot assessments can provide useful

information, with the former focussing on the bulk of the distribution and providing

little information about the fit for the largest values, whereas the latter focusses on the

areas of most interest for extreme value modelling, showing how the model deviates

from the observed data with a focus on the largest values (Heffernan and Tawn, 2003).

A detailed description of the frequentist procedure for inference and model assess-

ment for the above extreme value methods is given in Coles (2001). Coles and Tawn

(1996) and Sharkey and Tawn (2017) provide details on Bayesian inference procedures

for extreme value analysis.

2.3 Threshold selection

Section 2.2.2 motivates the use of the GPD as a model for the excesses of a high

threshold u, as u → xF . In practice, a suitably high threshold must be chosen such

that the excesses may be taken as approximate samples from a GPD and parameters

may be estimated accurately. A fundamental challenge with the use of such a model

in practice is choosing an appropriate threshold value. This choice is analagous to the

choice of block size under the GEVmodel (2.2.2) in that it involves a bias-variance trade-

off: selecting a threshold too low is likely to violate the asymptotic basis of the GPD

model, incorporating bias into the estimation of the parameters and resulting inference,

whereas too high a threshold results in an unnecessarily small number of excesses with

which to fit the model and thus, large estimation uncertainty. Ideally, we must choose

the threshold as low as possible provided the GPD shows an adequate fit to the excesses.
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A plethora of methods have been developed to tackle this problem - see Scarrott and

MacDonald (2012); Belzile et al. (2023) for extensive reviews of existing approaches.

Despite the variety of methods, the most commonly-used are graphical goodness-of-fit

diagnostics, demonstrated in Sections 2.3.1-2.3.2, which suffer from subjectivity due to

the visual nature of the selection. The leading existing automated approaches, discussed

in detail Section 2.3.5 & 2.3.5, remove the subjectivity problem but suffer from other

shortcomings. Wadsworth (2016) exhibits strong reliance on asymptotic theory leading

to problems with the small samples typical of extreme value analysis; this is particularly

troublesome if considering a fine grid of candidate thresholds. Northrop et al. (2017)

show significant sensitivity to tuning parameters leading to unpredictable results if

time is not spent selecting such tuning parameters carefully for each sample, a setback

if using methods for repeated estimation of thresholds across a variety of datasets, e.g.

for widespread flood risk analysis (Keef et al., 2013a).

2.3.1 Threshold stability property

The threshold stability property of the GPD (Davison and Smith, 1990) is instrumental

to some of the most widely-used threshold selection approaches. It states that if excesses

of a threshold u follow a GPD, then excesses of a higher threshold v (u < v < xF ) also

follow a GPD, with the same shape parameter and an adjusted scale parameter, i.e., if

(X − u)|(X > u) ∼ GPD(σu, ξ), then (X − v)|(X > v) ∼ GPD(σu + ξ(v − u), ξ). This

implies that the GPD shape parameter ξ should have the same value for all valid choices

of threshold, a useful property to exploit when selecting an appropriate threshold, as

a modelling threshold may be selected as the lowest candidate value for which the

shape parameter shows adequate stability, accounting for the sampling variability in

the parameter estimation. Although, in practice, this can pose problems, which we will

discuss later in this section.

The threshold stability property is derived as follows: Suppose that we have thresh-
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old exceedances above a threshold u which follow a GPD such that (X −u)|(X > u) ∼

GPD(σu, ξ). We want to find the distribution of exceedances of a higher threshold

v > u. Thus, to find the distribution of (X − v)|(X > v) for v > u and x > 0, we have:

P(X − v > x|X > v) =
P(X > v + x)

P(X > v)

=
P(X > v + x|X > u)P(X > u)

P(X > v|X > u)P(X > u)

since v + x > v > u. Now, given that (X − u)|(X > u) ∼ GPD(σu, ξ), we have:

P(X > v + x|X > u)

P(X > v|X > u)
=

[
1 + ξ(v+x−u)

σu

]−1/ξ

[
1 + ξ(v−u)

σu

]−1/ξ

=

[
σ̃u + ξ(v − u) + ξx

σu + ξ(v − u)

]−1/ξ

=

[
1 +

ξx

σu + ξ(v − u)

]−1/ξ

.

This is the survivor function of a GPD with shape and scale parameters of ξ and

σu+ξ(v−u) respectively. Thus, (X−v)|(X > v) ∼ GPD(σv, ξ) where σv = σu+ξ(v−u).

2.3.2 Parameter stability plots

The most widely used approach for threshold selection relies on visual inspection of

the stability of the shape parameter estimates. Figure 2.3.1 provides three examples

of parameter stability plots. The results come from three simulated datasets used in

Chapter 3, specifically the first simulated sample from each of Cases 1-3. These datasets

all have true underlying threshold at u = 1, i.e., with GPD above this level, plotted

as a vertical green dashed line. The sample sizes of the data analysed in the plots are

n = 1200, 480, 2400 from left to right. The three datasets were assessed for stability

in the shape parameter estimates ξ̂ for a grid of candidate threshold choices at sample

quantile levels of 0%, 5%, . . . , 95%. The first and third plot seem to show approximate
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stability above the true threshold. However, the increasing uncertainty as the threshold

choice is raised, shown by the 95% confidence interval calculated using the delta-method,

demonstrates the difficulty in objectively assessing this stability. This difficulty is more

evident in the centre plot of Figure 2.3.1 due to the smaller sample size for these data.

The smaller sample size, which is certainly not unusually small for an extreme value

analysis, results in highly variable parameter estimates across candidate thresholds and

a level of uncertainty which makes the visual assessment of stability difficult. These

simulated examples are cases where the underlying true threshold should be fairly

clear, and yet, it is not a straightforward task to make appropriate inferences from the

parameter stability plots.
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Figure 2.3.1: Examples of parameter stability plots based on three simulated datasets
used in simulation study in Chapter 3. Solid lines are point estimates (interpolated),
dotted lines are pointwise 95% confidence intervals (interpolated) calculated by the
delta-method, vertical dashed line is the true threshold.

The major criticism of the parameter stability plots is their lack of interpretability,

since pointwise confidence intervals are highly dependent across the set of candidate

thresholds and, thus, are difficult to account for when assessing stability (Wadsworth

and Tawn, 2012; Northrop and Coleman, 2014; Wadsworth, 2016). Estimates of the

shape parameter and confidence intervals are only evaluated at each candidate threshold

choice in the grid, meaning that interpretation of a parameter stability plot and the

threshold choice itself can be sensitive to the grid of candidate thresholds.
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2.3.3 Existing methods

There have been a variety of methods developed to improve upon the shortcomings

of parameter stability plots and more appropriately tackle the bias-variance trade-off.

Wadsworth and Tawn (2012) and Northrop and Coleman (2014) utilise penultimate

models and hypothesis testing to provide approaches more robust to human subjec-

tivity, see Section 2.3.4 for discussion of Northrop and Coleman (2014). Based on a

quantifiable criterion, Bader et al. (2018) and Danielsson et al. (2019) use goodness-of-

fit metrics to automate the selection of the threshold, with the former employing the

Anderson-Darling test and a stopping rule to control the false-discovery rate of multiple

hypothesis tests, the latter is discussed in Section 2.3.5. Wadsworth (2016) automate

threshold selection through a sequential changepoint approach, while Northrop et al.

(2017) employ a Bayesian procedure with a measure of predictive performance - both

methods are discussed in detail in Section 2.3.5.

Mixture-model approaches aim to remove the preceding threshold selection and

estimate a model for data lying in the body and tail; Tancredi et al. (2006) compose a

model of a piece-wise constant density from a low value up to a threshold above which

a GPD is used to model the tail with the threshold estimated as part of the parameter

estimation; Naveau et al. (2016) use extreme value models on both the upper and lower

tail of rainfall data and allow a smooth transition between the two tails.

Semi-parametric approaches such as Danielsson et al. (2001) and Danielsson et al.

(2019) are discussed in Section 2.3.5. Scarrott and MacDonald (2012) and Belzile et al.

(2023) review the extensive literature of threshold selection. There is a large body of

applied literature with a variety of threshold methods applied to particular data con-

texts. For the hydrological setting, Durocher et al. (2018) and Curceac et al. (2020)

compare several goodness-of-fit approaches for automatic selection of the threshold.

Furthermore, Choulakian and Stephens (2001), Li et al. (2005) and Solari et al. (2017)

automate goodness-of-fit procedures and apply these techniques to a range of precipi-
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tation and river flow data sets.

2.3.4 Northrop and Coleman (2014)

In this section, we describe the Northrop and Coleman (2014) method which aimed to

improve upon the subjectivity problems of the parameter stability plot by testing the

stability of shape parameter formally through a hypothesis test. We describe some of

the inadequacies which both limit the applicability of this method and complicate the

interpretation of the associated threshold selection plots.

Northrop and Coleman (2014) test the hypothesis that the underlying shape param-

eter is constant for any threshold above a selected candidate threshold. They extend

the piecewise-constant model for the shape parameter of Wadsworth and Tawn (2012)

to allow for an arbitrary number of thresholds and avoid the multiple-testing issue.

For their model, they derive likelihood ratio and score methods to test for equality of

the shape parameter estimates above a candidate threshold. The method results in a

plot of p-values against each candidate threshold u. An example of the plot of p-values

obtained using from the Northrop and Coleman (2014) method is given in Figure 2.3.2.

Figure 2.3.2 shows two plots of the p-values derived from the first samples generated

in Cases 1 and 2 respectively, described in Chapter 3, with candidate thresholds given

at the sample 0%, 5% . . . , 95%-quantiles (black points) and the true threshold of u = 1.0

(16.67% quantile), plotted as a green dashed line. While the Northrop and Coleman

(2014) method was aimed to improve upon the parameter stability plot in terms of

interpretability, it still suffers from problems with subjectivity. For example, there is

a subjectivity in the choice of whether to select the threshold as the lowest candidate

threshold for which the p-value rises above the significance level, of say 0.05, or as the

candidate threshold which causes the largest increase in the p-value. In the second plot

of Figure 2.3.2, both of these approaches would lead us to choose a threshold at the

20%-quantile which lies near the true value. However, the variability of the p-values
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above casts doubt on this choice. We want to select a threshold where the p-values in-

dicate strong evidence for parameter stability for all higher thresholds, excluding very

high quantiles where uncertainty may become large. In the second plot of Figure 2.3.2,

beyond the true threshold, the p-values decrease and remain at relatively low levels un-

til another spike at the 65%-quantile level. Hence, a user of the Northrop and Coleman

(2014) method may choose a threshold at the 65%-quantile for this dataset, but even

above this value, there is another drop in the p-values which may lead the user to an

even higher choice, leaving very few exceedances. While the choice is not clear-cut, the

outputted p-values at least could lead the reader to conduct a more detailed investiga-

tion of candidate thresholds near the true threshold in this case. The same cannot be

said for the first plot, where the p-values give no indication of a good choice of threshold

for this sample. The one value which shows a slight rise in the p-value would lead to

a threshold choice far from the truth. Whatever the reason for the poor performance

in this specific case, while the Northrop and Coleman (2014) method tackles some of

the inadequacies of parameter stability plots, it suffers from similar shortcomings to

the parameter stability plotting method due to the difficulty of interpretation of the

resulting plot of p-values.
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Figure 2.3.2: p-values derived from Northrop and Coleman (2014) method for threshold
selection applied to the first simulated samples from Case 1 and 2. Vertical dashed line
is the true threshold and the horizontal dashed line shows a p-value of p = 0.05. The
numbers above the plot correspond to the numbers of exceedances for each candidate
threshold.

2.3.5 Core existing automated methods

In this section, we discuss the leading existing methods identified in Belzile et al. (2023)

and two semi-parametric approaches, one of which was not mentioned in this review.

In an extensive simulation study in Chapter 3, we assess the performance of this set of

threshold selection methods by comparison to the method we develop in Chapter 3.

Semi-parametric methods

Here, we discuss the semi-parametric procedures of Danielsson et al. (2001, 2019)

utilised for performance comparison in the supplementary material of Chapter 3. Firstly,

a key obstacle to the wide use of these methods is that both assume that ξ > 0, which

is problematic when typically, ξ < 0 for a wide range of environmental applications

such as wind speeds (Fawcett and Walshaw, 2006), wave heights (Jonathan and Ewans,

2007b), sea levels (D’Arcy et al., 2023) and earthquakes (Yue et al., 2025b). Now,
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the Danielsson et al. (2001) method selects the threshold by minimising the asymptotic

mean squared error (MSE) of the Hill estimator (Hill, 1975) through a double-bootstrap

procedure. The first bootstrap stage computes the optimal size n1 for their second boot-

strap stage, where n1 < n and n is the data sample size. To reduce computations, the

tea package (Ossberger, 2020) fixes n1 = 0.9n. The reliance on asymptotic theory leads

to inadequate finite sample performance. The Danielsson et al. (2019) method picks

the threshold to minimise the maximum distance between the empirical and modelled

quantiles, i.e., the distance from the diagonal of a QQ-plot. As the largest such devi-

ations occur at the highest quantiles and the method fails to account for uncertainty,

which changes across candidate thresholds, this method over-estimates the threshold.

Wadsworth (2016)

Here, we detail the procedure of Wadsworth (2016) which is utilised in Chapter 3 for

comparison of performance. This method aims to address the subjective nature of

the standard parameter stability plots by utilising the asymptotic distributional theory

of the joint distribution of maximum likelihood estimators (MLEs) from samples of

exceedances over a range of thresholds. By construction, the exceedances of threshold

v are a subset of that of any candidate threshold u, whenever v > u. Thus, due to this

data-overlap, non-standard statistical testing is required, as this induces dependence

between estimates at different thresholds. The method outputs more interpretable

diagnostic plots to improve standard parameter stability plots, primarily by removing

dependence between estimates at different candidate thresholds. A simple likelihood-

based testing procedure is suggested to allow automated selection of the threshold.

Wadsworth (2016) used the point process representation of extremes, derived in

Pickands (1971), which considers exceedances of a high threshold u as a realisation

from a non-homeogeneous Poisson process (NHPP). The representation is outlined as

follows. Let X = (X1, . . . , Xn) be a sequence of independent and identically distributed
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random variables with common distribution function F . Suppose there exists normal-

ising sequences {an > 0} and {bn ∈ R} such that the sequence of point processes

{Pn : n = 1, 2 . . . , } defined by

Pn =

{
Xi − bn
an

: i = 1, . . . , n

}
,

has the property that Pn
d−→ P as n → ∞ with P non-degenerate, on the interval

(bl = limn→∞(xF − bn)/an,∞) where xF := inf{x : F (x) > 0} is the lower end-point of

F . Then, P is a NHPP with intensity λθ(x), for x > bl, and integrated intensity Λθ(A)

on A = (u,∞), with u > bl, where

λθ(x) =
1

σ

[
1 + ξ

(
x− µ

σ

)]−1−1/ξ

+

and Λθ(x) =

[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

.

with θ = (µ, σ, ξ), where µ ∈ R, σ > 0, ξ ∈ R corresponding to the location, scale and

shape parameter respectively, with ξ as in the GPD (2.2.4). Hereafter, we let θ0 denote

the true value of θ.

Wadsworth (2016) considers xN = (x1, . . . , xN) as a realisation from a NHPP with

a random count N on some region R = [u1,∞). It is assumed that xN are sorted such

that xi is the ith largest value, i.e., xN < · · · < xi < · · · < x1. A set of candidate

threshold choices (u1, . . . , uk) with bl ≤ u1 < u2 · · · < uk which define nested regions

R1, R2, . . . , Rk in R such that Rj = (uj,∞) for j = 1, . . . , k, so Rk ⊂ Rk−1 ⊂ · · · ⊂

R1 = R. Thus, if x1, . . . , xNj
are all the observations which lie in the region Rj, then,

there are Nj observations in the region Rj. The likelihood of the process over the region

Rj is then given, up to a constant of proportionality, by:

LRj
(θ) :=

 Nj∏
i=1

λθ(xi)

 exp[−Λθ(Rj)].

Now, we denote the MLE of θ based only on the data in region Rj by θ̂j and the
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3×3 Fisher information matrix for this likelihood as Ij with I
−1
j its inverse. Wadsworth

(2016) considers a superposition of m replicate Poisson processes as m→ ∞ giving the

limit result:

m1/2

(
θ̂1 − θ0, θ̂2 − θ0, . . . , θ̂k − θ0

)T
d−→ N3k(0,Σ),

with Σ the 3k × 3k covariance matrix given by Σ = (I−1
min(i,j))1≤i≤k,1≤j≤k.

Wadsworth (2016) uses the above result to construct a threshold selection procedure.

Isolating the shape parameter ξ in the inference, Wadsworth (2016) denotem−1{(I−1
j+1−

I−1
j )ξ,ξ} as the asymptotic variance of the estimated increment ξ̂j − ξ̂j+1 where ξ̂j is

the MLE of the shape parameter on the region Rj. As these increments have changing

variance with j, consider instead the standardised increments ξ̂∗ = (ξ̂∗1 , . . . , ξ̂
∗
k−1)

T given

by:

(
ξ̂∗1 , ξ̂

∗
2 , . . . , ξ̂

∗
k−1

)T

:= m1/2

(
ξ̂1−ξ̂2

((I−1
2 −I−1

1 )ξ,ξ)1/2
, ξ̂2−ξ̂3
((I−1

3 −I−1
2 )ξ,ξ)1/2

, . . . , ξ̂k−1−ξ̂k
((I−1

k −I−1
k−1)ξ,ξ)

1/2

)T

,

(2.3.1)

which have common unit variances over all components. It follows that if the excesses of

u1 follow a GPD then, as m→ ∞, ξ̂∗ → Z where Z ∼ Nk−1(0,1k−1) with 1n denoting

the n×n-dimensional identity matrix. Given these properties, Wadsworth (2016) term

ξ̂∗ as a white-noise process.

As a result of the penultimate theory of extremes, described by Smith (1987) and

Gomes (1994), Wadsworth (2016) explains that departures from the null assumption

of the white-noise process (2.3.1) are a direct consequence of too many values from the

body of the data (where the GPD is not appropriate) being included in the estimation.

This logic suggests that below the lowest appropriate candidate threshold, say uj, the

variables ξ̂∗i , i = 1, . . . , j − 1 might be better approximated by a N(β, γ2), where at

least one of β ̸= 0 and γ ̸= 1 holds, than by a standard normal distribution which is

the limit distribution if the threshold uj was correct. Formally, this gives a changepoint
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model as:

ξ∗i ∼ N(β, γ2) IID, i = 1, . . . , j − 1, ξ∗i ∼ N(0, 1) IID, i = j, . . . , k − 1,

where j, β, γ are unknown.

Wadsworth (2016) maximises the profile likelihood for β and γ across j and uses

a likelihood ratio test to assess if this gives a significantly better fit to ξ̂∗ than the

standard normal distribution. A threshold is automatically selected as the candidate

threshold uj which provides the best fit. If there is no evidence of ξ̂∗ deviating from

white-noise, then the lowest candidate threshold is selected, i.e., u1.

Northrop et al. (2017)

Now, we detail the procedure of the last approach compared in Chapter 3, the Northrop

et al. (2017) method. Consider X = (X1, . . . , Xn) where Xi are IID with associated

realisations x = (x1, . . . , xn), where x1 < . . . < xn. This contrasts with the notation for

the Wadsworth (2016) method, however, we keep this to stay aligned with Northrop

et al. (2017) in our explanation.

Northrop et al. (2017) consider u as a training threshold in the cross-validation

scheme and allow for the threshold exceedance rate, denoted by λu = P(X > u), to be

incorporated with the GPD parameters (σu, ξ) into the fit. Thus, θ = (λu, σu, ξ) and

subsequently, in this section, we refer to the tail model as the GPD(λu, σu, ξ). Let πu(θ)

be a prior density for θ. Let x(−r) = {xi : 1 ≤ i ≤ n, i ̸= r}. The posterior density for

θ given data x(−r) is denoted πu(θ|x(−r)) with πu(θ|x(−r)) ∝ L(θ;x(−r), u)πu(θ) with

the likelihood L assumed to take the form:

L(θ;x(−r), u) =
∏

i:xi∈x(−r)

fu(xi|θ),

fu(x|θ) = (1− λu)
I(x≤u)[λuh(x− u;σu, ξ)]

I(x>u),

(2.3.2)
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where I(w) is an indicator function giving 1 if w is true and 0 otherwise, and h(x;σu, ξ) =

σ−1
u [1 + ξx/σu]

−(1+1/ξ)
+ is the density of a GPD tail. In the case of λu = 0, fu(x|θ) =

I(x ≤ u). Note that, as defined, fu(x|θ) is not a valid density function as it integrates

to ∞ and it is discontinuous at x = u. The use of the term “density” is identified in

Northrop et al. (2017) as an abuse of terminology.

Northrop et al. (2017) aim to compare a set of candidate values for u, denoted

(u1, . . . , uk) with u1 < · · · < uk, by introducing a fixed validation threshold v ≥ u and

quantifying the predictive ability of the implied GPD(λv, σv, ξ) using each candidate

threshold ui, i = 1, . . . , k. They select v = uk. Since v is fixed, the performance of each

of the candidate thresholds is compared based on the same validation data.

To undertake comparisons of fit over different candidate thresholds, a slight exten-

sion of the threshold stability property, stated in Section 2.3.1, is required, i.e., if a

GPD(λu, σu, ξ) tail model applies at u, this implies a GPD(λv, σv, ξ) tail model above

v where σv = σu + ξ(v − u) and λv = λu[1 + ξ(v − u)/σu]
−1/ξ assuming that v is such

that 1 + ξ(v − u)/σu > 0.

For the cross-validation scheme, the data x(−r) are the training data with xr the

validation data, and this is repeated for each r = 1, . . . , n. To assess the threshold choice

performance above v, they use leave-one-out cross-validation. The cross-validation

predictive density for exceedances of the validation level v under model (2.3.2), using

the candidate threshold uj, j = 1, . . . , k − 1, is then given by:

fv(xr|x(−r), uj) =

∫
fv(xr|θ)πuj

(θ|x(−r)) dθ, r = 1, . . . , n.

A Monte Carlo estimator for approximating fv(xr|x(−r), u) uses a MCMC generated

sample of realisations θ
(−r)
j , j = 1, . . . ,m (where m is a user choice for the run length

of the MCMC after convergence has been deemed to have been achieved) from the
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posterior distribution πu(θ|x(−r)) through:

f̂v(xr|x(−r), u) =
1

m

m∑
j=1

fv(xr|θ(−r)
j ), r = 1, . . . , n.

This leads to a measure of predictive ability at v given by:

T̂v(u) =
n∑

r=1

log{f̂v(xr|x(−r), u)},

which is evaluated over all candidate thresholds choices of u1, . . . , uk. Out of these can-

didate thresholds, Northrop et al. (2017) select the one which maximises the measure,

T̂v.

To improve the computational efficiency of the estimator f̂v(xr|x(−r), u) for r =

1, . . . , n, Northrop et al. (2017) use importance sampling (Gelfand, 1996). This allows

for estimation over r using a single sample from the posterior distribution πu(θ|x).

Specifically, for a single sample {θj, j = 1, . . . ,m} from the posterior πu(θ|x),

f̂v(xr|x(−r), u) =

m∑
j=1

fv(xr|θj)qr(θj)

m∑
j=1

qr(θj)
=

m∑
j=1

fv(xr|θj)/fu(xr|θj)

m∑
j=1

1/fu(xr|θj)
,

by taking qr(θ) = πu(θ|x(−r))/πu(θ|x) ∝ 1/fu(xr|θ).

2.4 Non-identically distributed extremes

In this section, we discuss the well-established methods for extreme value modelling of

non-identically distributed variables, when such variables vary with covariates under

the assumption of independence between observations. The standard extreme value

methods discussed so far are not directly applicable in this context as further steps are

required to capture the covariate effects. Here, we focus on the extension of the GPD
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for modelling such processes as this is more commonly used in practice and is the focus

throughout this thesis.

Even in the case of an identically distributed process, if we impose a varying thresh-

old, this will result in an excess distribution which is non-identical. Specifically, con-

sider X as an arbitrary variable in the sequence of random variables X1, . . . , Xn all with

common distribution function. If (X − u)|(X > u) ∼ GPD(σu, ξ), then, for any set of

thresholds (v1 . . . , vn), with u ≤ vi < xF , we have that

(Xi − vi)|(Xi > vi) ∼ GPD(σvi , ξ), with σvi = σu + ξ(vi − u),

for i = 1, . . . , n. This implies that the GPD shape parameter is stable with respect

to the varying threshold and the GPD scale can be simply adjusted as before for each

value of the varying threshold. This leads to a non-identically distributed excess of vi,

for i = 1, . . . , n, even though the original X variable is identically distributed.

Now, consider a non-identically distributed process, such that X1, . . . , Xn now vary

according to some covariate variable Z1, . . . ,Zn where Z = (Z1, . . . , Zq). We are inter-

ested in modelling the extremes of the conditional variable X | (Z = z) for observed

realisations of the covariates z ∈ Rq. Davison and Smith (1990) proposed an extension

of the standard GPD framework which allowed the GPD scale and shape parameters to

vary according to covariates. Kyselý et al. (2010) and Northrop and Jonathan (2011)

provide further extensions additionally allowing the threshold to be a function of co-

variates. If we allow the covariates Z to affect the parameters of the GPD and the

threshold through functional parameterisations, we have, for threshold function u(z),

that:

X − u(z) | (X > u(z),Z = z) = GPD(σu(z), ξ(z)),
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such that, for x > u(z),

Pr(X > x | Z = z) = 1− λu(z)

(
1 + ξ(z)

x− u(z)

σu(z)

)−1/ξ(z)

+

,

with λu(·), σu(·) and ξ(·) the respective covariate-dependent threshold exceedance rate,

scale and shape parameters functions. In Davison and Smith (1990), each parameter

function ϕ(·) ∈ {u, λu, σu, ξ} has the form h(ϕ(z)) = zTβ where zT is the transpose

of the covariate vector, β ∈ Rq is the vector of coefficients, and h(·) is a link function

which transforms the feasible parameter space onto that of the linear combination

zTβ ∈ R. Link functions are typically chosen to constrain a parameter to the suitable

domain, e.g., to ensure positivity of the scale parameter function σu(z) for all z, a

log-link function can be used such that log σu(z) = zTβ. However, Eastoe and Tawn

(2009) show that this choice of link function violates the threshold stability property.

In particular, they show that to ensure this property holds, across covariate values, the

identity link function is required for the scale parameter.

While all the parameters can be allowed to vary with covariates, it is typical to

assume that ξ(z) = ξ is constant across z, with ξ still needing to be estimated. This has

been shown to be a reasonable assumption across a range of applications (Healy et al.,

2025) and avoids incorporating additional uncertainty into the model for a parameter

which is already difficult to estimate (Chavez-Demoulin and Davison, 2005). Of course,

for any application, adequate checks should be conducted to ensure the assumption of

a constant shape parameter is reasonable.

In the above framework, the GPD threshold, whether constant or a function of

covariates, is estimated in advance of the GPD parameter function estimation, and

then, treated as fixed. As a result, the uncertainty in the threshold choice is not taken

into account in the subsequent inference. In Chapters 3 & 5, we develop methods to

account for this aspect of uncertainty for IID and non-identical contexts, respectively.

For the above framework, one can either specify a parametric form for each of the
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functions in advance of fitting or use a non-parametric regression procedure where the

covariate effects are estimated by assuming that the parameter function ϕ(z) is smooth

across z. Under the parametric framework, the advance choice of functional form can

be limiting but should be informed by exploratory analysis of the process of interest.

Smith (1989) first used parametric regression techniques within an extreme value anal-

ysis. Davison and Smith (1990) take the simplest approach for the parameter function

by using linear models, however they keep the threshold constant. Piecewise constant

functions provide another simple choice, where parameters are assumed constant over

consecutive subsets of the covariate space, for example, (Varty et al., 2021) take piece-

wise constant forms for the threshold and scale parameter and extend this further to

a smooth sigmoid function. Inference procedures in these cases are easily adjusted by

replacing constant parameters by their parametric functional forms in the likelihood

and estimating coefficients through maximum likelihood estimation. A potential short-

coming of this approach is that, while the choice of parametric form for the parameters

may be suitable within the observed range of the data and covariates, this does not

imply that this choice will be appropriate for future values.

Chavez-Demoulin and Davison (2005) propose a more flexible framework by cap-

turing relationships with covariates through the use of generalised additive models

(GAMs). GAMs are a semi-parametric model consisting of a linear predictor which

incorporates a sum of smooth functions of the covariates, with a variety of suitable

choices for the smooth functions (Wood, 2017). This provides more flexibility as the

parameter functions do not follow a pre-specified functional form. Youngman (2019)

provides a framework for fitting GAMs with extreme value models, with a corresponding

R package evgam (Youngman, 2022).

As mentioned previously, Kyselý et al. (2010) extend the Davison and Smith (1990)

framework by allowing the threshold to also be time-dependent at a fixed high quantile,

using quantile regression. Northrop and Jonathan (2011) also use quantile regression to
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estimate a varying threshold across a spatially-dependent covariate range such that the

rate of exceedance of the threshold is constant across the range. Quantile regression can

be implemented as part of the evgam package (Youngman, 2022). Again, uncertainty in

the threshold choice is not incorporated in inference here. Once an appropriate quantile

is chosen through quantile regression, this is treated as fixed and the GPD parameters

estimation uncertainty is propagated through to inference. This is problematic even

in the IID context but with non-identical distributions, there is additional uncertainty

both in the value of the threshold selected and in the formulation of the threshold

function over the covariate range. We explore this aspect of uncertainty in Chapter 5.

Eastoe and Tawn (2009) propose an alternative preprocessing approach to handle

non-identically distributed variables. This approach is more in line with the common

techniques used for handling time-varying stochastic properties in time series analysis.

The key difference in this approach is that the covariate-dependence is modelled for the

entire dataset and then removed so that the bulk of the sequence can then be treated

as identical. However, although the preprocessing should account for the most complex

covariate dependence, this dependence may vary between the body and tail and so,

non-identical extreme value models are used in the tail to account for any residual

covariate dependence with these models now being simpler in formulation due to the

preprocessing step.

There is debate in the literature about whether it makes more sense to model co-

variate effects in the threshold or model parameters, especially when such effects are

small in comparison to the variability of the data (Healy et al., 2025). Model selection

techniques which can allow for different functional forms of parameters and thresholds

can be useful in this context. This is discussed further in Chapter 5.
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2.5 Dependence in extremes

So far and throughout the work in the thesis, we assume the univariate process of

interest {Xt; t ∈ Z} is serially independent. However, in practice, there are cases where

this assumption becomes unrealistic and impractical. In this section, we discuss how

extreme value methods can be used when the assumption of temporal independence is

relaxed and the focus lies on a stationary sequence of random variables {Xt : t ∈ Z}.

In many applications, this is a more realistic assumption than IID as it implies that

variables may be serially dependent but that the stochastic properties of the process do

not change over time (Coles, 2001). More specifically, {Xt; t ∈ Z} is a stationary process

if the joint probability density function f of any set of values in the series is the same as

if they were all shifted in time by the same lag τ ∈ Z, so that fXi1
,...,Xin

(xi1 , . . . , xin) =

fXi1+τ ,...,Xin+τ
(xi1 , . . . , xin) for all n, for any subsequence (i1, . . . , in) ∈ Nn, with i1 ≤

· · · ≤ in, and for any value (xi1 , . . . , xin) ∈ Rn (Chatfield, 2013).

When accounting for dependence in extremes, the usual approach is to assume

that over a long-range, the strongest possible dependence of extreme events is very

near-independent and then, focus on how to account for the effects of short-range

dependence. Leadbetter et al. (2012) provide a detailed development of the required

long-range condition and dependence modelling in extremes. Specifically, this condition

is termed the D(un) condition, with un = anx+ bn, for x ∈ R, where {an > 0} and {bn}

are the sequences used to normalise the maximum to give a non-degenerate limit (2.2.1)

of IID random variables with the same marginal distribution as Xt. A series is said to

satisfy this condition if, for all i1 < · · · < ip < j1 < · · · < jq and j1 − ip > l,

|Pr(Xi1 ≤ un, . . . , Xip ≤ un, Xj1 ≤ un, . . . , Xjq ≤ un)−

Pr(Xi1 ≤ un, . . . , Xip ≤ un) Pr(Xj1 ≤ un, . . . , Xjq ≤ un) |≤ α(n, l),

where α(n, ln) → 0 for some sequences ln such that ln/n→ 0 as n→ ∞. This condition
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allows the same extremal type limit laws (see Section 2.2.1 & 2.2.2) for independent

series to be applied to the maxima of a stationary series, however the parameters (other

than the shape) of the limit distribution will be affected by the dependence (Coles,

2001).

While the GPD is still appropriate for modelling the marginal distribution of ex-

ceedances in this case, the dependence in the series makes using the usual product

likelihood for inference for the joint modelling of neighbouring threshold exceedances

inappropriate, as it violates the IID assumption. The typical approach for account-

ing for the dependence of threshold exceedances is to decluster. This requires the use

of techniques to filter out dependent realisations from the series and obtain a set of

near-independent threshold exceedances. Following the spirit of the D(un) condition,

it is typically assumed that clusters of short-range dependent exceedances separated

by a significant gap are independent in the limit and so, individual values (such as

the cluster maxima) extracted from clusters are also considered independent as the

threshold gets sufficiently large. Leadbetter (1991) showed that under the long-range

near-independence assumption, cluster maxima can be modelled using a GPD. As a

result, the standard approach when modelling a stationary sequence using the GPD is

to identify independent clusters of threshold exceedances and take the maxima within

each cluster as an IID sample of exceedances and apply the classic POT methodology

(Davison and Smith, 1990).

A key quantity used to account for dependence in extreme observations is the ex-

tremal index θ, with 0 < θ ≤ 1 (Leadbetter et al., 2012), which can be loosely defined

as the reciprocal of the limiting mean cluster size of the exceedances, with limiting here

meaning increasingly high thresholds. Values of the extremal index provide information

about the dependence at asymptotically high levels and so, care must be taken when

interpreting values of this quantity for extreme but relevant levels of a dataset.

There are a variety of methods available to identify clusters. Walshaw (1994) de-
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velops an approach that selects the most appropriate combination of the threshold and

separation length between clusters. Smith and Weissman (1994) develop the runs esti-

mator for the extremal index which assumes that neighbouring exceedances, separated

by less than a specified number of consecutive below-threshold observations (known as

the run length), belong to the same cluster. The choice of the run length is complex and

subjective, a major shortcoming of this approach. Ferro and Segers (2003) define the in-

tervals estimator for the extremal index and propose an automatic declustering scheme

which chooses the run length using the limiting distribution for the inter-exceedance

times of stationary sequences. Fawcett and Walshaw (2007) ignore the cluster iden-

tification problem and instead, treat stationary sequences as independent, making an

adjustment to inflate the standard errors of the parameter estimates to represent the

true uncertainty more accurately.

Ledford and Tawn (2003) develop a measure of extremal dependence in a series as a

diagnostic for whether values separated by a certain lag τ are asymptotically dependent

or asymptotically independent. Loosely, Xt and Xt+τ are asymptotically dependent if

given Xt is extreme, there is a positive probability that Xt+τ is extreme. Perfect

extremal dependence occurs if this probability is one and when this probability is zero,

we say Xt and Xt+τ are asymptotically independent. Extremal dependence is entirely

separate to generic dependence, a series can be asymptotically independent with strong

correlation (bivariate Gaussian with large ρ is a classic example) or exhibit asymptotic

dependence and show little correlation. Thus, using diagnostics such as that of Ledford

and Tawn (2003) to identify a process as asymptotically dependent or asymptotically

independent is vital as it provides information about whether we can expect clustering

in extreme values of a series.

The methods mentioned so far aim to identify clustering, account for it and ap-

ply standard extreme value methods. Other approaches aim to model the dependence

structure of the series explicitly, with the focus being to model within-cluster depen-
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dence. Smith et al. (1997) propose a general framework for modelling a dependent

series by assuming the series is a stationary first-order Markov chain and applying

bivariate extreme value methods, with their methods only applicable if the series ex-

hibits asymptotic dependence. Winter and Tawn (2017) use time series copula methods

from conditional multivariate extreme value theory to apply a kth-order Markov model

to extreme heatwaves, with their methods covering both asymptotic dependence and

asymptotic independence cases. Eastoe and Tawn (2012) utilise subasymptotic theory

of extremes of a stationary series to compose a model for the distribution of cluster

maxima which comprises two components; the marginal distribution of exceedances

and the dependence structure of within-cluster exceedances using the Heffernan and

Tawn (2004) and Ledford and Tawn (1996) frameworks. This approach avoids the need

to make specific Markov assumptions and also allows asymptotic dependence at some

lags and asymptotic independence at other lags within the cluster.



Chapter 3

Automated threshold selection and

associated inference uncertainty for

univariate extremes

3.1 Introduction

An inherent challenge in risk modelling is the estimation of high quantiles, known as

return levels, beyond observed values. Such inference is important for designing policies

or protections against future extreme events, e.g., in finance or hydrology (Smith, 2003;

Coles et al., 2003). Extreme value methods achieve this extrapolation by using asymp-

totically exact models to approximate the tail of a distribution above a high, within-

sample, threshold u. The choice of threshold is fundamental in providing meaningful

inference. Here, we develop novel methods for automatic selection of the threshold and

for propagating the uncertainty in this selection into return level inferences.

Throughout, we assume that all data are realisations of an independent and identically-

distributed (IID) univariate continuous random variable X with unknown distribution

function F , with upper endpoint xF := sup{x : F (x) < 1}. Under weak conditions,

44
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Pickands (1975) shows that for X > u, with u < xF , the distribution of the rescaled

excess Y = X − u, converges to the generalised Pareto distribution (GPD) as u→ xF .

To use this limit result in practice, a within-sample threshold u is chosen, above which

this limit result is treated as exact. Specifically, whatever the form of F , the excesses

Y of u are modelled by the single flexible GPD(σu, ξ) family, with distribution function

H(y;σu, ξ) = 1− (1 + ξy/σu)
−1/ξ
+ , (3.1.1)

with y > 0, w+ = max(w, 0), (σu, ξ) ∈ R+ × R being scale and shape parameters.

The exponential distribution arises when ξ = 0, i.e., as ξ → 0 in distribution (3.1.1),

whereas for ξ > 0, the distribution tail decay is polynomial. For ξ < 0, X has a

finite upper end-point at u− σu/ξ but is unbounded above for ξ ≥ 0. To estimate the

(1 − p)th quantile, xp, of X, for p < λu := P(X > u), we can solve F̂ (xp) = 1 − p,

where F̂ (xp) = 1 − λ̂u[1 −H(xp − u; σ̂u, ξ̂)], λ̂u, the MLE of the threshold-exceedance

rate parameter, is the proportion of the realisations of X exceeding u and (σ̂u, ξ̂) are

maximum likelihood estimates (MLEs) obtained by using realisations of the threshold

excesses. Davison and Smith (1990) overview the properties of the GPD.

Threshold selection involves a bias-variance trade-off: too low a threshold is likely

to violate the asymptotic basis of the GPD, leading to bias, whilst too high a threshold

results in very few threshold excesses with which to fit the model, leading to large

parameter and return level uncertainty. Thus, we must choose as low a threshold

as possible subject to the GPD providing a reasonable fit to the data. There are a

wide variety of methods aiming to tackle this problem (Scarrott and MacDonald, 2012;

Belzile et al., 2023) with the most commonly used methods suffering from subjectivity

and sensitivity to tuning parameters.

A novel automated approach to threshold selection is introduced by Varty et al.

(2021) specifically for modelling large, human-induced earthquakes. These data are

complex due to improvements in measurement equipment over time. The major impli-
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cation of such change is that data are missing-not-at-random, with the dataset appear-

ing to be realisations of a non-identically distributed variable, requiring a threshold u(t)

which varies with time t, even though the underlying process is believed to be identi-

cally distributed over t. Since excesses of u(t) do not have the same GPD parameters

over time, Varty et al. (2021) transform these to a common standard exponential dis-

tribution via the probability integral transform, using estimates of (u(t), σu(t), ξ). They

then quantify the model fit using a metric based on a QQ-plot and select a time-varying

threshold that optimizes this metric. The key novel aspect of their assessment is the

use of bootstrapping methods in the metric evaluation which fully accounts for the

uncertainty in the GPD fit, which varies across threshold choices.

Due to the lack of existing threshold selection methods designed for the context of

Varty et al. (2021), that paper focuses on the data analysis rather than investigating the

performance of the threshold selection method. We explore how their ideas can be best

adapted to threshold selection in a univariate, IID data context. We find that a variant

of the Varty et al. (2021) metric improves the performance and leads to substantially

better results than existing automated methods, including greater stability with respect

to tuning parameters.

We differ from Varty et al. (2021) as we study both threshold selection and return

level estimation when the truth is known. We also address an entirely different problem

of how to incorporate the uncertainty resulting from threshold selection into return

level estimation. Existing methods typically treat the threshold, once it has been

selected, as known, for subsequent return level inference. The available data above

candidate threshold choices are often few and so inference can be highly sensitive to the

chosen threshold. Reliance on a single threshold leads to poor calibration of estimation

uncertainty and as a result, can mislead inference. In particular, we show that the

resulting confidence intervals for such an approach considerably under-estimate the

intended coverage. We propose a novel and simple method, based on a double-bootstrap
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procedure, that incorporates the uncertainty in the selected threshold during inference.

We show that the coverage probabilities of confidence intervals from our approach are

close to the required nominal levels, thus ensuring our inferences provide meaningful

information for design policies.

Ultimately, our aim is to provide a threshold selection method that does not require

any user decisions to achieve adequate results. The method should not be sensitive to

the choice of candidate threshold grid, it should not require the estimation of a mode

to select this grid, it should not have a limit on the number of candidate thresholds for

a given sample size, nor should it exclude the possibility that the available data have

been pre-processed, such as containing only the exceedances of some arbitrary level.

In Section 3.2, we illustrate problems with threshold selection and outline existing

strategies. Section 3.3 describes the core existing automated methods while Section 3.4

introduces our procedure for the selection of a threshold, contrasting it with that of

Varty et al. (2021). Section 3.5 presents our proposed method for incorporating thresh-

old uncertainty into return level inference. In Section 3.6, the proposed methods are

compared against existing methods on simulated data. In Section 3.7, we apply our

methodology to the widely studied troublesome dataset of the River Nidd, first analysed

by Davison and Smith (1990).

3.2 Background

The threshold stability property of the GPD is key in many threshold selection ap-

proaches: if excesses of a threshold u follow a GPD then excesses of a higher thresh-

old v (u < v < xF ) will also follow a GPD, with adjusted parameter values, i.e., if

X − u|(X > u) ∼ GPD(σu, ξ), then X − v|(X > v) ∼ GPD(σu + ξ(v − u), ξ), see Sec-

tion 2.3.1. By this property, the GPD shape parameter ξ should have the same value for

all valid choices of threshold. A modelling threshold can be selected as the lowest value
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for which this property holds, accounting for the sampling variability in the estimates

of ξ. The conventional method for this assessment is known as a parameter stability

plot (Coles, 2001). This plot displays the estimates of ξ and their associated confidence

intervals (CIs) for a set of candidate thresholds. The threshold is selected as the lowest

value for which the estimate of ξ for that level is consistent with estimates of ξ at all

higher thresholds. Throughout the paper, we use maximum likelihood estimation and

parametric bootstrap-based CIs.

Figure 3.2.1 shows two parameter stability plots, with the left plot for a simulated

dataset of 1000 values generated from the Case 4 distribution, described in Section 3.6,

where excesses of the threshold u = 1.0 follow a GPD(0.6, 0.1); and the right plot

for 154 measurements from the River Nidd. Each plot has 95% CIs of two types; the

delta method and the bootstrap. Profile log-likelihood based CIs were also evaluated

but resulted in very similar intervals to the bootstrap method, so they were omitted.

