Quantum Monte Carlo study of the quasiparticle effective mass of the
two-dimensional uniform electron liquid

S. Azadi,l’ N. D. Drummond,? A. Principi,! R. V. Belosludov,? and M. S. Bahramy!

! Department of Physics and Astronomy, University of Manchester,
Ozford Road, Manchester M13 9PL, United Kingdom
2 Department of Physics, Lancaster University, Lancaster LA1 JYB, United Kingdom
3 Institute for Materials Research, Tohoku University, Sendai 980-08577, Japan
(Dated: August 8, 2025)

The real-space variation quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo
(DMC) are used to calculate the energy bands and the effective mass of the paramagnetic and
ferromagnetic two-dimensional uniform electron liquid (2D-UEL). The many-body finite-size er-
rors are minimized by performing simulations for three system sizes with the number of electrons
N = 146, 218, and 302 for paramagnetic and N = 91, 139, and 151 for ferromagnetic systems. We
consider 2D-UEL to be within the density range 1 < rs < 10. The VMC and DMC results predict
that the effective mass m* of the paramagnetic 2D-UEL at high density rs = 1 is very close to 1,
suggesting that the effective mass renormalization due to electron-electron interaction is negligible.
We find that m™ of the paramagnetic 2D-UEL obtained by the VMC and DMC methods increases
by rs but with different slopes. Our VMC and DMC results for ferromagnetic 2D-UEL indicate that
m”* decreases rapidly by reducing the density due to the strong suppression of the electron-electron

interaction.

I. INTRODUCTION

The two-dimensional uniform electron liquid (2D-
UEL) is one of the most fundamental models in physics
because it captures the essential physics of interacting
electrons in two dimensions, which is a regime where
quantum mechanics, statistics, and Coulomb interactions
all play equally critical roles [IH28]. Although it is sim-
ple, it is nontrivial as strong interactions and quantum
effects cannot be treated exactly except in special limits.
This combination makes it a benchmark for developing,
testing, and understanding many-body theories. In fact,
it is a playground to test our understanding of quantum
many-body physics.

In a 2D-UEL, the strong electron-electron correlations
modify the behavior of individual electrons, leading to
the emergence of quasiparticles with renormalized prop-
erties such as energy dispersion, effective mass m*, and
lifetime. These properties can be understood within the
framework of Fermi-liquid theory [6]. There is much ex-
perimental evidence for the renormalization of electronic
properties. For instance, the effective mass renormaliza-
tion can be measured using Shubnikov-de Haas (SdH)
oscillations, cyclotron resonance experiments, and angle-
resolved photoemission spectroscopy (ARPES), which di-
rectly probes the renormalized dispersion relation [29-
32]. The m* governs how electrons respond to external
forces and determines the group velocity vp = kp/m®*,
where kg is the Fermi momentum. Hence, m™* affects the
current, conductivity, and collective modes [33].

In a simple non-interacting 2D-UEL, the Hamiltonian
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subjected to periodic boundary conditions (PBC) con-
tains only one-body term Hy = Zf\; p?/2m where p;
and m are the momentum operator of the electron ¢, and
bare electron mass, respectively. Within this simplistic
description of a Fermi liquid, Hy can be written as the
product of single-particle wave functions, each of which
satisfies the Schrédinger equation (—V?2/2m)yy(r) =
extk(r), where for simplicity we ignored electron spin
and used atomic units & = 1. k and r represent the set of
quantum numbers characterizing the one-particle quan-
tum state and the electron vector position, respectively.
The eigenfunction of Hy with eigenvalue F is a fully an-
tisymmetric wave function under exchange of the coordi-
nates of two particles with combinations ¥(ry,...,ry) =
ﬁ S p(=1)PPIY 4y, (r;). This wave function satis-
fies the Pauli exclusion principle, namely the occupation
number of the single-particle state ¢y, is 0 or 1. This
can be seen by writing the wave function in determinant
form, called a Slater determinant:

Z/Jk'l (rl) T/Jkl (rQ) wkl (rN)
W) = \/%det d}kg:(rl) 1%:(1”2) Y, (:YN)
wkz\] (1‘1) ¢k1\r (1‘2) wkz\] (rN)

(1)
The determinant is zero if two sets of quantum numbers
are equal (i.e., two rows are the same) and changes sign
under the exchange of the coordinates of two fermions
(i.e., exchange of two columns). As imposed by PBC
the single-particle states are plane waves 1; = e™¥/ VA
where i = ky, ky, and eFe(@+L) = ether eiky(y+L) = eikyy
where L and A are the side and surface of the simu-
lation cell, respectively. Hence, the electron momen-
tum k is discretized and can only have the value of
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ko = 2%no‘;oz = x,y where n, is an integer number.