The delta method gives narrower CIs, though close to the bootstrap intervals for the

larger dataset. Selecting an appropriate threshold using this method is challenging and

subjective as the parameter estimates are dependent across threshold choices, there is a

high level of uncertainty due to the small sample sizes that characterise extreme value

analyses, and the uncertainty increases with threshold choice.

For the Case 4 data, the plot shows that candidate thresholds above (below) 0.3 are

possibly appropriate (not appropriate) as CIs for higher candidate thresholds include

(exclude) the corresponding shape parameter estimates, and above 0.8 the point esti-

mates appear more stable. Here (u, ξ) = (1, 0.1), so we can see that candidates below

0.3 are not suitable as ξ is outside their CIs, but the true threshold is higher than may

be selected using this plot. For the River Nidd, lower candidate threshold values imply

a very heavy-tailed distribution (ξ̂ ≈ 0.5), whilst high candidate thresholds imply a very

short tail, with estimates (ξ̂ ≈ −0.5). As a result of this unusual behaviour, the Nidd

data has become the primary example for non-trivial threshold selection (Davison and
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Smith, 1990; Northrop and Coleman, 2014). We apply our new method to this dataset

in Section 3.7. Further examples of the problems encountered when using parameter

stability plots are given in Section 2.3.2.
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Figure 3.2.1: Examples of parameter stability plots with pointwise CIs using the delta-
method [dashed] and bootstrapping [dotted] for [left] a simulated dataset with true
threshold u = 1.0 following Case 4 distribution [green-vertical] and [right] the River
Nidd dataset.

Scarrott and MacDonald (2012) and Belzile et al. (2023) review the extensive litera-

ture that aims to improve upon parameter stability plots. The latter characterises these

methods, with a core reference, as follows: penultimate models (Northrop and Cole-

man, 2014), goodness-of fit diagnostics (Bader et al., 2018), sequential-changepoint

approaches (Wadsworth, 2016), predictive performance (Northrop et al., 2017), and

mixture models (Naveau et al., 2016). It also discusses semi-parametric inferences

(Danielsson et al., 2001), but it excludes the development by Danielsson et al. (2019),

with similarities to the goodness-of-fit approaches.

In Section 3.3, we outline the key aspects of the core automated approaches with

which we compare our proposed method. Supplementary material 2.3.4 and 2.3.5 de-

scribe Northrop and Coleman (2014) and Danielsson et al. (2001, 2019) respectively,

finding that the former suffers from subjectivity of interpretation similar to the param-

eter stability plots. We do not describe any mixture methods in this paper as although
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they benefit from accounting for threshold uncertainty, their inferences are strongly de-

pendent on the choice of model for below the threshold, which we feel is inconsistent to

the strategy of extreme value modelling and can induce bias in the threshold selection

and subsequent quantile estimation.

3.3 Existing automated methods

Automated threshold selection methods aim to remove subjectivity from the choice

of threshold by selecting an optimal threshold from a set of user-defined candidate

thresholds based on optimising some criterion. We outline and compare the approaches

of Wadsworth (2016) and Northrop et al. (2017), which we find to perform best of the

considered existing methods. Further details of these methods are given in Section 2.3.3.

Wadsworth (2016) addresses the dependence between MLEs of ξ, denoted by ξ̂, over

candidate thresholds. Using asymptotic theory for the joint distribution of MLEs from

overlapping samples of data, ξ̂ are transformed to the vector ξ̂∗ of normalised increments

between successive ξ̂ values. For GPD data, asymptotically, ξ̂∗ would be IID realisations

from a standard normal distribution, whereas if the data above any candidate threshold

were not from a GPD, the associated elements of ξ̂∗ would be better approximated by a

non-standard normal. This changepoint behaviour is used to select the threshold. The

underlying asymptotic arguments can cause considerable threshold sensitivity and the

failure of the method to converge. Both issues are exacerbated by small samples and

we identify systematic failures of the associated open source software when ξ < 0. To

reduce such problems, Wadsworth (2016, Table 1) provides guidance on the number of

candidate thresholds for a given sample size.

Northrop et al. (2017) model data using the binomial-GPD (BGPD) model, which

is GPD above u, with λu = P(X > u) a model parameter, and an improper uniform

density, of value 1− λu, below u. They use Bayesian inference and, for each candidate
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threshold, assess the predictive density of GPD fits above a fixed validation threshold

v, where v is the largest candidate threshold. The selected threshold maximises the

predictive ability of this model, above v, using leave-one-out cross-validation. The

method is sensitive to the validation and candidate threshold set and to the prior joint

density of the BGPD parameters.

3.4 Novel metric-based constant threshold selection

3.4.1 Metric choice

We propose an adaptation of the Varty et al. (2021) approach to identify the threshold

u for which the sample excesses, arising from IID and non-missing realisations of a

continuous random variable, are most consistent with a GPD model. Both methods

use a QQ-plot-based metric to approximate the integrated absolute error (IAE) between

the quantiles of the model and the data-generating process. Our method, the expected

quantile discrepancy (EQD), uses the data on the original scale. In contrast, the method

of Varty et al. (2021) transforms the data to an Exponential(1) marginal scale and will

be termed the Varty method. This transformation is beneficial for assessment of non-

identically distributed variables but we assess its merit in the IID case in this chapter.

We revisit this transformation for non-identical settings in Chapter 5.

The following makes the difference between the two methods precise. Let xu =

(x1, . . . , xnu) be the sample of nu excesses of candidate threshold u and q = {qi =

(i−1)/(nu−1) : i = 1, . . . , nu} be the vector of probability plotting points corresponding

to the sample size of xu. The sample quantile function Q(·;xu, q) : [0, 1] → R+ is

defined as the linear interpolations of the points
{
(qi, x

(i)
u ) : i = 1, . . . , nu

}
, with x

(i)
u

denoting the ith order statistic of xu (increasing with i), where any ties are handled

similarly through linear interpolation. The transformation to Exponential(1) margins is

defined by T (x;σ, ξ) = F−1
Exp{H(x;σ, ξ)} where F−1

Exp is the inverse distribution function
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of an Exponential(1) variable, H is the GPD function (3.1.1), and let T (xu;σu, ξ) =

{T (x1;σu, ξ), . . . , T (xnu ;σu, ξ)}. To incorporate the effect of sampling variability in

the data into the threshold choice, the expected (average) deviation over the QQ-plot,

calculated for the probabilities {pj = j/(m + 1) : j = 1, . . . ,m}, is calculated across

bootstrapped samples of xu, denoted xb
u for the bth bootstrap sample, b = 1, . . . , B. For

both methods, this results in the overall measure of fit d̂E(u) =
∑B

b=1 db(u)/B, where

db(u) =


1
m

m∑
j=1

| σ̂b
u

ξ̂bu
[(1− pj)

−ξ̂bu − 1]−Q(pj;x
b
u, q) | EQD

1
m

m∑
j=1

| − log(1− pj)−Q(pj; T̂ (x
b
u; σ̂

b
u, ξ̂

b
u), q) | Varty,

(3.4.1)

and (σ̂b
u, ξ̂

b
u) are the estimated GPD parameters fitted to the bootstrapped sample xb

u.

The selected threshold minimises the estimated IAE, d̂E, over a set of candidate thresh-

olds. In Sections 3.4.2 and 3.4.3 respectively, we justify the choices made in the for-

mulation of the EQD metric and discuss our recommendation for default values for the

tuning parameters (B,m).

In supplementary material A.3.2, we compare the EQD and Varty methods through

an extensive simulation study to assess which version of metric (3.4.1) performs better

for threshold selection and quantile estimation. For threshold selection, the methods

perform similarly; each method achieves the smallest root-mean-square error (RMSE)

in two of Cases 1-4, discussed in Section 3.6. However, for the estimation of high

quantiles, the EQD outperforms the Varty method obtaining the lowest RMSE in the

majority of cases and quantiles, due to the smaller variance of estimates. We ultimately

aim to estimate high quantiles accurately following threshold selection. Given that this

study indicates that the EQD should be preferred for this aim and to avoid unnecessary

repetition, we omit the results for the Varty method for the remainder of the chapter.
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3.4.2 Investigation of the EQD metric choice

For a given u, db(u) evaluates the mean-absolute deviation between the bth bootstrap

sample quantiles and the fitted model-based quantiles, i.e., the mean-absolute deviation

from the line of equality in a QQ-plot for that particular bootstrap sample. This type

of assessmen is not radical, as for any observed sample data, QQ-plots are a standard

method of assessing model fit (Coles, 2001). The novelty for assessing the validity of a

candidate threshold u comes from the way that the EQD metric is constructed.

There are a number of novel choices which we have made in the EQD metric that

require justification, in particular; the use of the mean-absolute deviation; the choice

of quantiles and their interpolation in the QQ-plot; the use of bootstrap samples; and

that the observed data are not explicitly used in the metric. We examine each of these

features in the supplementary material, through simulation studies involving the case

studies of Section 3.6. For each feature, we find positive evidence for our selections.

Below, we explain why we made these choices and outline how they performed relative

to other alternative formulations.

We focus on the mean-absolute deviation on the QQ scale as Varty et al. (2021)

found that this was more effective than using the mean-squared deviation on that scale

and either metric on the PP scale. Our simulation studies found this to be a more robust

measure of fit than the maximum deviation proposed by Danielsson et al. (2019).

We choose to take {pj} to be equally-spaced and to weight contributions to db(u)

equally across the corresponding quantiles. Although higher (lower) sample quantiles

exhibit greater (less) sampling variability, equal weighting is appropriate when taking

the {pj} values to be equally-spaced because for any ξ > −1, the GPD density is

monotonically decreasing. This leads to dense evaluation for lower sample quantiles

and more sparse evaluation in the upper tail. The choice of equal weighting on this

scale is motivated and supported by empirical evidence in Varty et al. (2021). Our choice

for pj is based on the expression for plotting points in a QQ-plot assessment (Coles,
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2001) and the choice for qi is the default option for the R quantile function. As these

choices are subjective, we also consider alternative definitions but find that there is

no systematic ordering of the performance over these definitions and any differences in

RMSE for the thresholds selected by the EQD are minimal, especially when compared

to the differences between the EQD and existing methods. However, the effect on

smaller samples, e.g. n < 100, could be explored. Furthermore, there are approaches

for choosing optimal plotting positions which also could have been considered, e.g.,

Jones (1997).

The average over bootstrapped samples in metric (3.4.1) is not a standard use of

bootstrapping in the extreme value community, i.e., we utilise the bootstraps in a mea-

sure of fit rather than to describe the uncertainty in some estimated quantity. However,

the approach of bootstrap aggregating is often used in machine learning classification

algorithms and regression trees to reduce variance and overfitting (Breiman, 1996). Our

aim is to account for the sampling variability in the observed data, thus avoiding over-

fitting of the GPD model to the observed dataset which could lead to higher threshold

choices than necessary, reduced numbers of exceedances, and extra uncertainty in pa-

rameter and quantile estimates. To confirm this, we considered using only the observed

sample values in the metric. This leads to higher and more variable thresholds choices

in a variety of cases and an overall performance which is either noticeably worse or at

best, comparable to our approach.

One may also be concerned that xu is not included directly in metric (3.4.1). We

additionally explored the effect of using Q(pj;xu, q) instead of Q(pj;x
b
u, q) within the

EQD metric, despite it being unconventional to compare sample quantiles to those of a

model fitted using a different (bootstrapped) sample. We found no benefit to doing so.

Moreover, using only xu to estimate the IAE ignores that this estimate would change

for another realisation of the same data generating process and that variability in this

estimate increases with u. Our approach utilises the bootstrap resamples in the measure



AUTOMATED THRESHOLD SELECTION 55

of fit to provide more stability in the threshold choice and allow us to account for the

increasingly uncertain parameter and quantile estimates as the threshold increases.

3.4.3 Choice of tuning parameters

An in-depth study in supplementary material A.3.3 demonstrates that the EQD method

is robust to the choice of the tuning parameters B and m. Consequently, we take

(B,m) = (100, 500) throughout the paper and in the supplementary material, unless

stated otherwise.

The number of bootstrapped samples B controls the level of sampling variability

incorporated into the threshold choice and so we expect higher values of B to lead to

more stable threshold choices. The RMSE values for threshold estimation reflect this

but also show that computation time increases linearly with B. For a one-off analysis,

there is certainly merit in taking as large a value for B that is computationally feasible.

For simulation studies, when the computational implications of the choice of B are more

important, we find that B = 100 balances accuracy and computation time sufficiently.

The tuning parameterm gives the number of equally-spaced evaluation probabilities

used in expression (3.4.1). The EQD metric aims to approximate the IAE between

model quantiles and quantiles of the data generating process (i.e., not for a particular

sample) and a larger choice of m improves this approximation. To compare fairly across

a range of candidate thresholds, we choose to keep the quality of the approximation of

the IAE fixed across thresholds and bootstraps by fixing the number m of points in the

quantile interpolation grid.

For a particular bootstrap sample, this choice of fixed m can lead to under- or over-

sampling of the upper tail depending on whether m < nu or m > nu. We explore the

sensitivity of the EQD method to m with m = cn and m = cnu, with c = 0.5, 1, 2, 10.

For both strategies, we find that increasing m beyond 500 essentially wastes the in-

creased computation time as the RMSE values for threshold estimates showed little
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sensitivity to m. We also explore the effect of the interpolation grid on the sampling

distribution of db(u) values, over different thresholds, when evaluated using m = 500 or

m = nu. We find that there is little effect from the choice of interpolation grid outside

of the very highest candidate thresholds, but these differences have no effect on the

selected threshold in our examples. We conclude that m = 500, is suitable as a default

value in practice but we can see merits in also ensuring that m ≥ max
u

(nu), where the

maximisation is across all candidate thresholds.

3.5 Parameter and threshold uncertainty

Even if the true threshold u is known, relying on point estimates for the GPD param-

eters results in misleading inference (Coles and Pericchi, 2003). CIs are needed, but as

standard errors and profile likelihoods rely on asymptotic arguments, they are not ideal

due to the sparsity of threshold exceedances. We prefer parametric bootstrap methods

which, as discussed in Section 3.2, perform similarly to the profile likelihood for large

samples. Algorithm 1 details the bootstrapping procedure to account for GPD param-

eter uncertainty when u is known. A GPD is fitted to the nu data excesses of u from

a sample x of size n (n ≥ nu). Using the fitted parameters, B1 parametric bootstrap

samples above u are simulated, each of size nu, and the GPD is re-estimated for each

sample. A summary statistic, e.g., a return level, s(u, λu, σu, ξ), may be computed for

each of the B1 bootstrapped values for (σu, ξ). This enables the construction of CIs for

the GPD parameters and return levels.

Algorithm 1 focuses on the uncertainty of the estimates of (σu, ξ) and is the typical

approach for uncertainty quantification in the frequentist literature (along with the use

of asymptotic likelihood methods), ignoring the uncertainty in the threshold exceedance

rate parameter. We incorporate the additional uncertainty in the estimation of λu

by replacing the fixed nu in the loop over b with a random variate from a Bin(n, λ̂u)
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Algorithm 1 Parameter uncertainty for known threshold

Require: (x, u, B1)
Find nu = #{i : xi > u}, set λ̂u = nu/n, and fit a GPD to x data above u to give
(σ̂u, ξ̂u).
for b = 1, . . . , B1 do

Simulate sample yb
u consisting of nu excesses of u from GPD(σ̂u, ξ̂u).

Obtain parameter estimates (σ̂b, ξ̂b) for y
b
u and summary of interest s(u, λ̂u, σ̂b, ξ̂b).

end for
return A set of B1 bootstrapped estimates for the summary statistic of interest.

distribution for each bootstrap sample, with this extension then referred to as Algorithm

1b.

GPD inferences are sensitive to the choice of threshold (Davison and Smith, 1990)

but uncertainty about this choice is not represented in Algorithms 1 or 1b. This omis-

sion would be important when return levels inform the design of hazard protection

mechanisms, where omitting this source of uncertainty could lead to over-confidence in

the inference and have dangerous consequences. Algorithm 2 provides a novel method

to propagate both threshold and parameter uncertainty through to return level estima-

tion, using a double-bootstrap procedure. To focus on the threshold uncertainty and to

forgo the need for a parametric model below the threshold, we employ a non-parametric

bootstrap procedure on the original dataset. We resample with replacement n values

from the observed data B2 times, estimate a threshold for each such bootstrap sample

using the automated selection method of Section 3.4, and fit a GPD to the excesses of

this threshold. For each one of the B2 samples, we employ Algorithm 1 to account for

the subsequent uncertainty in the GPD parameters. Calculating a summary statistic

for each of the B1 ×B2 samples leads to a distribution of bootstrapped estimates that

accounts for uncertainty in the threshold selection as well as in the GPD and threshold

exceedance rate parameters. We use B1 = B2 = 200. To run this algorithm using the

EQD method for the threshold selection step (which itself has B bootstraps), it would

require B2(B+B1) bootstrap samples to be generated. Specifically, for the B2 samples

initially generated for Algorithm 2, we have B2×B in selecting the threshold values and
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B2 ×B1 in capturing the GPD parameter uncertainty above these selected thresholds.

In Section 3.6, we illustrate how using Algorithm 2 improves the coverage probability

of CIs, and in Section 3.7 how it widens CIs for return levels of the River Nidd.

Algorithm 2 Parameter uncertainty for unknown threshold

Require: (x, n, B2, B1)
for b = 1, . . . , B2 do

Obtain sample xb of size n by sampling n times with replacement from x.
Estimate threshold ûb for xb and record number of excesses as nûb

.
Employ Algorithm 1 with inputs: (xb, ûb, B1).

end for
return A set of B1×B2 bootstrapped estimates for the summary statistic of interest.

3.6 Simulation study

3.6.1 Overview

We illustrate the performance of the EQD method against the Wadsworth (2016) and

Northrop et al. (2017) approaches, which we term the Wadsworth and Northrop meth-

ods respectively. Danielsson et al. (2001, 2019) approaches perform considerably worse

than all others in threshold selection and quantile estimation; so results for these

methods are only given in supplementary material A.4.2. We utilised the following

R code for Wadsworth, Northrop and EQD methods respectively: code given in the

supplementary materials of Wadsworth (2016), threshr (Northrop and Attalides, 2020),

and https://github.com/conor-murphy4/automated_threshold_selection (Mur-

phy et al., 2023).

The performance of all of the methods depends somewhat on the choice of the set

of candidate thresholds which we denote by:

Cu = {ui, i = 1, . . . , k : u1 < . . . < uk}, (3.6.1)

https://www.tandfonline.com/doi/full/10.1080/00401706.2014.998345
https://github.com/conor-murphy4/automated_threshold_selection
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where we restrict the ui to be sample quantiles evaluated at equally-spaced probabilities.

The range [u1, uk], the number of candidates k and the inter-threshold spacing are all

potentially important in terms of how they affect the performance of the methods. As

emphasised in Section 3.1, we are aiming for an automated threshold selection method

which can achieve accurate results without any user inputs, so a key element of our

study is to investigate how these features of the set Cu impact on the methods’ relative

performance. When fitting a GPD with decreasing density (i.e., for ξ > −1), it would

be inadvisable to use a threshold which clearly lies below the mode of the distribution.

As we want to avoid the requirement of user estimation of the mode, our standard choice

for the range of the candidate grid is [u1, uk]: (u1, uk) = (0%, 95%) sample quantiles of

all the data. However, we also explore several cases where only the data lying above

the mode are used with [u1, uk]: (u1, uk) = (0%, 95%) now sample quantiles of the

remaining data. To remove the uncertainty arising from the choice of estimator of the

mode, we use the true mode which has a unique value in our simulated cases. Results

in supplementary material A.4.4 indicate that our original choice for the candidate

threshold set does not unfairly favour the EQD method in any way.

We consider two scenarios: Scenario 1 and Scenario 2 where the true threshold is

known and unknown respectively. We present the results using a candidate threshold

grid across the whole distribution for Scenario 1 and above the sample median for Sce-

nario 2, with the latter chosen as the Wadsworth method fails when applied across the

default range in that setting. The Wadsworth method relies on asymptotic arguments,

which limits how large k can be relative to the sample size, n′, above the mode, with

n′ ≤ n, where n is the total sample size. To assess how the Wadsworth method performs

as a fully automated method, we apply the method despite the value of k not always

aligning with the guidance in Wadsworth (2016) about its size relative to n′.

We assess the methods’ ability to estimate the true threshold (when it exists) and the

true return levels, using the RMSE to measure performance. The true quantiles and all
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bias-variance components of RMSE, discussed in this section, are given in supplemen-

tary materials A.2 and A.4.2 respectively. We also investigate the merits of including

the uncertainty in threshold selection in our inference, as discussed in Section 3.5, in

terms of how they improve the coverage levels of CIs relative to their nominal values.

3.6.2 Scenario 1: True threshold for GPD tail

We consider Cases 0-8, with different properties above and below the true threshold of

u = 1.0 and various sample sizes. Case 0, where all of the data are from a GPD, is re-

ported in supplementary material A.4.3, with the EQD performing notably better than

the existing methods. Here, we present detailed results for Cases 1-4, with Table 3.6.1

providing outline model and sample size properties, with full details and density plots

given in supplementary material A.2. Cases 5-8 are considered briefly after discussing

Cases 1-4 below.

Cases 1-3 all have a distinct changepoint in the density and density mode both at

the true threshold which should make all methods of threshold selection perform better

than in situations without these features. Cases 1 and 2 have the same distribution,

with ξ > 0, with Case 2 having a smaller sample size. We find that the Wadsworth

method fails to estimate a threshold in samples with ξ < −0.05 irrespective of sample

size, so Case 3 is selected near that boundary where the method works and has double

the sample size of Case 1. Case 4 is a more difficult example with a continuous density

and a small number of exceedances of the true threshold. The data are derived from

a partially observed GPD, denoted GPDp, with data drawn from a GPD above 0 and

rejected if less than an independent realisation from a Beta(1,2) distribution.

For each case, the results are based on 500 replicated samples, for which we test the

candidate thresholds Cu, with k = 20, as given in (3.6.1), with the true threshold being

the 16.67% quantile for Cases 1-3 and the 72.10% quantile for Case 4.
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Models Below threshold Sample size Above threshold Sample size
Case 1 U(0.5, 1.0) 200 GPD(0.5, 0.1) 1000
Case 2 U(0.5, 1.0) 80 GPD(0.5, 0.1) 400
Case 3 U(0.5, 1.0) 400 GPD(0.5,−0.05) 2000
Case 4 GPDp(0.5, 0.1) 721 GPD(0.6, 0.1) 279

Table 3.6.1: Model specifications for Cases 1-4.

Cases 1-4, Threshold recovery: Table 3.6.2 shows the RMSE of the chosen

thresholds for each method in Cases 1-4, with the EQD achieving RMSEs 1.2-7.7 (1-

11.2) times smaller than the Wadsworth (Northrop) method. The EQD has the lowest

bias by a considerable margin in Cases 1-3 and shows the lowest variance in threshold

estimation in all cases. In fact, the variance is reduced by a factor of at least 20 relative

to both the Wadsworth and Northrop methods (see Table A.4.1). The very strong

performance of the EQD relative to both the Wadsworth and Northrop methods is

particularly noteworthy in Cases 1-3, and is also seen for Case 0 and later for Cases

5-7. We believe that the key reason for this is the discontinuity in the density, a feature

common to all of these cases, as that appears to lead to a very small bias for the

EQD method relative to the other methods. Specifically, the variance penalty of the

EQD metric seems to push the threshold as low as possible, but its complementary

goodness-of-fit measure almost entirely stops the threshold being selected below the

clear discontinuity in the density. For Case 4, which has a continuous density, the EQD

achieves the smallest RMSE almost entirely due to it having the smallest variance but

with a bias component broadly comparable with the other methods.

EQD Wadsworth1 Northrop
Case 1 0.048 0.349 0.536
Case 2 0.060 0.461 0.507
Case 3 0.060 0.221 0.463
Case 4 0.526 0.628 0.543

Table 3.6.2: RMSE of the threshold choices for each method-case combination. The
smallest values for each case are highlighted in bold.

1Results for Wadsworth are calculated only on the samples where a threshold was estimated. It
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Cases 1-4, Quantile recovery: Table 3.6.3 presents the RMSEs for the (1−pj,n)-

quantiles where pj,n = 1/(10jn) for j = 0, 1, 2 for sample size n, which ensures that

extrapolation is equally difficult over n for a given j. When j = 0, no extrapolation

is required so the choice of u should not be too important; the similar RMSEs across

methods reflect this. As j increases, all RMSEs increase and the differences between

methods become clear. The EQD method is best uniformly, followed by the Wadsworth

and then the Northrop methods. This pattern reflects the findings in Table 3.6.2, al-

though here with differential performances sensitive to j. However, in terms of quantile

estimation, the EQD method does not retain the large differential relative to the other

methods which was seen for threshold selection in Cases 1-3. In contrast, the differ-

ences between methods in Case 4 are now more apparent, as controlling the variance is

more important than any small differences in bias when we are concerned with a RMSE

assessment of quantiles which lie far into the tail. The EQD achieves the lowest bias in

the majority of cases and leads to quantile estimates with considerably less variance in

all cases, particularly as j increases.

EQD Wadsworth1 Northrop EQD Wadsworth1 Northrop
j Case 1 Case 2
0 0.563 0.594 0.755 0.599 0.631 0.736
1 1.258 1.391 2.376 1.488 1.644 3.513
2 2.447 2.717 7.097 3.119 3.484 22.916

Case 3 Case 4
0 0.190 0.195 0.230 0.677 0.800 0.791
1 0.323 0.344 0.450 1.563 2.059 2.217
2 0.483 0.516 0.744 3.043 4.485 5.568

Table 3.6.3: RMSEs in the estimated quantiles in Cases 1-4 based on fitted GPD above
chosen threshold. The smallest RMSE for each quantile are highlighted in bold.

Summary for Cases 5-8: Cases 5-8 are very similar in form to Cases 1-3 but with

different shape parameters and sample sizes. The results for these cases are presented in

supplementary material A.4.3, with a brief summary given here. Specifically, for Cases

failed estimate a threshold for 2.4%, 26.4%, 0%, 4.4% of the simulated samples in Cases 1-4, respec-
tively.



AUTOMATED THRESHOLD SELECTION 63

5-7, we find that the EQD exhibits the strongest performance and the Wadsworth

method consistently fails due to the small sample sizes or computational issues with

numerical integration when ξ < −0.05. Case 8 is parameterised similarly to Case 1 but

with an unrealistic sample size of n = 20000. Although the data in Case 8 are more

suited to a method reliant on asymptotic theory, the EQD performs comparably with

the Wadsworth method, with both performing better than the Northrop method.

Case 4, True quantile coverage: We apply Algorithms 1, 1b and 2 to data

from Case 4, the hardest case for threshold selection. Table 3.6.4 presents the coverage

probabilities of the nominal 80% and 95% CIs of the estimated (1 − pj,n)-quantiles as

well as the average ratio of the CI widths (based on Alg 2 relative to Alg 1 ) over the

500 samples, termed CI ratio. Results for extra quantile levels, as well as coverage

for the 50% CI, are given in supplementary material A.5. Overall, incorporating only

parameter uncertainty (Alg 1 and Alg 1b) leads to underestimation of interval widths

and inadequate coverage of the true quantiles, especially as we extrapolate further. The

additional uncertainty, given in Alg 1b, by also accounting for uncertainty in the rate

of threshold exceedance, typically makes a very small improvement in coverage, and

for some quantiles, this actually leads to a reduction in coverage due to Monte Carlo

variation in the simulations. In contrast, the inclusion of the additional threshold

uncertainty (Alg 2 ) leads to much more accurate coverage of the true quantiles across

all exceedance probabilities. The CI ratios show that this highly desirable coverage is

achieved with only 43-62% increase in the CI widths on average.

80% confidence 95% confidence
j 0 1 2 0 1 2

Alg 1 0.646 0.618 0.606 0.834 0.804 0.794
Alg 1b 0.656 0.638 0.612 0.830 0.814 0.794
Alg 2 0.798 0.772 0.758 0.954 0.948 0.944

CI ratio 1.430 1.452 1.475 1.484 1.546 1.621

Table 3.6.4: Coverage probabilities for estimated quantiles using Algorithms 1, 1b and
2 for 500 replicated samples from Case 4 with sample size of 1000. CI ratio gives the
average ratio of the CIs for Algorithm 2 relative to Algorithm 1 over the 500 samples.
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3.6.3 Scenario 2: Gaussian data

In applications, there is no true value for the threshold above which excesses follow

a GPD, so we explore this case here. We select the standard Gaussian distribution

as it has very slow convergence towards an extreme value limit (Gomes, 1994), so

threshold selection is likely to be difficult. We assess threshold selection methods based

on estimation of the true quantiles Φ−1(1− pj,n) where pj,n = 1/(10jn), for j = 0, 1, 2.

We simulate 500 samples, for n = 2000 and 20000, with Cu, given in (3.6.1), now having

range [u1, uk] : (u1, uk) = (50%, 95%) sample quantiles of the data and k = 10 and 91

(i.e., steps of 5% and 0.5%) for the two choices of n respectively. As with Case 8 in

Section 3.6.2, n = 20000 is unrealistic, but we include it to show the slow convergence.

Quantile recovery: Table 3.6.5 shows the RMSEs of the estimated quantiles. For

n = 2000, the EQD method achieves the smallest RMSE with the Northrop method a

close second, with the reverse when n = 20000. The median and 95% CI of the chosen

thresholds are given in supplementary material A.4.2. The Northrop method tends to

choose slightly higher thresholds than the EQD method, leading to a small reduction

in bias, but for only the smaller n is the additional variability relative to the EQD a

disadvantage. The Wadsworth method performs the worst, selecting lower thresholds

and so incurring the most bias.

n = 2000 n = 20000
j EQD Wadsworth2 Northrop EQD Wadsworth Northrop
0 0.214 0.239 0.225 0.187 0.214 0.172
1 0.430 0.529 0.461 0.368 0.422 0.331
2 0.703 0.890 0.765 0.594 0.672 0.533

Table 3.6.5: RMSEs of estimated (1 − pj,n)-quantiles for 500 replicated samples from
a Gaussian distribution for samples of size n. The smallest RMSE are highlighted in
bold.

True quantile coverage: For assessing the coverage of true quantiles using Algo-

rithms 1, 1b and 2 for Gaussian data, Table 3.6.6 presents the coverage probabilities of

2Results for the Wadsworth method, which failed on 0.4% of the samples here, are calculated only
for samples where a threshold estimate was obtained.
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the nominal 80% and 95% CIs of the estimated quantiles, when n = 2000, as well as the

average ratio of the CI widths (again, of Alg 2 relative to Alg 1 ) over the 500 samples,

with more results given in supplementary material A.5. Across the pj,n, both Alg 1 and

1b give very low coverage probabilities in both cases, with performance deteriorating

as j increases. The added threshold uncertainty from Alg 2 results in large increases

in coverage though still somewhat less than required, with this achieved through in-

creases in CI widths by 45-66% on average. This weaker performance than we find

in Section 3.6.2 suggests that no sample threshold (for realistic sample sizes) is large

enough to overcome bias in making extreme value approximations for Gaussian data,

but the improvement in coverage using Alg 2 demonstrates the importance of including

the additional threshold uncertainty.

80% confidence 95% confidence
j 0 1 2 0 1 2

Alg 1 0.588 0.450 0.366 0.750 0.618 0.510
Alg 1b 0.592 0.442 0.364 0.746 0.620 0.508
Alg 2 0.718 0.598 0.492 0.866 0.814 0.756

CI ratio 1.457 1.480 1.509 1.495 1.576 1.665

Table 3.6.6: Coverage probabilities for estimated quantiles using Algorithms 1, 1b and
2 for 500 replicated samples from a Gaussian distribution with sample size of 2000. CI
ratio gives the average ratio of the CIs for Algorithm 2 relative to Algorithm 1 over the
500 samples.

3.7 Application to river flow data

The River Nidd dataset consists of 154 storm event peak daily river flow rates that

exceeded 65 m3/s in the period 1934-1969, i.e., an average exceedance rate of 4.4 events

per year. Each observation can be deemed “extreme” and IID, though not necessarily

well-described by a GPD. Davison and Smith (1990) identify the difficulties these data

present for threshold selection and parameter uncertainty, which we reiterated in dis-

cussion of Figure 3.2.1. Given the small sample size for the River Nidd, any increase
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in the threshold value is more significant in terms of parameter uncertainty, than for

larger datasets studied in Section 3.6.

Table 3.7.1 shows the selected thresholds of each of the methods for a range of

candidate grids3. The remarkable robustness of the EQD (evaluated with B = 200

bootstrap samples) across grids stems from the method’s novel incorporation of data

uncertainty. The Wadsworth method fails to estimate a threshold unless the grid is

made very coarse, and even then exhibits considerable sensitivity (varying between

0% and 90% sample quantiles) over grids of equal size but different endpoints and

increments. This is problematic as a coarse grid is likely to remove the most appropriate

threshold from consideration. The Northrop method critically depends on the validation

threshold, and we find that increasing this level above the 90%-quantile leads to failure

or convergence warnings. The thresholds selected by this method are quite variable

(between 0% and 80% sample quantiles) over the grids.

Estimated thresholds for the River Nidd dataset
Grid (% quantile) EQD Wadsworth Northrop

0 (1) 93 67.10 (3%) NA 68.453 (6%)
0 (1) 90 67.10 (3%) NA 65.08 (0%)
0 (1) 80 67.10 (3%) NA 100.28 (75%)
0 (20) 80 65.08 (0%) NA 109.08 (80%)
0 (30) 90 65.08 (0%) 149.10 (90%) 65.08 (0%)
0 (25) 75 65.08 (0%) 100.28 (75%) 81.53 (50%)

0, 10, 40, 70 65.08 (0%) 65.08 (0%) 69.74 (10%)

Table 3.7.1: River Nidd dataset selected thresholds (and quantile %) for each method
for different grids of candidate thresholds. The Grid column gives start (increment)
end for each grid.

Comparing thresholds selected between the methods is complicated due to the sen-

sitivity of the Wadsworth and Northrop methods to the grid choice. For the EQD,

it is natural to use the densest and widest grid, giving û = 67.10. This thresh-

old, which is lower than previously found, gives far more data for the extreme value

3In marked cases, the Northrop method outputted a chosen threshold with some convergence warn-
ings.
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analysis. As all the River Nidd data are “extreme”, we believe taking u so close to

the lower endpoint of the data is not problematic, and it may indicate that the pre-

processing level used to produce these data was too high. The first estimated threshold

from the Wadsworth (Northrop) methods, without convergence or warning issues, is

û = 149.10 (û = 65.08). For these three thresholds, the GPD parameter estimates (and

95% CIs) are: σ̂u:EQD = 23.74 (17.78, 29.70) and ξ̂ = 0.26 (0.06, 0.46) for the EQD;

ξ̂ = −0.15 (−1.00, 0.70) for the Wadsworth method; and for the Northrop method,

ξ̂ = 0.20 (0.02, 0.38), where we omit the latter two scale parameter estimates as they

are estimating different quantities which depend on the threshold, see Section 3.2. Pro-

vided all estimated thresholds are high enough for the GPD to be appropriate, the

values of ξ̂ should be similar across methods, due to the threshold stability property

(see Section 2.3.1). The Wadsworth method leads to an extremely wide CI, which re-

sults in meaningless inference. However, the EQD and Northrop findings about ξ are

similar, but the sensitivity to the candidate grid is a problem for the Northrop method.

Figure 3.7.1 shows a QQ-plot for the GPD model using the EQD estimate û = 67.10.

The tolerance bounds show a reasonable agreement between model and data. For û,

Figure 3.7.1 also shows the T -year return level estimates, with 1 ≤ T ≤ 1000. The

95% CIs incorporate parameter uncertainty alone and both parameter and threshold

uncertainty via Algorithms 1 and 2 respectively, with an increase in uncertainty from

the latter for larger T ; e.g., for the 100- and 1000-year return levels, the CI width

increases by a factor of 1.38 and 1.52 respectively. This reiterates how vital it is to

incorporate threshold uncertainty into inference.

3.8 Conclusion and discussion

We proposed two substantial developments to univariate extreme value analysis. Firstly,

we addressed the widely-studied problem of how to automatically select/estimate a
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Figure 3.7.1: River Nidd analysis: QQ-plot [left] showing model fit with 95% tolerance
bounds [shaded] and return level plot [right] based on EQD threshold choice with 95%
CIs incorporating parameter uncertainty [dark-shaded] and additional threshold uncer-
tainty [light-shaded].

threshold above which an extreme value, generalised Pareto, model can be fitted. We

presented a novel and simple approach, which we termed the EQD method, that min-

imises an approximation to the IAE of the model quantiles and quantiles of the data

generating process. Secondly, we proposed a new approach to improve the calibra-

tion of confidence intervals for high quantile inference, addressing an important but

under-studied problem. We achieve this through an intuitively simple, but computa-

tionally intensive, double-bootstrapping technique which propagates the uncertainty in

the threshold estimation through to quantile inference.

Regarding the threshold selection component of the work, we compared the EQD

method to the leading existing threshold selection methods in terms of both threshold

selection and consequent high quantile estimation. This was conducted using data from

IID continuous univariate random variables and the superiority of the EQD method

was illustrated across a range of examples using various metrics. Relative to existing

approaches, we showed that the EQD exhibits greater robustness to changes in the

set of candidate thresholds, to tuning parameters, and avoids a reliance on asymptotic
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theory in existing likelihood methods. The EQD method is applicable for all data set

sizes and for any set of candidate thresholds.

So why does the EQD method perform much better than the existing approaches?

Our analysis has identified two core reasons: the choice of a robust measure of goodness

of fit for a given (bootstrapped) sample, which controls bias; and the use of bootstrapped

replicates, which leads to reduced variance and also appears to reduce bias. Specifically,

in comparison to existing methods, the use of our goodness-of-fit measure, over simply

exploiting the GPD threshold stability property, ensures better model fits and hence

better threshold selection, and the bootstrapping removes the variation that arises if

only the observed sample is used, as that may not be a typical realisation from the

underlying data generating process.

In assessing our suggested improvement for the calibration of confidence intervals,

we compared the coverage of true quantiles using our proposed approach and the widely-

adopted approach of incorporating the GPD parameter uncertainty alone in quantile

inference once a threshold has been selected. We showed that the coverage of the

existing approach was substantially less than the nominal confidence levels and our

proposed approach led to much more reliable confidence intervals without an undue

increase in their width.

While this paper has demonstrated the effectiveness of both the EQD method and

our proposed approach for confidence interval construction in the univariate IID set-

ting, we believe that the findings suggest that these approaches could have much wider

utility. For example, the Varty et al. (2021) method, which motivated the structure of

the EQD method, was originally developed for non-identically distributed data, with

the transformation of excesses of a time-varying threshold to a common marginal Ex-

ponential(1) distribution. As such cases typically find that excesses have a common

shape parameter ξ (Chavez-Demoulin and Davison, 2005), we could use the EQD vari-

ant of Varty et al. (2021) by transforming instead to a common GPD with parameters
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(1, ξ) given we have seen here that by retaining the scale of the original data, the EQD

out-performs the Varty et al. (2021) approach. We also believe that the strategy of our

new methods could be used to improve threshold estimation in multivariate extremes,

in cases of multivariate regular variation assumptions (Wan and Davis, 2019) or for

asymptotically independent variables (Heffernan and Tawn, 2004), and allow for the

uncertainty in this threshold estimation to be incorporated in the subsequent joint tail

inferences. Such developments would naturally have similar implications for spatial ex-

treme value modelling as the threshold selection in this context currently comes down

to a multivariate (at the data sites) threshold selection process.



Chapter 4

Automated tail-informed threshold

selection for extreme coastal sea

levels

4.1 Introduction

Natural hazards such as flooding, earthquakes and wildfires devastate communities and

livelihoods around the world. Extreme value analysis (EVA) applied to the historical

records of such events provides a useful tool for describing the frequency and intensity

of these processes, and can be used by practitioners, community leaders, and engineers

to prepare in advance for catastrophic events. Example applications include flood risk

assessment (D’Arcy et al., 2023), nuclear regulation (Murphy-Barltrop and Wadsworth,

2024), ocean engineering (Jonathan et al., 2014), and structural design analysis (Coles

and Tawn, 1994). Furthermore, stakeholders with assets spread across large geographi-

cal regions also utilise these tools to understand the hazard across regional, continental,

and global scales; see Keef et al. (2013b), Quinn et al. (2019), and Wing et al. (2020).

Coastal flood events, driven by high tides, surges, or waves, are commonly recorded

71
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at tide gauge stations, which cover large proportions of the populated global coastline.

When characterising extreme sea level events, these tide gauge records are a primary

source of information available to coastal managers. Due to the large number of sites

involved, automated techniques for the characterisation of extreme events are preferable.

The earliest EVA techniques used the annual maximum approach, whereby a the-

oretically motivated distribution is fitted to the observed yearly maxima. However,

this approach suffers from the drawback that only one observation is recorded for each

year, resulting in inefficient use of the data. In practice, this can lead to an incomplete

picture of the upper tail and less accurate estimates of tail quantities, such as return

levels. Consequently, recent consensus has been to move away from the annual maxi-

mum approach (Davison and Smith, 1990; Coles, 2001; Scarrott and MacDonald, 2012;

Pan and Rahman, 2022).

As a result, the POT approach has become the most popular technique for EVA

modelling; see Section 4.3 and Coles (2001) for further details. This approach involves

fitting a statistical model to data above some high threshold. However, the choice

of this threshold is not arbitrary, and inappropriate choices can result in poor model

fits and extrapolation into the tail. Traditional approaches rely on visual assessments

of parameter stability above the appropriate threshold. Such approaches suffer from

subjectivity (Caballero-Megido et al., 2018) and the time input required to apply such

techniques to global tide gauge records is not feasible. Consequently, many efforts have

been made to reduce the time burden incurred by manual threshold selection. These

include simplifications that allow large amounts of data to be processed, but at the cost

of accuracy, e.g., using a static threshold, such as the 0.98 quantile or a fixed number of

exceedances per year (Hiles et al., 2019; Collings et al., 2024). We refer to the approach

of selecting a static 0.98 quantile across all sites (or variables) as the Q98 approach

henceforth. Other approaches aim to automate much of the subjective decision-making

process while retaining a flexible method that can capture the underlying behaviour of
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the physical processes (Solari et al., 2017; Curceac et al., 2020; Murphy et al., 2025).

In this study, our aim is to build upon existing techniques to provide a novel ap-

proach to automating threshold selection, which is applicable to a wide range of datasets

whereby the extremes are characterised by different drivers. As a motivating example,

we apply our method to a global dataset of 417 tide gauge records, demonstrating the

performance of our approach over a variety of locations and benchmarking against other

commonly used techniques.

The layout of this chapter is as follows; in Section 4.2 we introduce the dataset used

in this study and in Section 4.3 we discuss the common difficulties in using the POT

approach across such a large, varied dataset, as well as some of the methods used to

simplify the process. In Section 4.4, we describe our novel approach to automating

threshold selection and explain the subjective choices we have made in the method.

In Section 4.5, we present the results of applying our method to the global tide gauge

dataset described in Section 4.2. In Section 4.6, we discuss our results in the context of

uncertainty, bias, and the underlying physical processes and finally, in Section 4.7 we

provide a conclusion to our study.

4.2 Data

The locations of the considered tide gauge stations are illustrated in Figure 4.2.1. These

data are obtained from the Global Extreme Sea Level Analysis (GESLA) database

(Haigh et al., 2023), version 3.1. The GESLA database was collated from many organ-

isations that collect and publish tide gauge data. The water level records are prepared

using the quality control flags published by the authors alongside the data set, and

duplicate timestamps in the records are also removed. The water level records that

contain over 40 years of good data (defined as at least 75% complete) are retained.