The single particle and total energies of the system are
given by ex = % and F = Zfil €k, , respectively.

In the non-interacting electron model of 2D-UEL, the
ground state of the IN-electron system is obtained by oc-
cupying the N lowest energy one-particle state character-
ized by a set of quantum numbers ki, ks, ..., ky. The
highest occupied energy state defines the Fermi level kp,
and its energy defines the Fermi energy ep = k%/2m.
Hence, the ground state is created by filling a circle
with radius kr. The va1112e of kris related to the den-
sity p = N/A via p = % It can be easily obtained
that the energy per particle for a non-interacting 2D-
UEL is E/N = k% /4m. Almost all properties of 2D-UEL
can be described as a function of the density parame-
ter rs and spin-polarization ¢ which play a crucial role
in the physics of the electron liquid and are defined as
rs = (1/pm)'/2aj", where p is the electron number den-
sity and ap = 1 a.u. is the Bohr radius, ¢ = (Ny—N,|)/N
in which Ny, NV, and N are the number of electrons with
spin up and down and the total number of electrons in the
system. It can be easily concluded that the Fermi wave
vectors of the non-spin polarized { = 0 (paramagnetic)
and fully spin polarized ¢ = 1 (ferromagnetic) 2D-UEL
are k%:o = V2/ry and k%zl = 2/rs, respectively. The
ferromagnetic system has a larger kg, since all electrons
occupy a single spin band, increasing the required area
in the k-space.

When Coulomb electron-electron interactions are in-
cluded, the energy dispersion deviates from the free-
electron form. The many-body effects modify the en-
ergy dispersion as: E(k) = h?k%/2m + X(k,w) where
Y(k,w) is the self-energy correction due to interactions
including exchange and correlation causing the renormal-
ization of the bare electron mass. In real materials, the
renormalized mass of electrons, called effective mass m*,
differs from the bare mass due to electron-electron in-
teractions, electron-phonon interactions, and plasmonic
effects. Although scattering with lattice vibrations and
coupling with collective excitations modify m*, at very
low temperature, electron-electron Coulomb interactions
are the dominant scattering mechanism, leading to a fi-
nite lifetime 7,;! ~ E? indicating Fermi-liquid behav-
ior. According to Fermi-Liquid theory [6] quasiparti-
cle excitations can be characterized by the renormaliza-
tion constant Z(kr), which is related to the residue of
Green’s function at k£ = kp and m*. In a simple picture,
1—Z(kr) and 1 —m™*/m both provide information about
the amount of many-body effects in the Fermi liquid.

Two primary practical approaches have been employed
to numerically calculate Landau Fermi liquid parame-
ters at zero temperature, including the effective mass
m*. The first approach is based on mapping the exci-
tation energies of an interacting Fermi liquid onto those
of a non-interacting ideal Fermi gas. This method di-
rectly relies on Landau’s fundamental assumption that
the low-lying excited states of an interacting Fermi sys-
tem have a one-to-one correspondence with those of a

non-interacting Fermi gas, with quasiparticle states ef-
fectively replacing single-particle states. Moreover, in
the regime of weak excitations, the Fermi liquid state
can be fully characterized by the distribution function
N(k,o) of quasiparticles in momentum and configura-
tion space. As a consequence of these assumptions, the
low-energy elementary excitations of an interacting Fermi
liquid can be described by the addition or removal of in-
dividual quasiparticles from a filled Fermi sphere of ra-
dius kg, where kr denotes the Fermi momentum of a
non-interacting Fermi gas with the same Fermion den-
sity meaning that the volume of the Fermi sphere does
not change as the interaction is switched on. In fact, ac-
cording to Luttinger’s theorem [34] the number of plane
wave states with k£ < kp equals the number of electrons
n =2 [O(kp — k)dk/(2r)?, where d is the dimension of
the system.

The second approach is based on assumption that
some sort of perturbation theory (to arbitrary order)
can be used to treat the interaction between Fermions
[1, 6] [7, B4H37]. A common way to estimate the renor-
malized mass is using the many-body perturbation the-
ory to calculate the self-energy function X (k,w), which
was initially introduced by Hedin (GW approximation)
[38]. We summarize the formalism here to clarify the
reason behind the recent contradiction between the m*
results for 3D UEL [39-41]. The standard staring point
of GW calculations is the Dyson equation for the Green’s
function:

Go(k,w) = [w—e) —N(k,w) ! (2)

where £) and ¥(k,w) are non interacting single parti-
cle energy and the irreducible self-energy, respectively.
The effective mass which is a characteristic feature of the
quasiparticle excitation dispersion curve g = k?/2m*
can be written as [42]

1_ 0% (k,w)

m* _ ow k=kp (3)
0% (k,w)

B

’k:k}F

where m is bare electron mass. Using the Dyson equa-
tion, self-energy is given as

dw’
o

(4)
the many-body effects are included in W function, which
can be approximated by

Y(k,w) = z/ (Qd;l)j / W(q,w)Go(k — q,w —w')

I'(g,w) ()

where v, = 47 /¢? is the bare Coulomb interaction, (g, w)
is the exact dielectric function, and I'(¢q,w) is the vertex
correction [42]. Hedin used the random phase approxi-
mation (RPA) in his work by choosing I' = 1 and using



the RPA dielectric response in Eq. . Therefore, W was
an effective RPA screened interaction
RPA Yq

W (Q7w) - ERPA(C],(JJ) (6)
The self-energy 3(k,w) was calculated by substituting
the W function from Eq. @ into Eq. and using the
non-interacting Green’s function Gq in the right-side of
Eq. . Within this GoW, approximation [38] m*/m
of 3D-UEL increases within the metallic regime and be-
comes larger than 1 for ry > 3. However, if Eqs (2) and
(4) are solved self-consistently, even within the RPA ap-
proximation, m*/m of 3D-UEL monotonically decreases
with 7, as reported in previous works [43H4T], as we also
observed in our quantum Monte Carlo (QMC) simula-
tions of the energy bands of 3D-UEL [39]. The values
of m*/m obtained using many-body perturbation the-
ory within the GW approximation may depend on the
specific procedure employed to calculate G and W. In
addition, m*/m is determined by the derivatives of self-
energy with respect to k and w, quantities that depend
significantly on the chosen form of the approximation for
the effective interaction and the local field factors.

Higher-order terms in the perturbation series for the
3D-UEL have been calculated using variational diagram-
matic Monte Carlo (VDMC) methods [41], 48], and the
resulting predictions for m*/m are consistent with those
from Gy W calculations. Holzmann et al. further demon-
strated that VMC calculations of the static self-energy
3(k,0) for the 3D-UEL yield values of m*/m in good
agreement with GoWy and VDMC results within the den-
sity parameter range 1 < rg < 10 [40]. Although this
work focuses on the zero-temperature effective mass, it
should be noted that m*/m can also be determined using
finite-temperature thermodynamic methods [49] such as
the path-integral Monte Carlo technique [50].

Whether m*/m is greater than or less than one in the
density parameter range 1 < rg < 10 remains an open
question. In principle, the results obtained from the two
aforementioned approaches should agree within their re-
spective error bars, as both are fundamentally based on
Landau’s Fermi liquid theory. Any discrepancies between
them are attributed primarily to technical limitations
and differences in their numerical implementations. The
differences between the results obtained from the two ap-
proaches are much smaller in the high-density regime,
where perturbation theory is more reliable, than in the
low-density regime, where correlation effects dominate.
One of the main sources of controversy arises from finite-
size errors and the challenges associated with extrapolat-
ing to the thermodynamic limit [51].

In this work, we follow the first approach to calculate
the energy dispersion curve and the effective mass ratio
m* of paramagnetic and ferromagnetic two-dimensional
uniform electron liquids (2D-UEL) within the density pa-
rameter range 1 < rg < 10, employing both variational
Monte Carlo (VMC) and diffusion Monte Carlo (DMC)
methods. Although this methodology has been previ-
ously applied to the three-dimensional UEL [39] as well as

to the 2D-UEL [16] 26], further investigation is needed to
resolve the discrepancies observed between this approach
and GW-based calculations. In the present study, we
systematically analyze the parameters that can affect the
VMC and DMC results, reduce finite-size errors by us-
ing larger numbers of electrons, and employ an improved
trial wave function compared to previous works [16], [26].