This results in a total of 417 water level records from around the world, which have an
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average record length of 66 years. The raw time series data are provided on a range

of time steps (10, 15, and 60 minutes), and so are averaged to hourly resolution. A

linear trend is calculated and removed to account for mean sea level rise. Generally,

mean sea level rise can be approximated as linear in most locations globally. Some

areas, especially areas where glacial isostatic rebound is important, can have non-linear

signals, but any differences between non-linear and linear estimates of sea level change

are generally small, especially in comparison to the magnitudes of the extreme sea

levels, and so, in our analysis, we find a linear trend to be adequate. Daily maxima

data are obtained from the hourly records, and the data is subsequently declustered

(see Section 2.5 for review of declustering techniques) using a 4-day storm window to

ensure event independence (Haigh et al., 2016; Sweet et al., 2020). Given the range of

oceans and coastlines covered, one would generally expect to observe a wide variety of

tail behaviours across the records.

Figure 4.2.1: Map of GESLA record locations with record lengths greater than 40 years.
The two locations highlighted in red are Apalachicola, US and Fishguard, UK, which
are discussed in more detail in Section 4.5.4.

4.3 POT modelling

The POT approach, whereby a theoretically motivated distribution is fitted to the ex-

cesses of some high threshold (see, e.g., Coles, 2001), is the most common technique for
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assessing tail behaviour in environmental settings. Given any independent and identi-

cally distributed (IID) random variable X and a threshold u, the results of Balkema

and de Haan (1974) and Pickands (1975) demonstrate that under weak conditions, the

excess variable Y := (X − u | X > u) can be approximated by a generalised Pareto

distribution (GPD) – so long as the threshold u is ‘sufficiently large’. The GPD has

the form

H(y;σ, ξ) = 1−
(
1 +

ξy

σ

)−1/ξ

+

, y > 0, (4.3.1)

where z+ = max(0, z), σ > 0, and ξ ∈ R. We refer to σ and ξ as the scale and shape

parameters, respectively, and we remark that the latter parameter quantifies important

information about the form of tail phenomena; see Davison and Smith (1990) for further

discussion. A wide range of statistical techniques have been proposed, including both

Bayesian and frequentist frameworks, to fit the model in equation (4.3.1) (Dupuis, 1999;

Behrens et al., 2004; Scarrott and MacDonald, 2012; Northrop et al., 2017), although we

note that maximum likelihood estimation (MLE) remains the most common technique

(e.g., Gomes and Guillou, 2015). Consequently, we restrict attention to MLE techniques

throughout this chapter.

In many practical contexts, distribution (4.3.1) is used to obtain estimates of return

levels for some return period N of interest. Such values offer a straightforward interpre-

tation: the N -year return level is the value xN that one would expect to exceed once, on

average, every N years. Return levels are easily obtained by inverting equation (4.3.1)

(see Coles, 2001), and their estimates are often used to inform decision making. For

example, in the contexts of flood risk analysis and nuclear infrastructure design, regu-

lators specify design levels corresponding to return periods of N = 100 years (D’Arcy

et al., 2023) and N = 10000 years (Murphy-Barltrop, 2024), respectively.

The ambiguity of the statement ‘a sufficiently large threshold u’ requires careful

consideration. This is a problem that is commonly overlooked in many applications,

and selecting a threshold u is entirely non-trivial. In particular, this selection represents



TAIL-INFORMED THRESHOLD SELECTION FOR COASTAL SEA LEVELS 76

a bias-variance trade-off: selecting a threshold too low will induce bias by including

observations that do not represent tail behaviour, while extremely high thresholds will

result in more variability due to lower sample sizes. Furthermore, the estimates of

return levels are very sensitive to the choice of threshold, and biased estimates can

significantly impact the cost and effectiveness of certain infrastructures, such as flood

defences (Zhao et al., 2024).

Owing to the importance of this choice, a plethora of methods have been proposed

which aim to balance the aforementioned trade-off; see Belzile et al. (2023) for a recent

review of the literature. The standard and most-widely used approach for threshold

selection involves a visual assessment of the stability of the GPD shape parameter across

a range of increasing thresholds (Coles, 2001). This approach suffers from subjectivity

in the choice of stable region. Furthermore, visual assessments for individual sites are

simply not feasible (within a reasonable time scale) for large scale applications.

Automatic approaches seek to remove this subjectivity by selecting a threshold based

on some criterion or goodness-of-fit metric; Wadsworth and Tawn (2012) and Northrop

and Coleman (2014) utilise penultimate models and hypothesis testing; Bader et al.

(2018) and Danielsson et al. (2019) use goodness-of-fit diagnostics; Wadsworth (2016)

utilise a sequential assessment of a changepoint model; and Northrop et al. (2017)

create a measure of predictive performance in a Bayesian framework. Tancredi et al.

(2006) avoid the prior selection of the threshold by employing a Bayesian mixture

model where the threshold is incorporated into the parameter estimation, allowing for

straight-forward estimation of threshold uncertainty. In the applied literature, Durocher

et al. (2018) and Curceac et al. (2020) compare several automated goodness-of-fit ap-

proaches for selecting an appropriate threshold in the hydrological setting. Furthermore,

Choulakian and Stephens (2001), Li et al. (2005) and Solari et al. (2017) automate

goodness-of-fit procedures and apply these techniques to a range of precipitation and

river flow data sets.
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Recently, Murphy et al. (2025) proposed a novel threshold selection technique, cor-

responding to Chapter 3 of this thesis, building on the work of Varty et al. (2021). This

method, termed the expected quantile discrepancy (EQD), aims to select a threshold

u for which the sample excesses are most consistent with a GPD model. We briefly

outline this method below. Let xu = (x1, . . . , xnu) be the sample of excesses of some

candidate threshold u, i.e., a sample from Y . For each candidate threshold, the EQD

method assesses the expected deviation between sample and theoretical quantiles at a

set of fixed probabilities Pm := {j/(m+1) : j = 1, . . . ,m}, where m denotes some large

whole number. This assessment is done across a number of bootstrapped samples, say

B, to incorporate sampling variability and stablise the threshold choice. More specifi-

cally, letting xb
u denote the bth bootstrapped sample of xu, with b = 1, . . . , B, Murphy

et al. (2025) propose the metric

db(u) :=
1

m

m∑
j=1

∣∣∣∣∣ σ̂b
u

ξ̂bu

[(
1− j

m+ 1

)−ξ̂bu

− 1

]
−Q

(
j

m+ 1
;xb

u

)∣∣∣∣∣ , (4.3.2)

where (σ̂b
u, ξ̂

b
u) denote the GPD parameter estimates for xb

u, obtained using MLE, and

Q(j/(m+1);xb
u) denotes the j/(m+1) empirical quantile of xb

u. Considering equation

(4.3.2) over each bootstrapped sample, an overall measure of fit for u is given by d(u) =∑B
b=1 db(u)/B. Finally, the selected threshold, u∗, is the value that minimises d, i.e.,

u∗ := argmin d(u). Through an extensive simulation study, Murphy et al. (2025) show

that their approach convincingly outperforms the core existing approaches for threshold

selection. Therefore, at the time of writing, the EQD technique is a leading approach

for automating threshold selection.

In this chapter, we argue and demonstrate that while the EQD approach appears to

work well in a wide variety of cases, it can suffer from drawbacks in certain applications

that result in less than ideal threshold choices. Specifically, the chosen thresholds can

result in model fits that do not match up well at the most extreme observations. We
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briefly explore the reasons for why this may occur below.

To begin, consider two candidate thresholds u1 < u2 satisfying Pr(X > u1) = 0.5

(i.e., the median) and Pr(X > u2) = 0.99. Taking each threshold in turn, the EQD

computes quantiles from the (bootstrapped) conditional variables (X − u1) | (X > u1)

and (X−u2) | (X > u2) that correspond with the probability set Pm. When considered

on the scale of the data, however, this results in very different quantile probabilities.

Letting xu1,j denote the (true) j/(m + 1) quantile of (X − u1) | (X > u1) for any

j = 1, . . . ,m, we have

Pr(X ≤ xu1,j + u1) = 1− Pr(X − u1 > xu1,j | X > u1) Pr(X > u1)

= 1− [1− j/(m+ 1)]0.5 =: qu1,j,

with an analogous formula following for u2, i.e., qu2,j := 1 − [1 − j/(m + 1)]0.99. The

resulting probability sets {qu1,j}mj=1 and {qu2,j}mj=1, with m = 100, are illustrated in

Figure 4.3.1. This demonstrates that the lower the threshold level u, the lower the

quantile probabilities evaluated by the EQD. Thus, quantiles lying far in the tail of the

data will carry significantly less weight for lower thresholds than for higher thresholds.

Figure 4.3.1: The probability sets {qu1,j}mj=1 and {qu2,j}mj=1 illustrated in red and black
vertical lines, respectively. The left and right plots are given on different intervals to
illustrate the fact the quantile probabilities exist in entirely different subregions of [0, 1].

On a similar note, we remark that the metric described in equation (4.3.2) is equally

weighted across all probability levels. We argue that this somewhat disagrees with

intuition in the sense that many practitioners mainly care about a models’ ability to
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estimate very extreme return levels, and one only wants observations in the tail to

be driving this estimation. Including non-extreme observations will bias the estimation

procedure and therefore assessing quantile discrepancies mainly for lower quantile levels,

as will occur for lower candidate thresholds, provides little to no intuition as to how

the fitted model will perform at the most extreme levels.

Taking these points into account, we propose an extension of the EQD procedure to

improve the model fit to the most extreme observations. Our proposed extension results

in models fits which more accurately capture the upper tail of the data in contexts

where the EQD method struggles. Specifically, in the context of coastal modelling, we

demonstrate that the EQD approach selects thresholds that do not appear appropriate

for capturing the most extreme observations across many coastal sites; such issues do

not arise for our extended approach.

Consider the example illustrated in Figure 4.3.2 for a tide gauge record located in

Penascola Bay, US, which is in the Gulf of Mexico. This record was selected as it is

located in a region impacted by tropical cyclones, where the uncertainty in the model

fits using the historical records is typically large. This particular dataset may be better

modelled by a two component mixture distribution to describe the tropical cyclones and

other extremes. We choose to ignore this here as threshold estimation is the priority

of this chapter and in any case, the heavier tail of such a mixture will dominate for

high quantiles. As demonstrated in the left panel of this figure, the threshold chosen

by the EQD method was the 84% quantile and the resulting model fit performs poorly

within the upper tail. For this particular example, this indicates that the overall model

fit is being driven mainly by lower observations, biasing the fit in the upper tail. Such

findings were replicated across many coastal sites, indicating that this is not an unusual

phenomenon. We also illustrate the model fit that arises from our proposed method

(see Section 4.4), which selected a threshold at the 97% quantile, in the right panel of

Figure 4.3.2. One can observe that even though the updated model fit has a higher
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discrepency value d(u), the model quantiles appear better able to capture the upper tail

in the data, at the cost of additional parameter uncertainty from the fewer exceedances

included in the fit.

Figure 4.3.2: QQ plots for the thresholds selected using the EQD (left) and TAILS
(right) approaches; see Section 4.4 for more details of the TAILS method. 95% tolerance
bounds are shown as shaded regions. The sub captions, in both cases, give the EQD
score d(u) of the threshold chosen by each method.

These findings indicate that whilst the EQD approach outperforms many existing

techniques, it can, in some cases, result in model fits that fail to capture the most

extreme observations. This drawback motivates novel developments, and in this work

we propose an adaptation of the EQD technique, which we term the Tail-informed

threshold selection (TAILS) approach. Unlike the EQD approach, our technique focuses

exclusively on quantiles within a pre-defined upper tail of the data, independent of the

choice of threshold. Furthermore, we demonstrate in Section 4.5 that TAILS results in

improved model fits across a wide range of tide gauge records. Code for implementing

the TAILS approach is available at https://github.com/callumbarltrop/TAILS.

https://github.com/callumbarltrop/TAILS
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4.4 The TAILS approach

In this section, we introduce the TAILS approach for GPD threshold selection. To

begin, let P := {pi : i = 1, . . . ,m} denote a set of increasing quantile levels close to

1: the selection of P is subsequently discussed. Given a candidate threshold u, let xb
u,

b = 1, . . . , B, be defined as in Section 4.3 and let πu = Pr(X ≤ u). We propose the

following metric

d̃b(u) :=

m∑
i=1

1(πu < pi)

∣∣∣∣ σ̂b
u

ξ̂bu

[(
1−pi
1−πu

)−ξ̂bu
− 1

]
−Q

(
1− 1−pi

1−πu
;xb

u

)∣∣∣∣
m∑
i=1

1(πu < pi)
, (4.4.1)

with Q(· ; ·) and (σ̂b
u, ξ̂

b
u) defined as before. For each threshold u, this metric ensures

that the same quantile probabilities are evaluated, when considered on the scale of the

data. Furthermore, observe that equation (4.4.1) accounts for cases when the threshold

probability, πu, exceeds a subset of P; in such instances, the metric is only evaluated

on probabilities greater than the threshold non-exceedance probability, corresponding

to the region where the given GPD model is valid. Analogous to the original approach,

an overall measure of fit for a candidate threshold u is given by d̃(u) =
∑B

b=1 d̃b(u)/B,

and the selected threshold, u∗, is the value that minimises d̃, i.e., u∗ := argmin d̃(u).

The motivation behind (4.4.1) is to only evaluate quantile differences within the tail

of the data, independent of the threshold candidate. This ensures that the threshold

choice is driven entirely by the model fit within the most extreme observations. How-

ever, prior to applying the method, one must select a probability set P. This choice is

non-trivial, and is crucial for ensuring the proposed method selects a sensible thresh-

old. For instance, selecting probabilities very close to one is meaningless in a practical

setting, since the corresponding quantiles cannot be estimated empirically from data of

a finite sample size. On the other hand, selecting probabilities too low will defeat the

objective of our proposed technique.
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With this in mind, we term p1 the baseline probability, i.e., the smallest probability in

P. This corresponds to the ‘baseline’ observation frequency below which one treats any

events to be extreme relative to the sample size. Naturally, this represents a subjective

choice, and the best choice of baseline probability is likely to be context dependent. In

practice, we recommend selecting p1 based on expert or domain-specific knowledge; for

example, what magnitude of return period normally results in a relatively low-impact,

but significant event within a given context? Take coastal flood risk mitigation and the

occurrence of ‘nuisance’ flooding as an example. Nuisance flooding is defined as ‘low

levels of inundation that do not pose significant threats to public safety or cause major

property damage, but can disrupt routine day-to-day activities, put added strain on

infrastructure systems such as roadways and sewers, and cause minor property damage’

(Moftakhari et al., 2018). Although the exact return period of these events varies by

location, a study carried out in the US demonstrated that these events generally occur

at sub-annual frequencies, and that the median across their study sites was 0.5 years

(Sweet et al., 2018). In this study, we chose to use a return period of 0.25 years

for p1, to include events below the median obtained in the study above. This choice

was further supported by a sensitivity analysis, the results of which are presented in

Appendix B. Note that this does not imply that the optimum threshold choice will lie

close to the baseline event, since this choice is driven exclusively by the asymptotic rate

of convergence to the underlying tail distribution.

Alongside the baseline probability, we also set pm (the largest probability in P),

such that we ensure that we observe 10 exceedances above the corresponding quantile,

on average, over the observation period. Extrapolating beyond this level is unlikely

to be meaningful, since we cannot estimate empirical quantiles outside of the range of

data. Furthermore, we impose that all candidate thresholds are less than the 1 year

return level. This upper threshold is used in similar automated threshold selection

studies, such as Durocher et al. (2018).
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Finally, for the remaining probabilities in P, we set pj := p1+(j−1)(pm−p1)/(m−

1), j = 2, . . . ,m − 1, corresponding to equally spaced values from the p1 to pm. For

the number of quantile levels m, we follow Chapter 3 and set m = 500; such a value

ensures a wide range of probabilities are evaluated without too much linear interpolation

between observed quantile levels. Similar to Chapter 3, for this setting, we found that

the choice of m made very little difference to the thresholds selected by the approach.

See Appendix B for more details.

4.5 Results

We now assess the performance of the TAILS approach using the dataset introduced

in Section 4.2. In Section 4.5.1, we apply both the EQD and TAILS approaches over

all locations with m = 500 and B = 100. The same values for m and B were used

by Murphy et al. (2025). In Section 4.5.2, we provide spatial plots of the results to

determine if there are any patterns present in the thresholds selected by the TAILS

method or in the differences between the selected thresholds of the TAILS and EQD

approaches. In Section 4.5.3, we assess, with a right-sided Anderson-Darling (ADr)

test, the GPD model fits obtained using the selected thresholds from each approach,

as well as the model fits using the static threshold of the Q98. Lastly, in Section 4.5.4,

we show the distance metrics from the EQD and TAILS approaches for two tide gauge

records, and present the resulting return levels from the two automated methods and

the Q98 approach.

4.5.1 Selected thresholds

Since the scales of data at different locations vary, we present the quantile probabilities

of the selected thresholds rather than the threshold values themselves; these are illus-

trated in Figure 4.5.1. The TAILS approach clearly selects higher thresholds compared
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to the EQD approach, as expected. The minimum and maximum quantiles selected

by the TAILS and EQD methods are (0.903, 0.993) and (0.501, 0.991), respectively.

The lowest threshold selected by the EQD approach is very close to the lower limit of

candidate thresholds provided (i.e., the median).

Figure 4.5.1: The results from applying the EQD and TAILS methods to every GESLA
record used in this study, showing the distributions of quantile probabilities of the
selected thresholds.

4.5.2 Spatial analysis

Figure 4.5.2 (a) shows the quantile probabilities of the original data for the TAILS

selected thresholds plotted spatially. There are no obvious large-scale spatial patterns

in the selected threshold probabilities. However, with the exception of a few outliers,

the changes across space are generally small. In Australia, the quantile probabilities of

selected thresholds appear to be marginally lower in the tide gauge records located in

the south, compared with records located on the east and west coasts of the country. In

contrast, the quantile probabilities of the selected thresholds around Japan and Hawaii

look comparatively uniform, with very little spatial change.

Figure 4.5.2 (b) illustrates the differences between the quantile probabilities of the
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selected thresholds from the TAILS and EQD approaches. All thresholds selected using

the TAILS method are greater than those of the EQD. Strong spatial patterns are

present, particularly at tide gauge locations in north-eastern Europe. The tide gauge

records with the largest increases are located in the Baltics and show increases of nearly

0.5 (in quantile probability). Spatial trends are also visible around Australia, with the

TAILS approach selecting much higher thresholds around the south of the country,

compared with the north.

Figure 4.5.2: Spatial plots of a) the quantile probabilities of selected thresholds using
the TAILS methods, and b) the difference in the quantile probabilities of the selected
thresholds between the TAILS and EQD approaches.
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4.5.3 Right-sided Anderson-Darling test

The ADr test statistic (Sinclair et al., 1990; Solari et al., 2017) is used to measure the

goodness-of-fit of the exceedances over the thresholds selected using both the EQD and

TAILS methods, as well as the model fits computed using the Q98 approach. The test

compares the theoretical and empirical distributions, with more weight placed on the

tails of the distribution. The statistic quantifies the deviation of the data from the

specified distribution. A p-value is obtained by bootstrapping the test statistic, and

indicates the probability of observing deviation seen between the threshold exceedances

and the GPD model assuming, under the null hypothesis, that the GPD model is appro-

priate. The null hypothesis is typically rejected for p-values below 0.05, corresponding

to a 5% significance level.

A larger test statistic (or equivalently, a lower p-value) indicates more deviation

from the model distribution being tested, which in this case, is a GPD. As shown in

Figure 4.5.3 (a), the EQD approach yields larger ADr test statistics than the TAILS

method. The range of test statistics computed using the TAILS method are all less than

1, whereas the EQD approach has many values exceeding 1. This indicates that the

EQD method could be selecting a threshold in this context over which the exceedances

are not well characterised by a GPD. This is further corroborated by the p-values

obtained for each method, plotted in Figure 4.5.3 (b). The median p-value across all

model fits obtained using the TAILS method is 0.615, compared with 0.312 for the EQD

approach. The TAILS method also outperforms the Q98 approach, with a smaller test

statistic average and greater average p-value. While all the methods achieve adequate

fits for most of the dataset, in some of the cases where the EQD and Q98 method

lead to poor model fits (p-value less than 0.05), the TAILS method can significantly

improve results. Of the 417 tide gauge records that were assessed, 89 records had an

ADr p-value of less than 0.05 when using the EQD method. By comparison, using the

TAILS approach, we obtain only 17 model fits with ADr p-values less than 0.05.



TAIL-INFORMED THRESHOLD SELECTION FOR COASTAL SEA LEVELS 87

Figure 4.5.3: Box and whisker plots showing the results from applying an ADr test to
all the exceedances over the thresholds selected using the EQD and TAILS approaches,
as well as using a static Q98 threshold.

4.5.4 Distance metrics and return levels

As a further illustration, consider the two sites; Apalachicola in the US and Fishguard

in the UK. The two sites have been selected based on the differences in geographic

location and the associated extreme water level drivers, which lead to contrasting return

level estimates. Apalachicola, located on the western coast of Florida in the Gulf of

Mexico, is subjected to violent tropical cyclones which drive huge storm surges due to

the large and shallow continental shelf (Chen et al., 2008; Zachry et al., 2015). The

GPD model fit that characterises the return levels of the water level record therefore

has a large positive shape parameter, which leads to a power-law growth in the return

level curve. In contrast, Fishguard is located on the southern side of Cardigan Bay,

near the inlet of the Irish Sea. The events driving extreme sea levels in this location are

a combination of strong extratropical storms and astronomical tidal variation, which

are characterised by a wholly different return level curve (Amin, 1982; Olbert and

Hartnett, 2010). The GPD model fit for this record has a negative shape parameter,

which leads to a plateau in the return levels as the return period increases. Figure 4.5.4

shows stability plots for the shape parameter for each site with the selected thresholds
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from the EQD and TAILS methods plotted as vertical lines. For both sites, the shape

parameter looks approximately stable above both threshold choices. There is some

deviation for Apalachicola at the largest quantiles due to the increased variability in

parameter estimates and the effect of the largest extreme events which are driven by

tropical cyclones. The return level plots and distance metrics for each site are shown

in Figure 4.5.5.
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Figure 4.5.4: Parameter stability plots for two locations: Apalachicola, US [left] and
Fishguard, UK [right]. The selected thresholds from the EQD and TAILS approaches
are shown as blue and orange lines, respectively.

In the top row of Figure 4.5.5 (panels a and b), one can observe the EQD and

TAILS distance metrics (i.e., expressions (4.3.2) and (4.4.1)) plotted as a function of

the threshold probability for both tide gauge records. The global minima obtained

from the two approaches are starkly different, as a result of the different quantile levels

on which each metric is evaluated. Panels c and d of Figure 4.5.5 show the estimated

return levels and 95% bootstrapped confidence intervals (incorporating GPD parameter

uncertainty) from each of the TAILS, EQD and Q98 approaches, at Apalachicola and

Fishguard, respectively.

In the case of Apalachicola, the minimum distance (panel a) obtained using the
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Figure 4.5.5: Model fits for two locations. Left column: Apalachicola, US (a and
c). Right column: Fishguard, UK (b and d). The top row (a and b) shows the
TAILS (orange) and EQD (blue) distance metrics, plotted as a function of the threshold
probability. The vertical dashed lines indicate the distance minima, and therefore
the selected threshold quantile probability. The bottom row (c and d) displays the
unconditional return level estimates resulting from the EQD method (blue dot-dash),
TAILS method (orange dashed) and the Q98 approach (green), with observations shown
as black points. The shaded areas indicate the 95% bootstrapped confidence intervals
incorporating GPD parameter uncertainty.

TAILS method (0.012) is more than double the minimum distance obtained using the

EQD approach (0.005). Despite having a larger minimum distance, the TAILS approach

captures the largest empirical observations much better than the EQD method. In fact,

five of the historical events even lie outside of the 95% confidence interval for the EQD

method. Contrast this with the results from Fishguard (panel b), where the minimum

distances obtained using each approach are much more comparable; 0.005 for TAILS

and 0.004 for the EQD approach. The resulting return level estimates (panel d) are also

similar, with very small differences in the mean return levels between each of the three

methods. The key difference observed in panel d is the uncertainty bounds, with the
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EQD method having narrower uncertainty bounds at the higher return periods than

the other two methods. However, all methods lead to a poor fit for some of the most

extreme observations here. With the inclusion of threshold uncertainty, as directed in

Chapter 3, the confidence intervals would likely cover all observations.

4.6 Discussion

In this work, we have introduced an automated threshold selection technique that ad-

dresses certain limitations of a leading existing approach in this particular context. This

extension of Chapter 3 was driven largely by domain expectations where concern lies

more closely on fitting the most extreme observations. This goal differs from Chapter 3

where we were concerned with providing an adequate fit to the data generating pro-

cess, incorporating both the GPD model fit and sampling variability into the threshold

choice. In this chapter, we have utilised those key aspects of the EQD metric but

focussed the metric evaluation on the upper tail to ensure adequate fit to the most

extreme observations. Using a global tide gauge dataset, both methods have been rig-

orously compared alongside a commonly used static threshold. We have examined the

spatial patterns present in the differences between the TAILS and EQD approaches, and

tested the resulting GPD model fits using an ADr test. Two tide gauge records have

been investigated in more detail, to highlight the differences in the EQD and TAILS

distance metrics, and to demonstrate how the parameter uncertainty changes between

the different approaches.

4.6.1 Comparisons to existing approaches

At all locations, the TAILS method selects higher thresholds than the EQD approach.

Particularly large increases are observed in Europe and the Baltic regions, as well as

South Australia. The processes driving these increases are likely multifactorial. In
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the Baltic Sea, for example, the tidal range is very small (less than 10 cm in some

locations). This makes any non-tidal variability in sea level much larger relative to the

daily oscillation of the sea level due to tide. This could have an impact on the EQD

approach, although it is unlikely to explain all the differences. Other regions in the

world also have small tidal ranges, such as the Mediterranean and Gulf of Mexico, and

yet these areas do not show such large increases in the quantile probabilities selected by

the TAILS method relative to the EQD. Factors that could affect the selected thresholds

include the meteorological forcing type (i.e. tropical cyclone vs extra-tropical storm)

and the dominant driver of extreme water levels in a particular location (e.g. storm

surge, waves or tides), but determining the impacts of each of these remains beyond

the scope of this study.

Regardless of why individual differences occur, we demonstrate that in most cases

in this coastal flood context, the methodological differences of the TAILS approach

lead to more accurate GPD fits for the most extreme observations, compared to the

EQD technique, and improvement over the commonly-used static Q98 threshold (when

assessed using an ADr test). Furthermore, when applying methods to a large number of

sites, employing an automated procedure, like the TAILS or EQD methods, avoids the

need for manual checks on individual threshold choices. The TAILS method guarantees

that the resulting model fits will be driven by data observed in the upper tail, which is

desirable for practical applications where estimation of extreme quantities (e.g., return

levels) is required. We also believe that calibrating threshold selection to focus on the

upper tail will encourage more practitioners to adopt our approach, since we are more

likely to obtain a model fit that accurately captures the observed tail behaviour.

4.6.2 Sensitivity to extreme observations and uncertainty

Focusing the model fit to the upper tail comes at the cost of additional uncertainty,

since by definition, less data is available for inference. Since uncertainty quantification
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is a key focus of the approach proposed by Murphy et al. (2025), the EQD technique

will generally offer lower model uncertainty than TAILS. In other applications, this may

be more desirable than capturing the most extreme observations. Thus, when deciding

whether to use the EQD or TAILS methods, one must consider the following question:

is it more important that the model is more certain and robust, or that the model better

captures the most extreme observations? We recommend that practitioners consider

this question within the context of their application before selecting a technique.

For the application demonstrated in this paper, acknowledging and embracing un-

certainty is key for any practitioner, despite the focus here on fitting the largest obser-

vations. Take the example of Apalachicola, US given in Section 4.5.4. This region is

impacted by tropical cyclones, making the return level estimates made from the histor-

ical record very uncertain. To illustrate this point, two major Category 4 hurricanes

(Helene and Milton) made landfall on the west coast of Florida in September and Octo-

ber 2024, after the GESLA 3.1 update was collated. Preliminary data recorded during

the event suggest that Hurricane Helene broke the highest recorded water levels at three

tide gauges located in Florida, and Hurricane Milton set the second highest water level

ever recorded at the tide gauge located in Fort Myers, US (Powell, 2024a,b). Fitting

distributions to these records pre and post these events results in different mean return

levels being estimated, especially when considering the most extreme return periods

(e.g., the 1 in 500 year event). We tested this and found that, when using the TAILS

approach, the mean return level for the 1 in 500 year event increased by 55 cm if the

tide gauge record is extended beyond the GESLA 3.1 update, to include these events.

By recognising the uncertainty in the underlying processes and the uncertainty inherent

in the estimates made from observations, we can be more confident that our models

will be able to capture extreme events which are yet to occur. It must be noted that

when estimating confidence intervals for the return level estimates shown Figure 4.5.5,

we did not account for the uncertainty in the threshold estimation, as recommended by
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Murphy et al. (2025). Accounting for this aspect of uncertainty using the Q98 threshold

is not possible and so to allow comparison between the three approaches, we omitted

this additional feature.

4.6.3 Incorporating more complex characteristics within the

TAILS approach

Throughout this work, we make the implicit assumption that data are IID, even though

we acknowledge that this is unrealistic for environmental processes such as sea levels

in an ever-changing climate. This choice was motivated by practical implications; IID

models are simpler to implement and best practices (i.e., using a POT model) are well

established. However, there is no reason why the TAILS framework could not be ex-

panded to incorporate more complex models. When applying simple IID models to

such contexts, the TAILS approach may be favoured as the generally higher threshold

choices should remove some of the complexity, leading to more accurate fits. How-

ever, there is well-established methods for incorporating covariate dependence into the

threshold and parameters of a GPD (Davison and Smith, 1990; Chavez-Demoulin and

Davison, 2005; Youngman, 2019). This aspect could be a reason for the poor fit in

the upper tail for the EQD in Figure 4.3.2. Accounting for this aspect in the EQD or

TAILS approach could allow for the use of lower thresholds without the loss of accuracy

for the more extreme observations, providing a way to balance between the two goals

mentioned above, i.e., uncertainty and accuracy in the upper-tail.

For example, one could extend the method to include non-stationary data by al-

lowing the GPD parameters to be functions of time or covariates. A wide range of

modelling approaches have been proposed for this purpose (Eastoe and Tawn, 2009;

Sigauke and Bere, 2017; Youngman, 2019; Mackay and Jonathan, 2020). Relevant co-

variates are those that impact the number of extreme events that occur within a given

year; for example, indices related to the ENSO and NAO phenomena, which affect the
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likelihood of temperature and precipitation extremes (Dong et al., 2019), could be in-

corporated. Only minor modification would be needed to apply the TAILS approach

here; specifically, we would assess quantile discrepancies on a transformed scale, rather

than the observed scale (see Varty et al. (2021) for related discussion). However, we

note that standard practices for applying non-stationary POT models are not well es-

tablished, and it is not clear how one should select which covariates to include or how

much flexibility to include within the model (for example). Therefore, the develop-

ment of automated threshold selection approaches for non-stationary data structures

represents an important line of future research.

We also remark that we assume a constant baseline event for our approach. Future

work could incorporate a variable baseline event, which is linked to the underlying

forcing mechanisms in an area. As discussed in Section 4.5.4, tide gauges around the

world are characterised by different patterns of extreme water levels. It might be

possible to link a dominant forcing type to the baseline event, which could improve the

ability of TAILS to capture the tail behaviour in the estimated return levels.

We also expect our automated selection technique to be useful for improved thresh-

old estimation in the wider context of multivariate and spatial extremes. The method

could be applicable, with suitable adjustment, to cases relying on multivariate regular

variation assumptions such as Wan and Davis (2019) or for variables exhibiting asymp-

totic independence (Heffernan and Tawn, 2004). The data-driven approach would allow

for the threshold estimation uncertainty to be propagated through to the joint tail in-

ferences. Possibly of even more importance for this context, is the natural extension

from multivariate to spatial modelling (Shaby and Reich, 2012; Richards et al., 2022).

4.6.4 Incorporating threshold uncertainty

While results may indicate in certain examples that the Q98 approach outperforms the

EQD, the benefits of a data-driven approach can not be understated. When relying
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on TAILS or the EQD, not only is the threshold justified by a goodness-of-fit measure

but sampling variability has also been taken into account. This leads to a well-justified

threshold choice and an easier characterisation of the uncertainty in resulting estimates.

It also allows for the uncertainty in the threshold choice to be incorporated when making

inference; see Chapter 3. As mentioned in Section 4.6.2, we omitted this aspect of

uncertainty in our confidence interval estimation for this work. As shown in Chapter 3,

including this additional uncertainty results in well-calibrated confidence intervals. In

our context, including this uncertainty may result in better capture of extreme events

yet to be observed (see Section 4.6.2), and should provide a better understanding of the

uncertainty in return level estimates beyond the observed data, which can contribute

to improved decision-making for future hazard mitigation.

4.6.5 Selecting tuning parameters

TAILS requires the selection of several non-trivial tuning parameters; this includes

probability set P , m, B, and the limit on candidate thresholds, which we define as the

1-year return level in Section 4.4. Our choices were motivated by the specific application

at hand, and we consequently recommend that practitioners experiment with these

parameters to assess whether such values have a practical effect on the resulting model,

using diagnostics such as QQ and return level plots to guide this procedure. The

code has been written in such a way as to make it easily parallelised, allowing for

fast testing of multiple baseline and maximal probabilities across a variety of datasets.

We encourage and invite fellow researchers to utilise this method on other applications,

such as rainfall or river flow measurements. Exploring data-driven techniques (e.g., cross

validation) for selecting tuning parameters of automated threshold selection approaches

represents an important line of future research.
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4.7 Conclusions

Accurately estimating the extreme tail behaviour of historical observations is of great

importance to researchers and practitioners working in natural hazards. POT methods

are regularly used in these fields for this purpose, but selecting the threshold above

which to consider an exceedance requires careful consideration. In this paper, we present

TAILS, a new method for automating the threshold selection process building upon the

recently published EQD method (Murphy et al., 2025).

We apply two key innovations to improve upon the EQD method in the context of

extreme coastal sea levels. Firstly, we fix the quantiles that we consider when comput-

ing the distance metrics. This avoids oversampling the most extreme quantiles when

assessing higher thresholds. Secondly, we limit the quantiles considered for our distance

metric to be only above a predetermined baseline probability. This means that when

optimising the distance metric to select a threshold, we are only considering quantiles

that we deem to be extreme, and hence worth considering when selecting a threshold.

Here, the baseline probability was decided using the literature and a sensitivity test.

We show that the TAILS approach selects, on average, higher thresholds than the

EQD method. When the resulting model fits are evaluated using an ADr test against

the EQD and Q98 approaches, the TAILS method outperforms both with respect to the

ADr test statistic and the p-value. We also illustrate that the TAILS method typically

results in larger uncertainty bounds, but argue that when considering water level records

located in regions that experience tropical cyclones, this can be useful in adequately

representing the uncertainty of extremes that are more appropriately modelled by a

mixture distribution.

We applied the methods to a large number of tide gauge records. We expect that

the TAILS method may also be useful to better estimate the intensities and frequencies

of other natural hazards. The code has been written in such a way as to make it easily

accessible and easily parallelised so as to encourage uptake from fellow researchers.



Chapter 5

Spatio-temporal modelling for

extreme induced seismicity in the

presence of an evolving

measurement network

5.1 Introduction

Extraction or injection of gases from/into underground reservoirs of porous rock cause

poroelastic deformations in the subsurface, which can lead to seismic activity, known

as induced seismicity (Majer et al., 2007; Suckale, 2009). Where these underground

reservoirs are located in populated areas, there are significant risks of public safety and

damage to infrastructure (Ellsworth, 2013), so accurately estimating the distribution

of induced seismicity magnitudes under future extraction or injection scenarios is of

paramount importance. Such estimates can be used to inform the construction or

reinforcement of infrastructure and keep the hazard associated with induced seismic

events at an acceptable level. A key example of a region where this induced seismicity

97
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is prevalent is the Groningen gas field in the Netherlands, one of the largest gas fields

globally. Here, extraction has now stopped (despite substantial remaining gas reserves)

but earthquakes continue to occur and there is still debate on how best to determine

the funds needed to mitigate against future earthquake damage.

To aid decision making on the future risks linked to the Groningen gas field, we must

accurately estimate the distribution of the magnitudes of seismic events, with particular

interest in the values beyond those that have already been observed. Two specific

quantities are typically given focus. Firstly, the magnitude with a 90% probability

of occurrence over a 50-year span is widely-used in the design of earthquake-resistant

infrastructure (Code, 2005), which if earthquakes were identically-distributed over time,

corresponds to a 475-year return level. The second is the largest possible earthquake

within the region, denoted Mmax, used to address concerns of worst case scenarios. For

estimating Mmax, there are purely statistical models (Beirlant et al., 2019) as well as

substantial geophysical literature (McGarr, 2014; Galis et al., 2017; Weng et al., 2021).

Whichever approach is used, high-quality earthquake data catalogues are required.

Unlike tectonically-driven earthquakes, the largest induced earthquakes are small in

magnitude, but they occur at shallow depths and so, can still cause significant damage

locally in relation to their epicentres. Catalogues of observed events typically have

small sample sizes and cover a limited time-window T and spatial region X . Thus, it

is vital to make use of all of the reliable available information.

The key challenge with induced seismicity is that small magnitude events often go

undetected. Induced seismic events are located and measured by a network of geophones

spread across the region of interest. Earthquakes are only detected if their magnitude

is sufficiently large such that its location may be identified by the geophone network.

Investment in this network over time has improved the detection ability which, in turn,

sheds light on the occurrence rate of earthquakes which were undetected during periods

when the network was too sparse or insensitive to detect such events. In seismicity
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studies, a key quantity is the magnitude of completion, denoted by mc(x, t), which is

the smallest earthquake magnitude which can be detected with certainty if it occurs at

a location x ∈ X and time t ∈ T . As the value of mc(x, t) relates to the density and

sensitivity of the geophones around location x at time t, it can only be estimated using

the observed earthquake catalogue.

Only detected earthquakes with magnitudes that exceed the estimated magnitude

of completion, m̂c(x, t), for that earthquake’s estimated location x and time t should

be used in the subsequent analysis of seismic rate changes, static and dynamic trigger-

ing, mapping of seismicity parameters, earthquake forecasting, and probabilistic seismic

hazard assessment (Mignan et al., 2011). Therefore, efficient estimation of the mag-

nitude of completion function mc is vital. In estimating mc, there is a bias-variance

trade-off which affects design level and Mmax inferences; too low an estimate incorpo-

rates levels impacted by undetected earthquake values (which biases inferences); while

over-estimation excludes valid data (leading to unnecessary variance). The simplest

inference methods for the function mc assume that the function is constant over X ×T

but this is potentially highly inefficient for regions with a geophone network that has

evolved substantially across T , as it makes the investment redundant. Therefore, it is

essential to estimate the function mc as well as possible, which means estimating its

spatial-temporal changes.

Almost all existing methods for estimation of mc(x, t) follow Ogata (1988) by as-

suming that the true values of earthquake magnitudes (detected or not) are realisations

of an independent and identically distributed (IID) variable, with distribution function

denoted by F . For a given choice of statistical model for F , mc(x, t) is estimated as the

largest level where there is not a statistically significant departure of the fitted distri-

bution F from the empirical distribution (using the catalogue values that fall within a

selected neighbourhood of space and time of (x, t)). This whole process is complicated

as (i) F is unknown and even an appropriate parametric family for F is unclear, (ii)
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the earthquakes missing from the catalogue make it difficult to fit F accurately, and

(iii) the results will be sensitive to the choice of the neighbourhood.

The typical choice for F is an exponential distribution, in line with the Gutenberg-

Richter law for seismicity (Gutenberg and Richter, 1956). Various simplifying assump-

tions for the form of the function mc have been used: Mignan and Woessner (2012)

take it to be constant over X × T ; Hutton et al. (2010) and Das et al. (2012) both

take a piecewise-constant function, with changepoints at pre-determined timepoints

and spatial regions respectively; whilst Woessner and Wiemer (2005) allow for short-

term increases following large magnitude earthquakes. These methods are likely to be

inefficient as (i) knowledge of the geophone network is not exploited, (ii) the exponential

distribution is known to result in inadequate fits to the data in the upper tail, (iii) the

assumption that the earthquakes are identically distributed is likely too simplistic for

induced earthquakes with evidence of space-time variations in the distribution due to

changes in the incremental stress fields (Bourne and Oates, 2020; Richter et al., 2020).

Mignan et al. (2011) focussed on estimating mc(x) as constant over time, but over-

come aspects of the first two of the above inefficiencies by employing a two-step Bayesian

mapping procedure. They use a non-parametric method to develop provisional esti-

mates and merge this with prior information about mc(x) based on a regression model

ϕ1[Vi(x)]
ϕ2 +ϕ3, where Vi(x) is the surface distance from x to the ith nearest geophone,

and (ϕ1, ϕ2, ϕ3) are parameters. They explore i = 3−5, to ensure accurate measurement

of earthquakes for their monitors, and choose i = 5 as best for their analysis. Mignan

et al. (2011) assume an exponential distribution for the excesses of their spatially vary-

ing mc function. Other work has addressed concerns about the exponential distribution

being unbounded in its upper tail, which does not align with physical understanding

that the seismic energy which can be released in any region must have a finite up-

per bound, and hence Mmax < ∞. Potential approaches to address this include the

truncated exponential distribution (Raschke, 2015) and the tapered Gutenburg-Ritcher
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distribution (Vere-Jones et al., 2001). Yue et al. (2025b) discuss other distributions that

have been proposed which exhibit truncation and tapering relative to the exponential

distribution. None of these distributions have a mathematical or physical justification,

so even if they fit well in certain applications, there is no basis to believe that they are

suitable in other regions.

For the Groningen gas field data, Varty et al. (2021) propose a range of new develop-

ments for estimating mc as a solely temporally-varying function and for the estimation

of its associated excess distribution. This research builds upon that work as we set out

below.

Varty et al. (2021) model F utilising extreme value methods, using the generalised

Pareto distribution (GPD) to be precise. This choice of distribution seems a well-

justified assumption because (i) the Gutenberg-Ritcher law (i.e., the exponential distri-

bution) is known to be a good approximation for seismic processes and it is a special

case of the GPD; (ii) Varty et al. (2021) found strong empirical evidence for the GPD,

(iii) the exponential distribution tends to overestimate the upper tail of earthquake

magnitudes due to the infinite upper-endpoint, in contrast to the physical upper limit

of induced earthquakes, and (iv) the GPD is known to provide a flexible, parsimonious

model with a finite upper-endpoint (for ξ < 0) allowing accurate estimation of the

upper tail including levels beyond what has previously been observed (Coles, 2001).

Varty et al. (2021) propose an automated method for estimatingmc(t) as the thresh-

old for the GPD. A variant of this method was shown to outperform the leading thresh-

old selection techniques for fitting a GPD in the IID context in Chapter 3. Finally,

they assume that mc(t) follows a parametric sigmoid function over time, with four pa-

rameters. This choice of parametric form was somewhat arbitrary but accounted for

empirical evidence of a smooth transition between time periods with constant values.

Although information about changes in the Groningen geophone network were not used

in the Varty et al. (2021) analysis, the estimate found changes which were consistent
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with periods of known investment into the network and almost doubled the number of

excesses over mc(t) relative to the established best constant estimate of this function.

Here, we focus on developing the first automated method for making inference on

the spatial-temporal function mc(x, t), which explicitly accounts for the known details

of the evolving geophone network for the Groningen gas field, with the resulting esti-

mate exhibiting clear spatio-temporal variations which reflect the geophone network.

We propose to estimate mc(x, t), using the threshold of a covariate-dependent GPD,

as motivated in Varty et al. (2021). To simplify notation and align with standard ter-

minology for the GPD threshold, we subsequently use u(·) in place of mc(·) for our

inference, but refer to existing methods as estimating mc(·).

Our work builds upon that of Varty et al. (2021) and Murphy et al. (2025) to provide

an automated threshold selection procedure that accounts for different functional forms

linking u(x, t) to a spatio-temporal extension of the covariate Vi(x) of Mignan et al.

(2011) and to decide on the best choice over i. Following Varty et al. (2021), we

assume that F is a GPD, but we are the first to exploit, during threshold selection,

the knowledge of Bourne and Oates (2020) that the parameters of F vary with the

changing stresses due to gas extraction. Using a key geophysical stress covariate, we

can estimate the rate of occurrence of earthquakes exceeding different magnitudes into

the future under various extraction scenarios.

Critically, there is novelty from the perspectives of both earthquake modelling and

extreme value methods, as we are the first to explore the impact of the uncertainty in

the estimation of the magnitude of completion or equivalently the threshold function,

u(x, t), on the subsequent tail inferences of induced earthquake magnitudes. In par-

ticular, we evaluate the additional uncertainty as a result of the unknown threshold

function as well as the unknown formulation of the threshold function with covariates.

The chapter is structured as follows. In Section 5.2, we present details of the Gronin-

gen seismic data and the geophone network. Section 5.3 provides background of the
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extreme value methods that underpin the use of the GPD and the associated thresh-

old selection approaches that we build on. In Section 5.4, we present our statistical

methods for exploiting the knowledge of the geophone network to derive estimates of

both u(x, t), the distribution of excesses over u(x, t) which varies with both x and t,

and the underlying intensity function of true earthquakes over X × T . Within our

methodology, we allow for a range of functional forms that link Vi and the choice of i

to u(x, t). In Section 5.5, we propose methods to account for the uncertainty in the

estimation of u(x, t) in the subsequent inferences. For the Groningen data, we illus-

trate our methods for model inference and selection, and demonstrate the improved

performance relative to the widely-adopted conservative estimate of the magnitude of

completion in Section 5.6. We finish with a discussion in Section 5.7.

5.2 Groningen data

5.2.1 Earthquake data and existing estimates of mc(t)

The Groningen earthquake catalogue covers the period, T , from April 1995 to January

2024 and consists of n = 1565 seismic occurrences within the region of interest, X ,

which has been determined by practitioners. Events in this region pose a significant

hazard and should be included in any analysis of the risks associated with the gas field,

G, where G ⊂ X , see Figure 5.2.1. The catalogue includes the event time, hypocentre

(a three-dimensional location of surface position and depth), and magnitude, denoted

respectively by (tk,xk, yk) for k = 1, . . . , n. The hypocentres x = (x1, x2, x3) are given

as two-dimensional RD coordinates (a grid-based planar projection of locations across

the Netherlands) and a corresponding depth with the majority of depths of 3-4 km.

The magnitudes are recorded on the local magnitude (ML) scale, a logarithmic scale

used to measure the energy released by an earthquake. Typically, catalogues report

magnitudes to one decimal place, resulting in a dataset of rounded observations, an
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added modelling challenge considered by Varty et al. (2021). Like Yue et al. (2025b),

we use a catalogue with magnitudes reported to at least two decimal places.

Figure 5.2.1 shows the event magnitudes over time and their spatial locations sep-

arately. The lines on the temporal panel of this figure represent two previously-used

formulations of mc(t): a constant level of mc = 1.45ML (Dost and Kraaijpoel, 2013)

and a piece-wise constant function with a single changepoint at 2015-12-25 (Yue et al.,

2025b). The former is accepted as a conservative estimate, after accounting for round-

ing, whereas the latter is a special case of the sigmoid function of Varty et al. (2021).

The temporal panel shows that the rate of occurrences of recorded earthquake mag-

nitudes in the catalogue has increased over T . In fact, the rate per year has almost

doubled, from 46.33 to 81.25 before and after the changepoint in the piece-wise con-

stant mc(t) function. Above the conservative estimate of mc(t) = 1.45ML, the rates per

year are very similar, suggesting the primary changes are seen in the occurrence rates

of smaller earthquakes. To help us understand the nature of the change, we calculate

empirical estimates of the probabilities (and standard errors based on asymptotic nor-

mality) of recording an earthquake below 0.76ML (i.e., the value of mc(t) used by Varty

et al. (2021) after 2015-12-25) for t before and after this changepoint; these are 0.187

(0.013) and 0.448 (0.020) respectively. There are two potential reasons for this type of

change: improvements to the geophone network and the impact of gas extraction. We

explore each of these aspects in Sections 5.2.2 and 5.2.3 respectively. As the changing

rate is specifically related to small magnitude events, it would appear that the former

aspect is likely the dominant factor influencing this feature of the catalogue. The spa-

tial panel of Figure 5.2.1 shows that most of the detected earthquakes occurring within

X are located within G, and furthermore, there are clear sub-regions of G where the

earthquake activity is focussed.
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Figure 5.2.1: Temporal and spatial features of the induced earthquakes in the Groningen
catalogue: [left] magnitudes (in ML) against date of occurrence with two previously used
mc(t): a conservative level of mc = 1.45 (red-dashed line) and a changepoint (solid blue
line). [right] occurrence locations in the region of interest X (green-dashed line) with
gas field G (solid black line).

5.2.2 The geophone network and the magnitude of completion

The Royal Netherlands Meteorological Institute (KNMI) measure seismic activity across

the Netherlands through an extensive network of geophones (KNMI, 2020). For this

study, a geophone dataset is available containing their locations (in RD coordinates),

depths and dates of operation over the Netherlands, a subset of which, denoted R,

is plotted in Figure 5.2.2, with X ⊂ R. This dataset was not available to Varty

et al. (2021), they only had access to knowledge of the time-window of the major

developments across the network between 2014-17.

Figure 5.2.2 illustrates the drastic change in the network over T in terms of the

number of geophones and their spatial coverage in regions G,X and R. Temporally,

we see a slow growth in geophones prior to 2014, then a massive growth in the period

2014-17. There have also been some smaller changes post 2017 for G and X , and

ongoing evolution in the network in R\X . For assessing the spatial evolution of the

network, we show the locations of the geophones which were in operation in 2010 and



SPATIO-TEMPORAL MODELLING FOR INDUCED SEISMICITY 106

2020 separately. These snapshots of the geophone network show that geophones are not

located uniformly across space, and the network expands at different rates over different

regions. Specifically, geophones are placed to achieve adequate spatial coverage with a

focus on areas which have seen a high intensity of earthquakes and extraction rates, see

Figures 5.2.1 and 5.2.3 respectively. There are even geophones outside of the region X ,

with their locations selected to improve detection of events occurring in X .
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Figure 5.2.2: Features of the Groningen region geophone network present over time and
space: [left] number of geophones in operation daily throughout T within the regions
R (blue), X (green) and G (black); [centre] and [right] the respective locations (blue
crosses) of geophones in operation in the years 2010 and 2020.

We exploit more information about the Groningen geophone network than Mignan

et al. (2011) did in their study for Taiwan, which only considered the surface dis-

tance from the ith nearest geophone by Vi(x). We improve understanding of the

spatio-temporal variation in detection capability by measuring such distances in three-

dimensional space and incorporating operation times of individual geophones, with an

updated measure given by Vi(x, t). The inclusion of the depth data is particularly help-

ful for capturing differences in distances when Vi is small due to the vertical resolution

not available when measuring surface distances.

We use Vi(x, t), over (x, t) ∈ X × T for a range of i, to provide our covariate

information for estimating u(x, t). Unlike Mignan et al. (2011), we tie this information

into our inference for a parametric model for the distribution of exceedances of u(x, t)

and we also consider values of i < 3 as these may provide a better reflection of the



SPATIO-TEMPORAL MODELLING FOR INDUCED SEISMICITY 107

magnitude of completion. Using Vi(x, t) in this way opens up the first possibility for

spatial and temporal inference for u(x, t), and it enables a lowering of u(x, t) for some

t and x relative to previous studies at Groningen. This should improve efficiency

of all subsequent inferences based on the exceedances of the estimated magnitude of

completion function. Although the total number of geophones has increased in R over

T , it doesn’t necessarily mean that Vi(x, t) has decreased similarly over time, for any

specific location x, as this depends on the local configuration of the geophones near x.

5.2.3 Extraction stress covariate and the intensity inference

We have access to other physical covariates from the Groningen field. These covariates,

which are on a grid over X × (T ∪ TF ), where TF is the period from February 2024 -

January 2055, with the covariates for this future time period, relative to the catalogue,

derived under the assumption of no further extraction from the gas field. The covari-

ates arise from physics-based reservoir models calibrated using measurements taken at

boreholes and seismic imaging. Seismic activity is not observed at a particular location

until the previous maximum stress level is exceeded since that stress will have already

caused all feasible earthquakes at the location (Tang and Hudson, 2010; Zang et al.,

2014). Bourne and Oates (2020), Smith et al. (2022) and Kaveh et al. (2024) all use

the Kaiser stress (KS) which, for each x ∈ X , is the maximum of the difference up to

time t, of the vertically averaged maximum stress from the initial stress state at the

start of gas extraction in G.

We denote the KS field for the two time periods of interest by S = {s(x, t) : s(x, t) ≥

0,x ∈ X , t ∈ T } and SF = {s(x, t) : s(x, t) ≥ 0,x ∈ X , t ∈ TF}. KS is a monthly

covariate, presented here in units of MPa, and we take it to be constant throughout each

respective month. For each event included in the catalogue, i.e., for k = 1, . . . , n, we

define sk = s(xk, tk) as the value of the KS field s(x, t) at the grid point nearest to xk

at time tk. Figure 5.2.3 [left] provides KS averaged over the year 2020 for a fixed depth
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of 3km, presented for all G, with some values in X\G not shown as these values are zero.

A comparison of the regions of highest KS with the spatial locations for the catalogued

events shown in Figure 5.2.2 indicates that KS is likely to be a useful covariate for

describing spatial variation in earthquake locations. For each t ∈ T ∪ TF , Figure 5.2.3

[centre] shows KS at a fixed depth of 3km averaged over the spatial region shown in

Figure 5.2.3 [left] along with KS values at three individual locations on a north-south

transect through G. The values for t ∈ TF are obtained under the assumption that no

further extraction takes place in G. This plot shows that, on average, the KS grows over

t ∈ T , and continues to grow at a slower rate for t ∈ TF as the stresses stabilise across

the region, with the temporal development varying over locations, with KS constant in

TF for some locations.

Figure 5.2.3 [right] gives a crude impression of the effect of KS on the magnitudes

of the observed events. Specifically, we use (sk, yk) pairs such that yk > 1.45ML, to

ensure that no issues with magnitude of completion affect the relationship. Of the

pairs which satisfy this constraint, we find the median KS and present the boxplots

for the magnitudes with corresponding KS values below and above the median. The

boxplots reveal that the typical size of the magnitudes increases with KS. Hence, in

Section 5.4, we incorporate KS as a covariate into our model for the distribution of true

magnitudes, a departure from the identical distribution assumption (Ogata, 1988).
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Figure 5.2.3: Features of the Kaiser stress covariate field: [left] Average Kaiser stress
(KS) for 2020, for a fixed depth of 3km, across all of G (solid black line) and earthquake
active region X\G. [centre] temporally varying spatial average of KS over region shown
in the left panel (black) and location specific s(x, t) series for three sites shown at dots on
left panel: top (red), middle (green) and bottom (blue). [right] Boxplots of magnitudes
greater than mc = 1.45ML corresponding to KS above and below the median KS value
associated with magnitudes above mc = 1.45ML.

To avoid issues with missing observations of earthquakes, Bourne et al. (2018) take

the conservative estimate of the magnitude of completion, i.e., mc = 1.45ML, and

estimate the rate of occurrence of earthquakes above this level over X × T . They

estimate this intensity, which we denote by λ1.45(x, t), using a parametric geophysics-

based model. When the gas reservoir is of constant thickness over X , this model

simplifies to

λ1.45(x, t; γ0, γ1) =
∂s(x, t)

∂t
exp[γ0 + γ1s(x, t)], for (x, t) ∈ X × T , (5.2.1)

with parameters (γ0, γ1) ∈ R2, where the temporal partial derivative term for s(x, t) is

evaluated using finite differencing. Bourne and Oates (2017) estimate the parameters

(γ0, γ1) of λ1.45(x, t) using the subset of catalogue values {(tk,xk) : yk > 1.45, k =

1, . . . , n} by making the assumption that these are realisations of a Poisson process with

intensity λ1.45(x, t) over X ×T . The intensity model (5.2.1) increases with both s(x, t)

and its temporal derivative (when this is positive), with Figure 5.2.3 [centre] providing

insight into how KS varies over three selected locations, e.g., for the southerly and centre
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locations KS has been constant since 2021 which would imply, under model (5.2.1), that

earthquakes could not occur at these locations after 2021.

One limitation of the KS covariate is that it does not account for changes in the

stresses in either S or SF that arise locally in time and space as a consequence of earth-

quakes, i.e., the fact that earthquakes can increase the intensity for further aftershocks

near the original location. As these additional local stresses are not incorporated into

the available KS covariate, this leads to the possibility of observing induced after-shock

events in regions where the available covariates suggest that an earthquake should be

impossible. This is not of major concern for Groningen, as when the classification

method of Zaliapin et al. (2008) was applied to the Groningen catalogue, only 20% of

all earthquakes were classified as after-shocks. If interest lies in modelling occurrence

rates of main- and after-shock events, then the current approach is to use epidemic-type

aftershock sequence (ETAS) models (Ogata, 1988), however, this is not needed for our

purposes.

5.3 Underpinning extreme value methods

5.3.1 Distributional model

Consider a univariate random variable Y with continuous distribution function F , and

upper endpoint yF := sup{y : F (y) < 1} and threshold u < yF . Under weak as-

sumptions on F , an asymptotic argument justifies the use of the generalised Pareto

distribution (GPD) as a model for the conditional distribution function, Fu(y), of ex-

cesses of a high threshold u, where Fu(y) = [F (u + y) − F (u)]/[1 − F (u)] for y > 0.

Specifically, (Pickands, 1975) shows that as u→ yF , if there exists a function a(u) > 0

such that Fu(a(u)y) is non-degenerate in the limit, then Fu(a(u)y) → G(y), where

G(y;σ, ξ) = 1− (1 + ξy/σ)−1/ξ
+ , (5.3.1)
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with y > 0, w+ = max(w, 0), the shape parameter ξ ∈ R, which is determined by F ,

and the scale parameter σ ∈ R+. This distribution is denoted by GPD(σ, ξ).

Applying limit distribution G as an approximation for the excesses over a threshold

u, with u < yF being a high quantile of F , leads to a statistical model for the tail of F ,

popularised by Davison and Smith (1990) and Coles (2001), given by:

F (y) = 1− λu[1−Gu(y − u;σu, ξ)], (5.3.2)

for y > u with unknown threshold exceedance rate, scale and shape parameters θu :=

(λu, σu, ξ) ∈ [0, 1]×R+×R. The upper tail behaviour of the GPD is determined by the

value of ξ: ξ = 0 (taken as the limit as ξ → 0) gives the exponential distribution, ξ > 0

gives an unbounded distribution with power law decay, and for ξ < 0, the distribution

has a finite upper bound u − σu/ξ. The (1 − p)th-quantile of Y , denoted by yp(θu),

where Y has a GPD tail, satisfies Pr(Y ≤ yp;θu) = 1 − p. So, if p < λu, i.e., yp > u,

then

yp(θu) =

 u− σu
[
1− (p/λu)

−ξ
]
/ξ for ξ ̸= 0,

u− σu log(p/λu) for ξ = 0.

Inference for the GPD above threshold u is well established in using likelihood and

Bayesian approaches (Davison and Smith, 1990; Coles and Tawn, 1996), with com-

parisons recently made by Yue et al. (2025b) for incorporating a penalty function to

account for experts’ knowledge on the distribution of Mmax, i.e., an upper bound for

the GPD upper endpoint yF . Specifically, Yue et al. (2025b) found that likelihood

and Bayesian uncertainty analyses gave very similar results provided prior knowledge

was weak and that the likelihood uncertainty in the GPD parameters was handled via

a parametric bootstrap. We adopt the latter approach for inference and uncertainty

evaluation in this paper.

A key property of the GPD for our modelling is its distributional stability under

a time-varying threshold. Let (Y1, . . . , Yn) be IID random variables, distributed as Y ,
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where (Y − u)|(Y > u) ∼ GPD(σu, ξ). Then, for any set of thresholds (v1 . . . , vn), with

u ≤ vi < yF for each i = 1, . . . , n, it follows that

(Yi − vi)|(Yi > vi) ∼ GPD(σvi , ξ), with σvi = σu + ξ(vi − u), (5.3.3)

i.e., the GPD form and the shape parameter are stable with respect to the varying

threshold. So, the exceedances of the thresholds (v1 . . . , vn) are not identically dis-

tributed unless vi = v for all i = 1, . . . , n for u ≤ v < yF or ξ = 0, despite the {Yi}

being identically distributed.

There are also well-established extreme values methods for non-identically dis-

tributed variables, and in particular when covariates Z, observed as z, affect the param-

eters of the GPD above a threshold function, u(z), which can vary with z. Specifically,

it is assumed that, for y > u(z),

Pr(Y > y | Z = z) = 1− λu(z)

(
1 + ξ(z)

y − u(z)

σu(z)

)−1/ξ(z)

+

,

with λu(·), σu(·) and ξ(·) the respective covariate-dependent threshold exceedance rate,

scale and shape parameter functions such that

(Y − u(z))|(Y > u(z),Z = z) ∼ GPD(σu(z), ξ(z)).

For a given threshold function, the typical approaches for modelling the functional forms

of the parameters are using linear models (Davison and Smith, 1990) or variations of

generalised additive models (Chavez-Demoulin and Davison, 2005; Youngman, 2019),

each with suitable link functions. Usually, a log-link function for σu(z) is used, though

Eastoe and Tawn (2009) show that for the threshold stability property (5.3.3) to hold

across covariate values, the identity link is required. It is relatively standard to assume

that ξ(z) is constant, i.e., ξ(z) = ξ for some unknown ξ for all z. There are two core
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reasons for this choice (i) simplicity, the shape parameter is difficult to estimate accu-

rately, so typically, there is insufficient evidence to choose a shape parameter function

that is more complex than a constant, and (ii) across a range of application areas, there

appears to be evidence for a different constant shape parameter being suitable for each

different hazard (Healy et al., 2025).

5.3.2 Threshold choice

The first challenge when employing a GPD is the selection of an appropriate threshold,

which requires a trade-off between bias and variance: too low a threshold is likely to

violate the asymptotic basis of the GPD, leading to bias, whilst too high a threshold

results in very few threshold excesses to estimate parameters (Coles, 2001). Even in

the context of IID data, this is not an easy task, and has been the focus of much

research, with a recent review of the variety of methods provided by Belzile et al.

(2023). Extensions of this framework enable covariate-dependence in the threshold

choice and in the GPD parameters (Kyselý et al., 2010; Northrop and Jonathan, 2011;

Yue et al., 2025a).

Our approach stems from the work of Varty et al. (2021), developed specifically for

the Groningen catalogue, in which the underlying variables were assumed to be IID

GPD but with a time-varying threshold, as in the setup of formulation (5.3.3). For this

set up, but with a constant threshold, Murphy et al. (2025) proposed a novel automated

threshold selection procedure, termed the expected quantile discrepancy (EQD), which

selected the threshold value as the level above which the sample excesses are most

consistent with a GPD model out of all possible choices of level. Through an extensive

simulation study, they found that the EQD approach convincingly outperforms the

leading existing automated methods for threshold selection.

Specifically, the EQD method, detailed in Chapter 3, minimises a metric which ap-

proximates the integrated absolute error (IAE) between GPD model quantiles and the
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empirical quantiles for a set of m probabilities {j/(m + 1) : j = 1, . . . ,m}. A brief

outline of the approach is given here. For a choice of threshold u, let yu = (y1, . . . , ynu)

be the sample of excesses of u. The EQD value d(u) is an average calculated across

B bootstrapped samples which incorporates sampling variability into the selection

and stabilises the threshold choice. For yb
u, the b

th bootstrapped sample of yu, with

b = 1, . . . , B, we obtain maximum likelihood estimates (σ̂b
u, ξ̂

b
u) and evaluate the ap-

proximate IAE as:

db(u) :=
1

m

m∑
j=1

∣∣∣∣∣ σ̂b
u

ξ̂bu

[(
1− j

m+ 1

)−ξ̂bu

− 1

]
−Q

(
j

m+ 1
;yb

u

)∣∣∣∣∣ , (5.3.4)

where Q(j/(m + 1);yb
u) denotes the j/(m + 1) empirical quantile of yb

u. The EQD

value for a choice of threshold u, is then given by d(u) =
B∑
b=1

db(u)/B. Given formu-

lation (5.3.3), Varty et al. (2021) address the fact that excesses of different candidate

thresholds are not identically distributed by using the fitted model to transform the

sample excesses to standard exponential margins by the probability integral transform

(see Section 5.4.3) and measure the IAE on that scale. For model-fit assessment of non-

identically distributed GPD variables, transforming to a common standard exponential

distribution is an established approach (Coles, 2001).

5.4 Statistical modelling and inference

5.4.1 Threshold model

To properly account for the changing data quality over time and space, we must ac-

knowledge the main factor in this, namely, the evolving geophone network. The key

starting point is to consider geophysical evidence to suggest a structure for the model of

u(x, t). Consider how the magnitude of completion varies as a function of the Euclidean

distance r ≥ 0 from the hypocentre of an earthquake to a geophone, which we denote
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by mc(r) with a slight abuse of notation. In idealised conditions, such as uniform rock

types, and with a single geophone detector, geophysicists have identified that, for r > 0,

mc(r) = ϕ0 + ϕ1 log r + ϕ2r (5.4.1)

for constants (ϕ0, ϕ1, ϕ2) determined by the rock properties and the shock wave am-

plitude (Stange, 2006; Freudenreich et al., 2012; Gaucher, 2016). The logarithmic and

linear terms are linked to shock-wave attenuation and geometric spreading respectively.

Depending on the conditions, simplifications of relationship (5.4.1) have been proposed,

with Goertz et al. (2012) and Demuth et al. (2016) setting ϕ0 = 0 and ϕ1 = 0 respec-

tively.

Relative to the idealised conditions that relationship (5.4.1) is based on, for Gronin-

gen, we have two additional aspects to consider. Firstly, the observed distances from

hypocentres to the nearest geophone, r, have a narrow range due to the small size of

the gas field and the density of geophones. This feature makes inference using func-

tion (5.4.1) poor due to co-linearity when both modes of variation, corresponding to

log r and r, are included in a single model. For our observed range of r, we anticipate

that one of the two modes of variation with r will dominate, or possibly the actual

variation will be better represented by some intermediate form. So, in addition to log r

and r, we consider the function r1/2, as from the Box-Cox transformation, (rλ − 1))/λ

with λ = 1/2, with the other two variations in relationship (5.4.1) corresponding to

λ = 0 and λ = 1. Secondly, the network as a whole is used to obtain the most accurate

earthquake measurements possible, so using the nearest geophone distance is possibly

overly-simplistic, and hence like Mignan et al. (2011), we consider a range of possible

distance choices, i.e., Vi(x, t) for a range of i ≥ 1. However, the range of i is not directly

related to the number of geophones that were used to record events in the catalogue.

Exploring a large range of i would appear prudent, but in early stages of the network

development, there were insufficient geophones to calculate the relevant distances if i
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is too large, so we restrict our range to i = 1− 4.

Consequently, we propose three distinct threshold function model types A,B and

C for the functional relationship to distance, and four covariates of distance, i = 1− 4,

as input to the covariate model for the GPD threshold u(x, t). Specifically, we consider

the threshold functions:

Ai :u(x, t) = α0 + α1Vi(x, t);

Bi :u(x, t) = α0 + α1 log(Vi(x, t));

Ci :u(x, t) = α0 + α1

√
Vi(x, t), (5.4.2)

for i = 1 − 4, where (α0, α1) ∈ R × R+ and Vi(x, t) is the spatio-temporal covariate,

introduced in Section 5.2.2, corresponding to the three-dimensional Euclidean distance

from x to the ith nearest geophone in the network at time t. The restriction α1 ≥ 0

reflects that the threshold u decreases as the network becomes denser.

Each of the resulting 12 (types A − C and i = 1 − 4) threshold models (5.4.2)

capture the changing magnitude of completion over time, in a broadly similar way to the

sigmoid model of Varty et al. (2021). Here, the formulation need not change smoothly

over time, and critically it is allowed to vary spatially, with a physical basis. It is more

parsimonious with two parameters to estimate rather than four, despite the richer

spatial-temporal variation. For our subsequent inference, we face the dual challenges

of fitting the first ever spatio-temporal parametric threshold while also accounting for

the model choice uncertainty over the 12 different possible formulations.

5.4.2 Distributional model within the observed period T

The natural and most parsimonious way to approach the model specification for a single

distributional model of the magnitudes of the true earthquakes is to model only the dis-

tribution of earthquakes above a given level. Traditionally, this has been achieved using
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a constant conservative magnitude of completion estimate, e.g., 1.45ML for Groningen.

However, with time improvements in the measurement process, a constant magnitude

of completion estimate is clearly not optimal. What is required is to specify a model

for the distribution of the magnitudes of true earthquakes above a level which we are

certain lies below u(x, t) for all (x, t) ∈ X × T . As u(x, t) is unknown, we choose to

model the distribution above 0 ML as the Groningen catalogue contains almost entirely

positive values (see Figure 5.2.1) and this is mathematically convenient. Unlike when

using mc = 1.45ML, we cannot fit the model using all the observations above this level,

but instead fit using the data above the estimate of u(x, t), see Section 5.4.3.

We assume that the distribution of true earthquakes F has the GPD tail form

of (5.3.2), for u = 0, which gives a parametric model for all earthquakes above 0 but does

not specify the form of F (y) for y < 0. It follows that F0, the conditional distribution

of excesses of 0, has a lower endpoint at 0 and follows a GPD of the form (5.3.1). We

use Y0(x, t) to denote an earthquake excess of 0 at hypocentre and time (x, t).

Unlike Ogata (1988), and the majority of the literature referenced in Section 5.1, we

do not assume that Y0(x, t) is identically distributed over (x, t) ∈ X ×T . Following the

discussion in Section 5.2.3 of the recent use of the spatio-temporal covariate KS and our

findings from the exploratory analysis presented in Figure 5.2.3, we propose a simple

formulation for the inclusion of s(x, t) in the GPD parameterisation. As discussed

in Section 5.3, we choose to keep the shape parameter constant and incorporate the

covariate-dependence into the GPD scale parameter. In line with the view of Eastoe and

Tawn (2009) on how to optimally incorporate covariates in the GPD scale parameter

to ensure the threshold stability property holds, we make the distributional assumption

for the true earthquakes above 0 to be

Y0(x, t) ∼ GPD(σ0(x, t), ξ), with σ0(x, t) = β0+β1s(x, t), for (x, t) ∈ X ×T , (5.4.3)

where (β0, β1) ∈ R+×R+, where β1 ≥ 0 as increased stress from extraction cannot lead
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to a stochastic decrease in earthquake magnitudes.

Model (5.4.3) cannot be fitted directly due to the biasing effects of data below the

unknown magnitude of completion function missing from the earthquake catalogue.

However, any recorded earthquake (t,x, y), with y > u(x, t) can be considered to be a

realisation of a variable linked directly to Y0(x, t). With our setup, we have the threshold

function, with the model for u(x, t) given by one of the set of formulations (5.4.2),

and so we focus on the excesses of this function. Exploiting the threshold stability

property (5.3.3) results in the following conditional distribution of the excesses of the

threshold u(x, t):

[Y (x, t)− u(x, t)] | [Y (x, t) > u(x, t)] ∼ GPD(σu(x, t), ξ), for (x, t) ∈ X × T , (5.4.4)

where σu(x, t) = σ0(x, t)+ξu(x, t), with the scale and threshold given by models (5.4.3)

and (5.4.2) respectively, and σu(x, t) is a function of parameters (α0, α1, β0, β1) ∈ R4
+.

5.4.3 Joint threshold and excess model inference

Here, we detail our inferences for the parameters θ = (α0, α1, β0, β1, ξ, γ0, γ1) of the

combined threshold-distributional model for magnitudes and for the baseline intensity

of true earthquake occurrences. For the former, our inference procedure optimises the fit

over three different elements of our model; the GPD parameters (β0, β1, ξ); the threshold

parameters (α0, α1); and the threshold formulation (A − C, i = 1 − 4). For the latter,

we optimise over parameters (γ0, γ1) of the baseline intensity model formulation (5.2.1).

Given the threshold function choice, inferences on (β0, β1, ξ) and (γ0, γ1) are orthogonal

and so we can make inference on these separately.

For the combined threshold-distributional model, the strategy is as follows. Firstly,

we select one of the 12 specific functional threshold formulations (5.4.2) and minimise

our extension of the EQD metric, introduced in Section 5.3.2, to optimise values for



SPATIO-TEMPORAL MODELLING FOR INDUCED SEISMICITY 119

(α0, α1); for each choice of (α0, α1) that is considered, the GPD parameters are opti-

mised by maximum likelihood estimation. This procedure is then repeated for each

threshold formulation (A − C, i = 1 − 4). Finally, once estimates for (α0, α1, β0, β1, ξ)

have been obtained for all 12 threshold formulations, we use the EQD metric to com-

pare between these formulations to select the most appropriate combined distributional

model and threshold function fit overall. We expand on the details of these steps below.

For a given choice of the threshold function, its functional form and values of (α0, α1),

the set of observed magnitude exceedance indices are defined as Ku = {k ∈ {1, . . . , n} :

yk > uk}, where uk := u(xk, tk), and the vector of the associated exceedances yu =

{yk : k ∈ Ku}. Then the GPD likelihood is

L((β0, β1, ξ);yu, (α0, α1)) =
∏
k∈Ku

{
1

σu,k
(1 + ξ(yk − uk)/σu,k)

−1−1/ξ
+

}
(5.4.5)

where σu,k := σu(xk, tk). We denote the maximum likelihood estimates, given the

threshold function, by σ̂u,k = σ̂u(xk, tk) for k ∈ Ku and ξ̂u.

For a given choice of functional form for u(x, t), we need to estimate the threshold

parameters (α0, α1). We adapt the methods of Varty et al. (2021) and Murphy et al.

(2025) to assess the fit of the GPD over possible values of (α0, α1). For a given (α0, α1),

we define the vectors of hypocentres, times and stresses of the earthquakes that exceed

u(x, t), namely (Xu, tu, su) := {(xk, tk, s(xk, tk) : k ∈ Ku}. The evaluation of our EQD

metric broadly follows the approach set out in Section 5.3.2, with details given here

when the model detailed in Sections 5.4.1 and 5.4.2 requires additional information for

EQD evaluation. We resample with replacement the rows of the array (yu, Xu, tu, su)

to obtain bootstrapped samples, where the bth bootstrap is (yb
u, X

b
u, t

b
u, s

b
u), and the kth

row of this array is denoted by (ybu,k,x
b
u,k, t

b
u,k, s

b
u,k) for k ∈ Ku. Using this bootstrapped

sample, we maximise likelihood (5.4.5) to obtain parameter estimates (β̂b
0, β̂

b
1, ξ̂

b) and

hence obtain σ̂b
u,k = σ̂b

u(x
b
k, t

b
k), the function σ̂b

u is the maximum likelihood estimate of
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the function σu, defined by expression (5.4.4), for the bth bootstrap sample. We trans-

form the vector of bootstrapped magnitudes yb
u, via the probability integral transform,

to the vector yE,b
u , with its kth component yE,b

u,k = F−1
Exp{G(ybu,k − uk; σ̂

b
u,k, ξ̂

b)}, where

F−1
Exp is the inverse distribution function of a standard exponential and G is the GPD

distribution function (5.3.1). If the threshold was a good choice for the model then yE,b
u

would resemble a sample from a standard exponential distribution. Hence, we use the

metric

d(α0, α1) =
1

B

B∑
b=1

db(α0, α1)

where

db(α0, α1) =
1

m

m∑
j=1

∣∣∣∣F−1
Exp

(
j

m+ 1

)
−Q

(
j

m+ 1
;yE,b

u

)∣∣∣∣ , (5.4.6)

in the EQD method, with notation as in expression (5.3.4). This metric provides a

comparable measure of fit across different values of (α0, α1), which does not require

threshold functions to be ordered in value across X × T , i.e., the elements of the set

Ku need not be nested across different choices of (α0, α1).

To enable the best choice of model over the different functional forms for the thresh-

old covariates, we separately minimise the metric d(α0, α1) for each threshold function

formulation. This provides 12 metric values (A−C and i = 1− 4) with the best model

formulation simply selected as the one achieving the minimum EQD. In Section 5.5,

we detail our procedure for accounting for the various uncertainties in this inference

procedure, i.e., the uncertainty in the GPD parameter estimates, the uncertainty in

threshold parameter estimation, and the uncertainty due to the selection of the func-

tional formulation of the threshold.

Our combined threshold-distributional model may consider excesses of a threshold

as low 0ML, and so we need a model for the intensity of true earthquakes above this

level, which we denote by λ0(x, t) and term the baseline intensity. We cannot directly

estimate this intensity function because the magnitude of completion is above 0ML and



SPATIO-TEMPORAL MODELLING FOR INDUCED SEISMICITY 121

below this level, there are earthquakes missing not-at-random from the catalogue. To

overcome this limitation of the data, we estimate the parametric intensity model for

λ0(x, t) using only earthquake data above û(x, t), which, for convenience, we sometimes

denote by û. Specifically, for any x ∈ X and t ∈ T , our model for λ0(x, t; γ0, γ1)

uses an identical parametric model formulation to that used for λ1.45 in model (5.2.1).

Under this parametric model for λ0, earthquakes with magnitudes exceeding our spatio-

temporal threshold u(x, t) have hypocentres and occurrence times described by the

intensity function

λû(x, t; θ̂γ) = λ0(x, t; γ0, γ1)

[
1 + ξ

û(x, t)

σ̂0(x, t)

]−1/ξ

+

, (5.4.7)

where θ̂γ = (α̂0, α̂1, β̂0, β̂1, ξ̂, γ0, γ1). Intuitively, λû is the intensity of earthquake occur-

rences with magnitudes above 0ML scaled by the estimated GPD-based probability of

such events exceeding the estimated threshold û(x, t). The estimated functions û and

σ̂0 are functions of (α̂0, α̂1) and (β̂0, β̂1, ξ̂) respectively, although this is not explicit in

the notation. To estimate (γ0, γ1), we follow the approach of Bourne et al. (2018) in

using the Poisson process-based likelihood including only the exceedances of û, i.e.,

L(γ0, γ1) ∝

(
n∏

k=1

λu(xk, tk; θ̂γ)
I(yk>uk)

)
exp

(
−
∫
x∈X

∫
t∈T

λu(x, t; θ̂γ) dtdx

)
, (5.4.8)

with λu(x, t; θ̂γ) given by expression (5.4.7), uk = u(xk, tk) and I(A) is the indicator

function of event A. Then, (γ̂0, γ̂1) are obtained by maximising likelihood (5.4.8). The

Poisson process is not a full description of the occurrences, due to aftershocks which

result in local clustering of events in space and time (Ross, 2016), but, as discussed in

Section 5.2.3, we do not incorporate known after-shocks into this likelihood.
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5.4.4 Model diagnostics

The estimated magnitude of completion function û(x, t) defines a dataset of its ex-

ceedances with catalogue values indexed by Ku, as defined in Section 5.4.3. To assess û

and the resulting model fit we explore the model performance for both the distribution

of the magnitudes of threshold excesses and the spatial-temporal density of earthquakes

as these are of key importance. We use only the subset indexed by Ku of the catalogue

as they are deemed the complete and reliable data based on û(x, t).

Given that each excess of û(x, t) follows a different distribution for each (x, t), we

transform the excesses into a common unit exponential distribution, following Varty

et al. (2021). Under the fitted model, the excesses are assumed to be realisations of the

distribution (5.4.4). We define the transformed values by {yEk : k ∈ Ku} where

yEk = − log{[1 + ξ(yk − uk)/σu,k]
−1/ξ
+ } for k ∈ Ku,

which can be assessed as a unit exponential sample through standard techniques.

To assess the performance of λû(x, t;θ), our estimated spatial-temporal occurrence

rate of the excesses of the estimated threshold function û, we use two summaries of the

intensity estimates: ΛX
û (T ; θ̂), the estimated expected yearly aggregated intensity (in

X ) of events over û in year T , and Λû(x, T ; θ̂), the spatially dis-aggregated version of

that summary, where

ΛX
û (T ; θ̂) =

∫
x∈X

∫
t∈T

λû(x, t; θ̂) dtdx and Λû(x, T ; θ̂) =

∫
t∈T

λû(x, t; θ̂) dt. (5.4.9)

We compare these expected values with the observed numbers and locations of earth-

quakes in year T as a diagnostic assessment for the intensity element of the model.
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5.4.5 Inference for future extreme magnitude events

Section 5.4.3 provides estimates, based on earthquakes exceeding the threshold function

û(x, t), of how the GPD F0 and the intensity λ0(x, t) of true earthquakes above 0ML

vary with s(x, t) for x ∈ X , t ∈ T . We follow Beirlant et al. (2019) and Varty et al.

(2021) by focusing exclusively on future extreme magnitude events, though geophysicists

typically take the inference a step further to develop estimates of the ground motion

across the entire region X (Bommer et al., 2017). We focus on two-types of future

extreme event summary: the largest possible earthquake magnitude and events that

exceed magnitude v in some sub-region of X under the scenario of no further extraction

from the Groningen gas field over the period of 30 years from January 2025 until April

2055, i.e., the period TF . For this scenario, we have access to the geophysical model-

based predictions for the Kaiser stress covariate over the period TF , i.e., SF , although

as noted in Section 5.2.3, this covariate ignores local time and space changes that arise

from earthquakes that induce after-shock events. We extend our notation for σ0(x, t)

and λ0(x, t) to incorporate the future covariate estimates, so that conditioning on SF ,

we have σ0(x, t | SF ) and λ0(x, t | SF ) respectively.

Under an assumption of temporal stationarity and ignoring any spatial variation,

Beirlant et al. (2019) estimate the upper-endpoint of the magnitude distribution. Under

the GPD distributional assumption of Section 5.3.1, the endpoint corresponds to u −

σu/ξ. Under our GPD covariate model of Section 5.4.2, the upper endpoint varies

temporally and spatially into the future with form, for all (x, t),∈ X × TF , of

e(x, t | SF ) := u(x, t)− σu(x, t | SF )/ξ = −σ0(x, t | SF )/ξ = −[β0 + β1s(x, t)]/ξ.

(5.4.10)

To provide endpoint values which are practically useful for planning of infrastructure

maintenance and reinforcement, we consider two summaries of the endpoint func-

tion (5.4.10) through its maximum emax(SF ) and a weighted average ewm(SF ), with
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the weights given by a probability density function g0(x, t | SF ) which accounts for the

occurrence rates of true earthquakes (in terms of exceedances of 0ML), i.e.,

emax(SF ) = max
(x,t)∈X×TF

e(x, t | SF ) and ewm(SF ) =
∑
T∈TF

ewm(T | SF )
ΓX (T )

ΓX (TF )

where

ewm(T | SF ) =

∫
x∈X

∫
t∈T

e(x, t | SF )g0(x, t | SF ) dx, with g0(x, t | SF ) :=
λ0(x, t | SF )

ΓX (T )
.

where ΓX (T ) =
∫
τ∈T

∫
z∈X λ0(z, τ | SF ) dzdτ and ΓX (TF ) =

∫
τ∈TF

∫
z∈X λ0(z, τ | SF ) dzdτ .

Here, ewm(T | SF ) gives a measure of the endpoints which is related to the likely earth-

quake locations in year T .

It is reasonable to assume that the geophone network is designed to a sufficient level

that it will be certain to record any future extreme events in the region. So we consider

earthquakes with magnitudes exceeding level v in future time period, with v > u(x, t)

for all (x, t) ∈ X × TF . As noted in Section 5.1, design standards require structures

to withstand all earthquakes with a 90% probability of occurrence over a 50-year span

(Code, 2005), which if the process was stationary corresponds to the 475-year return

level. Here, we have SF for 30 years into the future, so focus on estimating an equivalent

level of design risk such that the maximum earthquake magnitude over TF must be less

than v with a 93.87% probability.

Hence, we focus on the extreme event of the form Rv(W , TF ) = {x ∈ W ⊆ X , t ∈

TF , y ∈ R+ : y > v}, with possible choices for W being G or a region of dense housing,

e.g., the city of Groningen. When W = X , this enables comparisons of our modelling

approach with previous studies which ignore the spatial context of the data. Under the

scenario of no future extraction, the expected number of future occurrences of extreme
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event Rv(W , TF ) is given by

Λv(W , TF | SF ) :=

∫
x∈W

∫
t∈TF

λ0(x, t | SF )

[
1 + ξ

v

σ0(x, t | SF )

]−1/ξ

+

dt dx,

using the same logic as for expression (5.4.7). Letting Nv(W , TF | SF ) be the number

of future v-level extreme events, then, under the assumption of a Poisson process of

earthquakes, we have that the probability that no earthquakes with magnitude in excess

of v occur in W × TF is given by

Pr(Nv(W , TF | SF ) = 0) = exp[−Λv(W , TF | SF )].

Hence, for a level of risk specified by Code (2005), we require that W = X and v is such

that Λv(X , TF | SF ) = − log(0.9387). We estimate the level v by solving this equation

with the parameters of the statistical models replaced by estimated values using the

methods of Section 5.4.3.

5.5 Uncertainty quantification

Similarly to Murphy et al. (2025), we use bootstrapping methods to quantify uncer-

tainty in our modelling procedure. Methods to generate confidence intervals (CIs) using

standard errors or profile likelihoods cannot account for threshold uncertainty and re-

lying on asymptotic arguments would not work well in our setting due to the sparsity

of exceedances of the threshold function u(x, t). Below, we propose three algorithms

which capture uncertainty in (i) the GPD parameter estimation and the parameters

of the rate of exceedance of the threshold function, (ii) the parameters of threshold

estimation and aspect (i), and (iii) the selection of the threshold functional formulation

and aspect (ii). The latter two cover aleatoric and epistemic uncertainty about the

magnitude of completion, while Murphy et al. (2025) considered aspects (i) and (ii) in
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the simplified setting of IID variables. Accounting for uncertainty in both the threshold

model function formulation in aspect (iii) and the inclusion of covariates are entirely

novel for extreme value analyses.

Current seismic studies do not account for uncertainty in mc. Accounting for only

the uncertainty in the excess distribution of the estimated magnitude of completion is

not sufficient, as the inference for u(x, t) relies on observed earthquakes so its value

is both unknown and inferences are sensitive to its choice. Hence, we incorporate this

additional source of uncertainty to ensure CIs for seismic hazards are not too narrow.

The algorithms detailed below provide methods for uncertainty quantification when

estimating a summary of interest w(θ), e.g., the quantities discussed in Section 5.4.5.

Algorithm 1 details the parametric bootstrapping procedure for the uncertainty of

both the GPD parameters (β0, β1, ξ) and the threshold exceedance rate through the

parameters (γ0, γ1) of the baseline intensity. Algorithm 1 treats the threshold function

as known, with the corresponding estimates (α̂0, α̂1) provided as input and fixed and the

remaining parameters of θ̂ estimated as explained in Section 5.4.3. For each b of the Bpar

bootstraps, the number of exceedances nb
û of the threshold function û is generated along

with the corresponding hypocentre for each exceedance and the respective magnitude

excess values. Here, nb
û is a realisation of a Poisson(Λû(θ̂)) variable, where

Λû(θ̂) =

∫
x∈X

∫
t∈T

λû(x, t; θ̂) dtdx

and λu(x, t;θ) is given by expression (5.4.7). We sample nb
û hypocentres independently

according to the density gû(x, t; θ̂) = λû(x, t; θ̂)/Λû(θ̂), for (x, t) ∈ X × T . For these

simulated exceedance hypocentres, we use the corresponding stress covariate values

and the GPD model (5.4.4) parameter estimates (β̂0, β̂1, ξ̂), to generate the paramet-

ric bootstrap sample of nb
û magnitude excesses. For each of the Bpar bootstrapped

samples, we keep (α̂0, α̂1) fixed and re-estimate all other parameters in θ, obtaining

θ̂b
α = (α̂0, α̂1, β̂

b
0, β̂

b
1, ξ̂

b, γ̂b0, γ̂
b
1) with which to estimate any summary of interest w(θ̂b

α),



SPATIO-TEMPORAL MODELLING FOR INDUCED SEISMICITY 127

e.g., design levels, and construct CIs as quantiles of the sample of bootstrap estimates.