II. DETAILS OF THE QMC CALCULATIONS

We used the Slater-Jastrow (SJ) and SJ-backflow
(SJB) trial wave functions. The SJ wave function has
the form (R4, R)) = ¢/BrRUD(Ry)D;(R}) where
Dy and D, are Slater determinants of up- and down-spin
single-particle plane wave orbitals defined in Eq. . Ry,
Ry, and e’ are the vector coordinates of the up- and
dow-spin electrons, and the Jastrow correlation factor,
respectively. In the SJB wave function the electron co-
ordinates in the Slater determinant were replaced by the
coordinates obtained by backflow (BF) transformation
represented by a polynomial in the electron-electron dis-
tance [52] [53]. The Jastrow term consisted of polynomial
and plane wave expansions in electron-electron separa-
tion [I6] 17, 54]. The variational parameters in the trial
wave function were optimized using variance minimiza-
tion [55] [56] followed by linear least square energy min-
imization [57] as implemented in the CASINO package
[58]. The quality of our optimized wave function is such
that the VMC and DMC results for m* are equal within
the error bar.

The VMC and DMC energy bands e(k) are calcu-
lated by evaluating the difference in QMC energy when
an electron is added to or removed from a state with
momentum k. The single-particle energy for an occu-
pied and unoccupied state at momentum k is defined
as e_(k) = By — E_(k) and e4(k) = E,(k) — Ey, re-
spectively, where FEj is the ground state total energy,
E_(k) (F4+(k)) is total energy of the system with an
electron removed from (added to) the single particle or-
bital ¢’*T in the Slater determinant defined in Eq. . It
can be argued that electronic excitations near the Fermi
level correspond to quasiparticle excitations and the elec-
tronic and quasiparticle bands agree in the vicinity of the
Fermi surface and therefore have the same derivative at
kr. The energy of a quasiparticle and a quasihole of
2D-UEL was calculated using VMC [59], while in this
work the energy of a single quasiparticle or quasihole is
determined. The two approaches should be equivalent
in the thermodynamic limit, since the energy of inter-
action between the quasiparticle and the quasihole goes
to zero when the simulation cell size goes to co. How-
ever, in a finite-size system, the presence of the interac-
tion energy can be a source of error (Fig. (7). The effec-
tive mass is calculated using the derivative of the energy
bands m* = kp.(de/dk),;}. We minimized FS errors by
performing calculations for different simulation cell sizes
with up to 302 electrons. We determined the energy band



at a series of k values and carried out a least-square fit of
a Padé function e(k) = (ap+a1k+axk?+azk?)/(1+2azk)
and a quartic function (k) = ap+azk?+ask* to the band
values. We discussed how the final results for m* depend
on the fitting function.

The QMC simulations were performed using a fi-
nite simulation cell with hexagonal symmetry subject to
PBC. Hence, the available momentum states k are lo-
cated on the grid of reciprocal lattice points offset by the
Bloch vector of the simulation cell kg, which we set zero
in our calculations. We used 1, = r,,/No/N’ where
N' =N —-1and N' = N + 1 to calculate e_(k), and
e+ (k), respectively. Hence, the simulation cell volume
was fixed when an electron was removed from or added
to the simulation cell.

We studied paramagnetic and ferromagnetic 2D-UEL
at densities ro= 1, 2, 3, 4, 5, and 10 and performed
VMC and DMC calculations for simulation cells contain-
ing N = 146, 218, and 302 electrons for the paramagnetic
system and N = 91, 139, and 151 for the ferromagnetic
system. We calculated the VMC and DMC total ener-
gies at more than twenty momentum vectors within the
range 0 < k < 1.7kp. In the thermodynamic limit, the
exact energy band is smooth and well behaved near the
Fermi level. However, the Hartree-Fock (HF) band is
pathological, as discussed in the next section. In a finite
system size, the HF band oscillates at momentum vectors
near the kp, and although QMC retrieves a large frac-
tion of the correlation energy, it does not fully eliminate
the pathological behavior of HF theory. Therefore, it is
important to consider excitations away from the Fermi
surface to obtain the gradient of the energy band at kp.