Algorithm 1 Parameter uncertainty for GPD with known threshold function and
covariate formulation

Require: (α̂0, α̂1, Bpar, {yk,xk, tk, s(xk, tk) : k = 1, . . . , n})
Estimate the remaining parameters of θ̂ by fitting a GPD to the magnitude excesses
of the estimated threshold function, defined using (α̂0, α̂1), and obtaining GPD es-
timates (β̂0, β̂1, ξ̂) and estimates (γ̂0, γ̂1) of the parameters of the Poisson baseline
intensity function λ0.
for b = 1, . . . , Bpar do

• Simulate the number of exceedances nb
û above the threshold function û, as

a Poisson(Λû(θ̂)) variable, generate indepndently the nb
û hypocentres using

gû(x, t; θ̂) and extract corresponding stress and threshold values sbk and uk,
k = 1, . . . , nb

û.

• Simulate sample yb
u independently from a GPD with parameters (σ̂u,k = β̂0 +

β̂1s
b
k + ξ̂ûk, ξ̂) for k = 1, . . . , nb

u.

• Refit covariate GPD model to yb
u and Poisson baseline intensity to the

the hypocentre bootstrap data of exceedances to obtain parameter estimates
(β̂b

0, β̂
b
1, ξ̂

b, γ̂b0, γ̂
b
1) and evaluate w(θ̂b

α).

end for
return A set of Bpar bootstrapped estimates for w(θ).

We next incorporate the uncertainty in the estimation of the parameters (α0, α1) of

the threshold function for a given functional form of u(x, t) from the options (5.4.2).

Algorithm 2 builds on Algorithm 1 by using a double bootstrap procedure to account

for the uncertainty in the estimation of the threshold function parameters, (α0, α1),

for a particular formulation of the threshold function. Firstly, we resample with re-

placement the rows of the array {yk,xk, tk, s(xk, tk) : k = 1, . . . , n}, to generate Bnonpar

bootstrapped samples of the array, each with n rows. Secondly, for each of the Bnonpar

bootstrapped arrays, we obtain point estimates of the threshold function parameters

(α0, α1) by minimising d(α0, α1) as defined in metric (5.4.6) and employ Algorithm 1

to account for the uncertainty in the estimation of (β0, β1, ξ, γ0, γ1). For the bth boot-

strapped sample this gives θ̂b = (α̂b
0, α̂

b
1, β̂

b
0, β̂

b
1, ξ̂

b, γ̂b0, γ̂
b
1). Finally, as above, we calculate

a summary of interest w(θ̂b) for each of the Bpar × Bnonpar samples to construct CIs

that incorporate uncertainty in the estimation of the entire parameter vector θ, for the
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chosen formulation of the threshold function.

Algorithm 2 Parameter uncertainty for GPD and threshold parameters with known
threshold covariate formulation

Require: (Bnonpar, Bpar, {yk,xk, tk, s(xk, tk) : k = 1, . . . , n})
for b = 1, . . . , Bnonpar do

• Sample n rows with replacement from array {yk,xk, tk, s(xk, tk) : k = 1, . . . , n}
to generate new array {ybk,xb

k, t
b
k, s(x

b
k, t

b
k) : k = 1, . . . , n}.

• Estimate values (α̂b
0, α̂

b
1) for the particular covariate formulation for the threshold

function u.

• Employ Algorithm 1 with inputs: (α̂b
0, α̂

b
1, Bpar, {ybk,xb

k, t
b
k, s(x

b
k, t

b
k) : k =

1, . . . , n}).
end for
return A set of Bpar ×Bnonpar bootstrapped estimates of w(θ).

The spatial-temporal formulation of the true threshold function is unknown but,

as motivated in Section 5.3.2, we consider 12 possible threshold formulations as there

is no clear geophysical basis to select between them. Accounting for the uncertainty

over these 12 options is needed to provide reliable CIs for design of hazard-resistant

infrastructure. Algorithm 3 details a procedure to propagate this uncertainty through

to tail inference along with the uncertainties described in Algorithms 1 and 2. It

follows a similar procedure to Algorithm 2 but additionally, it allows the formulation of

the threshold function (as given by expressions (5.4.2)) to vary for each bootstrapped

resample of the observed data.

5.6 Application to Groningen earthquakes

5.6.1 Threshold model selection and GPD inference

We apply our developed model and inference methods to the Groningen earthquakes

and covariates data described in Section 5.2. We use each of the 12 threshold function

model formulations identified in Section 5.4.1, which cover all combinations of covariate

(Vi : i = 1, . . . , 4) and transformation A−C. As there were only three geophones active
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Algorithm 3 Parameter uncertainty for GPD and threshold parameters with unknown
threshold covariate formulation

Require: (Bnonpar, Bpar, {yk,xk, tk, s(xk, tk) : k = 1, . . . , n})
for b = 1, . . . , Bnonpar do

• Sample n rows with replacement from array {yk,xk, tk, s(xk, tk) : k = 1, . . . , n}
to generate new array {ybk,xb

k, t
b
k, s(x

b
k, t

b
k) : k = 1, . . . , n}.

• Apply each of the 12 formulations of the threshold function u, (A − C, i =
1−4), select the most appropriate threshold formulation by minimisation of the
EQD values, and record values (α̂b

0, α̂
b
1) for the selected covariate formulation of

u(X , T ).

• Employ Algorithm 1 with inputs: (α̂b
0, α̂

b
1, Bpar, {ybk,xb

k, t
b
k, s(x

b
k, t

b
k) : k =

1, . . . , n}).
end for
return A set of Bpar ×Bnonpar bootstrapped estimates of w(θ).

for the first earthquake in the catalogue, we exclude that earthquake from the analyses

to allow comparisons of Vi with i = 1 − 4 on the same data. We choose the number

of evaluation points and number of bootstraps within the evaluation of the EQD to be

(m,B) = (500, 200), see Section 5.3.2, based on the sensitivity analysis of Murphy et al.

(2025), with our value for B larger than the default in that paper due to the added

complexity in our models. Re-running the threshold selection procedure with B = 1000

did not change the selected threshold formulation.

The EQD metric of fit for each of these 12 threshold function formulations is given

in Table 5.6.1. The best fitting model is A2, a linear function of the distance to the

second nearest geophone, with the models B1 and C2 showing the best fits for the other

two forms B and C respectively. The EQD values are very close suggesting that there

is not much difference between the threshold function models in terms of fit across

the distribution, with no systematic better performance for a given form A − C over

covariate Vi or vice versa. However, there may be important differences between these

models when inferences are made far into the tail of the distribution, so accounting for

the uncertainty in the threshold functional form may be needed for valid evaluation of

the inference uncertainty.
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Model 1 2 3 4
A 0.0333 0.0321 0.0348 0.0327
B 0.0327 0.0330 0.0358 0.0338
C 0.0332 0.0329 0.0362 0.0342

Table 5.6.1: EQD value for each threshold model formulation, A−C and Vi: i = 1, . . . , 4.
Smallest EQD value for each formulation A−C is given in italics with overall minimum
in bold.

To help understand the form of the best fitted threshold function model A2, Fig-

ures 5.6.1 and 5.6.2 provide temporal and spatial summaries respectively. Figure 5.6.1

[left] shows the estimated threshold function for the observed earthquakes {û(xk, tk) :

k = 1, . . . n}, plotted as a continuous function over time (to aid visibility), and the spa-

tial average of the A2 threshold across G for each time, i.e.,
∫
x∈G û(x, t) dx over t ∈ T .

As reference points, the two previously studied conservative and changepoint thresh-

olds, given in Figure 5.2.1, are also included. The A2 estimate, both for the observed

earthquake locations and in its average form, has a broadly similar temporal behaviour

to the changepoint threshold but differs in that at the start of the catalogue we estimate

a higher magnitude of completion for the observed earthquakes than the conservative

threshold. Following this, our estimate varies around the first constant value of the

changepoint model, before reducing in variability near the changepoint and lying close

to the subsequent level of the changepoint threshold in the later period. The spatially

averaged A2 estimate shows good agreement with the sigmoidal threshold model of

Varty et al. (2021). The key difference is that the A2 threshold function incorporates

the spatial evolution of the geophone network, which is particularly important in early

periods when the network was sparse in sub-regions of X where earthquakes occurred.

Figure 5.6.1 [centre] shows the A2 threshold estimate, over time, for the three loca-

tions on a north-south transect through G, as identified in Figure 5.2.3. These curves

reveal that the key differences are early in T , with the threshold being largest for the

northern and central locations and the southern location having values which are close

to the changepoint threshold. From 2016, the three site’s thresholds are closely aligned.
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Figure 5.6.1 [right] identifies that the fitted threshold for A2 is mostly above both

B1 and C2. There is variability in the both threshold differences throughout most of

the period with the differences diminishing after 2016, particularly for the C2 thresh-

old. Despite these differences in the thresholds, the numbers of exceedances are rather

similar, with A2, B1 and C2 having 849, 890 and 851 exceedances respectively, in com-

parison to the conservative threshold 1.45ML and changepoint thresholds having 364

and 817 exceedances respectively. Threshold model A2, which provides the best fit

to the excesses according to the EQD metric, captures similar behaviour in the mag-

nitude of completion over time to the changepoint threshold, and incorporates more

exceedances than previous threshold choices, which suggests that our estimator for the

tail of the distribution of earthquakes is preferable over previous analyses.
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Figure 5.6.1: Comparisons of fitted threshold functions. [Left] Best-performing thresh-
old A2 over time: (black) is û(xk, tk) for the kth earthquake in the catalogue; (green)
is the spatial average of the A2 threshold across G. Also on this plot is the conser-
vative level of mc = 1.45 (red-dashed line) and the changepoint threshold (solid blue
line). [Centre] Threshold A2 over time for the three locations shown in Figure 5.2.3:
north (orange), middle (dark green), south (purple), with conservative and changepoint
thresholds for reference. [right] Difference between thresholds: A2 − B1 (yellow) and
A2 − C2 (red).

Figure 5.6.2 illustrates how the A2 threshold function û(x, t) varies over x ∈ X

relative to geophone locations and time. The estimated function is plotted for the 1st

January in 2010 and 2020, which span the major change in geophone density over T .

The figures show clearly how the threshold function is lowered in the vicinity of the
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geophones, as they are added, and that the wide coverage of geophones across X in

2020 has reduced considerably the presence of sub-regions of X where the estimated

threshold function exceeds 1 ML.
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Figure 5.6.2: Spatial plots of model A2, threshold function û(x, t) for x ∈ X for the
dates 2010-01-01 (left) and 2020-01-01 (right). Active geophones are shown as black
dots.

The upper tail features of the fitted GPD are sensitive to the choice of threshold

function form. To illustrate this, we fit our covariate GPD model to the excesses of

A2, B1 and C2, treating the threshold as known in each case. First consider ξ, which

is viewed as the key parameter of extreme value inference. The three corresponding

maximum likelihood estimates (and bootstrapped standard errors obtained using Algo-

rithm 1) are ξ̂A2 = −0.154 (0.030), ξ̂B1 = −0.158 (0.031) and ξ̂C2 = −0.141 (0.024). For

the conservative threshold of u = 1.45 and our covariate model structure for σ0, these

values are ξ̂ = −0.069 (0.057). It is reassuring that the inferences for ξ are so similar

over the three selected threshold function models in terms of both point estimates and

uncertainties. Furthermore, our models almost halve the standard error relative to the

conservative threshold predominantly due to the increased sample size. The reduced

standard errors show strong evidence that ξ < 0 and hence, that there exists a finite
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upper endpoint for the distribution of magnitudes.

The discrepancies between these three estimates of ξ are emphasised in the inferences

for the upper endpoint at the time and hypocentre location for the largest observed

earthquake of 3.6ML. The point estimates and 95% CIs, all in units of ML, for the upper

endpoints, for models A2, B1 and C2, are 4.89 (3.875, 6.809), 4.77 (3.757, 6.234) and

5.07 (4.106, 6.318) respectively. The C2 model’s larger ξ estimate and smaller standard

error are reflected in the largest endpoint estimate with the smallest CI width. The

estimated uncertainty in these three endpoint estimates using just Algorithm 1 is much

larger than the difference in the three point estimates, indicating that the uncertainty

arising from the selection of the covariate model formulation should be less important

than the distributional uncertainty when estimating far into the tails.

As most previous analyses of earthquakes treat excesses of the threshold to be

identically distributed, we also assess the significance of the KS stress covariate in the

GPD scale parameter. Using the same methods and summaries as for ξ, we obtain that

β̂A
1 = 0.984 (0.375), β̂B

1 = 1.023 (0.339) and β̂C
1 = 0.951 (0.247). In each case, β1 differs

from zero by approximately three standard errors and hence, the GPD scale parameters

vary statistically significantly with the KS covariate, confirming the exploratory analysis

presented in Figure 5.2.3.

To assess the global fit of the GPD of a given threshold function, we use the QQ and

PP diagnostics discussed in Section 5.4.4. Figure 5.6.3 compares these diagnostics for

the GPD fitted above the conservative threshold of mc = 1.45ML with KS covariate and

the GPD excess model (5.4.4) fitted above the estimated threshold function A2. For

the conservative threshold, the fit appears good based on the pointwise 95% tolerance

intervals, though there is some evidence of under-estimation by this model in the body of

the distribution. The conservative threshold fit is based on a much smaller sample than

for threshold A2, and so its tolerance intervals are wider. In comparison, collectively

the QQ and PP plots for threshold A2 suggest the fit across the whole distribution is
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excellent even after accounting for the much tighter tolerance intervals.
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Figure 5.6.3: Assessment of GPD fit [left] above a conservative threshold 1.45ML and
[right] above the threshold A2. [top] QQ-plots of excesses transformed onto standard
exponential margins, [bottom] corresponding PP-plots. Pointwise 95% tolerance inter-
vals are in red.

5.6.2 Intensity inference

We now consider the fit of λû(x, t; θ̂), the intensity model (5.4.7) for exceedances of the

A2 estimated threshold function. In Section 5.4.3, we outlined how we fit model (5.4.7)

using estimates from the GPD fit above û(x, t) together with a Poisson likelihood

fit of the parameters in the model λ0(x, t, γ0, γ1). As discussed in Section 5.2.3, when

s(x, t) is constant between consecutive monthly values, model (5.2.1) gives a zero value,

and we choose to interpret earthquakes at those times as after-shocks. This led to 26

such earthquakes being removed from our inference and diagnostics for the intensity
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model. With the remaining exceedances, we obtained estimates (and standard errors)

γ̂0 = −0.4 (0.2) and γ̂1 = 15.6 (0.7). We can compare our method to that of Bourne

et al. (2018), which uses threshold u = 1.45, in terms of efficiency for estimating features

of the intensity function, by comparing estimates of γ1, as this parameter captures

the important geophysical effect of KS on the intensity. With our spatio-temporal

threshold, we use 485 extra data values from the catalogue that are omitted from the

Bourne et al. (2018) analysis, namely {yk : û(xk, tk) < yk < 1.45 for k = 1, . . . , n}. In

particular, omitting 14 events which resulted in zero intensity (i.e., deemed aftershocks),

with u = 1.45 (with our covariate formulation for σ0), the conservative threshold gives

γ̂1 = 13.2 (1.8), which is consistent with, but 2.5 times more uncertain than, our

estimate of γ1.

Figures 5.6.4 [left] and 5.6.5 respectively show temporal and spatial intensity sum-

maries λXû (T ; θ̂) and λû(x, T ; θ̂) of Section 5.4.4 and the earthquakes that exceed the

estimated threshold, excluding those deemed to be aftershocks. Figure 5.6.4 [left] com-

pares observed and expected annual earthquake counts above the threshold A2. The

fit closely captures the rapid growth in earthquakes above this threshold caused by a

combination of overall gas extraction stresses increasing and expansion in the geophone

network lowering the threshold. The estimates closely follow the observed decline in

excesses despite the lowering of the threshold in this period. This reduction comes from

the KS becoming constant due to the cessation of extraction. The estimated integrated

intensity over a year for each grid box in X , shown in Figure 5.6.5 for the years 2010

and 2020, matches closely with the locations of earthquakes exceeding threshold A2 in

these years: observations are clustered around the two clear peaks in the estimated

intensity, and in 2020, a few events in the south-east of the region are centred on local

intensity maxima.

The close agreement between the observed and expected annual earthquake counts

suggests that A2 is at least as large as the magnitude of completion over time and space.
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In Figure 5.6.4 [centre], we compare the observed and expected numbers of earthquakes

above 0ML, both excluding earthquakes with zero KS gradient as mentioned above.

The expected numbers shown are estimated under our model given by ΛX
0 (T ; θ̂û) (see

expression (5.4.9)). The expected and observed counts per year T show a marked

difference, with the observed count less in all years because the probability of detecting

an earthquake magnitude below the magnitude of completion is less than one. To

quantify the probability of recording an earthquake above 0ML in each year, Figure 5.6.4

[right] shows the ratio of the observed and expected annual earthquake counts above

0ML over T . This estimated probability rises steadily from 20% to 80% over T due

to the expansion of the geophone network in this period, with the most rapid change

occurring around 2015-2016. This is consistent with the step change in the number

of active geophones in X , shown in Figure 5.2.2, and it provides a novel estimator

for the probability of recording of an earthquake, which is of interest to geophysicists.

In Section 5.7, we discuss the inference for a related, but more specific, measure of

missingness which accounts for the values of the observed magnitudes, rather than

solely their relation to the threshold.
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Figure 5.6.4: Estimates of features of the occurrence properties of earthquakes for years
T = 1995, . . . , 2023: [left] observed and expected numbers of exceedances of threshold
û(x, t) per year based on estimated aggregated intensity ΛX

û (T ) using model formulation
A2 (blue) and counts of events in the catalogue (red); [centre] as for the left panel but
for exceedances of 0 ML; and [right] annual estimate of the probability an earthquake
above 0 ML is recorded, i.e., the ratio of observed and expected annual earthquake
counts above 0 ML for each T ∈ T .
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2 for years T = 2010

and T = 2020 with exceedances of A2 threshold occurring throughout each year shown
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5.6.3 Threshold uncertainty

We now explore the impact of threshold uncertainty as captured by Algorithm 3. For

non-parametric samples of the original earthquake data, the algorithm selects from the

12 different threshold function model formulations, i.e., A− C and i = 1, . . . , 4. From

Bnonpar ×Bpar = 200× 200 = 40000 bootstrap replicates using Algorithm 3, the model

forms A,B and C (i.e., model form A corresponds to models A1−A4 collectively) make

up the respective percentages of 55.5%, 24.5% and 20% of the selected models. The

corresponding percentages for i = 1 − 4 (i.e., i = 1 corresponds to models A1, B1, C1,

collectively) are respectively 30.5%, 24%, 5.5% and 40%, whereas for the best model for

each of A−C, we have A2, B1 and C2 occurring 10%, 9.5% and 5% respectively. These

results show that across the two aspects of covariate inclusion in the threshold function

model, there is no overwhelming best choice and so it is important to assess the effect of

that element of uncertainty in subsequent inference. It is somewhat surprising that the

formulations with i = 3 are selected so infrequently given the physical motivation that

i = 3 is the minimum number of geophones required for providing adequate location



SPATIO-TEMPORAL MODELLING FOR INDUCED SEISMICITY 138

accuracy for observed earthquakes - the reasoning used by Mignan et al. (2011) for their

choices of i.

To illustrate the uncertainty in the A2 threshold function, which was selected as

the best threshold formulation, Figure 5.6.6 shows the point estimate for A2 and 200

bootstrapped summaries of the threshold function using Algorithms 2 and 3 separately.

Specifically, we show the estimated spatial average of the threshold function across G

over time. Both plots also show pointwise 95% CIs for this quantity. The patterns

and spread of these bootstrapped spatial average threshold function estimates (and the

associated CIs) are very similar using each of these algorithms. Both show much greater

variability for the start of T than after 2016, and after 2016 almost all replicated spatial

average functions are approximately constant over time.

To provide further insight into the variation over the bootstrapped threshold func-

tion estimates, we also investigated how the number of exceedances |Kûb| of the esti-

mated threshold functions ûb varied across the b = 1, . . . Bnonpar = 200 replicates. For

Algorithms 2 and 3, the minimum, mean, maximum, and standard deviation of the

number of exceedances were respectively (546, 838, 1127, 93) and (545, 897, 1212, 143).

The mean values here show that using Algorithm 3 leads to 59 more exceedances on

average than Algorithm 2, and the maximums and standard deviations for both these

algorithms show there to be some samples with much larger numbers of exceedances

arising from Algorithm 3. So, allowing the formulation of the threshold function to

vary over the 12 different forms, leads to generally more exceedances being used and as

a result, a better quality of fit for each bootstrap sample.
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Figure 5.6.6: Spatial average over G threshold function uncertainty. The Bnonpar = 200
bootstrapped best threshold function estimates for Groningen according to EQD metric
averaged over G (blue) across time T : [left] Algorithm 2 and [right] Algorithm 3. Spatial
average over G for the fitted A2 threshold function is shown in green. Pointwise 95%
confidence intervals for the spatial average are shown in orange.

5.6.4 Inference and uncertainty for design parameters

We first look at the inference uncertainty for shape parameter ξ, with ξ assumed com-

mon over time, space and covariates, it underpins all aspects of our extrapolations.

For the selected best threshold function model A2, we obtained ξ̂A = −0.154. Now

we explore the assessment of uncertainty of ξ in terms of estimated 95% CIs using the

bootstrapping Algorithms 1-3, with the intervals given in Table 5.6.2, where we have

used Bpar = Bnonpar = 200, giving 40000 bootstrapped estimates of ξ for Algorithms 2

& 3. When the threshold function is only taken to have the structure of A2 with (α0, α1)

unknown (i.e., Algorithm 2), the CI for ξ increases in width by 43% relative to when

the threshold function structure of A2 and the resulting estimates (α̂0, α̂1) are treated

as known (i.e., Algorithm 1). In comparison, the CI allowing for the uncertainty in the

threshold functional form, in Algorithm 3, slightly reduces the width of the CI relative

to Algorithm 2. At first sight, this is a surprising finding, as it should be expected that

incorporating additional uncertainty would widen the interval. However, by allowing
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threshold function form to vary across bootstrapped samples, we obtain less variable

shape parameter estimates.

The 95% CIs do not reveal the occurrence rate, over the bootstraps, of ξ̂b > 0,

i.e., estimated distributions with no finite upper endpoint. For Algorithms 1-3, we

observed 0%, 0.26% and 0.21% respectively, which is promising as it shows our inference

is strongly consistent with geophysical knowledge about the existence of an upper bound

to the distribution. By comparison, for the conservative threshold, even when applying

Algorithm 1, we find the percentage of samples which obtain ξ̂b > 0 to be 7.5%.

Parameter Estimate Alg 1 Alg 2 Alg 3
ξ -0.154 (-0.221,-0.099) (-0.240,-0.066) (-0.236,-0.064)

emax(SF ) 5.746 (4.398, 8.280) (4.064,13.832) (4.048,13.629)
ewm(SF ) 5.037 (4.017, 6.901) (3.718, 11.663) (3.721,11.370)

design-level v 3.943 (3.524, 4.328) (3.406,4.619) (3.392,4.611)

Table 5.6.2: Inference for key measures of earthquake hazard for Groningen: maximum
likelihood estimates and associated 95% confidence intervals derived using Algorithms 1-
3.All values reported in rows 2-4 of the table are in units of ML.

Now consider the inference for the endpoints of magnitudes into the future. Unlike

the analyses of Beirlant et al. (2019), Varty et al. (2021) and Yue et al. (2025b) which

assume that the magnitudes are identically distributed, we account for distributional

changes across space and time under a scenario that there will be no future extraction.

Previous analyses focussed on a single endpoint. We utilise the forecasted KS values

SF over X × TF to estimate a spatio-temporal endpoint field. We summarise this field

through its maximum emax(SF ) and a weighted mean, ewm(SF ). The weights are given

by the intensity of earthquakes over X ×TF , see Section 5.4.5. The maximum emax(SF )

is comparable to the endpoint estimate in previous studies which ignored the spatial

and temporal variations in the endpoint.

Table 5.6.2 presents point estimates and CIs for these two summaries using Algo-

rithms 1-3. Consider our point estimate and 95% CIs for êmax(SF ) using Algorithm 1.

For background, Beirlant et al. (2019) use a constant threshold of 1.5ML with rounded
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earthquake data and present point estimates for êmax(SF ) in the range 3.61−3.80, with

90% upper confidence bounds varying from 3.85 − 4.50. These estimates are substan-

tially lower in value and uncertainty than what we obtain using a lower threshold and

the point estimates lie exceptionally close to the largest observed earthquake. In con-

trast, using the conservative threshold of 1.45ML with unrounded data (equivalent to

the threshold of 1.5ML used by Beirlant et al. (2019)), and including the KS covariate,

we find a point estimate êmax(SF ) = 8.139 and 95% CI (5.072,∞), obtained using Al-

gorithm 1). The difference in findings relative to Beirlant et al. (2019) are substantial

given that the same threshold is used and the quality of fit exhibited by our model

with this threshold is adequate, as seen in Figure 5.6.3. Relative to the inferences for

emax(SF ) using our estimated threshold function, we see that the conservative thresh-

old produces a much larger point estimate and with an unbounded confidence interval.

This would suggest very strong assumptions are used in the inferences of Beirlant et al.

(2019) to gain this level of extra precision.

Neither Varty et al. (2021) nor Yue et al. (2025b) report endpoint estimates, but

the latter provides the distribution of a quantity of interest to geophysicists, namely

the maximum possible earthquake in this region, denoted Mmax. This distribution

is drawn from the report NAM (2022), which provides purely geophysical evidence

for such values based on the fault structure and other geophysical aspects of the gas

reservoir. The distribution has a median of 4.488ML with lower and upper bounds of

3.75ML and 6.75ML. Our point estimate and 95% CI lower bound from Algorithm 1

are consistent with this Mmax distribution, although the upper limit of the CI appears

too large. This is not surprising as unlike the geophysical approach, there is limited

statistical information to constrain this upper limit.

For uncertainty in emax(SF ), Table 5.6.2 shows that both Algorithms 2 and 3 provide

much wider CIs than Algorithm 1, with the increased uncertainty reflected in massive

increases (small reductions) in the upper (lower) limits respectively. As we found for
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ξ, Algorithms 2 and 3 give almost identical intervals, with the latter slightly narrowing

the interval, despite allowing for an additional source of uncertainty. Similar findings

are obtained for the estimates of ewm(SF ), with all values slightly less than the emax(SF )

quantities, as we would expect by its construction. The values for êwm(SF ) are likely

to provide more practically useful information than êmax(SF ) as they better reflect the

occurrence rates of earthquake hypocentres. See Appendix C.1 for the estimates of the

annual behaviour of this endpoint summary.

Given the potential unbounded GPD model, inferences for endpoints are always

problematic in terms of their interpretation, particularly when considering 95% CIs.

We believe it is insightful to provide 50% CIs for the endpoints too. In particular, Al-

gorithms 2 and 3 lead to 50% CIs for emax(SF ) of (4.889, 6.736) and (4.872, 6.756) respec-

tively. For ewm(SF ), the corresponding intervals are (4.339, 5.778) and (4.337, 5.811).

Thus, we can see that these intervals align more closely with the Mmax values reported

by Yue et al. (2025b).

Finally, consider the inferences for the design level v, a quantity which meets the

design criteria of (Code, 2005). Our point estimate and 95% CIs for v are given in

Table 5.6.2. Of the previous analyses, only Yue et al. (2025b)[Figure 6] estimates this

quantity, doing so as the 475-year return level under the assumption that earthquake

magnitudes are identically distributed into the future. They find it to be approximately

4.5ML. This appears to be an over-estimate as it does not take into account the cessa-

tion of extraction. Under the scenario of no further extraction, we obtain v̂ = 3.943ML.

Unlike for the endpoint summaries, the 95% CIs for v are all quite narrow and the

upper limits do not exceed the geophysicist’s upper bound estimate for Mmax, with Al-

gorithms 2 and 3 again being very similar. It is interesting to note that when estimating

v using the conservative threshold, the point estimate and 95% CI, under Algorithm 1,

is 4.255 (3.727, 4.804). This is a larger estimate and a larger upper limit for the CI

relative to that for v obtained using our estimated û, with uncertainty based on using
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Algorithm 3, which accounts for the uncertainty in both the threshold parameters and

form, in addition to that covered by Algorithm 1.

5.7 Discussion

We have developed spatial and temporal extensions of the methods of Varty et al.

(2021) and Murphy et al. (2025) for extreme value threshold and excess modelling,

which incorporate threshold function selection uncertainty into subsequent quantile

inferences. Our methodological developments were motivated by the continuing need

for accurate future hazard assessments in the Groningen gas field. To accomplish these

goals, we needed to incorporate considerable contextual complexity into our statistical

modelling framework. Key to our approach is the inclusion of geophysical covariates

which capture the spatial and temporal changes of both the measurement network

and of geophysical model-generated stress fields that describe the resultant effects of

gas extraction. A range of diagnostic methods indicate that our model provides an

excellent fit to the data. The fitted model provides improved scientific understanding

of the form and sources of the spatio-temporal variability of the intensity of earthquake

occurrences and the values of large magnitude earthquakes. Our analysis has led to

improved estimators of the magnitude of completion function (the smallest magnitude

which can be detected with certainty at a given time and location), which is lower

than previously estimated. This reduction in level has led to more excess data being

used for the analysis and hence less uncertainty in the parameter estimation. It has

also achieved useful inferences for the tail behaviour of earthquake magnitudes into the

future, both for design levels and upper limits, with both providing inferences that are

much more consistent with geophysical knowledge than previous analyses. Even after

accounting for the additional threshold function uncertainty, we have greater confidence

in lower estimated design levels relative to the results for the conservative threshold.
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We provided these estimates under the scenario of no further extraction from the gas

field but our approach allows for estimates to be drawn under other future scenarios.

The societal importance of mitigation from earthquakes associated with gas extrac-

tion from the Groningen gas field provided a strong motivation for the extreme value

methods that we have developed. However, the methodology is generic and so has

potential for wide use in other gas extraction fields. Going forward, it will be likely be

most impactful for use in the rapidly growing body of research on model development

and hazard assessment for carbon capture (Bauer et al., 2019), which involves the in-

jection of gas into underground storage. In these cases, earthquakes are expected but

the number of geophones to be used per region is anticipated to be much lower than

for Groningen, so efficient estimation of the magnitude of completion will be vital.

The methods developed here to quantify the effect of threshold uncertainty in subse-

quent tail inference have the potential for wide impact in core extreme value methodol-

ogy. This paper substantially expands on previous work which focussed on realisations

of IID variables (Murphy et al., 2025). Here, we have proposed effective methods to

account for non-identically distributed data and the uncertainty in the functional choice

of covariates in the threshold. The methodology also has the potential to be useful for

a range of extreme value contexts where data are missing not-at-random due to limita-

tions in measurement equipment. Furthermore, our model for earthquake magnitudes

contributes to the recent and exciting evolution of work on extremes of marked point

processes, with developments in this area having a particular focus on extreme wildfires

and landslides, Turkman et al. (2010), Koh et al. (2023), Yadav et al. (2023).

Regarding the specifics of our data analysis, there are some practical further steps

which may improve the inference. For the threshold covariate, Vi := Vi(x, t), we focused

on three different transformations, Vi, log Vi and V
1/2
i incorporated into linear functions

for the threshold and we also considered the uncertainty of the choice between these

forms. However, we could have looked more broadly at the covariate (V ϕ
i − 1)/ϕ, for
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unknown ϕ ≥ 0, and estimated ϕ in the fitting. Here, there are direct parallels to the

work of Wadsworth et al. (2010) on exploring the benefits of Box-Cox transforming

data before applying standard extreme value methods. There is also the issue of the

choice of i in the Vi covariate. It may not be best to pick a single i, but instead to allow

i to change over space and/or time, possibly through a mixture of the Vi functions.

Our focus has been on accurately modelling the earthquake exceedances above the

magnitude of completion. However, it is also valuable to assess the detection ability of

the geophone network. An aspect of this was illustrated in Figure 5.6.4 [right]. How-

ever to do this more precisely, we would need to estimate the probability of detection

function α(x, t, y) for an earthquake of magnitude y with hypocentre at x and occur-

rence time t for all (x, t) ∈ (X , T ). For y ≥ mc(x, t), α(x, t, y) = 1, but what can be

determined for y < mc(x, t)? Our paper provides the framework for the first such in-

ference on α(x, t, y). Specifically, if λX(x, t, y) is the intensity of recorded earthquakes

of magnitude y at hypocentre and time (x, t), then

λX(x, t, y) = λ0(x, t)
1

σ0(x, t)

[
1 + ξ

y

σ0(x, t)

]−1−1/ξ

+

α(x, t, y), for (x, t, y) ∈ X×T ×R+.

As λX(x, t, y) can be empirically estimated and all terms on the right hand side, other

than α(x, t, y) have been estimated in this paper, it is clearly possible to now estimate

the detection probability function.

There are other aspects of the modelling that could be evolved in future work.

As mentioned in Section 5.4.5, we could take the modelling to the next step of a full

probabilistic seismic hazard analysis by incorporating a spatial spreading effect of an

earthquake at a point through incorporating ground motion models. Although we have

used details about the geophone network to an unprecedented level in our analysis, we

have not attempted to incorporate information about the varying accuracy of different

geophones in the region and how the accuracy has improved in time. In fact, addressing

measurement error in terms of extreme value methods has hardly been addressed in this
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area, with an interesting approach having been proposed by Lin and Newberry (2023).

Our analysis focuses on information in the catalogue and knowledge of the geophone

network. In contrast, Yue et al. (2025b) incorporate expert knowledge of the physically-

motivated worst possible earthquake in the region which provides an upper bound of

the GPD upper endpoint, and our analysis could be extended similarly, which would

alleviate the non-physical estimates of uncertainty we currently encounter. Finally,

when modelling earthquake baseline rates of occurrence, i.e., in modelling λ0(x, t), we

have not accounted explicitly for the clustering of events due to the dependence between

triggering main-shock earthquakes and after-shocks, so the intensity modelling could

be adapted to cover this feature through the use of ETAS models of Ogata (1988).



Chapter 6

Extreme value methods for

estimating rare events in Utopia

6.1 Introduction

This paper details an approach to the data challenge organised for the Extreme Value

Analysis (EVA) 2023 Conference. The objective of the challenge was to estimate ex-

tremal probabilities, or their associated quantiles, for simulated environmental data sets

for various locations in a fictitious country called Utopia. The data challenge is split

into 4 challenges; challenges C1 and C2 focus on a setting where data is obtained from

a single location while challenges C3 and C4 concern multivariate data sets, where data

is obtained simultaneously from multiple locations.

Challenge C1 requires estimation of the 0.9999-quantile of the distribution of the

environmental response variable Y conditional on a covariate vector X, for 100 realisa-

tions of covariates. To do so, we model the tail of Y | X = x using a generalised Pareto

distribution (GPD; Pickands, 1975) and employ the extreme value generalised additive

modelling (EVGAM) framework, first introduced by Youngman (2019), to account for

the non-stationary data structure. We consider a variety of model formulations and

147
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select our final model using cross-validation. Furthermore, central 50% confidence in-

tervals are estimated via a non-stationary bootstrapping technique, and the final model

performance is assessed using the number of times the true conditional quantile lies in

the confidence intervals (Rohrbeck et al., 2023). For Challenge C2, we are interested in

estimating the value of q that satisfies Pr(Y > q) = 1/(300T ), where T = 200.

Challenges C3 and C4 concern the estimation of probabilities for extreme multivari-

ate regions, subsets of Rd, where some or all of the components are so large that we

seldom observe any data in them. Such estimates require techniques for modelling and

extrapolating within the joint tail. For challenge C3, we want to estimate two joint tail

probabilities for three unknown non-stationary environmental variables. To achieve

this, we propose a non-stationary extension of the model introduced by Wadsworth

and Tawn (2013). Lastly, for challenge C4, we wish to estimate the probability that

50 variables (locations) jointly exceed prespecified extreme thresholds. Based on an

initial analysis, we separate the variables into five independent groups, and obtain dis-

tinct probability estimates for each group using the conditional extremes approach of

Heffernan and Tawn (2004).

The remainder of the paper is structured as follows. A suitable background to

EVA is provided in Section 6.2, introducing concepts required throughout our work.

Section 6.3 covers our approach to the univariate challenges C1 and C2, and the multi-

variate challenges C3 and C4 are considered in Sections 6.4 and 6.5, respectively. The

paper ends with a discussion of the results of all challenges in Section 4.6.

6.2 EVA background

6.2.1 Univariate modelling

Univariate EVA methods are concerned with capturing the behaviour of the tail of a

distribution which allows for extreme quantities to be estimated. A common univariate
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approach is the peaks-over-threshold framework. Consider a continuous, independent

and identically distributed (IID) random variable Y with distribution function F and

upper endpoint yF := sup{y : F (y) < 1}. Pickands (1975) shows that, for some high

threshold v < yF , the excesses (Y − v) | Y > v, after suitable rescaling, converge in

distribution to a GPD as v → yF . Davison and Smith (1990) provide an overview of

the properties of the GPD, and also propose an extension of this framework to the

non-stationary setting: given a non-stationary process Y with associated covariate(s)

X, the authors propose the following model

Pr(Y > y + v | Y > v,X = x) =

(
1 +

yξ(x)

σ(x)

)−1/ξ(x)

+

, (6.2.1)

for y > 0, where σ(·) and ξ(·) are the covariate-dependent scale and shape parameters,

respectively. Recent extensions of the Davison and Smith (1990) framework include al-

lowing the threshold to be covariate-dependent, i.e., v(x) (Kyselý et al., 2010; Northrop

and Jonathan, 2011), and using generalised additive models (GAMs; Chavez-Demoulin

and Davison, 2005; Youngman, 2019) to capture the functions σ(·) and ξ(·) flexibly.

6.2.2 Extremal dependence measures

In addition to analysing marginal tail behaviours, multivariate EVA methods are con-

cerned with quantifying the dependence between extremes of the individual compo-

nents. An important classification of this dependence is obtained through the measure

χ (Joe, 1997): given a d-dimensional random vector Z, with d ≥ 2 and Zi ∼ F for all

i ∈ {1, . . . , d},

χ(u) :=

(
1

1− u

)
Pr(F (Z1) > u, . . . , F (Zd) > u), (6.2.2)

with u ∈ [0, 1). Where the limit exists, we set χ := limu→1 χ(u) ∈ [0, 1]. When χ > 0,

we say that the variables in Z exhibit asymptotic dependence, i.e., can take their largest

values simultaneously, with the strength of dependence increasing as χ approaches 1.
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If χ = 0, the variables cannot all take their largest values together. In particular, for

d = 2, we refer to the case χ = 0 as asymptotic independence.

We also consider the coefficient of tail dependence proposed by Ledford and Tawn

(1996). Using the formulation given in Resnick (2002), let

η(u) :=
log (1− u)

log Pr (F (Z1) > u, . . . , F (Zd) > u)
,

with u ∈ [0, 1). When the limit exists, we set η := limu→1 η(u) ∈ (0, 1]. The cases η = 1

and η < 1, correspond to χ > 0 and χ = 0, respectively. For η < 1, this coefficient

quantifies the form of dependence for random vectors that do not take their largest

values simultaneously.

As χ and η are limiting values, they must be approximated using numerical tech-

niques in practice. Therefore, when quantifying extremal dependence, we approximate

χ (η) using empirical estimates of χ(u)
(
η(u)

)
for some high threshold u.

6.3 Challenges C1 and C2

Both challenges concern 70 years of daily data for the capital city of Amaurot. Each

year has 12 months of 25 days and two seasons (season 1 for months 1-6, and season 2

for months 7-12). Suppose Y is an unknown response variable, and X = (V1, . . . , V8)

is a vector of covariates, (V1, V2, V3, V4) denoting unknown environmental variables and

(V5, V6, V7, V8) denoting season, wind direction (radians), wind speed (unknown scale),

and atmosphere (recorded monthly), respectively.

For C1, we build a model for Y | X and estimate the 0.9999-quantile, with associ-

ated 50% confidence intervals, for 100 different covariate combinations denoted x̃i for

i ∈ {1, . . . , 100}. Note x̃i are not covariates observed within the data set, but new

observations provided by the challenge organisers.

For C2, we estimate the marginal quantile q corresponding to a once in 200-year
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event in the IID setting such that, with 300 observations per year, Pr(Y > q) =

1/300(200) = (6× 104)−1. Furthermore, q is obtained subject to a predefined loss func-

tion. We first estimate the marginal distribution FY (y) using Monte-Carlo techniques;

see for instance, Eastoe and Tawn (2009). Since we have a large sample size, n = 21, 000,

it is reasonable to assume that the observed covariate sample is representative of X.

Thus, we can approximate the marginal distribution FY (y) as follows,

F̂Y (y) =

∫
X

FY |X(y | x)fX(x)dx ≈ 1

n

n∑
t=1

FYt|Xt(yt | xt). (6.3.1)

where FY |X(·) is the conditional distribution function of Y | X and fX(·) denotes the

joint probability density of the covariates X.

We incorporate the following loss function provided by the challenge organisers,

L(q, q̂) =


0.9(0.99q − q̂) if 0.99q > q̂,

0 if |q − q̂| ≤ 0.01q,

0.1(q̂ − 1.01q) if 1.01q < q̂,

(6.3.2)

where q and q̂ are the true and estimated marginal quantiles, respectively. This loss

function penalises under-estimation more heavily than an over-estimation.

We conduct the same exploratory data analysis for both challenges given the same

covariates are used; this is outlined in Section 6.3.1. In Section 6.3.2 we introduce our

techniques for modelling Y | X, which is then used for modelling Y via (6.3.1). Our

approach for uncertainty quantification is outlined in Section 6.3.3, and we give our

results for both challenges in Section 6.3.4.
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6.3.1 Exploratory data analysis

Given the covariate vector Xt = {V1,t, . . . , V8,t}, the environmental response variable

Yt, t ∈ {1, . . . , n}, is temporally independent (Rohrbeck et al., 2023). However, it is not

clear which covariates affect Y , and what form these covariate-response relationships

take. In what follows, we aim to explore these relationships so we can account for them

in our modelling framework.

We explore the dependence between all variables to understand the relationships

between covariates, as well as the relationships between individual covariates and the

response variable. We investigate dependence in the main body of the data using

Kendall’s τ measure, while for the joint tails, we use the pairwise extremal dependence

coefficients χ and η defined in Section 6.2; values for all pairs are shown in Figure 6.3.1,

with the threshold u set at the empirical 0.95-quantile for the extremal measures.
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Figure 6.3.1: Heat maps for dependence measures for each pair of variables: Kendall’s
τ (left), χ (middle) and η (right). Note the scale in each plot varies, depending on
the support of the measure, and the diagonals are left blank, where each variable is
compared against itself.

The response variable Y has the strongest dependence with V3 in the body of the

distribution (see τ̂ in Figure 6.3.1), followed by V6 (wind speed) then V7 (wind direction),

. For the tail of the distribution, Y has strongest dependence with V2, V3 and V6 (see

χ̂ and η̂ in Figure 6.3.1). We also find strong dependence between V6 and V7 in the

body, but evidence of weak dependence in the tail (dark blue for χ̂ and η̂). There is
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also strong dependence between V1 and V2 in both the body and tail (see dark red for

η̂). We find very similar dependence relationships when the data are split into seasons.

In the supplementary material (Appendix D.1), we show scatter plots of each covariate

against the response variable. The scatter plots show no clear relationships between

Y and V1, V2, V4 or V8. The remaining covariates show some evidence of relationships

with the response, in particular V3 appears to have a strong non-linear relationship. V6

(wind speed) and V7 (wind direction) show weaker relationships with the response, see

Appendix D.1 for further discussion.