III. RESULTS AND DISCUSSION

In the following sections, we systematically analyze dif-
ferent factors that can affect the QP energy bands ob-
tained by VMC and DMC. The single particle energy
of occupied and unoccupied states is obtained using sub-
traction of two energies, and hence any source of error or
improvement in calculations may cancel out due to sub-
traction. In the following, we discuss when this can or
cannot be true.

A. Hartree-Fock energy band

According to HF theory, the energy of a single electron
with spin o is given by e, (k) = (k) + 5 (k), where
the first and second terms are the free-electron energy
and the exchange contribution, respectively. Within HF
theory, the two components of spin are not mixed, and
therefore the ground state of HF is given by the product
of two independent full Fermi circles with radii kr, and
kr,. The exchange term for 2D-UEL can be written as

[33]

(x) _ #@ o _2kF,U
00 = - [ e G = TR k) (1)

where the function f is given by

<1
@)= {xm;) ~(1- 2KQ) ez

where K (x) and F(x) are the complete elliptic integrals
respectively of the first and second kind. The HF en-
ergy band of 2D-UEL at density parameters rs = 1,5 is
shown in Fig[l] It can be observed that the HF bands of
finite systems and the system in the thermodynamic limit
(N— o0) exhibit pathological behavior close to k = kp.
Hence, the derivatives of bands near the Fermi surface
become extremely large and fluctuate. This pathological
behavior at the Fermi surface affects the DMC energy
bands because not all the correlation energy is retrieved
by the DMC even when a BF is used. Furthermore, be-
cause of the logarithmic divergence of de®) (k) /dk|j—p .,
the density of the one-electron state goes to zero near
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FIG. 1. HF energy bands in (a.u.) for N-electron (N = 146,
218, and 302) paramagnetic (( = 0) 2D-UEL with density
parameter rs = 1,5. HF energy band in the infinite system
size limit (N— oo) defined in Eq. is also plotted. Legend
for plot rs = 5 is the same as rs = 1.

Figurd]] exhibits a large increase in bandwidth ep =
€kr — €0 in the HF band compared to the free-electron
system. Considering that the bandwidth of the free elec-
tron 2D-UEL is equal to the Fermi energy g, one can
define the HF bandwidth as eg = ep + ngF) — sgc). Since

5,(::) is a negative function which monotonically increases

by k the HF energy of the system at the bottom of the
band k& = 0 decreases by a larger amount than the energy
of the system at k = kp. Therefore, the HF prediction
of ep is larger than in the case of free electrons. As we
show below, VMC and DMC reduce g by capturing the
correlation energy.



B. Comparing VMC and DMC m*

The VMC and DMC energy bands of N-electron para-
magnetic and ferromagnetic 2D-UEL with density pa-
rameters 7, = 1, 5, and 10 are shown in Fig. 2] The
energy bands for paramagnetic 2D-UEL with density pa-
rameters 75 = 2,3,4 are presented in the Supplementary
Materials [60]. We also show the free-electron and HF
energy bands in the thermodynamic limit in Fig. [2 The
free-electron band is more accurate than the HF band,
especially in lower density. The values of m* obtained us-
ing the VMC and DMC methods in each N are tabulated
in the Supplementary Materials [60]. Our results indicate
that m* obtained by the VMC and DMC methods agree
with the error bars. All the main factors that can affect
the results of the VMC and DMC for m* such as the
nodal surface of the trial wave function, the optimization
of the wave function, the fitting function and the DMC
time step are discussed in the following sections.

C. Effect of Backflow on m*

In the SJ wave function with the bare Slater deter-
minant defined in Eq. the nodes are fixed and deter-
mined solely by the plane waves. BF modifies the particle
coordinates to X; = r; + &(r;), where &; is the BF dis-
placement, which is a function of the relative electron co-
ordinates. So, in the SJB wave function the determinant
becomes det|¢;(X;)| = det|o;(r; + &;)| which effectively
makes the nodal surface depend on the electronic corre-
lation, not just the mean-field single-particle orbitals. In
fact, the BF transformation includes an electron-electron
correlation directly into the Slater determinant, which is
absent in the HF Slater determinant. The FN approxi-
mation restricts the projected WF to have the same nodal
surface as the trial WF, and therefore the quality of the
nodal surface is crucial in the FN-DMC. Errors in the
nodal surface lead to a variational bias. These errors
significantly affect the QP energy band of 2D-UEL and
can be substantially minimized by using the BF which is
vital, especially at large r;.

We compared the VMC and DMC energy bands of
paramagnetic 2D-UEL obtained using the SJ and SJB
wave functions for the system size N = 146 and the den-
sity parameters rs = 1 and 5 (Fig. . Our results suggest
that including the correlation within the Slater determi-
nant using the BF transformation plays a crucial role in
the effective mass of 2D-UEL. The pathological behav-
ior in the VMC and DMC energy bands, which is caused
by the divergence of the derivative of the HF band at
k = kp, dramatically affects the calculation of m*. De-
creasing this effect depends on the correlation energy re-
trieved in the QMC calculations, which can be achieved
by using the BF transformation. Comparison of m* for
rs = 1,5 obtained using the SJ and SJB wave functions
shows that the correlation energy is more important at
low density. The BF substantially improves the ground-

state energy for both ground- and excited-state states.
This improvement may cancel out when the QP energies
are calculated. However, BF also causes a continuous
transformation of the nodal surface of the wave function,
which is vital to obtain the correct m*. This can be ob-
served by comparing the m* obtained by the VMC and
DMC methods using the SJ and SJB wave functions.

The SJ-VMC and DMC results for m* of 2D-UEL
with rs = 5 are smaller than 1, suggesting that m* of
paramagnetic 2D-UEL decreases with the reduction in
density. However, the static correlation included in the
Slater determinant through BF changes the results and
predicts that m* of 2D-UEL with r, = 5 obtained by
SJB-VMC and DMC are greater than one, predicting
that m* of paramagnetic 2D-UEL increases when den-
sity decreases. Static correlation can be improved by us-
ing the full configuration interaction (FCI) method [61].
Then one would expect that the m* of paramagnetic 2D-
UEL at low density calculated by FCI would be larger
than the SJB-VMC and DMC results.

D. Effect of wave function optimization on m*

We compared the VMC and DMC energy bands of
paramagnetic 2D-UEL obtained using two approaches.
In the first approach, we optimized the real wave function
for the system size N = 146 and used it for all k-vectors
in occupied and unoccupied energy bands. In the second
approach, we used energy minimization to reoptimize the
wave function in each k-vector. We calculated m* using
the Padé function fitting and compared the results for
rs = 1,2,5. Figure [4] shows the energy bands that are
obtained using two approaches for r; = 1,5. The same
results for r;, = 2 are presented in the supplementary
materials [60]. We found that m* obtained using VMC
is more dependent on wave function optimization than
DMC. The effect of wave function optimization in each k-
vector on DMC effective mass is negligible. However, the
energy minimization in each k-vector slightly increases
the VMC effective mass.

E. Effect of fitting function on m*

We carried out a least-square fit of a quartic function
to VMC and DMC bands and compared the results with
the ones which were obtained using Padé function. The
energy bands and effective masses obtained by fitting the
quartic function are displayed in the supplementary ma-
terials [60]. We found that the quartic function provides
a better fit than Padé function. The fitting of the quar-
tic function produces a slightly larger m™* for all densities
and system sizes.
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FIG. 2. DMC and VMC energy bands (in a.u.) for paramagnetic and ferromagnetic 2D-UEL at r; =1, 5, and 10 obtained
using system sizes N=146, 218, and 302 and N=91, 139, and 151 for ( = 0 and ¢ = 1, respectively, and SJB wave function. A
quartic function is fitted to the VMC and DMC data. The free-electron and HF bands are offset to coincide with the fitted

DMC bands at k = kp.
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paramagnetic 2D-UEL obtained by SJ and SJB wave func-
tions with density parameters rs = 1,5. The effective mass

m™ is obtained using a quartic function fit.