We also explore temporal relationships for the response variable Y . We first find

temporal non-stationarity as the distribution of Y varies significantly with V5 (season);

see Appendix D.1 for more detail. The mean and range of Y is higher in season 1

than season 2, with greater extreme values observed in season 1. However, within each

season, across months, there is little temporal variation in the distribution of Y . We

also find that while Y exhibits statistically significant temporal dependence for a large

number of lags, the auto-correlation function (acf) values are very near zero and thus,

we choose to treat Y as independent at all lags; see Appendix D.1.

As noted in Rohrbeck et al. (2023), 11.7% of the observations have at least one

value missing completely at random (MCAR). A detailed breakdown of the pattern

of missing predictor observations is provided in Appendix D.1. Since we can assume

the data are MCAR, ignoring the observations that have a missing predictor covariate

will not bias our inference, however, a complete case analysis is undesirable due to the

amount of data loss. To mitigate against this, we attempted to impute the observations

where predictors are missing but ultimately could not find an imputation method that

satisfactorily retained the dependence structure between the response and covariates,

particularly in the tails of the distribution. Therefore, we use a case analysis approach,

whereby an observation is only removed if a predictor covariate of interest is missing.

This results in only 4% of observations being removed for our final model.
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6.3.2 Methods

Due to the complex nature of the data, we consider various non-stationary GPD mod-

els, as in equation (6.2.1), that are formulated as GAMs to fit Y | X. For threshold

selection, we extend the method proposed by Murphy et al. (2025) to select a thresh-

old for non-stationary, covariate-dependent GPD models; the details are provided in

Section 6.3.2. Our inference and model selection procedures are then provided in Sec-

tions 6.3.2 and 6.3.2, respectively. We note that the same model formulation is used for

both C1 and C2 with a small adjustment to the parameter estimation procedure for C2

to incorporate the provided loss function given in (6.3.2). We utilise equation (6.3.1)

to obtain the marginal distribution of Y .

General model formulation

Let X̃t denote the set of predictor covariates with t ∈ {1, . . . , n}. Then yt and x̃t

denote the observations of the response variable and predictive covariates, respectively.

We consider models with the following form,

FYt|X̃t
(yt|X̃t = x̃t) = 1− ζ(x̃t)

[
1 + ξ(x̃t)

(
yt − v(x̃t)

σ(x̃t)

)]−1/ξ(x̃t)

+

, (6.3.3)

where v(x̃t) and ζ(x̃t) are covariate-dependent threshold and rate parameters, respec-

tively. The rate parameter corresponds to the probability of exceeding the threshold.

Our analysis in Section 6.3.1 indicates that V3, V5 (season), and V6 (wind speed)

exhibit non-trivial dependence relationships with the response variable. Therefore we

assume these variables can be used as predictor variables for modelling Y , and set

x̃ := (Vj)j∈{3,5,6}. Although V7 (wind direction) also exhibits strong dependence with Y ,

we do not consider it here since it is highly correlated with wind speed so would involve

adding complex interaction terms to the model formulation, and V6 has a stronger

relationship with Y compared to V7, as measured by each of Kendall’s τ , χ and η (see
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Figure 6.3.1).

Owing to the complex covariate structure observed in the data, as described in

Section 6.3.1, we employ the flexible EVGAM framework proposed in Youngman (2019)

for modelling tail behaviour. Under this framework, GAM formulations are used to

capture non-stationarity in the threshold, scale and shape functions given in equation

(6.3.3). Without loss of generality, consider the scale function σ(·). We assume that

h(σ(x̃)) = ψσ(x̃), with ψσ(x̃) = β0 +
K∑

κ=1

Pκ∑
p=1

βκpbκp(x̃), (6.3.4)

where h(x) := log(x) denotes the link function which ensures the correct support,

with coefficients β0, βκp ∈ R and basis functions bκp for p ∈ {1, . . . , Pκ}, κ ∈ {1, . . . , K},

where K is the number of splines in the GAM formulation and Pκ is the basis dimension

relating to spline κ. The basis functions can be in terms of individual covariates, i.e.,

bκp : R 7→ R, or multiple covariates, i.e., bκp : Rm 7→ R, 1 < m ≤ 8. Analogous forms

can be taken for v(·) and ξ(·), adjusting the link function h(·) as appropriate, although

these are not considered here for reasons detailed below.

To select an appropriate threshold, we employ the threshold selection method of

Murphy et al. (2025), corresponding to Chapter 3, and extend this approach to select a

threshold for non-stationary, covariate-dependent GPD models. The method selects a

threshold based on minimising the expected quantile discrepancy (EQD) between the

sample quantiles and fitted GPD model quantiles. When fitting a non-stationary model,

the excesses will not be identically distributed across covariates. Thus, to utilise the

EQD method in this case, we use the fitted non-stationary GPD parameter estimates to

transform the excesses to common standard exponential margins and compare sample

quantiles against theoretical quantiles from the standard exponential distribution, simi-

lar to the Varty et al. (2021) approach which the EQD built upon. This transformation

is a common approach for checking the model fit of a non-stationary GPD (Coles, 2001).
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We follow Murphy et al. (2025) and set the tuning parameters at the default values

of m = 500 and B = 100. Increasing B in this non-IID setting would be beneficial,

however due to the fine grid of thresholds, the incorporation of the evgam package, and

the number of models we assessed (only a subset are shown in the chapter), we chose

not to increase the computational intensity any further.

We use a bi-seasonal piecewise-constant threshold as there is clear variation in the

distribution, and thereby the extremes, of Y between seasons; see Appendix D.1 for

more details. Specifically, we set v(x̃t) := 1(x̃2,t = 1)v1+1(x̃2,t = 2)v2, v1, v2 ∈ R, with

corresponding rate parameter ζ(x̃t) := 1(x̃2,t = 1)ζ1+1(x̃2,t = 2)ζ2, where ζ1, ζ2 ∈ [0, 1]

denote the probabilities of exceeding the threshold for seasons 1 and 2, respectively,

and x̃r,t are realisations of the rth component of x̃ for r ∈ {1, 2, 3}. This seasonal

threshold significantly improves model fits; see Appendix D.1 for further details. GAM

forms for the threshold were also explored, but did not offer significant improvement.

Furthermore, the smooth GAM formulation of the GPD scale parameter adequately

captures any residual variation in the response arising due to covariate dependence.

Inference

For all GAM formulations, we only consider basis functions of singular covariates, since

specifying basis functions of multiple variables requires a detailed understanding of

covariate interactions and can significantly increase the computational complexity of

the modelling procedure (Wood, 2017). We keep the shape function ξ(x) := ξ ∈

R constant across covariates; this is common in non-stationary analyses, since this

parameter is difficult to estimate (Chavez-Demoulin and Davison, 2005). Within the

GAM formulation, we consider several parametric forms to account for the predictive

covariates in the scale parameter using linear models, indicator functions and thin-plate

regression splines.

When using splines, we must select a basis dimension Pκ ∈ N; this determines
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the number of coefficients to be estimated. Basis dimension is the most important

choice within spline modelling procedures and directly corresponds with the flexibility

of the framework (Wood, 2017). We only consider splines for V3 and V6. For each X̃r,

r ∈ {1, 3}, we determine the basis dimension P1 and P2, respectively, by building a

model for Yt | X̃r,t, to consider the effect of this predictor on the response directly. We

vary the basis dimension and compare the resulting models using cross validation (CV),

detailed in the following section. We set P1 = 4 and P2 = 3 for V3 and V6, respectively.

For C2, we incorporate the loss function of equation (6.3.2) into the estimation

procedure. Let Iv := {t ∈ {1, . . . , n} | yt > v(x̃t)} denote the set of temporal indices

corresponding to threshold exceedances and nv := |Iv|. We consider the objective

function

S(θ) := −lR(θ) +
∑
i∈Iv

L(q∗i , q̂i)/nv, (6.3.5)

where lR(θ) denotes the penalised log-likelihood function of the restricted maximum

likelihood estimation (REML) approach (Wood, 2017), θ denotes the parameter vector

associated with the GPD formulation of equation (6.3.4), and
∑

i∈Iv L(q
∗
i , q̂i)/nv denotes

the average loss between the sample quantiles of the transformed excesses and the

theoretical standard exponential quantiles. Specifically, we transform the excesses,

(yt − v(x̃t))t∈Iv , to standard exponential margins using the fitted non-stationary GPD

parameter estimates and compare the ordered excesses, q∗, to the theoretical quantiles,

q̂, from a standard exponential distribution evaluated at probabilities {pi = i/(nv +

1), i = 1, . . . , nv}. Minimising the objective function S(θ) ensures that the parameter

estimates also account for and minimise the loss function, L. We use this formulation

to adjust the GPD parameters for challenge C2 once a threshold is selected.

Model selection

To determine the best-fitting model, we use a forward selection process and aim to

minimise the model’s CV score. For each model, we apply k-fold CV (Hastie et al.,
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2001, Ch 7.) utilising the continuous ranked probability score (CRPS, Gneiting and

Katzfuss, 2014) as our goodness-of-fit metric. CRPS describes the discrepancy between

the predicted distribution function and observed values without the specification of

empirical quantiles. We explore model ranking by taking both k = 10 and 50, and

find that both give an equivalent ranking; we present results for the latter. We also

provide the Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) values to aid in model selection. A subset of models used in the forward selection

process are detailed in Table 6.3.1 where, for each model, we provide the change in the

CRPS, AIC and BIC relative to model 1. The parameterisation of model 7 achieves

the largest reduction for all three metrics relative to the baseline model.

Table 6.3.1: Table of selected models considered for challenge C1. 1(·) denotes an
indicator function, si(·) for i ∈ {1, 2} denote thin-plate regression splines, β0, β1 are
coefficients to be estimated, and x̃r,t is defined as in the text. All values have been
given to one decimal place.

Model σ(x̃t) ∆CRPS ∆AIC ∆BIC
1 β0 0 0 0
2 β0 + β11(x̃2,t = 1) -0.5 -33.4 -26.1
3 β0 + s1(x̃1,t) -0.9 -408.5 -379.2
4 β0 + s2(x̃3,t) -0.5 -284.3 -276.8
5 β0 + β11(x̃2,t = 1) + s1(x̃1,t) -0.9 -425.8 -388.1
6 β0 + s1(x̃1,t) + s2(x̃3,t) -1.0 -752.7 -717.2
7 β0 + β11(x̃2,t = 1) + s1(x̃1,t) + s2(x̃3,t) -1.1 -780.0 -735.3

6.3.3 Uncertainty

For each of the 100 different covariate combinations, x̃i for i ∈ {1, . . . , 100}, we need

to construct central 50% confidence intervals. We use a bootstrapping procedure to

avoid making potentially inaccurate assumptions such as the asymptotic normality ap-

proximation of maximum likelihood estimates, for example. Traditional bootstrap ap-

proaches are non-parametric and randomly resample the data with replacement. How-

ever, in Section 6.3.1 we find that the response variable is dependent on covariates, and
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these covariates exhibit temporal dependence. A standard bootstrap procedure would

therefore not retain this dependence. Instead, we preserve the temporal dependence

structure of covariates and their relationship with the response variable by approxi-

mating our confidence intervals using the stationary, semi-parametric bootstrapping

procedure adopted by D’Arcy et al. (2023).

First, the response variable Yt is transformed to Uniform(0,1) margins to preserve

its non-stationary behaviour; denote this sequence UY
t = FYt|X̃t

(Yt|X̃t = x̃t) where

FYt|X̃t
is the estimated model given in equation (6.3.3). We then adopt the stationary

bootstrap procedure of Politis and Romano (1994) to retain the temporal dependence in

the response and explanatory variables by sampling blocks of consecutive observations.

The block length L is random and simulated from a Geometric(1/l) distribution, where

the mean block length l ∈ N is carefully selected based on the autocorrelation function.

This was selected at 50 days, the maximum lag for which the autocorrelation was

significant across all variables; see Appendix D.1. Denote this bootstrapped sequence

on Uniform margins by UB
t . We transform UB

t back to the original scale using our fitted

model, preserving the original structure of Yt; we denote this series Y B
t . Then we fit

our model to Y B
t to re-estimate all of the parameters and thus the quantile of interest.

We repeat this procedure to obtain 200 bootstrap samples.

6.3.4 Results

For C1, we use our final model of Section 6.3.2 to estimate the 0.9999-quantile of

Y | X̃ = x̃i, i ∈ {1, . . . , 100}, for the set of 100 covariate combinations. The left

panel of Figure 6.3.2 shows the QQ-plot for our model. There is general alignment

between the model and empirical quantiles; however, there is some over-estimation in

the upper tail, and our 95% tolerance bounds do not contain some of the most extreme

response values. The right panel of Figure 6.3.2 shows our predicted quantiles, and

their associated confidence intervals, compared to their true quantiles. As expected,
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Figure 6.3.2: QQ plot for our final model (model 7 in Table 6.3.1) on standard ex-
ponential margins. The y = x line is given in red and the grey region represents the
95% tolerance bounds (left). Predicted 0.9999−quantiles against true quantiles for the
100 covariate combinations. The points are the median predicted quantile over 200
bootstrapped samples and the vertical error bars are the corresponding 50% confidence
intervals. The y = x line is also shown (right).

our predictions tend to over-estimate the true quantiles. We note this figure is different

from the one presented by Rohrbeck et al. (2023) due to an error in our code being

fixed after submission. In this scenario, our estimated confidence intervals lead to a

14% coverage of the true quantiles, which does not alter our ranking for this challenge.

Our performance and model improvements are discussed in Section 4.6.

For challenge C2, we estimate the quantile of interest as q̂ = 213.1 (209.3, 242.1).

A 95% confidence interval for the estimate is given in parentheses based on the boot-

strapping procedure outlined in Section 6.3.2. Due to a coding error, this value differs

from the original estimate submitted for the EVA (2023) Conference Data Challenge.

The updated value over-estimates compared to the truth (q = 196.6).



EXTREME VALUE METHODS IN UTOPIA 161

6.4 Challenge C3

6.4.1 Exploratory data analysis

For challenge C3, we are provided with 70 years of daily data of an environmental

variable for three towns on the island of Coputopia. These data are denoted by Yi,t,

i ∈ {1, 2, 3}, t ∈ {1, . . . , n}, where i is the index of each town and t is the point in

time. Each year consists of 12 months, each lasting 25 days, resulting in n = 21, 000

observations for each location.

We are also provided with daily covariate observations Xt = (St, At), where St

and At denote seasonal and atmospheric conditions, respectively. Season is a binary

variable, taking values in the set {1, 2}, with each year of observations exhibiting both

seasons for exactly 150 consecutive days. Atmospheric conditions are piecewise constant

over months, with large variation in the observed values between months. A descriptive

figure of both covariates is given in Appendix D.1.1.

In Rohrbeck et al. (2023), we are informed that Yi,t are distributed identically across

all sites and over time, with standard Gumbel margins. However, it is not known

whether the covariates Xt influence the dependence structure of Yt := (Y1,t, Y2,t, Y3,t).

We are also informed that, conditioned on covariates, the process is independent over

time, i.e., (Yt | Xt) ⊥⊥ (Yt′ | Xt′) for any t ̸= t′. In this section, we examine what

influence, if any, the covariate process Xt may have on the dependence structure of Yt.

We begin by transforming the time series Yi,t to standard exponential margins, de-

noted by Zi,t, via the probability integral transform. This transformation is common

in the study of multivariate extremes and can simplify the description of extremal

dependence (Keef et al., 2013b). To explore the extremal dependence in the Cop-

utopia time series, we consider all 2- and 3-dimensional subvectors of the process, i.e.,

{Zi,t, i ∈ I, t ∈ {1, . . . , n}}, I ∈ I := {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. This separation is

important to ensure the overall dependence structure is fully understood, since inter-
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mediate scenarios can exist where a random vector exhibits χ = 0, but χ > 0 for some

2-dimensional subvector(s) (Simpson et al., 2020).

Furthermore, to explore the impact of covariates on the dependence structure, we

partition the time series into subsets using the covariates. For the seasonal covariate,

let GS
I,j := {Zi,t, i ∈ I, St = j} for j = 1, 2, and for the atmospheric covariate, let

π : {1, . . . , n} → {1, . . . , n} denote the permutation associated with the order statistics

of At, defined so that ties in the data are accounted for. We then split the data

into 10 equally sized subsets corresponding to the atmospheric order statistics, i.e.,

GA
I,k :=

{
Zi,t, i ∈ I, t ∈ Σk

}
for k = 1, 2, . . . , 10, where Σk := {t | (k − 1)n/10 + 1 ≤

π(t) ≤ kn/10}. Thus, the atmospheric values associated with each subset GA
I,k will

increase over k.

The idea behind these subsets is to examine whether altering the values of either

covariate impacts the extremal dependence structure. Consequently, we set u = 0.9 and

estimate χ(u) using the techniques outlined in Section 6.2, with uncertainty quantified

through bootstrapping with 200 samples. The bootstrapped χ estimates for GA
I,k with

I = {1, 2, 3} are given in Figure 6.4.1. The plots for the remaining index sets in I, along

with the subsets associated with the seasonal covariate, are given in Appendix D.1.1.

The estimates of χ appear to vary, in the majority of cases, across both subset types

(seasonal and atmospheric), suggesting both covariates have an impact on the depen-

dence structure. For the atmospheric process in particular, the values of χ tend to

decrease for higher atmospheric values, suggesting a negative association between the

strength of positive extremal dependence and the atmospheric covariate. We also ob-

serve that across all subsets, χ appears consistently low in magnitude, suggesting the

extremes of some, if not all, of the sub-vectors are unlikely to occur simultaneously. As

such, for modelling the Coputopia time series, we require a framework that can capture

such forms of dependence. We also consider pointwise estimates of the function λ(·), as

defined later in equation (6.4.1), over GS
I,j and G

A
I,k for fixed simplex points; these results
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are given in Appendix D.1.1. Similar to χ, estimates of λ(·) vary significantly across

subsets, providing additional evidence of non-stationarity within extremal dependence

structure.
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Figure 6.4.1: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.

6.4.2 Joint tail probabilities under asymptotic independence

For challenge C3, we are required to estimate p1 := Pr (Y1 > y, Y2 > y, Y3 > y) and

p2 := Pr (Y1 > v, Y2 > v, Y3 < m), with y = 6, v = 7 and m = − log(log(2)). Note that

p1 and p2 are independent of the covariate process and correspond to different extremal

regions in R3; we refer to p1 and p2 as parts 1 and 2 of the challenge, respectively. For

the remainder of this section we will consider the transformed exponential variables

(Z1, Z2, Z3), omitting the subscript t for ease of notation. Observe that F(−Z3)(z) = ez,

for z < 0; setting Z̃3 := − log (1− exp(−Z3)) , we have

p2 = Pr (Z1 > ṽ, Z2 > ṽ, Z3 < m̃) = Pr
(
Z1 > ṽ, Z2 > ṽ, Z̃3 > m̃

)
,

where ṽ and m̃ denote the values v andm transformed to the standard exponential scale,

e.g., ṽ := − log (1− exp(− exp(−v))). Similarly, p1 = Pr (Z1 > ỹ, Z2 > ỹ, Z3 > ỹ).
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Consequently, both p1 and p2 can be considered as joint survivor probabilities.

Since not all extremes of Z1, Z2 and Z3 are observed simultaneously, we employ the

framework by Wadsworth and Tawn (2013), which is a generalisation of the approach

proposed in Ledford and Tawn (1996). The model of Wadsworth and Tawn (2013)

assumes that for any ray ω ∈ S2 := {(ω1, ω2, ω3) ∈ [0, 1]3 : ω1 + ω2 + ω3 = 1} , where

S2 denotes the standard 2-dimensional simplex,

Pr (Z1 > ω1r, Z2 > ω2r, Z3 > ω3r) =Pr (min{Z1/ω1, Z2/ω2, Z3/ω3} > r)

=L(er;ω)e−rλ(ω), (6.4.1)

as r → ∞, where λ(ω) ≥ max(ω) is known as the angular dependence function

(ADF). Asymptotic dependence occurs at the lower bound, i.e., λ(ω) = max(ω)

for all ω ∈ S2, and the coefficient of tail dependence is related to the ADF via

η = 1/{3λ(1/3, 1/3, 1/3)}. In practice, equation (6.4.1) can be used to evaluate ex-

treme joint survivor probabilities; in particular, probabilities p1 and p2 can be identified

with the rays ω(1) := (ỹ, ỹ, ỹ)/r(1) and ω(2) := (ṽ, ṽ, m̃)/r(2) in S2, respectively, where

r(1) := ỹ + ỹ + ỹ and r(2) := ṽ + ṽ + m̃. See Section 6.4.4 for further details.

6.4.3 Accounting for non-stationary dependence

In the stationary setting, pointwise estimates of λ(·) can be obtained via the Hill es-

timator (Hill, 1975), from which tail probabilities can be approximated. However,

alternative procedures are required for data exhibiting trends in dependence, such as

the Coputopia data set. Existing approaches for capturing non-stationary dependence

structures are sparse in the extremes literature, and most approaches are limited to

asymptotically dependent data structures. For the case when data are not asymp-

totically dependent, Mhalla et al. (2019) and Murphy-Barltrop and Wadsworth (2024)

propose non-stationary extensions of the Wadsworth and Tawn (2013) framework, while
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Jonathan et al. (2014) and Guerrero et al. (2023) propose non-stationary extensions of

the Heffernan and Tawn (2004) model (see Murphy-Barltrop and Wadsworth (2024) for

a detailed review).

To account for non-stationary dependence in C3, we propose an extension of the

Wadsworth and Tawn (2013) framework. With Zt = (Z1,t, Z2,t, Z3,t) and Xt, defined as

in Section 6.4.1, we define the structure variable Tω,t := min{Z1,t/ω1, Z2,t/ω2, Z3,t/ω3},

for any ω ∈ S2; we refer to Tω,t as the min-projection variable at time t. From

Section 6.4.1, we know that the joint distribution of Zt is not identically distributed

over t; which implies non-stationarity in the distribution of Tω,t. To account for this,

Mhalla et al. (2019) and Murphy-Barltrop and Wadsworth (2024) assume the following

model given the vector of covariates xt:

Pr (Tω,t > u | Xt = xt) = L (eu | ω,xt) e
−λ(ω;xt)u as u→ ∞, (6.4.2)

for all t, where λ (·;xt) denotes the non-stationary ADF. Note that this assumption is

very similar in form to equation (6.4.1), with the primary difference being the function

λ(·;xt) is non-stationary over t. From equation (6.4.2), we have

Pr (Tω,t − u > z | Tω,t > u,Xt = xt) = e−λ(ω;xt)z as u→ ∞, (6.4.3)

for z > 0. Consequently, equation (6.4.2) is equivalent to assuming (Tω,t − u) | {Tω,t >

u,Xt = xt} ∼ Exp(λ (ω;xt)) as u→ ∞.

We found that equation (6.4.2) was not flexible enough to capture the tail of Tω,t

for the Coputopia data; see Section 6.4.3 for further discussion. Thus, we propose the

following model: given any z > 0 and a fixed ω ∈ S2, we assume

Pr (Tω,t − u > z | Tω,t > u,Xt = xt) =

(
1 +

ξ (ω;xt) z

σ (ω;xt)

)−1/ξ(ω;xt)

as u→ ∞, (6.4.4)
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where σ(·;xt), ξ(·;xt) are non-stationary scale and shape parameter functions, respec-

tively. This is equivalent to assuming (Tω,t−u) | {Tω,t > u,Xt = xt} ∼ GPD(σ (ω;xt) ,

ξ (ω;xt)) as u→ ∞, and equation (6.4.3) is recovered by taking the limit as ξ (ω;xt) →

0 for all t.

Our proposed formulation in equation (6.4.4) allows for additional flexibility within

the modelling framework by including a GPD shape parameter ξ (ω;xt), which quan-

tifies the tail behaviour of Tω,t. Given the wide range of distributions in the domain of

attraction of a GPD (Pickands, 1975), it is reasonable to assume that the tail of Tω,t can

be approximated by equation (6.4.4). For the Coputopia time series, this assumption

appears valid, as demonstrated by the diagnostics in Section 6.4.3.

Model fitting

To apply equation (6.4.4), we first fix ω ∈ S2 and assume that the formulation holds

approximately for some sufficiently high threshold level from the distribution of Tω,t; we

denote the corresponding quantile level by τ ∈ (0, 1). For simplicity, the same quantile

level is considered across all t. Further, let vτ (ω,xt) denote the corresponding threshold

function, i.e., Pr(Tω,t ≤ vτ (ω,xt) | Xt = xt) = τ for all t. Under our assumption, we

have (Tω,t − vτ (ω,xt)) | {Tω,t > vτ (ω,xt),Xt = xt} ∼ GPD(σ (ω;xt) , ξ (ω;xt)). We

emphasise that vτ (ω,xt) is not constant in t, and we would generally expect vτ (ω,xt) ̸=

vτ (ω,xt′) for t ̸= t′.

As detailed in Section 6.4.2, both p1 and p2 can be associated with points on the sim-

plex S2, denoted by ω(1) and ω(2), respectively. Letting ω ∈ {ω(1),ω(2)}, our estimation

procedure consists of two stages: estimation of the threshold function vτ (ω, zt) for a

fixed τ ∈ (0, 1), followed by estimation of GPD parameter functions σ (ω;xt) , ξ (ω;xt).

For both steps, we take a similar approach to Section 6.3.2 and use GAMs to capture

these covariate relationships. To simplify our approach, we falsely assume that the

atmospheric covariate At is continuous over t; this step allows us to utilise GAM for-
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mulations containing smooth basis functions. Given the significant variability in At

between months, discrete formulations for this covariate would significantly increase

the number of model parameters and result in higher variability.

Let log(vτ (ω,xt)) = ψv(xt), log(σ (ω;xt)) = ψσ(xt) and ξ (ω;xt) = ψξ(xt) denote

the GAM formulations of each function, where ψ. denotes the basis representation of

equation (6.3.4). Exact forms of basis functions are specified in Section 6.4.3. As in

Section 6.3.2, model fitting is carried out using the evgam software package (Youngman,

2022). For the first stage, vτ (ω,xt) is estimated by exploiting a link between the loss

function typically used for quantile regression and the asymmetric Laplace distribution

(Yu and Moyeed, 2001). The spline coefficients associated with ψσ and ψξ are estimated

subsequently using the obtained threshold exceedances.

Selection of GAM formulations and diagnostics

Prior to estimation of the threshold and parameter functions, we specify a quantile

level τ and formulations for each of the GAMs. To begin, we fix τ = 0.9 and consider

formulations for each ψv, ψσ and ψξ. By comparing metrics for model selection, namely

AIC, BIC and CRPS, we found the following formulations to be sufficient

ψv(xt) = βu+sv(at)+βs1(st = 2), ψσ(xt) = βσ+sσ(at) and ψξ(xt) = βξ, (6.4.5)

for parts 1 and 2, where βu, βσ, βξ ∈ R denote constant intercept terms, 1 denotes

the indicator function with corresponding coefficient βs ∈ R, and su, sσ denote cubic

regression splines of dimension 10. The shape parameter is set to constant for the

reasons outlined in Section 6.3.2. Cubic basis functions are used for ψv and ψσ since they

have several desirable properties, including continuity and smoothness (Wood, 2017).

A dimension of size 10 appears more than sufficient to capture the trends relating to

the atmosphere variable. Alternative formulations were tested for both parts, but this

made little difference to the resulting model fits.
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We remark that the seasonal covariate is only present with the formulation for ψv.

Once accounted for in the non-stationary threshold, the seasonal covariate appeared to

have little influence on the fitted GPD parameters. More complex GAM formulations

were tested involving interaction terms between the seasonal and atmospheric covari-

ates, which showed little to no improvement in model fits. Thus, we prefer the simpler

formulations on the basis of parsimony.

We now consider the quantile level τ ∈ (0, 1). To assess sensitivity in our formula-

tion, we set T := {0.8, 0.81, . . . , 0.99} and fit the GAMs outlined in equation (6.4.5) for

each τ ∈ T. Letting δω,t and Tτ := {t ∈ {1, . . . , n} | δω,t > vτ (ω,xt)} denote the min-

projection observations and indices of threshold-exceeding observations, respectively,

we expect the set E := {− log{1−FGPD(δω,t−vτ (ω,xt)) | σ (ω;xt) , ξ (ω;xt)} | t ∈ Tτ}

to follow a standard exponential distribution.

With all exceedances transformed to a unified scale, we compare the empirical and

model exponential quantiles using QQ plots, through which we assess the relative per-

formance of each τ ∈ T. We selected τ values for which the empirical and theoretical

quantiles appeared most similar in magnitude. From this analysis, we set τ = 0.83

and τ = 0.85 for parts 1 and 2, respectively. The corresponding QQ plots are given in

Figure 6.4.2, where we observe reasonable agreement between the empirical and theo-

retical quantiles. However, whilst these values appeared acceptable within T, we stress

that adequate model fits were also obtained for other quantile levels, suggesting our

modelling procedure is not particularly sensitive to the exact choice of quantile. Fur-

thermore, we also tested a range of quantile levels below the 0.8-level, but were unable

to improve the quality of model fits.

Plots illustrating the estimated GPD scale parameter functions are given in Ap-

pendix D.1.1, with the resulting dependence trends in agreement with the observed

trends from Section 6.4.1. We also remark that the estimated GPD shape parameters

obtained for parts 1 and 2 were 0.042 (0.01, 0.075) and 0.094 (0.059, 0.128), respectively,
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Figure 6.4.2: Final QQ plots for parts 1 (left) and 2 (right) of C3, with the y = x line
given in red. In both cases, the grey regions represent the 95% bootstrapped tolerance
bounds.

where the brackets denote 95% credible intervals obtained using posterior sampling

(Wood, 2017). These estimates, which indicate slightly heavy-tailed behaviour within

the min-projection variable, provide insight into why the original exponential modelling

framework is not appropriate for C3.

Overall, these results suggest different extremal dependence trends exist for the two

simplex points ω(1) and ω(2), illustrating the importance of the flexibility in our model.

These findings are also in agreement with empirical trends observed in Section 6.4.1,

suggesting our modelling framework is successfully capturing the underlying extremal

dependence structures.
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6.4.4 Results

Given estimates of threshold and parameter functions, probability estimates can be

obtained via Monte Carlo techniques. Taking p1, for instance, we have

p1 =Pr(Z1 > ỹ, Z2 > ỹ, Z3 > ỹ)

=Pr
(
min

(
Z1/ω

(1)
1 , Z2/ω

(1)
2 , Z3/ω

(1)
3

)
> r(1)

)
=

∫
Xt

Pr
(
Tω(1), t > r(1) | Xt = xt

)
fXt(xt)dxt

=(1− τ)

∫
Xt

Pr(Tω(1), t > r(1) | Tω(1), t > vτ (ω
(1),xt),Xt = xt)fXt(xt)dxt

≈1− τ

n

n∑
t=1

(
1 +

ξ(ω(1);xt)
(
r(1) − vτ (ω

(1),xt)
)

σ (ω(1);xt)

)−1/ξ(ω(1);xt)

,

assuming {xt : t ∈ {1, . . . , n}} is a representative sample from Xt. The procedure

for p2 is analogous. We note that this estimation procedure is only valid when r(1) >

vτ (ω
(1),xt), or r

(2) > vτ (ω
(2),xt), for all t: however, for each τ ∈ T, this inequality

is always satisfied, owing to the very extreme nature of the probabilities in question.

Through this approximation, we obtain p̂1 = 1.480× 10−5 and p̂2 = 2.461× 10−5.

6.5 Challenge C4

6.5.1 Exploratory data analysis

Challenge C4 entails estimating survival probabilities across 50 locations on the island

of Utopula. As stated in Rohrbeck et al. (2023), the Utopula island is split in two ad-

ministrative areas, for which the respective regional governments 1 and 2 have collected

data concerning the variables Yi,t, i ∈ I = {1, . . . , 50}, t ∈ {1, . . . , 10, 000}. Index i de-

notes the ith location, with locations i ∈ {1, . . . , 25} and i ∈ {26, . . . , 50} belonging

to the administrative areas of governments 1 and 2, respectively. Index t denotes the
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timepoint in days; however, since Yi,t are IID for all i, we drop the subscript t for the

remainder of this section.

Since many multivariate extreme value models are only applicable in low-to-moderate

dimensions, we consider dimension reduction based on an exploration of the extremal

dependence structure of the data. In particular, we analyse pairwise estimates of the

extremal dependence coefficient χ(u), introduced in equation (6.2.2), for all possible

pairwise combinations of sites; the resulting estimates, using u = 0.95, are presented

in the heat map of Figure 6.5.1. Identification of any dependence clusters is achieved

through visual investigation, which seems appropriate for this data. We note, however,

that should visual considerations not suffice, alternative more sophisticated clustering

methods are available and can be applied; see for example Bernard et al. (2013).

Figure 6.5.1 suggests the existence of 5 distinct subgroups where all variables within

each subgroup have similar extremal dependence characteristics, while variables in dif-

ferent subgroups appear to be approximately independent of each other in the extremes.

It is worth mentioning that the same clusters are identified when we analyse pairwise es-

timates of the extremal dependence coefficient η(u); the resulting estimates can be found

in Appendix D.1.2. Moreover, examining the magnitudes of χ(·) and η(·) estimates, it

does not appear reasonable to assume asymptotic dependence between variables in the

same group. We therefore consider models that can be applied to data structures that

do not take their extreme values simultaneously. The indices of the five aforementioned

subgroups are G1 = {4, 14, 19, 28, 30, 38, 43, 44}, G2 = {3, 10, 15, 18, 22, 29, 45, 47},

G3 = {8, 21, 25, 26, 32, 33, 34, 40, 41, 42, 48, 49, 50}, G4 = {1, 2, 5, 7, 9, 17, 20, 31, 46} and

G5 = {6, 11, 12, 13, 16, 23, 24, 27, 35, 36, 37, 39}. Groups G1 and G2 include the most

strongly dependent variables (shown by the darkest color blocks in Figure 6.5.1), fol-

lowed by group G3, while groups G4 and G5 contain the most weakly dependent vari-

ables. We henceforth assume independence between these groups of variables, i.e.,

Pr((Yi)i∈Gk
∈ Ak, (Yi)i∈Gk′

∈ Ak′) = Pr((Yi)i∈Gk
∈ Ak) Pr((Yi)i∈Gk′

∈ Ak′), Ak ⊂
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Figure 6.5.1: Heat map of estimated empirical pairwise χ(u) extremal dependence
coefficients with u = 0.95.

R|Gk|, Ak′ ⊂ R|Gk′ |, for any k ̸= k′ ∈ {1, . . . , 5}.

Challenge C4 requires us to estimate the probabilities p1 = Pr (Yi > si; i ∈ I) and

p2 = Pr(Yi > s1; i ∈ I), where si := 1(i ∈ {1, 2, . . . , 25})s1 + 1(i ∈ {26, 27, . . . , 50})s2

and s1 (s2) denotes the marginal level exceeded once every year (month) on average.

Under the assumption of independence between groups, the challenge can be broken

down to 5 lower-dimensional challenges involving the estimation of joint tail probabil-

ities for each Gk, k ∈ {1, . . . , 5}. These can then be multiplied together to obtain the

required overall probabilities due to (assumed) between-group independence; specifi-

cally, we have p1 =
∏5

k=1 Pr (Yi > si; i ∈ Gk) and p2 =
∏5

k=1 Pr (Yi > s1; i ∈ Gk).

6.5.2 Conditional extremes

The conditional multivariate extreme value model (CMEVM) of Heffernan and Tawn

(2004) provides a flexible framework capable of capturing a range of extremal depen-

dence forms without making assumptions about the specific form of joint dependence

structure. Consider a d-dimensional random variable W = (W1, . . . ,Wd) on standard

Laplace margins. For i ∈ {1, . . . , d}, the CMEVM approach assumes the existence of
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parameter vectors α−|i ∈ [−1, 1]d−1 and β−|i ∈ (−∞, 1]d−1 such that

lim
ui→∞

Pr
{
W−i ≤ α−|iWi +W

β−|i
i z|i,Wi − ui > w | Wi > ui

}
= e−wH|i

(
z|i
)
, w > 0,

with non-degenerate distribution function H|i(·), vector operations being applied com-

ponentwise, and conditional threshold ui. The vector W−i denotes W excluding its

ith component and z|i is within the support of the residual random vector Z|i =

(W−i − α−|iwi)/w
β−|i
i ∼ H|i(·). We apply this model to data where Wi > ui, for

some finite conditioning threshold ui, to estimate the probabilities p1 and p2 defined in

Section 6.5.1, using the inference procedure of Keef et al. (2013b).

6.5.3 Results

Let W := (W1, . . . ,W50) denote the random vector after transformation to standard

Laplace margins. This vector is divided into the five subgroups identified in Sec-

tion 6.5.1, and the subgroup probabilities are estimated using predictions obtained

from the sampling method of Heffernan and Tawn (2004). We condition on the first

variable of each subgroup being extreme, and simulate 108 predictions from each of

the resulting fitted conditional extremes models. To account for uncertainty in the

estimates, we perform a parametric bootstrapping procedure with 100 samples.

Sensitivity analyses of the estimated probabilities to the choice of conditioning

variable suggest no significant effect. Furthermore, we consider a range of condition-

ing thresholds; the corresponding estimates of subgroup probabilities defined in Sec-

tion 6.5.1 appear relatively stable with respect to the conditioning threshold quantile.

We ultimately select 0.85-quantiles for the conditioning thresholds of our final proba-

bility estimates. These are given by p̂1 = 1.094 × 10−26 (2.150 × 10−36, 1.359 × 10−24)

and p̂2 = 1.076 × 10−31 (1.596 × 10−46, 1.850 × 10−29), with 95% confidence intervals

obtained from parametric bootstrapping given in parentheses.
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6.6 Discussion

We have proposed a range of statistical methods for estimating extreme quantities for

challenges C1-C4. For the univariate challenge C1, we estimated the 0.9999-quantile,

and the associated 50% confidence intervals, of Y | X = xi, i ∈ {1, . . . , n}. For

challenge C2, we estimated a quantile, corresponding to a once in 200 year level, of

the marginal distribution Y whilst incorporating the loss function in equation (6.3.2).

Overall we ranked 6th and and 4th for challenges C1 and C2, respectively.

For challenge C1, our final model (model 7 in Table 6.3.1) was chosen to minimise

the model selection criteria; however, QQ plots showed over-estimation of the most

extreme values of the response (see Figure 6.3.2). As a result, the conditional quantiles

calculated for C1 are generally over-estimated when compared with the true quantiles. If

we ignored the model selection criteria and chose the model based on a visual assessment

of QQ plots, we would have chosen model 5 in Table 6.3.1 and this would have covered

the true quantile on fewer occasions than our chosen model. Therefore, the main issue

with our results concerns the width of the confidence intervals.

Narrow confidence intervals are an indication of over-fitting and this could have

arisen in several places. For instance, Rohrbeck et al. (2023) suggested all the sea-

sonality is captured in the threshold, while our model includes a seasonal threshold

and a covariate for seasonality in the scale parameter of the GPD model. As well as

over-fitting, the model may not have been flexible enough; this could be, in part, due to

our model missing covariates. For instance, the true model contained V2 as a covariate

(Rohrbeck et al., 2023) whilst our model did not. In addition, the basis dimensions for

our splines are low. In practice, a higher dimension should be considered and, although

we chose the dimension using a model-based approach, it may have resulted in the

splines not being flexible enough to capture all of the trends in the data.

Narrow confidence intervals may have also resulted from the choice of uncertainty

quantification procedure. Changing the average block length l in our stationary boot-
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strap procedure would alter the confidence interval widths, although this was carefully

chosen to reflect the temporal dependence in the data. Alternative methods, such as

the standard bootstrap procedure or the delta method, could be implemented to inves-

tigate how this affects the confidence interval widths. We expect that such confidence

intervals will be wider than those presented here since the dependence in the data is

not accounted for, but assuming temporal independence would be inaccurate. There-

fore, whilst adopting an alternative procedure may widen confidence intervals, thus

improving our performance, such intervals may not be well calibrated for this data set.

The over-fitting and over-estimation issues encountered in C1 are carried through

to C2 since the same model is used for both challenges. However, one aspect specific

to C2 is the choice of quantile evaluation within the loss function. Many methods exist

for evaluating the non-stationary quantiles which feed into the loss function term of the

objective function S(θ) in equation (6.3.5). As the loss function will be dominated by

the log-likelihood in S(θ), we choose to transform to standard exponential margins when

evaluating the quantiles in order to give more importance to the loss function. Since the

data is light tailed (ξ < 0) this transformation elongates the tail and therefore inflates

any deviations between the model and theoretical quantiles which in turn, inflates the

contribution of the average loss function to S(θ). However, this approach means that

the objective function will have a preference to minimise the deviations in the upper-

tail of the distribution, leading to potential over-fitting to the upper-tail and possibly,

a poor fit in the rest of the tail. This may not necessarily be undesirable since the

loss function penalises under-estimation more than over-estimation, however, since the

model in C1 already over-fits, this method may only exacerbate the problem for C2.

For the first multivariate challenge C3, we employed an extension of the method

of Wadsworth and Tawn (2013) to estimate probabilities of three variables lying in

extremal sets. Our extension accounts for non-stationarity in the extremal dependence

structure, with GAMs used to represent covariate relationships. The QQ-plots for the
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resulting model suggested reasonable fits. For this challenge, we ranked 5th and our

estimates are on the same order of magnitude as the truth (Rohrbeck et al., 2023).

We note similarities in the methodologies presented for the challenges C1, C2, and

C3. Specifically, each of the proposed methods used the EVGAM framework for captur-

ing non-stationary tail behaviour via a GPD. We acknowledge that the model selection

tool proposed for C1 and C2 could also be applied for C3. However, we opted not to use

this tool for several reasons. Firstly, unlike the univariate setting, there is no guarantee

of convergence to a GPD in the limit, and the GPD tail assumption thereby needs to

be tested. Moreover, in exploratory analysis, we tested the model selection tool for

C3 but found the selected models and quantiles to not be satisfactory, particularly in

the upper tail of the min-projection variable. Therefore, we selected a model manually,

using QQ plots to evaluate performance, despite the potential for over-fitting. Explor-

ing threshold and model selection techniques for multivariate extremes represents an

important area of research.

In the final multivariate challenge C4, we estimated very high-dimensional joint

survival probabilities. To do so, we split the probability into 5 lower-dimensional com-

ponents which are assumed independent of each other, then estimated each using the

CMEVM of Heffernan and Tawn (2004). In the final rankings of Rohrbeck et al. (2023),

we ranked 3rd for this challenge. A more prudent method could have been implemented,

as groups of variables were never truly independent. Alternatively, although we achieve

relatively stable probability estimates with respect to threshold in Section 6.5.2 (see Ap-

pendix D.1.2), our approach may have been improved by estimating individual group

probabilities across varying thresholds and taking an average value as our final result.

We also do not report the effect of the choice of the conditioning variable on our es-

timates. Preliminary analysis suggested this to be negligible. However, conditioning

on each site in a given subgroup and then taking a weighted sum of the resulting

probabilities (e.g., Keef et al., 2013a) may have resulted in more robust estimates.



Chapter 7

Conclusions and further work

In this final chapter, we summarise the contributions that this thesis makes to the area of

extreme value theory and methods and to induced earthquake modelling. Section 7.1

provides summaries of the content and contributions of the individual chapters. In

Section 7.2, we outline potential developments and avenues of further work of the

proposed methods and analyses.

7.1 Summary of contributions

In Chapter 3, we proposed novel methods to improve two particular aspects for univari-

ate IID extreme value analysis: (i) the fundamental problem of selecting a threshold

for identifying values consistent with extreme value theory in the peaks-over-threshold

framework with a generalised Pareto distribution (GPD) used to model the threshold

excesses and; (ii) the propagation of the uncertainty in this threshold selection through

to subsequent tail inference. For the first aspect, we developed a simple but effective

approach, called the expected quantile discrepancy (EQD) method. The EQD is a ro-

bust measure of goodness of fit, which accounts for uncertainty by bootstrapping. We

automate the selection of the threshold by minimising the EQD metric across candidate

thresholds. This selected threshold minimies the approximate integrated absolute error

177
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(IAE) of the model quantiles and quantiles of the data generating process. Through an

extensive simulation study that compares the EQD and the leading existing approaches,

we demonstrated that the EQD performs better in terms of threshold selection and in

subsequent quantile estimation. The EQD also shows less sensitivity to changes in

the candidate threshold set and to values of its tuning parameters. Furthermore, the

EQD does not rely on asymptotic theory and so, is applicable for all data set sizes

with candidate threshold sets as fine as every observation if necessary. For the second

aspect, we proposed a double-bootstrap procedure to incorporate the uncertainty in

the selection of the threshold along with the GPD parameter uncertainty through to

tail inference. Our proposed method led to major improvements in the calibration of

confidence intervals for high quantile estimation, as shown by a coverage assessment

across a range of confidence levels.

In Chapter 4, we adapted the threshold selection procedure of Chapter 3 for IID

variables used in coastal flood risk assessments. Here, the focus was on capturing ac-

curately the GPD fit to the most extreme observations. We developed the extension of

the EQD method, known as the TAILS approach, which relies on the same principles

of the EQD with two key innovations; the quantile levels considered in the IAE ap-

proximation are fixed across candidate thresholds to avoid oversampling of the upper

tail for higher candidate thresholds, and these quantiles are set above a predefined level

to ensure accurate fitting to the observed upper tail. Using tide gauge records, we

demonstrated that the selected thresholds using this adaptation are generally higher

across the global tide gauge records and lead to improved fits for the most extreme

observations at selected sites explored in more detail. This improvement in upper tail

fit comes at the cost of additional uncertainty in the GPD parameter estimates.

Chapter 5 presented a further extension of the work in Chapter 3, moving away

from the IID context, to improve the modelling of induced seismicity (i.e., magnitudes

of earthquakes caused from human activity) in the Groningen gas field in the Nether-
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lands. Here, the observed data are not identically distributed due to spatio-temporal

changes in stresses over the gas field due to the extraction of gas and further spatio-

temporal variability in the measurement process. In this work, we adapted the work

of Chapter 5 in a number of ways. Firstly, we built upon the approach of Varty et al.

(2021) which considered the time variation in the development of the data measurement.

We additionally considered the combined spatial-temporal variability in the geophone

network characteristics (this information was not available to Varty et al. (2021)) and

proposed to use the geophone network more directly as a covariate. We developed a

specialised extension of the EQD here to select a physically-motivated spatio-temporal

threshold function for Groningen as an improved estimator for the magnitude of com-

pletion (i.e., the smallest magnitude which can be detected with certainty at a given

time and location). Secondly, we utilised a key physical covariate, the Kaiser stress,

in the modelling of the spatio-temporal rate of occurrence of earthquakes and for the

magnitude excess distribution. Thirdly, we developed adaptations of the uncertainty al-

gorithms, proposed in Chapter 3, to account for the uncertainty in the inference for the

spatio-temporal threshold function, the rate of occurrence of earthquakes model and

the non-identical GPD model. We incorporated these uncertainties in our endpoint

and quantile inference, providing estimates of key future hazard quantities. Novelly, we

also proposed an approach to incorporate the uncertainty in the functional form of the

threshold function with covariates in such future hazard assessments.

Our proposed approaches led to (i) a larger catalogue of exceedances of the estimated

magnitude of completion with which to fit the models, (ii) excellent fit diagnostics, (iii)

improved understanding of the form and sources of the spatio-temporal variability in

the magnitude of completion for Groningen, and (iv) useful future hazard assessments

with reduced uncertainty relative to existing methods. Our new estimator for the

magnitude of completion has a physical basis and captured the same changes in the

measurement process highlighted by the Varty et al. (2021)’s smooth parametric tem-
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poral function but also, it revealed times and spatial regions where the magnitude of

completion departs from this function due to the impact of the spatial variability in the

changing measurement process. This estimator allows the use of more exceedances to

fit the model and in comparison to the previous conservative approach leads to a more

concrete reasoning, from a statistical perspective, for a finite upper endpoint due to the

major reduction in the uncertainty of the GPD parameter estimates. The uncertainty

algorithms presented in this work allowed for future estimates of endpoint summaries

and typical hazard defence design quantities, with a more useful quantification of the

uncertainty of such quantities.

Chapter 6 detailed the contributions, as part of a wider team, to the EVA data chal-

lenge 2023. In this chapter, we proposed a range of statistical methods for estimating

extreme quantities. For the univariate challenges, C1 and C2, we proposed an extreme

value model with a covariate-dependent threshold, rate of exceedance and GPD scale

parameter. In this work, we adapted the EQD of Chapter 3 to allow for the selection of

a seasonal threshold, and corresponding exceedance rate parameter, and combined this

with generalised additive models (GAMs) for the GPD scale parameter incorporating

a variety of covariates. To do this, we combined the EQD threshold selection method

with the flexible estimation procedure of the evgam package (Youngman, 2022). For

challenge C1, we estimated an extremal quantile, and the associated 50% confidence in-

tervals. For challenge C2, we estimated the marginal 200-year return level and adjusted

the estimation procedure to include an asymmetric loss function. For the first multi-

variate challenge C3, we employed an extension of the method proposed by Wadsworth

and Tawn (2013) to estimate probabilities of three variables lying in extremal sets and

accounted for the non-stationarity in the extremal dependence structure with GAMs

used to represent covariate relationships. In challenge C4, we estimated joint survival

probabilities for 50-dimensional variables. We first identified a clustering structure

with independence between clusters, which led to splitting the 50-dimensional event
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probability into five lower-dimensional components and using the conditional extremes

approach of Heffernan and Tawn (2004) to estimate each of these probabilities.

7.2 Further work

Chapter 3 demonstrated the effectiveness of both our proposed methodologies; the

EQD method for automated threshold selection and the double-bootstrap procedure

for confidence interval construction in the univariate IID setting. The flexibility of

EQD method to adaptation for different settings has been shown in the subsequent

chapters of this thesis where a selection of the potential avenues of extension within

the area of extreme value modelling have been explored. We also believe there to be

wider applicability of the proposed methods beyond the specific extensions of the EQD

explored in this thesis.

In Chapter 4, we introduced an extension of the EQD which focusses on the GPD

fit to the most extreme observations. We addressed concerns of practitioners for the

specific context of coastal flood risk assessment. Within this work, we provided an un-

certainty assessment of return levels for particular sites calculated using three proposed

thresholds, selected by (i) the EQD method, (ii) the TAILS extension of the EQD

method and (iii) the arbitrarily-chosen 98% quantile, typically used in coastal flood

risk contexts. Within this comparison, we ignored the important aspect of threshold

uncertainty which had been highlighted in Chapter 3, to allow fair comparison with

this static 98% quantile threshold.

The missing component of threshold uncertainty is a key avenue of further research.

Utilising the TAILS approach led to a more accurate fit to the most extreme ob-

servations but led to larger GPD parameter uncertainty. The inclusion of threshold

uncertainty with this extension could lead to an assessment of coastal flood hazard

which combines the positives of the TAILS method and the uncertainty quantification
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of Chapter 3. The higher threshold choices and accurate fitting to the most extreme

observations would alleviate any concerns of practitioners while the well-calibrated un-

certainty assessment would aid decision-making for future coastal flood defences. From

a methodological point of view, it would also be interesting to compare the levels of

threshold uncertainty when using the EQD versus the TAILS approach. The gener-

ally higher thresholds selected by the TAILS approach lead to an increase in the GPD

parameter uncertainty but the focus on the smaller region of observations may lead

to more certain threshold choice and it would be interesting to see how the resulting

confidence intervals compare when both aspects of uncertainty are taken into account.

Similar to the EQD approach, in Chapter 4, we make the assumption that data are

identically distributed. Environmental processes such as sea levels are unlikely to be

identically-distributed particularly, given the effects of the changing climate. Further-

more, such datasets can exhibit short-range temporal dependence both in the stochastic

component and due to the effect of known tidal component. The tidal component could

be accounted for via a tidal covariate while the dependence in the stochastic compo-

nent of sea levels (i.e., the surge) could be modelled by estimating the subasymptotic

extremal index (D’Arcy et al., 2023). Similar approaches to the extensions of the

EQD in Chapters 5 & 6 for more complex, non-IID settings, could be applied to the

TAILS method. This may involve utilising physically-motivated parameterisations of

thresholds and GPD parameters, as performed in Chapter 5, or making use of the

well-established methods for incorporating covariate dependence into the threshold and

parameters of a GPD through smooth GAM formulations (Chavez-Demoulin and Davi-

son, 2005; Youngman, 2019). Such extensions of the TAILS approach could prove useful

in coastal flood risk assessments and in the wider modelling of environmental processes.

For the coastal flood context, one could extend the TAILS method to incorporate

inter-annual non-stationarity by utilising relevant covariates that impact the number

of extreme events that occur within a given year e.g., indices related to the El Niño-
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Southern Oscillation or North Atlantic oscillation phenomena, which describe fluctua-

tions in weather patterns in their respective regions. Similarly to the extensions of the

EQD and the work of Varty et al. (2021), minor modification of the TAILS approach

to assess quantile discrepancies on a common transformed scale, e.g., exponential mar-

gins, would enable its use in these more complex settings. However, when fitting a

non-stationary GPD model, without the clear physical motivation of the covariates as

in Chapter 5, there are not well-established methods for selecting which covariates to

include with different thresholds. Furthermore, if using smooth GAM formulations,

there is the additional challenge of selecting the level of flexibility within the smooth

functions that is most appropriate. Therefore, the development of selection techniques

for model and threshold formulation with covariates for non-stationary data structures

is an important line of future research.

In Chapter 5, we utilised the EQD approach to select the most appropriate threshold

function formulation using a selection of physically-motivated formulations with covari-

ates. While the need for mitigation of the induced seismic hazard of the Groningen

gas field provided a strong motivation for the methods used in Chapter 5, we expect

that the methodology will be useful for other gas extraction or injection contexts. In

particular, we see the insights of the magnitude of completion formulation, the stress-

dependent magnitude distribution and the quantification of the uncertainties in these

aspects to likely be especially useful in the model development and hazard assessment

for underground carbon dioxide storage sites (Bauer et al., 2019), an important and

growing area of greenhouse emissions mitigation. At such underground storage sites,

similar characteristics of induced seismicity have been identified. However, gas injec-

tion sites come with their own modelling challenges due to differences in the number of

geophones and structure of the networks. Thus, making use of the insights we gleamed

here from the modelling of gas extraction sites is of paramount importance.

Within the specifics of our proposed methodology for induced earthquake mod-
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elling, there are key avenues of future development for the framework. In the selection

of our geophone-based threshold formulation, we considered three transformations (lin-

ear, square-root and logarithm) of four distance covariates in a simple linear relationship

with the threshold. The methodology could be extended to use a Box-Cox transfor-

mation of the covariate (which incorporates all these three forms as special cases) and

estimate the relevant additional Box-Cox parameter as part of the threshold function se-

lection. Secondly, to aid hazard assessments, we estimated quantities of interest relating

to the future behaviour of earthquake magnitudes in this region under an assumption

of no further extraction. Geo-physicists typically take the inference a step further by

using the future magnitude estimates to develop ground motion assessments across the

entire region in a full probabilistic seismic hazard analysis (Baker et al., 2021). This

involves geo-physical spreading models which incorporate information on the nature of

ruptures and the latent fault structure between the earthquake locations and the rest of

the field. The ground motion field for an earthquake is then modelled as a realisation

of a spatial log-Gaussian process, with mean and covariance functions given by the

spreading model (Bommer and Stafford, 2016; Bommer et al., 2017). However, we did

not take this additional step in the absence of an appropriate spatial ground motion

model. This type of assessment is what’s used to estimate the hazard to infrastructure

and public safety and thus, using our improved models for earthquake magnitudes in

such an assessment is a vital future avenue.

In our direct use of the geophone network, we uncovered characteristics of the spatial

variability of the detection ability through time. An avenue which could potentially

uncover even more subtle characteristics of the relationship between the magnitude of

completion and the geophone network would be to incorporate information about the

sensitivity or detection ability of individual geophones of different types in the region.

We provided endpoint summaries as part of our future inference. These summaries,

and tail inferences near the endpoints, could possibly be improved by incorporating
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expert knowledge for the physical upper bounds of possible magnitudes, similar to the

approach of Yue et al. (2025b). Lastly, in our model for the baseline rate of occurrence of

earthquakes above a magnitude of 0 ML, we did not account for the dependence between

main-shock and after-shock earthquake occurrences. Utilising approaches which address

this, such as the epidemic-type aftershock sequence models (Ogata, 1988), could provide

a better description of the clustering of earthquake occurrences. Combining a model

for this clustering of earthquakes with our methodology for modelling the excesses of

a spatio-temporal threshold could lead to a further improvement in the accuracy of

hazard assessments for potential future occurrences of large magnitude events.

Beyond the gas extraction/injection contexts, we also believe our methods which

account for non-identically distributed data have the potential to be useful in extreme

value contexts where data are missing not-at-random due to measurement equipment

quality. Furthermore, the methodology developed in Chapter 5 is generic in its struc-

ture, although our presentation is specific to induced seismicity modelling in terms of

the choice of covariates and model formulation. With adjustment to the EQD and the

parameterisations of the GPD model, this methodology of combined threshold function

and model selection inferences could be widely applicable to any extreme value context.

We see particular utility in applying these techniques when there is known seasonal or

directional behaviour in environmental applications, and/or long-term trends (Jonathan

and Ewans, 2007a; D’Arcy et al., 2023).

In environmental contexts, where we may have a set of potentially important co-

variates, the usual approach would be to use a method to select a threshold, whether it

be constant or a function of covariates, by assessing the fit of a particular formulation

of the GPD. For a simple example, suppose we want to estimate threshold u(t) (which

could be constant such that u(t) = u for all days t) and we have identified within-year

seasonality in the data Yt on day t through exploratory analysis which may be modelled

well by a sinusoidal function. Thus, we have three possible models we might want to
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consider:

1. (Yt − u)|(Yt > u) ∼ GPD(σu, ξ),

2. (Yt − u)|(Yt > u) ∼ GPD(σu(t), ξ) with σu(t) = a+ b sin(2πt/365),

3. (Yt − u(t))|(Yt > u(t)) ∼ GPD(σu, ξ) with u(t) = α + β sin(2πt/365).

with (a, α) ∈ R2 and (b, β) ∈ R2
+ and ξ ∈ R.

First, suppose we were only interested in selecting between models 1 and 2. Typ-

ically, the threshold u would be estimated using standard approaches assuming a

model 1, which we denote by û1. Then, following the selection of û1, comparisons

of the two models would be made either using information criteria, or measures of

goodness-of-fit, or by simply checking whether parameter b was statistically significant.

The reason for this being a typical approach is the fact that information criterions

require models to be compared on the same data. However, this poses a problem;

û1 was selected assuming model 1 and so is only the appropriate threshold choice for

model 1. Using model 2 fitted above û1 is suboptimal for that model form as a different

constant threshold value is likely more appropriate. However, estimating a threshold

for model 2, say û2, results in two nested sets of exceedances and violates the use of

standard information criteria for deciding between these models.

Now suppose, following our initial comparison and exploratory analysis, we conclude

that this sinusoidal behaviour is significant and must be included in the model in some

way. We now must decide where to incorporate this variation, in the threshold or scale

parameter, i.e., we want to select between models 2 and 3. Both models require the

estimation of thresholds separately due to the differing parameterisations. Following

this step, we now cannot select between these models via information criterions due to

the differing exceedances involved in their estimation. One may consider simply making

a visual assessment of the fit of each through standard QQ-plot approaches, however

this incorporates a degree of subjectivity, especially if the differences are subtle. Based
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on our novel developments in Chapter 5 in assessing non-nested covariate models, we

propose that all three models above could be compared using the EQD. We have shown

the adaptability of the EQD approach to different model formulations in the extensions

developed in this thesis. For other model selection scenarios, such as the example above,

the EQD could be easily adapted to the different covariate formulations and used to

select optimal thresholds for all candidate models. Once the EQD metric is calculated

on the same scale, using a transformation to standard margins, the minimised EQD

values can be compared as a method of model selection. For the example above, this

would mean additionally estimating û3(t) for model 3. Each threshold estimate would

have a corresponding EQD value, d̂1, d̂2, d̂3 approximating the integrated absolute

error between the model and data in each case. We can then compare d̂1, d̂2, and d̂3

and choose the minimum, leading us to the optimal combined model formulation and

threshold choice. We see this avenue of model selection as a key aspect of the EQD

method’s wider use.

Another avenue which has not been explored as part of this thesis is the use of the

EQD as a method for threshold estimation in multivariate extreme value contexts. The

method could be applicable, with suitable adjustment, to cases relying on multivariate

regular variation assumptions such as Wan and Davis (2019) or for variables exhibiting

asymptotic independence (Heffernan and Tawn, 2004). As discussed in Chapters 3 & 5,

a key aspect of proposed methods is accounting for the uncertainty in the threshold

estimation, so applying these approaches in a multivariate context could allow improved

calibration of uncertainty in joint tail inference. This idea also naturally extends to

spatial extreme value modelling.

Finally, the methods we have developed in Chapters 3 and 5 for quantifying the

different aspects of uncertainty in the threshold selection, model formulation and es-

timation of GPD parameters in the subsequent tail inference has potential for wider

utility in core extreme value methodology and in a variety of applications where im-
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proved uncertainty assessments are needed. The algorithms developed are intuitively

simple and easy to implement, although can be computationally intensive. A potential

further avenue to explore is to optimise the efficiency of the coding of these algorithms

to allow for a wider applicability. Here, we used Bnonpar = Bpar = 200, but using the

same number of 40000 boostrap samples with Bnonpar ̸= Bpar may be more effective.

This thesis has made contributions to the core methodology of extreme value anal-

ysis and in particular, the fundamental problem of threshold selection. Our proposed

methodology is highly adaptable and we see the potential for its use in a wide variety

of extreme value contexts. Within this thesis, we have provided new insights for the

specific context of Groningen induced seismicity and developed improved physically-

motivated methodology for tackling the challenges of modelling induced earthquakes.

This methodology also contributes to the wider area of extreme value modelling of non-

identically distributed environmental processes. As evidenced by the multiple avenues

of further work proposed in this chapter, many new questions, challenges and further

extensions within the modelling of induced earthquakes and the wider modelling of

environmental extremes have been identified.



Appendix A

Supplementary materials to

Chapter 3

A.1 Introduction

This document provides further information to accompany Chapter 3. Section A.2

presents further details of the distributions in Cases 1-4 of Section 3.6, including quan-

tile derivations. Section A.3 covers the reasoning for the omission of the Varty et al.

(2021) approach from the simulation study in Section 3.6, justifies the choice of the

default tuning parameters for the EQD method and discusses the choice of calibration

data within the definition of db(u) in Section 3.4 of the main text. Section A.4 presents

additional simulation experiments, a detailed breakdown of the results outlined in Sec-

tion 3.6, and an exploration into the effect of taking different candidate threshold grids.

Finally, Section A.5 provides a more extensive analysis of the coverage of true quantiles

achieved by both Algorithm 1 and 2, as outlined in Section 3.5.

189
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A.2 The distributions of Cases 1-4

This section provides full details of the true quantile and density functions used for the

simulation study for Cases 1-4 in Section 3.6.

A.2.1 Quantile calculations

Case 1-3: We simulate X from a mixture of a Uniform(0.5, 1.0) distribution and a

GPD(σu, ξ) distribution above the threshold u = 1.0. Consequently, X has distribution

function:

FX(x) =


x−0.5

3
, 0.5 ≤ x ≤ 1

1
6
+ 5

6
[H(x− 1;σu, ξ)] , x > 1.

(A.2.1)

where H(x − 1;σu, ξ) is the distribution function of a GPD with parameters (σu, ξ).

Therefore, the true quantile xp with exceedance probability p (for p < 5/6) is

xp = 1 +
σu
ξ

[(
6p

5

)−ξ

− 1

]
.

This formulation is identical across Cases 1-3, but the model parameters and simulation

sample sizes differ over these cases, with these values being given in Table 3.6.1 of

Section 3.6.

Case 4: Here X has distribution function, for x > 0, of

FX(x) =

∫ x

0

h(s;σ, ξ)P(B < s)

q + H̄(1;σ, ξ)
ds

where H̄(x;σ, ξ) and h(x;σ, ξ) are the survivor and density functions of a GPD with pa-

rameters (σ, ξ) and a threshold 0, q =
∫ 1

0
h(s; 0.5, 0.1)P(B < s)ds with B ∼ Beta(α, β),

so 0 ≤ B ≤ 1. This unusual distribution function transitions from a non-GPD dis-

tribution to an exact GPD for excesses of 1 (the upper bound of B), so that the true

threshold for X is u = 1 and the excess distribution, for x > 1, has survivor function
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H̄(x−1;σ1 = σ+ξ, ξ) following from the threshold stability property (see Section 2.3.1).

Here τ := P(X ≤ 1) = q/(q+ H̄(1;σ, ξ)) so the true quantile xp for X with exceedance

probability p, where p ≤ 1− τ , is:

xp = 1 +
σ1
ξ

[(
p

1− τ

)−ξ

− 1

]
.

Although FX appears complex, it is straightforward to simulate samples from X.

Specifically, X is generated using a rejection method by first simulating a proposal

variable Y ∼ GPD(σ, ξ) above the threshold of 0. The rejection step involves rejecting

Y as a candidate for X only if Y < B, where B is a random variate generated from

a Beta(α, β) distribution. Since B ≤ 1, for Y > 1 it follows that X = Y , but only a

proportion of the values of Y < 1 are retained inX, with the rate of retention dependent

on the parameters of the Beta(α, β) distribution.

In our simulations, we selected (σ, ξ) = (0.5, 0.1) and (α, β) = (1, 2), with the latter

chosen such that the density of X has a mode below 1. For these parameters we obtain

τ̂ = 0.721, to 3 decimal places, where we evaluated τ using Monte Carlo integration

methods. To ensure that we have the same numbers of exceedances of the true threshold

across samples, we simulate until we have a sample proportion of threshold exceedances

matching the true value of 1− τ and an overall sample size of 1000.

A.2.2 Density and quantile functions

The density functions of the random variable X are given in Figure A.2.1, for Cases

1-4. All four density plots show that there is a large probability of exceeding the true

threshold (i.e., X > 1) so a large proportion of each sample is from a GPD tail. This

is unusual in practice (where often thresholds correspond to 90-99% sample quantiles)

and so threshold selection should be easier in these examples than typically. This is

especially true for Cases 1-3 with the density having a large step change at the threshold
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and the density having a completely different shape below the threshold. In contrast,

Case 4 has a much more subtle transition for the density across the threshold. The

density is continuous and first-differentiable at the threshold, but with a clearly non-

GPD distribution below the threshold, shown by the density’s mode lying away from its

lower endpoint. Thus, we see this case as much more challenging for threshold selection.

To further emphasise the differences between Cases 1-4, Figure A.2.2 shows return

level plots for the simulated distributions of Cases 1-4 for a range of return periods (per

observation). In particular, this plot emphasises the key difference between Case 3 and

the other cases; Case 3 has a finite upper-endpoint due to ξ < 0 whereas the other cases

have unbounded distributions. This difference is not apparent from the density plots

in Figure A.2.1.

The idea behind our choice of distributions is that if methods struggle in cases where

we have a clear true threshold then there will be significant problems when it comes

to real datasets. So, collectively the four cases provide a natural testing ground for

separating between threshold methods.

A.3 Supporting details for Section 3.4

A.3.1 Overview

In this section, we provide evidence, based on a range of simulation studies, to support

several decisions we made in Section 3.4. Specifically, in Section A.3.2, we provide

evidence to demonstrate the advantages of using the EQD over the Varty et al. (2021)

method; Section A.3.3 outlines results indicating that our suggested default choices for

the tuning parameters (B,m) of the EQD method are widely suitable, and that there

is very little sensitivity to these choices; in Section A.3.4, we show that the choice of

bootstrap data as the calibration data in the metric db(u) works comparably relative

to using the observed data; and in Section A.3.5, we demonstrate the benefits of the
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Figure A.2.1: True densities of simulated datasets from Cases 1-4 with numbering
corresponding to left-right and then top to bottom.

bootstrapping component of the EQD method.

A.3.2 Comparison of EQD and Varty et al. (2021) methods

This section provides the full evidence basis for the decision, outlined in Section 3.4.1,

to prefer the EQD method and omit the results of the Varty et al. (2021) method from

the main text. Here, we compare both methods using the data simulated from Cases

1-4, as described in detail in Section A.2, and outlined overview in Section 3.6. As seen

from Section 3.4.1, the EQD and the Varty et al. (2021) methods differ simply in the

scale on which the metric of goodness-of-fit is compared, with the former evaluated on

the observed data scale and the latter making the same comparison after transformation

onto Exponential(1) margins.

We assess the performance of the two methods based on both the selection of
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Figure A.2.2: True return values of simulated datasets from Cases 1-4.

thresholds (as the truth is known in each case) and on the subsequent estimation of

quantiles for a range of exceedance probabilities, namely the (1− pj,n)-quantiles where

pj,n = 1/(10jn) for j = 0, 1, 2 with n denoting the length of the simulated dataset.

For each case and each of the measures of fit, all comparisons between the methods

are based on estimates obtained using the same set of 500 replicated samples, so any

difference in the methods found is simply due to the two method’s performance.

Table A.3.1 shows the RMSE, bias and variance of the thresholds chosen by the

two methods. Based solely on threshold choice, it is difficult to distinguish between the

approaches with each method narrowly outperforming the other in two of the four cases

based on each of RMSE and bias. Cases 1-3 exhibit positive bias for both methods, as

they are much less likely to pick a threshold too low in these cases given the sudden

change in the density shown in Figure A.2.1. In contrast, for Case 4, both methods incur

a negative bias, essentially due to the smooth transition from GPD in the density shown

in Figure A.2.1. Additionally, in every case, there is no method that gives threshold
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estimates of lower variance than the EQD method.

The primary goal of an extreme value analysis is usually quantile inference, rather

than threshold selection. Tables A.3.2 and A.3.3 compare the EQD and Varty et al.

(2021) methods in terms of quantile inference. These tables show, for the three target

quantiles, the RMSE, bias and variance of quantile estimates that are based on MLE

fits of a GPD above the thresholds selected using each method. The differences between

the two methods are evident. The EQD either matches or achieves the lower RMSE

in all cases and all quantiles and the differential in performance becomes more evident

for long-range extrapolation, i.e., as j increases, see Table A.3.2. This difference in

RMSE seems to stem mainly from the smaller variance of the EQD estimates, see

Table A.3.3 [right]. As with the results for threshold selection, the bias results for

quantile estimation in Table A.3.3 [left] show the two methods perform similarly (with

each method slightly better on a number of occasions across the cases and the three

quantile levels of interest).

Given that the goal of a threshold selection method is to improve high quantile in-

ference, we conclude from this study that, while results are similar, the EQD appears to

perform better for quantile estimation. Furthermore, the Varty et al. (2021) method re-

quires an additional, and non-intuitive (for IID data), transformation to Exponential(1)

margins. Thus, we choose to omit the Varty et al. (2021) approach from subsequent

studies in the supplementary material and from the simulation study discussed in Sec-

tion 3.6 of the main text.

EQD Varty method
Case RMSE Bias Variance RMSE Bias Variance
Case 1 0.048 0.034 0.001 0.059 0.041 0.002
Case 2 0.060 0.031 0.003 0.073 0.039 0.004
Case 3 0.060 0.042 0.002 0.055 0.039 0.002
Case 4 0.526 −0.515 0.012 0.508 −0.492 0.016

Table A.3.1: Measures of performance (RMSE, bias and variance) for threshold choices
for the EQD and Varty et al. (2021) methods, for Cases 1-4. The smallest magnitude
for each measure of performance are highlighted in bold for each case.
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EQD Varty EQD Varty
j Case 1 Case 2
0 0.563 0.605 0.599 0.611
1 1.258 1.335 1.488 1.542
2 2.447 2.612 3.119 3.305

Case 3 Case 4
0 0.190 0.190 0.677 0.705
1 0.323 0.324 1.563 1.673
2 0.483 0.483 3.043 3.378

Table A.3.2: RMSE of the estimated (1 − pj,n)-quantiles in Cases 1-4 based on fitted
GPD above chosen threshold for the EQD and Varty et al. (2021) methods. The smallest
value for each quantile are highlighted in bold.

EQD Varty EQD Varty
j Case 1 Case 2
0 −0.021 −0.005 −0.049 −0.018
1 −0.015 0.030 −0.046 0.055
2 0.044 0.145 0.069 0.312

Case 3 Case 4
0 −0.008 −0.007 −0.283 −0.233
1 −0.007 −0.005 −0.722 −0.571
2 −0.002 0.002 −1.410 −1.064

EQD Varty EQD Varty
j Case 1 Case 2
0 0.316 0.335 0.357 0.373
1 1.582 1.716 2.211 2.376
2 5.988 6.638 9.723 10.824

Case 3 Case 4
0 0.036 0.036 0.379 0.444
1 0.105 0.105 1.926 2.479
2 0.233 0.233 7.287 10.299

Table A.3.3: Bias [left] and variance [right] of the estimated (1−pj,n)-quantiles in Cases
1-4 based on fitted GPD above chosen threshold for the EQD and Varty et al. (2021)
methods. The smallest variance and absolute bias for each quantile are highlighted in
bold.
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A.3.3 Selection of default tuning parameters

This section provides the sources of evidence presented in Sections 3.4.2 and 3.4.3 in

terms of the effect ofm on the interpolation of quantiles in the metric and the suitability

of our default values of the tuning parameters (B,m).

First, consider an analysis of the sensitivity of the EQD method to different choices

of its two tuning parameters (B,m), where B denotes the number of the bootstraps

for which db(u) is evaluated in order to calculate the overall metric dE(u), and m is the

number of quantiles used in the evaluation of the metric db(u) for each bootstrap. In

the main text, the values of (B,m) = (100, 500) are proposed as the default values for

the simulation studies of the performance of the EQD method. These values are used

for the tuning parameters in all simulation studies of the EQD method in the main text

and the supplementary material.

We focus our sensitivity analysis on the 500 replicated samples of Case 1 where

n = 1000, detailed in Section 3.6. Tables A.3.4 & A.3.5 provide the RMSEs of the

threshold estimates along with the computation time relative to that of the default

value when using the EQD with different values of B and m respectively.

For the choice of B, the number of the bootstraps for which db(u) is evaluated when

calculating dE(u), Table A.3.4 shows that the computation time of the EQD method

increases linearly with B. As B is simply the number of bootstrap samples in an

average, then in principle we want to take B as large as possible to remove Monte Carlo

noise in the average approximation of the associated expectation. Thus, in selecting

B, we require it to be sufficiently large so that any residual Monte Carlo noise is not

important (for threshold selection to be stable) whilst recognising the linear increase

in computation time from this choice. Thus, for one-off analyses, as computation time

is not of particular concern, it is ideal to take B as large as possible. However, for

simulation studies, a more careful choice of B is required as accuracy needs to be

balanced with computation time. Table A.3.4 provides evidence on how the Monte
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Carlo noise is diminishing as B increases, and shows the RMSE value stabilising as B

increases. The decreases in RMSE are only very slight, especially when compared to

the differences we see between the EQD and other existing approaches in Section 3.6.

B 200 400 1000 100 (default)
RMSE 0.043 0.039 0.040 0.048

Relative time 2 4 10 1

Table A.3.4: RMSEs for threshold estimates and for the relative computation time
compared to the default choice of B = 100 obtained using the EQD method for different
values of B for Case 1. Each result uses m = 500 and 500 replicated samples.

For the choice ofm, the number of quantiles used in the evaluation of the metric db(u)

for each bootstrap, Table A.3.5 shows results for two different strategies for selecting

m: the first allowing m to be proportional to the data sample size n irrespective of

threshold value, i.e. m = cn for c = 0.5, 1, 2, 10, and the second allowing m to vary

according to the number, nu, of exceedances of each candidate threshold u, i.e. m = cnu

for c = 0.5, 1, 2, 10. Our reason for exploring the second strategy is to ensure that

across candidate thresholds we are using the same level of interpolation/extrapolation

to non-sample quantiles. For each strategy, we examine the effect of different degrees of

proportionality c. The RMSE of the threshold estimates obtained show little sensitivity

to the value of m across the two strategies and all levels of proportionality.

m = cn m = cnu m = 500
c 0.5 1 2 10 0.5 1 2 10 (default)

RMSE 0.045 0.046 0.045 0.046 0.049 0.048 0.047 0.047 0.048
Relative time 1.1 1.4 2.0 7.2 0.9 1.1 1.4 4.6 1

Table A.3.5: RMSEs for threshold estimates and for the relative computation time
compared to the default of m = 500 of the EQD method for different values of m for
Case 1. Each result uses B = 100 and 500 replicated samples.

Table A.3.5 also shows that increasing m in either strategy is essentially wasting

the increased computation time. When estimating db(u) for a particular bootstrap,

we are aiming to approximate the integrated absolute error (IAE) between the model

quantiles and sample quantiles for that sample. This db(u) then feeds into the overall
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dE(u) for the excesses of candidate threshold u which approximates the IAE between

model quantiles and the data generating process. This sensitivity analysis shows that

once we choose a suitably large value for m, any changes in this approximation error

are quite small in comparison to the db(u) value itself.

Now consider the effect of m on the interpolation of quantiles in the metric. While

we have shown that changing m does not meaningfully affect the RMSE of threshold

choice over repeated samples, it is still important to investigate the effect of this choice

for the values of db(u) and dE(u) for a range of candidate thresholds and the effect, if

any, on the resulting threshold choice for a particular dataset. In particular, we are

interested in the effect of the choice of interpolation grid between m = 500 and m = nu.

For a particular bootstrap sample, the choice of m = 500 can lead to under- or over-

sampling of the upper tail when approximating the IAE of the QQ-plot, depending on

if m < nu or m > nu. While this may not be ideal, it is only important if it has a

significant effect on the overall metric value in a way that unfairly or adversely affects

the resulting choice of thresholds.

To explore the effect of the interpolation grid on the sampling distribution of metric

values for thresholds (i.e., db(u) values), dE(u) and on the resulting threshold choice, we

have considered the following additional investigations. Let d500b (u) and dnu
b (u) denote

the value of the metric for the bth bootstrap sample above threshold u using m = 500

and m = nu respectively. For the first simulated sample of Case 1 and the Gaussian

case, we look at:

1. The distribution of d500b (u) and dnu
b (u) for each u over the candidate grid of thresh-

olds.

2. The distribution of the relative difference between d500b (u) and dnu
b (u) to the overall

metric dE(u) over the candidate grid.

The reasons that we selected these two features to investigate are that the former looks

at the effect of the interpolation on the sampling distribution of the metric while the
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latter assesses if the interpolation method could significantly change the overall metric

value for any particular thresholds on a particular dataset.

For the first simulated data sample of Case 1, we explore the distribution of d500b (u)

and dnu
b (u) in Figure A.3.1. Specifically, this figure shows boxplots of the distribution

of d500b (u) and dnu
b (u) values for each value of u. The mean of these values, i.e., dE(u),

is also plotted as a black point in each boxplot. For particular thresholds, comparison

of the sampling distributions of d500b (u) and dnu
b (u) values shows only very minor differ-

ences. While there are some larger differences between the plots, particularly at higher

thresholds, the black points in each plot indicate that these differences in db(u) do not

lead to large differences in the overall metric value dE(u).
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Figure A.3.1: Boxplots of d500b (u) [left] and dnu
b (u) [right] for each u over the candidate

grid of thresholds for the first sample of Case 1. The mean for each threshold is shown
as a black point.

To demonstrate our findings from Figure A.3.1 more concretely, Figure A.3.2 shows

the sampling distribution of the difference d500b (u)− dnu
b (u) relative to the metric value

dE(u) for each threshold u. Across almost all thresholds, most of the values within the
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bootstrap sampling distribution lie very close to zero and more importantly, the mean of

the sampling distribution lies very close to zero. These findings indicate that the choice

of interpolation grid has no meaningful effect on the value of the metric for a particular

threshold. However, for the very largest threshold shown in the plot, we see a much

larger range for the bootstrapped distribution of these relative differences, showing the

effect of the over-sampling of the upper tail as you mentioned in your original review.

Importantly, referring back to Figure A.3.1, the db(u) values for the highest threshold

are all larger than the largest db(u) value for the optimal threshold in both plots. Thus,

while there is a clear effect on the values of d500(u) and dnu(u) for particular bootstrap

samples, both Figure A.3.1 and A.3.2 show that the effect on the mean is relatively

small and certainly, would not alter the selected threshold in any way.
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Figure A.3.2: Plot of (d500b (u)− dnu
b (u))/dE(u) for first sample of Case 1. The mean for

each threshold is shown as black points.

For Case 1, the true threshold is at a low sample quantile (16.67%) and so, it is

unlikely that the threshold choice would be affected by the under- or over-sampling
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of the tail as the only significant effect of this comes at very high thresholds. In a

case where the optimal threshold lies at a higher sample quantile, based on the above

analysis, we might expect the threshold choice to show greater sensitivity to choice of

interpolation grid. To explore a case of this nature, we repeat the above analysis on

the first sample from the replicated data of the Gaussian case. Here, we expect the

optimal threshold to lie further into the tail due to the slow convergence of the Gaussian

distribution to an extreme value limit. As a result, in theory, we expect that this case

could show more sensitivity to the under- or over-sampling of the upper tail.

Figures A.3.3 and A.3.4 show the Gaussian results, in the same format as for Case

1. In Figure A.3.3, there is a clear threshold choice in both plots and there does not

seem to be any effect from the choice of interpolation grid on the bootstrap sampling

distribution of mean-absolute deviations, and certainly there is no effect on the mean

values for any thresholds. In fact, surprisingly, any effect due to under- or over-sampling

the upper tail is much smaller in this case than above. Figure A.3.4 reiterates this where

the sampling distribution of relative differences lie close to zero for all thresholds. The

choice of interpolation grid does not show any meaningful effect on the overall metric

value and certainly, would not affect the choice of threshold for this dataset.
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Figure A.3.3: Boxplots of db(u) for the first sample of the Gaussian case with m = 500
(left) and m = nu (right). The mean for each threshold is shown as black points.
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Figure A.3.4: Plot of (d500b (u) − dnu
b (u))/dE(u) for first sample of the Gaussian case.

The mean for each threshold is shown as black points.
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Given that our overall aim is to approximate the IAE between model quantiles

and quantiles of the data generating process, we choose to keep the quality of the

approximation of the IAE for particular samples fixed for a fair comparison across a

range of candidate thresholds. Since m controls the quality of the approximation, we

suggest m = 500 is sufficient based on the above results. Given we are confident in the

quality of results for this choice, for convenience, we keep this fixed value across sample

sizes and threshold levels in our simulation studies.

In conclusion, in order to balance accuracy and computation time for our large scale

simulation studies, we find that the EQD method, with value B = 100 and m = 500,

provides sufficiently accurate results in a timely manner, so we choose to use these

values throughout, unless stated otherwise.

A.3.4 Selection of calibration data in the metric db(u)

Here, we provide results for an adjusted version of the EQD method (as suggested by

a referee) with the findings being reported in Section 3.4.2. Here, the adjusted version

takes the calibration data used for threshold estimation as the actual observed sample

excesses xu of candidate threshold u, as described below. This adjusted version differs

from the EQD method as proposed in Section 3.4.1, where the calibration data for

a particular bootstrapped sample are calculated based on the bootstrapped excesses

xb
u. Thus, the only difference between the two approaches is that in db(u), given by

metric (3.4.1), the Q(pj;x
b
u, q) term is replaced by Q(pj;xu, q) in the adjusted version.

Table A.3.6 shows the RMSE, bias and variance of threshold estimates using the

proposed and the adjusted versions of the EQD method evaluated on 500 replicated

samples from each of Cases 1-4. The relative performance of the two methods vary only

slightly across all cases, and it is difficult to distinguish between the two methods, with

each having the smaller RMSE an equal number of times. Furthermore, any difference

between the two methods is very small relative to the differences between the EQD and
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the existing automated threshold selection approaches.

Using the adjusted method leads to larger variability in the distribution of db(u)

relative to the proposed method. This is because, unlike the proposed EQD method,

the adjusted method does not compare like with like; one term in db(u) is based on a

bootstrap sample and the other on the actual data. Despite this increased variability,

our analysis suggests that the adjustment does not necessarily lead to a notable change

in either the dE(u) value for a particular candidate threshold or in the subsequently

selected threshold. As a result, we choose to retain our proposed method and this is

utilised throughout the analyses of the main text and the supplementary material.

Proposed - Q(pj;x
b
u, q) Adjusted - Q(pj;xu, q)

Case RMSE Bias Variance RMSE Bias Variance
Case 1 0.048 0.034 0.001 0.047 0.035 0.001
Case 2 0.060 0.031 0.003 0.050 0.027 0.002
Case 3 0.060 0.042 0.002 0.062 0.046 0.002
Case 4 0.526 −0.515 0.012 0.545 −0.535 0.011

Table A.3.6: RMSE, bias and variance of threshold estimates for Cases 1-4 for the EQD
method found using the different calibration data in the metric db(u): the proposed
EQD with Q(pj;x

b
u, q) and the adjusted version with Q(pj;xu, q).

A.3.5 Investigating the effect of bootstrapping

In this section, we provide further simulation experiments to investigate the effect of the

bootstrapping component of the EQD method. We utilise a variant of the EQD method

with no bootstrapping and compare the results against the original EQD method across

Cases 0-4 and the Gaussian case (with n = 2000), with each case based on 500 replicated

samples (Case 0 is outlined in Section A.4.3, while Cases 1-4 and the Gaussian case are

outlined in Section 3.6).

Table A.3.7 provides results for the RMSE, bias and variance of threshold choices

for the EQD method with and without bootstrapping, for Cases 0-4. For Cases 0-3,

removing the bootstraps and only evaluating the metric on the original sample leads to
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RMSEs of threshold choice almost twice as large than for the original EQD method. In

each of these cases, there is an increase in positive bias and the variance increases by a

factor of at least 4. Thus, removing the bootstrapping component leads to higher and

more variable threshold choices for these cases as would be expected. In contrast, for

Case 4, the removal of the bootstrapping component actually leads to a slight decrease in

RMSE. This decrease stems from a reduction in the negative bias component as a result

of threshold choices being slightly higher than the original method. This reduction in

bias comes at a cost of greater variability in selected thresholds. This greater variability

is to be expected by not averaging over bootstrap samples.

Case 0 Case 1
RMSE Bias Variance RMSE Bias Variance

Original 0.042 0.019 0.001 0.048 0.034 0.001
No bootstraps 0.095 0.039 0.008 0.090 0.054 0.005

Case 2
RMSE Bias Variance

Original 0.060 0.031 0.003
No bootstraps 0.122 0.063 0.011

Case 3 Case 4
RMSE Bias Variance RMSE Bias Variance

Original 0.060 0.042 0.002 0.526 −0.515 0.012
No bootstraps 0.138 0.080 0.013 0.473 −0.441 0.030

Table A.3.7: RMSE, bias and variance of threshold choice for Cases 0-4 for EQD only
evaluated on original sample (i.e., no bootstrapping).

Table A.3.8 shows the RMSE of quantile estimation following threshold selection

using the original EQD method and the variant with no bootstrapping for the Gaussian

case. There is a slight improvement in terms of RMSE from including the bootstrapping

component across all quantiles but results are very similar across both methods.

Overall, across the studied cases, the addition of bootstrapping to the EQD method

leads to a systematic reduction in the variance and lower threshold choices, typically

resulting in reduced RMSE, for the selected thresholds and the subsequent quantile es-
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j Original No bootstraps
0 0.214 0.217
1 0.430 0.435
2 0.703 0.715

Table A.3.8: RMSEs of estimated (1 − pj,n)-quantiles where pj,n = 1/(10jn), for j =
0, 1, 2, for the Gaussian case.

timates. While the mean absolute deviation is a robust and effective metric for thresh-

old selection, the bootstrapping component provides further stability in the threshold

choices and allows us to account for the increasing uncertainty in parameter estimates

as the threshold increases. These investigations support our choice to use bootstrapping

as a key component of the EQD method.

A.4 Additional simulation study results

A.4.1 Overview

We provide results that expand on those in Section 3.6 of the main text. Section A.4.2

provides bias-variance decompositions for the RMSEs values given in Section 3.6 and

presents additional results for the Danielsson et al. (2001, 2019) methods, evaluating

threshold estimation for Cases 1-4 and quantile estimation for Gaussian data. In Sec-

tion A.4.3, we provide further threshold estimation results for additional cases, which

have alternative parameters and sample sizes to those of Cases 1-4. Section A.4.4

presents additional results to assess the sensitivity of the methods to the choice of can-

didate threshold grids using Cases 1 and 4 with candidate grids defined above the mode

of the distribution and for the Gaussian case with candidate grids spanning the entire

range of the sample.

For the results for the Danielsson et al. (2001) method given in Section A.4.2, we

utilised the tea package (Ossberger, 2020), i.e., the package was not built by the authors

of the paper; whereas for the Danielsson et al. (2019) method, as there did not seem to
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be code freely available, we constructed our own function.

A.4.2 Detailed results for the case studies

We provide the RMSE and bias-variance decomposition for the application of the EQD

method and all methods described in Section 3.3 of the main text to the case studies

detailed in Section 3.6 of the main text.

In what follows, we find here that the Danielsson et al. (2001, 2019) methods perform

much worse that the EQD, Wadsworth (2016) and Northrop et al. (2017) methods

both in terms of threshold and quantile estimation. We therefore omit results for these

methods in Section 3.6 of the main text and do not to apply them beyond this section

of the supplementary material.

Scenario 1: True GPD tail - Cases 1-4

Threshold recovery:

For Cases 1-4, Table A.4.1 shows the RMSE, bias and variance of the thresholds selected

by the EQD, Wadsworth (2016) and Northrop et al. (2017) methods. The RMSE is also

reported in Table 3.6.2, but is repeated here for completeness. The EQD method has

the smallest RMSE and the least variable estimates in all cases, and is the least biased

method Cases 1-3. Table A.4.1 also presents equivalent results for the Danielsson et al.

(2001, 2019) methods. Both methods show considerably larger RMSEs than the EQD,

Wadsworth (2016) and Northrop et al. (2017) methods, due to the large positive biases

of these methods across all cases. In particular, for Cases 3 and 4, the Danielsson et al.

(2019) method has the smallest variance of all the methods but its larger bias leads to

RMSE values much larger than those of the EQD and other methods in Table A.4.1.

1Results for Wadsworth are calculated only on the samples where a threshold was estimated. It
failed estimate a threshold for 2.4%, 26.4%, 0%, 3.6% of the simulated samples in Cases 1-4, respec-
tively.
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EQD Wadsworth1

Case RMSE Bias Variance RMSE Bias Variance
Case 1 0.048 0.034 0.001 0.349 0.111 0.110
Case 2 0.060 0.031 0.003 0.461 0.204 0.172
Case 3 0.060 0.042 0.002 0.221 0.060 0.045
Case 4 0.526 −0.515 0.012 0.627 −0.407 0.230

Northrop
Case RMSE Bias Variance
Case 1 0.536 0.276 0.212
Case 2 0.507 0.238 0.201
Case 3 0.463 0.256 0.149
Case 4 0.543 −0.222 0.246

Danielsson et al. (2001) Danielsson et al. (2019)
Case RMSE Bias Variance RMSE Bias Variance
Case 1 2.767 2.416 1.825 1.635 1.633 0.007
Case 2 2.212 1.850 1.474 1.639 1.634 0.017
Case 3 2.528 2.441 0.435 1.314 1.314 0.001
Case 4 2.838 2.499 1.813 1.138 1.134 0.009

Table A.4.1: RMSE, bias and variance of the threshold estimates for Cases 1-4: for
EQD, Wadsworth and Northrop methods (top) and Danielsson et al. (2001, 2019) (bot-
tom). Results are based on 500 replicated samples.

Quantile recovery:

Tables A.4.2 & A.4.3 present the bias and variance of the quantile estimates for the

EQD, Wadsworth (2016) and Northrop et al. (2017) methods applied to Cases 1-4.

These are shown for the (1 − pj,n)-quantile estimates where pj,n = 1/(10jn) for j =

0, 1, 2 and n denotes the length of the simulated dataset. As mentioned in Section 3.6,

we use exceedance probabilities of this form because we have simulated samples of

different sizes and want to make extrapolation equally difficult in each case. These

bias and variance components correspond to the RMSE values presented in Table 3.6.3

in Section 3.6, where the EQD method achieves the lowest RMSEs in all cases and

quantiles. Table A.4.3 shows that these lower RMSE values derive mainly from the

variance component; for all j and in all cases the EQDmethod shows the least variability

in quantile estimates, with the differences between the methods becoming more evident
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for higher j. The smallest absolute bias values in Table A.4.2 vary between each of the

methods but the EQD incurs the least bias in the majority of cases and quantiles. In

particular, the EQD achieves the smallest absolute bias for all j in Cases 2 and 3.

EQD Wadsworth1 Northrop EQD Wadsworth1 Northrop
j Case 1 Case 2
0 −0.021 −0.079 −0.075 −0.049 −0.118 −0.071
1 −0.015 −0.192 −0.001 −0.046 −0.316 0.245
2 0.044 −0.319 0.554 0.069 −0.532 2.568

Case 3 Case 4
0 −0.008 −0.026 −0.041 −0.283 −0.372 −0.192
1 −0.007 −0.047 −0.065 −0.722 −0.965 −0.344
2 −0.002 −0.066 −0.074 −1.410 −1.809 −0.258

Table A.4.2: Bias of the estimated quantiles in Cases 1-4 based on fitted GPD above
chosen threshold. The smallest absolute bias for each quantile are highlighted in bold.

EQD Wadsworth1 Northrop EQD Wadsworth1 Northrop
j Case 1 Case 2
0 0.317 0.348 0.565 0.358 0.386 0.538
1 1.585 1.903 5.657 2.215 2.611 12.305
2 6.000 7.297 50.155 9.743 11.885 519.569

Case 3 Case 4
0 0.036 0.038 0.051 0.379 0.503 0.591
1 0.105 0.116 0.199 1.926 3.317 4.805
2 0.233 0.263 0.549 7.287 16.879 30.999

Table A.4.3: Variance of the estimated quantiles in Cases 1-4 based on fitted GPD above
chosen threshold. The smallest variance for each quantile are highlighted in bold.

For completeness, Table A.4.4 presents the equivalent RMSE values for the Daniels-

son et al. (2001, 2019) methods. These can be compared with the RMSE results for the

EQD, Wadsworth (2016) and Northrop et al. (2017) methods in Table 3.6.3. For j = 0

the threshold choice should not be too important because we are not extrapolating but

Table A.4.4 shows that, even in this case, the Danielsson et al. (2001, 2019) approaches

have RMSE values much greater than the other methods, by factors of between 1.5− 3

across the cases. This difference in performance is only exacerbated as we extrapolate

further. For j = 1, 2, both approaches lead to RMSEs that are orders of magnitude
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larger than any of the other methods analysed. For example, when j = 2 the RMSEs

of the Danielsson et al. (2001) and Danielsson et al. (2019) methods are respectively

4− 70 and 3− 7 times larger than those of the EQD method.

j Danielsson 2001 Danielsson 2019 Danielsson 2001 Danielsson 2019
Case 1 Case 2

0 1.020 0.859 0.962 0.757
1 3.128 3.172 3.806 3.991
2 12.943 10.303 110.347 23.102

Case 3 Case 4
0 0.675 0.262 1.118 0.865
1 1.655 0.570 3.938 2.978
2 38.001 1.000 40.653 8.721

Table A.4.4: RMSEs in the estimated quantiles in Cases 1-4 based on fitted GPD above
chosen threshold for the Danielsson et al. (2001) and Danielsson et al. (2019) methods.

Scenario 2: Gaussian data

Quantile recovery:

We next consider the case of Gaussian data, using 500 simulated datasets of size n =

2000 and 20000. Tables A.4.5 and A.4.6 present the bias, variance and RMSE for the

estimation of the (1 − pj,n)-quantiles (where pj,n = 1/(10jn) and j = 0, 1, 2), based

on the thresholds selected by the EQD, Wadsworth (2016) and Northrop et al. (2017)

methods. These RMSE values are detailed in Table 3.6.5.

Table A.4.5 shows that for the smaller sample size of n = 2000, the EQD method

achieves the smallest RMSEs and variance for all j for all methods. The Danielsson

et al. (2019) and Northrop et al. (2017) methods incur the least absolute bias in quantile

estimation due to their slightly higher threshold choices, see Table A.4.7, and have

similar RMSE values smaller than that of the Wadsworth (2016) method in this aspect.

The Danielsson et al. (2001) method incurs considerable bias with large variance in its

quantile estimates, leading to the highest RMSEs of all analysed methods.

2Results for the Wadsworth method, which failed on 0.4% of the samples here, are calculated only
for samples where a threshold estimate was obtained.
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EQD Wadsworth2

j RMSE Bias Variance RMSE Bias Variance
0 0.214 −0.086 0.038 0.239 −0.120 0.043
1 0.430 −0.275 0.109 0.529 −0.366 0.147
2 0.703 −0.521 0.222 0.890 −0.654 0.365

Northrop
j RMSE Bias Variance
0 0.225 −0.076 0.045
1 0.461 −0.224 0.162
2 0.765 −0.414 0.414

Danielsson et al. (2001) Danielsson et al. (2019)
j RMSE Bias Variance RMSE Bias Variance
0 0.758 −0.470 0.354 0.232 −0.059 0.050
1 1.550 −0.815 1.739 0.479 −0.173 0.200
2 33.183 −1.380 1099.182 0.790 −0.321 0.522

Table A.4.5: RMSE, bias and variance of estimated quantiles from a Gaussian distribu-
tion with sample size of 2000: for EQD, Wadsworth and Northrop methods (top) and
Danielsson et al. (2001, 2019) (bottom). Results are based on 500 replicated samples.

As the sample size n increases, the relative importance of bias and variance terms

within the RMSE shifts, with low bias becoming increasingly important. Table A.4.6

shows that when n = 20000, the Northrop et al. (2017) method achieves the lowest

RMSE and bias over all j. The EQD method takes second place, again showing the

least variability in its estimates. Note that all of the methods show decreased RMSEs

as n increases from 2000 to 20000, even though the bias values do not all decrease. A

possible reason for this lack of reduction in bias is the slow convergence of the Gaussian

distribution to the extreme value limit, so an order of magnitude increase in sample

sizes could be required for the bias to reduce. We attempted to apply the Danielsson

et al. (2001, 2019) methods to the 500 Gaussian samples with the larger sample size of

n = 20000 but the computation time was simply too large.
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EQD Wadsworth
j RMSE Bias Variance RMSE Bias Variance
0 0.187 −0.131 0.018 0.214 −0.165 0.019
1 0.368 −0.307 0.042 0.422 −0.366 0.044
2 0.594 −0.528 0.074 0.672 −0.611 0.078

Northrop
j RMSE Bias Variance
0 0.172 −0.104 0.019
1 0.331 −0.255 0.045
2 0.533 −0.450 0.081

Table A.4.6: RMSE, bias and variance of estimated quantiles from a Gaussian distri-
bution with sample size of 20000. Results are based on 500 replicated samples.

Threshold Recovery:

There is no true GPD threshold for the Gaussian scenario but the quantile estimates

discussed in Tables A.4.5 and A.4.6 require a preceding step of selecting a suitable

threshold above which the GPD approximation is adequate. In Table A.4.7, we provide

information about the selected thresholds for the Gaussian data, presenting the 2.5%,

50%, 97.5% values of the sampling distribution of the threshold estimates (presented

as a quantile of the Gaussian distribution for each method). The results show that

the Wadsworth (2016) method tends to estimate the threshold lowest, followed by the

EQD method, and then the Northrop et al. (2017) method which tends to estimate

the highest threshold values, with this finding being consistent across the sampling

distribution quantiles. It is interesting to see that, even with a very large sample size,

almost always thresholds are estimated to be below the 95% quantile (the maximum

of the candidate thresholds) of the Gaussian distribution. This is surprising given its

widely known slow convergence issues.

A.4.3 Extra case studies

This section provides a description and the results of additional case studies, beyond

Cases 1-4, which were omitted from Section 3.6. These are denoted by Cases 0, 5, 6, 7
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n = 2000 n = 20000
EQD Wadsworth2 Northrop EQD Wadsworth Northrop

50% Q 75 50 80 87.5 84 91.5
2.5%, 97.5% Q 55, 90 50, 95 60, 95 77.5, 94 69.5, 95 82.5, 95

Table A.4.7: Sampling distribution quantiles (2.5%, 50%, 97.5%) of quantile level Q
(%) for the threshold estimates for each method derived from 500 replicated samples
from a Gaussian distribution for two sample sizes n.

and 8. Specifically, these extra cases are:

Case 0 : We simulate samples of size n = 1000 from a GPD(0.5,0.1) above a threshold

u = 1 with no data below the threshold.

Case 5 : We simulate samples from the distribution (A.2.1) with (σu, ξ) = (0.5, 0.1),

but with a reduced sample size of n = 120.

Case 6 & 7 : We simulate samples from the distribution (A.2.1) with a sample size of

n = 1200, but with shape parameters ξ < −0.05, i.e., ξ = −0.2 for Case 6 and ξ = −0.3

for Case 7.

Case 8 : We simulate samples from the distribution (A.2.1) with (σu, ξ) = (0.5, 0.1),

but with an increased sample size of n = 20000.

We chose to omit Case 0 from the main text due to its simplicity, in that it should

be the easiest case for threshold selection due to the lack of data below the threshold.

Cases 5, 6 and 7 were also omitted due to poor performance of the Wadsworth (2016)

method which failed to estimate a threshold in the majority of samples generated from

each of these cases. This high failure rate occurs for two reasons; dependence between

parameter estimates when using candidate thresholds which lie in close proximity for

small sample sizes or in the cases where ξ < −0.05, where an error results from a

divergent integral in the calculation of the inverse Fisher information matrix. Thus,

for Cases 5, 6 and 7, here we only show comparisons of the EQD method against the

Northrop et al. (2017) method. Finally, Case 8 was also omitted from the main text

due to the large sample size being atypical of extreme value analyses, but we decided to

include a large sample case to explore how the EQD compares with existing methods
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which base their theoretical justification on asymptotic arguments.

In all of the cases, results presented here, for each of the methods, are based on 500

replicated samples and we take the set of candidate thresholds as the sample quantiles

at levels 0%, 5% . . . , 95%, as in Section 3.6. Specifically, for Case 8, we considered an

additional finer grid of candidate thresholds as the sample quantiles at levels 0%, 0.5%,

. . . , 95%. For Case 0, we initially used a set of candidate thresholds which contains

values lower than the minimum of the sample, but Wadsworth (2016) and Northrop

et al. (2017) methods had major problems, and so we omit those results. However,

this restriction to consider only candidate thresholds which are sample quantiles auto-

matically positively biases threshold estimates in Case 0. In any simulation study, it

is reasonable to consider candidate thresholds above and below the true threshold, so

the fact that the EQD method continues to work well for candidate thresholds below

the sample quantiles is a particularly pleasing feature, even if not illustrated here. In

Section A.4.4, we explore the effect of candidate thresholds which lie below the mode

for Cases 1, 4 and the Gaussian case for the EQD, Wadsworth and Northrop methods.

Case 0 should be much easier to estimate than for even Cases 1-3, with the lowest

candidate threshold being very close to the true threshold. Table A.4.8 provides the

RMSE, bias and variance of threshold estimates for each of the methods for this case,

with the EQD obtaining the lowest value for each of the three summary features by

considerable margins. Hence, in the most ideal case for threshold estimation, the EQD

method excels in its performance.

EQD Wadsworth3 Northrop
RMSE 0.042 0.564 0.566
Bias 0.019 0.228 0.326

Variance 0.001 0.266 0.214

Table A.4.8: RMSE, bias and variance of the threshold estimates for Case 0. Results
are based on 500 replicated samples. The smallest in each case is given in bold.

3Results for Wadsworth are calculated only on the samples where a threshold was estimated, the
method failed on 3.8% of the simulated samples in Case 0.
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Table A.4.9 shows the RMSEs for the EQD and Northrop et al. (2017) methods

for estimating the threshold in Case 5, 6 and 7, with the EQD performing the best

on each occasion. Case 5 is particularly important as the small sample size is typical

of many data applications, so it is especially pleasing to see that the EQD method

outperforms the Northrop et al. (2017) method by the largest of the three margins

in this case. Northrop et al. (2017) performs especially badly in Case 5 in terms of

variance. Furthermore, the EQD method, relative to that of Northrop et al. (2017),

has a smaller (equal) absolute error in threshold estimates in 70.0% (20.4%) of samples.

Similarly, in Cases 6 and 7, the EQD achieves a smaller (equal) absolute error in 59.8%

(18.0%) of samples and 50.2% (18.8%) respectively.

Case 5 Case 6 Case 7
EQD 0.078 0.107 0.185

Northrop 0.602 0.373 0.341

Table A.4.9: RMSEs of the threshold estimates of the EQD and Northrop methods in
Cases 5, 6 and 7. The smallest value in each case is given in bold.

Table A.4.10 shows the RMSEs of threshold choice for Case 8. The results are shown

for each method using two different candidate grids of thresholds. In contrast to the

previous results, the Wadsworth method slightly outperforms the EQD achieving the

smallest RMSEs for these large samples. However, the sample size for this to be achieved

significantly exceeds that for data in practice. This illustrates the potential benefits, but

also serious limitations, of relying on asymptotic methods to guide threshold selection.

Grid (% quantile) EQD Wadsworth Northrop
0 (5) 95 0.036 0.021 0.503
0 (0.5) 95 0.027 0.003 0.529

Table A.4.10: RMSE of the threshold choices for Case 8 for two different candidate
grids given with notation start (increment) end. The smallest values are in bold.

Table A.4.11 shows the RMSEs of quantile estimation for Case 8, where for threshold

selection the Wadsworth method has a slight benefit over the EQD method. Here, for
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quantile estimation, there are similar findings, the Wadsworth method achieves the

lowest RMSEs, followed closely by the EQD and then, the Northrop method which

obtains significantly higher RMSEs.

Grid 0 (5) 95 0 (0.5) 95
j EQD Wadsworth Northrop EQD Wadsworth Northrop
0 0.370 0.364 0.546 0.369 0.358 0.573
1 0.694 0.681 1.157 0.692 0.669 1.200
2 1.199 1.174 2.189 1.196 1.151 2.242

Table A.4.11: RMSEs in the estimated quantiles in Case 8 samples based on fitted GPD
above chosen threshold for two candidate grids given with notation start (increment)
end. The smallest RMSE for each quantile are highlighted in bold.

A.4.4 Sensitivity to the choice of candidate threshold grids

In this section, we provide further simulation experiments where we choose the candi-

date threshold grids more in line with general extreme value analyses (i.e., above the

mode) and explore the sensitivity of methods to candidate thresholds which lie below

the mode of the data. Since the GPD density is monotonically decreasing for realistic

values of ξ (i.e., when ξ > −1), when utilising a threshold selection procedure, it is

unusual to consider thresholds which lie below an obvious mode. Many threshold selec-

tion procedures are simply not set up to handle data from non-monotonically decreasing

densities. We explore a different choice for the candidate threshold grids to ensure that

our choices made in the main text do not unfairly favour the EQD method.

Given that our aim is to provide a method which requires no user input, we consider

candidate thresholds across the range of the sample data and allow the method to make

the threshold selection whether the conditions are suitable or not. In the main text and

the supplementary material, outside of Gaussian case where we specifically restricted

our choice of candidate thresholds such that u > q50 (with q50 being the sample median),

and Case 0, where the optimal threshold is at the lowest sample quantile, we have only

explored cases where candidate thresholds span the range of the dataset. Here, we
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reanalyse two cases; Case 1 and Case 4, now with candidate threshold grids which lie

above the mode of the distributions.

To avoid sensitivities from different mode estimators clouding the results, we use

the true mode to help define our range/set of candidate thresholds. In Case 1, the true

mode is trivial to find and it is the optimal threshold. For Case 4, the mode needs to

be found numerically, using the expression for the density function. Once the mode is

known, we define the candidate threshold set as sample quantiles at levels 0%, . . . , 95%

of the data which lies above the mode.

First, we consider the effect of the range [u1, uk] of the candidate thresholds on

threshold selection performance. Table A.4.12 provides the RMSE, bias and variance

of threshold estimation for samples from both of these cases, using the EQD, Wadsworth

and Northrop methods each applied with candidate thresholds across the distribution,

as given in Section 3.6.1, and only above the true mode. In terms of RMSE, the EQD

method outperforms the other two methods regardless of how the candidate threshold

grid is chosen. For the “Above mode” grid, we have rather different performances

for the Wadsworth and Northrop methods relative to the “Original” candidate grid.

In Case 1, these two methods perform very similarly, with RMSEs approximately 15

times larger than the EQD. In Case 4, the Wadsworth method fails completely with

the “Above mode” grid due to the grid being too fine relative to the sample size. For

the Northrop method, the RMSE of threshold estimation is increased with the “Above

mode” grid and the differential between the Northrop and EQD becomes wider with a

RMSE that is 1.15 times larger the EQD method.

For the EQD method, using only candidate thresholds above the true mode results

in a smaller RMSE (and bias and variance) for both Cases 1 and 4, presumably as

we are now using a finer grid of candidate thresholds so candidate thresholds lie closer

to the optimal value. In contrast, the performance of the Wadsworth and Northrop

methods is worsened when we restrict the candidate thresholds to be above the mode,
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RMSE Bias Variance RMSE Bias Variance RMSE Bias Variance
Case 1

EQD Wadsworth Northrop
Original 0.048 0.034 0.001 0.349 0.111 0.110 0.536 0.276 0.212

Above mode 0.038 0.018 0.001 0.577 0.236 0.277 0.597 0.348 0.235
Case 4

Original 0.526 −0.515 0.012 0.627 −0.407 0.230 0.543 −0.222 0.246
Above mode 0.514 −0.505 0.009 NA NA NA 0.589 −0.127 0.331

Table A.4.12: RMSE, bias and variance of threshold choice for Case 1 and Case 4
samples for EQD, Wadsworth and Northrop methods. The methods are evaluated for
two sets of candidate threshold sets: Original, using candidate threshold across the
whole sample; Above mode, using candidate thresholds which only lie above the mode.

primarily due to an increase in variance.

We consider the effect of the range of the candidate thresholds on quantile estimation

for the Gaussian case. Previously, for the Gaussian case, we reported results only using

candidate thresholds above the sample median, i.e., essentially the mode. Here, we

assess the effect of allowing candidate thresholds to range across the whole sample, i.e.,

the sample quantiles at levels 0%, 5%, . . . , 95% of the whole data sample.

The results, in terms of RMSE for three different quantiles, are presented in Ta-

ble A.4.13 for the two different candidate threshold grids. Firstly, we find that the

Wadsworth method completely fails with this extended range of candidate thresholds,

so this method is omitted from the table. For both the EQD and Northrop methods,

we have almost identical values regardless of the set of candidate thresholds we use,

with the RMSE always smallest for the EQD.

EQD Northrop
j Original Whole data Original Whole data
0 0.214 0.214 0.225 0.225
1 0.430 0.431 0.461 0.460
2 0.703 0.707 0.765 0.763

Table A.4.13: RMSEs of estimated (1 − pj,n)-quantiles where pj,n = 1/(10jn), for
j = 0, 1, 2, for the Gaussian case when applying methods with candidate thresholds
across the range of the data.

The results here indicate that the choice of candidate grid taken in the main text
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provides no unfair advantage to the EQD method, in fact it performs even better if the

choice of candidate threshold grid is tuned by exploiting knowledge of the value of the

mode of the distribution.

A.5 Further details on coverage probability results

This section provides more detailed results for the coverage probabilities for the 500

replicated samples of Case 4 and the Gaussian case outlined in Section 3.6 of the main

text. Here, we also show results for the 50% confidence level and include an extended

range of exceedance probabilities at which the coverage of the true quantiles is evaluated.

Tables A.5.1 and A.5.2 expanding on the results given in Tables 3.6.4 and 3.6.6,

providing coverage probabilities and average CI width ratios using Algorithms 1 and 2

for 500 samples derived from Case 4 and the Gaussian distribution. These results allow

us to conclude that the additional threshold uncertainty, captured by Algorithm 2, leads

to a significant improvement in the calibration of CIs and that it is vital to include this

uncertainty in any inference for extreme quantiles.

Scenario 1: True GPD tail - Case 4

Table A.5.1 shows that for all confidence levels and exceedance probabilities, Algorithm

1, which includes uncertainty only from the GPD parameter estimation, substantially

under-estimates the uncertainty in quantile estimates. This leads to CIs which do not

cover the true quantiles to the nominal levels of confidence. In contrast, the inclusion

of the additional threshold uncertainty in Algorithm 2 leads to significant increases in

the coverage of true quantiles with coverage probabilities at all quantile levels lying

very close to the nominal confidence level, especially at the 95% level. From a practical

perspective, it is reassuring that this improvement in coverage is achieved with only

40-68% average increases in the width of the CIs.
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p 1/n 1/3n 1/5n 1/10n 1/25n 1/50n 1/100n 1/200n 1/500n
50% confidence

Alg 1 0.398 0.390 0.384 0.368 0.368 0.358 0.358 0.350 0.342
Alg 2 0.526 0.498 0.500 0.496 0.480 0.476 0.474 0.468 0.464

CI ratio 1.408 1.413 1.414 1.414 1.414 1.413 1.413 1.412 1.411
80% confidence

Alg 1 0.646 0.642 0.630 0.618 0.616 0.608 0.606 0.600 0.594
Alg 2 0.798 0.778 0.770 0.772 0.760 0.760 0.758 0.762 0.758

CI ratio 1.430 1.440 1.445 1.452 1.461 1.468 1.475 1.483 1.495
95% confidence

Alg 1 0.834 0.810 0.808 0.804 0.798 0.796 0.794 0.788 0.788
Alg 2 0.954 0.950 0.950 0.948 0.942 0.942 0.944 0.944 0.944

CI ratio 1.484 1.511 1.525 1.546 1.574 1.597 1.621 1.646 1.682

Table A.5.1: Coverage probabilities for estimated (1− p)-quantiles using Algorithms 1
and 2 for Case 4, with sample size of 1000. Values are based on 500 replicated samples.

Scenario 2: Gaussian data

Table A.5.2 shows that, for Gaussian variables across all quantiles, Algorithm 1 and

2 are less successful in the coverage of the true quantiles than in Case 4. Specif-

ically, there is a significant under-estimation of the estimated uncertainty necessary

to provide coverage probabilities near to the nominal confidence level, and the actual

coverage is decreasing with the level of extrapolation required. This is not too sur-

prising as it is well-established that Gaussian variables exhibit quite slow convergence

to an extreme value limit. However, what Table A.5.2 shows is that the additional

threshold uncertainty in Algorithm 2 leads to a substantial improvement in actual cov-

erage across all quantiles and for all nominal confidence levels. This improvement is

achieved with the CI widths on average being extended by 45-73%. In particular, for

the p = 1/n, 1/3n, 1/5n, which are typical levels of extrapolation from a sample in prac-

tical contexts, Algorithm 2 achieves a workable performance, with coverage reasonably

close to the nominal level.
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p 1/n 1/3n 1/5n 1/10n 1/25n 1/50n 1/100n 1/200n 1/500n
50% confidence

Alg 1 0.358 0.300 0.292 0.278 0.240 0.218 0.204 0.190 0.168
Alg 2 0.462 0.398 0.354 0.322 0.278 0.262 0.232 0.212 0.200

CI ratio 1.461 1.463 1.462 1.465 1.465 1.466 1.465 1.466 1.465
80% confidence

Alg 1 0.588 0.522 0.498 0.450 0.402 0.388 0.366 0.348 0.316
Alg 2 0.718 0.656 0.630 0.598 0.542 0.516 0.492 0.476 0.446

CI ratio 1.457 1.468 1.473 1.480 1.493 1.501 1.509 1.517 1.526
95% confidence

Alg 1 0.750 0.674 0.650 0.618 0.580 0.550 0.510 0.490 0.466
Alg 2 0.866 0.838 0.828 0.814 0.794 0.772 0.756 0.742 0.722

CI ratio 1.495 1.531 1.549 1.576 1.611 1.638 1.665 1.692 1.729

Table A.5.2: Coverage probabilities for estimated (1− p)-quantiles using Algorithms 1
and 2 for a Gaussian distribution, with sample size of 2000. Values are based on 500
replicated samples.
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Supplementary materials to

Chapter 4

B.1 Sensitivity to the baseline probability, p1

A range of baseline probabilities were tested across the whole dataset, and the resulting

threshold and model fits were used to calculate a right-sided Anderson-Darling (ADr)

test statistic and the p-value (Sinclair et al., 1990; Solari et al., 2017). For more details

on the ADr test, see the main text. The return periods that were tested for the baseline

probabilities were 0.083, 0.167, 0.25, 0.33, 0.5, 0.667, and 1.0 years. These equate to

the 1 in 1, 2, 3, 4, 6, 8 and 12 month events.

The results of this sensitivity test are shown in Figure B.1.1. Panel (a) presents the

ADr test statistic for the 7 return periods tested. When looking at the median and

interquartile ranges of the ADr test statistics, the threshold selection looks relatively

insensitive to the return period chosen, with very little differences between the 0.167,

0.25, 0.333, and 0.5 year return periods. When considering the ADr test p-value (panel

(b)), there is only small differences between the 0.167, 0.25, 0.33 and 0.5 year return

periods. We take this as evidence that any one of these values would suffice as the
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baseline probability, p1.

Figure B.1.1: The results from the sensitivity test of different baseline probabilities.

B.2 Sensitivity to the number of quantile levels, m

Following Murphy et al. (2025), a sensitivity test to the number of quantile levels,m was

carried out. The values ofm tested were 10, 50, 100, 200, 500, 1000 and ‘n exceedances’,

which denotes the number of exceedances over the baseline event for each tide gauge

record. The range of m values for ‘n exceedances’ are shown below in Figure B.2.1.

The full range spreads between 161 to 811, and the median is centred on 231.
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Figure B.2.1: The range of m values used by ‘n exceedances’, i.e., the number of ex-
ceedances over the baseline probability for each tide gauge record.

The results of this sensitivity analysis are presented in Figure B.2.2, showing that

the method is quite insensitive to the m value used. This is similar to the findings

of Murphy et al. (2025). We recommend using any value over 10, and choose to use

m = 500 in this study for consistency with Murphy et al. (2025).



APPENDIX B. SUPPLEMENTARY MATERIALS TO CHAPTER 4 226

Figure B.2.2: The results of the sensitivity test using differentm values. ‘n exceedances’
refers to the number of exceedances over the baseline event, at each tide gauge record.
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Chapter 5

C.1 Annual weighted mean endpoint estimates

In Section 5.4.5, we broke ewm(SF ) into a weighted sum of yearly weighted mean values,

ewm(T | SF ) for year T . Figure C.1.1 provides point estimates of these aggregated

weighting values and the annual endpoint summary for T ∈ TF . The weights show a

progressive decrease over time over TF representing that fewer earthquakes are predicted

to occur as time progresses if the scenario of no future extraction holds. The values

of ewm(T | SF ) also show a gradual reduction from T = 2025 as it nears T = 2040,

after which the values of the weighted mean increase again. Figure C.1.2 provides

clarification for this behaviour by showing spatial plots of the estimated endpoints

across X for January 2025, the changes in the endpoint estimates when moving from

January 2025 to January 2040, followed by the changes between Januray 2040 and

January 2055. As the endpoint estimates are additive functions of the Kaiser stress,

these plots also provide information on how the stresses change across X between these

time points. Thus, insights can also be gleamed on how the intensity of earthquakes -
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also dependent on the Kaiser stress and importantly, its temporal derivative - change

through time. When moving from 2025-2040, there are large subregions of the gas field,

particularly in the south-east, where the endpoint estimates change only very slightly

(if at all), meaning that the Kaiser stress showed very little change in these areas. This

would result in a near-zero temporal derivative, over the years 2025-2040, leading to

reductions in the estimated intensity of earthquakes in these areas, and thus, reductions

in the weights for these locations in ewm(T | SF ). From 2040, the weights would be

focussed mainly in the red regions in the centre panel in Figure C.1.2. This explains

the gradual reduction in ewm(T | SF ) over the years 2025-2040. Now, focussing on the

changes from January 2040 - January 2055, we see changes in the endpoints occurring

almost exclusively in these same areas. At this point, we have the weights resulting

from the intensity estimates and the largest changes in the endpoint estimates occurring

in the same subregions, which now leads to the increases we see in ewm(T | SF ) from

T = 2040− 2055.
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Figure C.1.1: Estimates of future earthquake properties for T = 2025 − 2054: [left]
the probability mass function for an arbitrarily selected future earthquake’s year T
of occurrence, i.e., ΓX (T )/ΓX (TF ) and [right] weighted annual event per year with
weights proportional to the spatial density of earthquake occurrences in that year, i.e.,
ewm(T |SF ).
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Figure C.1.2: Spatial plots of the temporal evolution of the estimated endpoints: [left]
endpoint estimates of e(x, t|SF ) for January 2025 and [centre and right] changes in
endpoint estimates from January 2025- January 2040, and January 2040 - January
2055 respectively.
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Chapter 6

D.1 Additional figures for Section 6.3

In this section, we present additional figures for Section 6.3, concerned with challenges

C1 and C2. Figures D.1.1-D.1.3 support the exploratory analysis for challenges C1 and

C2. We explore the within-year seasonality of the response variable Y in Figure D.1.1,

looking at the distribution of Y per month and across the two seasons. This shows that

there is a significant difference in the distribution of Y between seasons 1 and 2, but

within each season there is little difference across months.

Figure D.1.2 shows a scatter plot of Y against each covariate V1, . . . , V8, with quan-

tile regression lines plotted in blue at probabilities 0.5, 0.6, . . . , 0.9 excluding V6 which

corresponds to season. Covariates V1, V2, V4 and V8 do not show any clear relationship

with Y at any quantile level. However, Y shows dependence with the remaining covari-

ates. In particular, the observed relationship with V3 appears complex and non-linear

across all quantiles. There is also evidence of relationships between Y and both V6

(wind speed) and V7 (wind direction). V6 appears to show a somewhat linear relation-

230



APPENDIX D. SUPPLEMENTARY MATERIALS TO CHAPTER 6 231

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●●
●
●

●●
●

●●
●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●●

●

●
●
●
●

●●●●●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●●

●
●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●

●
●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●
●

●

●●
●●●
●
●
●
●

●
●

●

●
●
●

●

●

●
●

●

●●
●●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●

●
●

●
●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●●
●●●
●

●

●

●
●
●

●

●

●

●

●
●●

●

●●

●

●
●
●

●

●●

●
●●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●
●

●
●●

●●

●

●

●

●

●●

●●●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●
●

●

●
●

●

●●

●

●
●

●
●

●

●

●●●
●●

●

●
●

●●

●●●●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●
●
●

●

●

●●
●

●

●●

●

●
●
●

●

●●
●

●
●●
●

●

●

●

●

●

●
●

1 2 3 4 5 6 7 8 9 10 11 12

0
50

10
0

15
0

20
0

Month

R
es

po
ns

e

Figure D.1.1: Box plots of the response variable Y with each month and season (season
1 in grey and season 2 in red).

ship at all quantile levels, although we choose to allow more flexibility by using a spline

on V6 in our models. Y shows evidence of sinusoidal variation with V7 which could be

incorporated in our models, however, due to the dependence between wind speed and

direction and with the goal of keeping our models parsimonious, we chose to omit this

covariate from the analysis.

We also explore temporal dependence in Figure D.1.3 that details the auto-correlation

function (acf) values for the response Y and explanatory variables V1, . . . , V4, V6, . . . , V8,

up to a lag of 60. All variables have negligible acf values across all lags, except V6 (wind

speed), V7 (wind direction) and V8 (atmosphere). Covariates V6 and V7 show moder-

ately strong temporal dependence across all lags while V8 shows very strong correlation

at early lags which gradually diminishes with increasing lag to negligible values at the

largest lags.

Figure D.1.4 shows the QQ-plots corresponding to a standard GPD model fitted

to the excesses of Y above a constant (left) and seasonally-varying threshold (right).

95% tolerance bounds (grey) show a lack of agreement between observations and the

standard GPD model above a constant threshold. The second plot demonstrates a
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Figure D.1.2: Scatter plots of explanatory variables V1, . . . , V4, wind speed (V6), wind
direction (V7) and atmosphere (V8), from top-left to bottom-right (by row), against the
response variable Y . Quantile regression lines at probabilities 0.5, 0.6, . . . , 0.9 as blue
lines.

significant improvement in model fit.

Figure D.1.5 shows a detailed summary of the pattern of missing data in the data

and can be produced using the missing_pattern function in the finalfit package in R

(Harrison et al., 2023). To interpret the figure note that blue and red squares represent

observed and missing variables, respectively. The number on the right indicates the

number of missing predictor variables (i.e., the number of red squares in the row), while

the number on the left is the number of observations that fall into the row category. On

the bottom, we have the number of observations that fall into the column category. For

example, 18,545 observations are fully observed (denoted by the first row); there are

407 observations where only V 4 is missing (denoted by the second row), 13 observations
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Figure D.1.3: Autocorrelation function plots (with lag 0 removed) for the response
variable Y and explanatory variables V 1, . . . , V 4, wind speed (V 6), wind direction
(V 7) and atmosphere (V 8), from top-left to bottom-right (by row).

where both V 4 and V 6 are missing (denoted by the fourth row), 456 observations where

V 4 and at least one other predictor is missing (denoted by the last column in the table),

etc. There are very few observations where more than one predictor is missing.
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Figure D.1.4: QQ-plots showing standard GPD model fits with 95% tolerance bounds
(grey) above a constant (left) and stepped-seasonal (right) threshold.

D.1.1 Additional figures for Section 6.4

In this section, we present additional plots related to Section 6.4. Figure D.1.6 illustrates

the time series of both covariates for the first 3 years of the observation period. It can

be seen how the seasons vary periodically over each year, as well as the discrete nature

of the atmospheric covariate.

Bootstrapped χ estimates for the groups GA
I,k, k ∈ {1, . . . , 10}, I ∈ I \ {1, 2, 3} and

GS
I,k, k ∈ {1, 2}, I ∈ I are given in Figures D.1.7 - D.1.10. These estimates illustrate

the impact of atmosphere on the dependence structure.

Bootstrapped χ estimates for the groups GA
I,k, k ∈ {1, . . . , 10}, I ∈ I \ {1, 2, 3} and

GS
I,k, k ∈ {1, 2}, I ∈ I are given in Figures D.1.7 - D.1.10. These estimates illustrate

the impact of atmosphere on the dependence structure.

For a 3-dimensional random vector, the angular dependence function, denoted λ(·),

is defined on the unit-simplex S2 and describes extremal dependence along different rays

ω ∈ S2. As noted in Section 6.4.2, we can associate each of the probabilities from C3,

p1 and p2, with points on S2, denoted ω1 and ω2 respectively. With I = {1, 2, 3}, we

consider λ(ω1) and λ(ω2) over the subsets GS
I,k, k ∈ {1, 2} and GA

I,k, k ∈ {1, . . . , 10}.

We note that λ(ω1) is analogous with the coefficient of tail dependence η ∈ (0, 1]
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(Ledford and Tawn, 1996), with η = 1/3λ(ω1); this corresponds with the region where

all variables are simultaneously extreme. Furthermore, λ(ω2), which corresponds to

a region where only two variables are extreme, is only evaluated after an additional

marginal transformation of the third Coputopia time series; see Section 6.4.2.

Estimation of λ(·) for each simplex point and subset was achieved using the Hill

estimator (Hill, 1975) at the 90% level, with uncertainty subsequently quantified via

bootstrapping. The results shown in Figures D.1.11 - D.1.14 provide further evidence

of a relationship between the extremal dependence structure and the covariates.

To illustrate the estimated trend in dependence, Figure D.1.15 shows the estimated

scale functions, σ (ω;xt), over atmosphere for parts 1 and 2. Under the assumption of

asymptotic normality in the spline coefficients, 95% confidence intervals are obtained

via posterior sampling; see Wood (2017) for more details. We observe that σ tends

to increase and decrease over atmosphere for parts 1 and 2, respectively, although the

trend is less pronounced for the latter. Under our modelling framework, we note that

higher values of σ are associated with less positive extremal dependence in the direction

ω of interest; to see this, observe that the survivor function of the GPD with fixed ξ is

negatively associated with σ. Considering the trend in σ (ω;xt), our results indicate a

decrease in dependence in the region where all variables are extreme.

D.1.2 Additional figures for Section 6.5

In this section, we present additional plots related to Section 6.5 an we refer to p1 and

p2 as parts 1 and 2 of C4, respectively. Figure D.1.16 shows a heat map of empirically

estimated η(·) dependence coefficients and provides further evidence of the existence of

the 5 dependence subgroups identified in our exploratory analysis for challenge C4. It

also suggests that our modelling assumptions are reasonable; specifically that there is

in-between group independence, and that the extremes within each group do not occur

simultaneously.
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Figure D.1.17 shows the bootstrapped estimated individual group and overall probabili-

ties with respect to conditioning threshold quantile for part 1 of challenge C4. Similarly,

Figure D.1.18 shows the bootstrapped estimated individual group and overall proba-

bilities with respect to conditioning threshold quantile for part 2.
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Figure D.1.5: Detailed pattern of missing predictor variables in the Amaurot data set.
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Figure D.1.6: Plots of St (left) and At (right) against t for the first 3 years of the
observation period.
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Figure D.1.7: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.
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Figure D.1.8: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 3}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.
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Figure D.1.9: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.
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Figure D.1.10: Boxplots of empirical χ estimates obtained for the subsets GS
I,k, with

k = 1, 2. In each case, pink and blue colours illustrate estimates for seasons 1 and
2, respectively. From top left to bottom right: I = {1, 2, 3}, I = {1, 2}, I = {1, 3},
I = {2, 3}.
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Figure D.1.11: Boxplots of empirical λ(ω1) estimates obtained for the subsets GA
I,k,

with k = 1, . . . , 10 and I = {1, 2, 3}. The colour transition (from blue to orange) over
k illustrates the trend in λ estimates as the atmospheric values are increased.
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Figure D.1.12: Boxplots of empirical λ(ω1) estimates obtained for the subsets GS
I,k,

with k = 1, 2 and I = {1, 2, 3}. In each case, pink and blue colours illustrate estimates
for seasons 1 and 2, respectively.
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Figure D.1.13: Boxplots of empirical λ(ω2) estimates obtained for the subsets GA
I,k,

with k = 1, . . . , 10 and I = {1, 2, 3}. The colour transition (from blue to orange) over
k illustrates the trend in λ estimates as the atmospheric values are increased.
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Figure D.1.14: Boxplots of empirical λ(ω2) estimates obtained for the subsets GS
I,k,

with k = 1, 2 and I = {1, 2, 3}. In each case, pink and blue colours illustrate estimates
for seasons 1 and 2, respectively.
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Figure D.1.17: Part 1 subgroup and overall bootstrapped probability estimates on the
log scale. The red points indicate the original sample estimates and the colouring of the
boxplots indicates the choice of conditioning threshold, with the conditioning quantile
indices 1-6 referring to the quantile levels {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, respectively.
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Figure D.1.18: Part 2 subgroup and overall bootstrapped probability estimates on the
log scale for C4. The red points indicate the original sample estimates and the colour-
ing of the boxplots indicates the choice of conditioning threshold, with the conditioning
quantile indices 1-6 referring to the quantile levels {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, respec-
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