F. Effect of DMC time step on m*

The DMC time step dt controls the imaginary-time
propagation of walkers. Although the smaller dt reduces
the Trotter error (systematic errors due to discretiza-
tions), it requires more steps and consequently a longer
simulation time to converge. Walkers represent config-
urations in an ensemble, and increasing them improves
statistical averaging and reduces population control bias.
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FIG. 4. VMC and DMC energy bands of paramagnetic 2D-
UEL obtained using the same WF for all k vectors (0 index)
and the optimized WF at each k vector (1 index). The energy
bands are calculated for rs = 1,5 with N = 146 electrons in
the simulation cell and SJB wave function. Quartic function
fitting is used to calculate the effective mass m*. The free-
electron and HF bands are offset to coincide with the fitted
DMC bands at k& = k.

When dt is small, the walkers drift only slightly in each
step and therefore the variance of the walker popula-
tion increases slowly and the population control error is
smaller. However, to keep the statistical fluctuations low,
especially when branching is more frequent in small dt,
a larger number of walkers N, is needed. The popula-



tion control error scales roughly as ~ (N, dt)~!, meaning
that decreasing dt implies increasing IV,, to keep the bias
small. In practice, the ground-state DMC energy of a
system is obtained using the extrapolation of the DMC
energy as a function of dt to dt — 0. This procedure be-
comes very expensive for QP band simulations. Hence,
it is important to systematically study the effect of dt on
the QP energy band and m*.

VMC —m* =1.23(1)
DMC — dt=0.05—m" =0.99(6)
DMC —dt=02-m" =1.11(2)
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FIG. 5. VMC and DMC energy bands of N-electron param-
agnetic 2D-UEL (N = 302) with density parameter rs = 5.
The DMC energies are calculated using two time steps of 0.05
and 0.2 a.u. The effective mass is obtained using a quartic fit-
ting.

We found that the DMC time step dr has a crucial
effect on m*. We compared the DMC energy bands for
system size N = 302 and rs = 5 which are obtained with
two different DMC time steps of 0.05 and 0.2 a.u. and the
same number of walkers N,, = 2560 and 25 x 10% number
of steps. Figure |5| displays the VMC and DMC energy
bands of paramagnetic 2D-UEL with density parameter
rs =5 and N = 302 electrons in the simulation cell. The
fitting error for the DMC band obtained with dt = 0.05
a.u. is much larger than that obtained with dt = 0.2 a.u.,
resulting in a smaller m* with a large error bar. Our
results show that the DMC time-step error is not canceled
when the excitation energy is calculated for each vector
k.

G. Finite-size effects on m™

The VMC and DMC calculations of m* are known to
be affected by finite-size (F'S) effects. Holzmann et al.
addressed these effects in VMC calculations for the para-
magnetic 2D uniform electron liquid using a system of
N = 58 electrons, employing analytical forms for both
the Jastrow and backflow (BF) terms [24]. Their study
revealed that the convergence of m* to its thermody-
namic limit value is extremely slow, with leading-order
corrections scaling as N~%2°, Drummond et al. used dif-
ferent forms for the Jastrow and BF potentials and based

on x? analysis suggested that FS errors show N1 be-
havior [26]. In addition to the form of Jastrow and BF,
there are several factors that can contribute to the pro-
nounced differences in the impact of FS errors on m*.
The analysis by Holzmann et al. is based on excitations
close to the Fermi surface, whereas Drummond et al. ex-
amined the entire energy band. Additionally, the choice
of cutoff lengths in the BF function across different su-
percell sizes influences the fraction of correlation energy
recovered. The selection of the twist angle used during
the wave function optimization also affects the quality of
the BF function. Furthermore, the effectiveness of the
optimization process itself may depend on system size,
as finding the global energy minimum is generally easier
in smaller systems than in larger ones. Unfortunately, to
the best of our knowledge, there is currently no theoret-
ical framework, independent of simulation-specific tech-
nical details, for systematically analyzing FS effects on
excitations in QMC calculations.

To investigate the behavior of m* as a function of N,
we have fitted the function m*(N) = ¢N~¢ + m*(o00)
where m*(00), ¢, and « are fitting parameters, to the raw
data. The value of m*(oc0) for different fitting parameter
« is listed in Table [l Our results for m*(o0) of 2D-UEL
with r; = 5,10 show a strong dependence on the choice
of the exponent if o < 0.5. For the rest of this work,
we follow the prediction by Drummond et al. for the
choice of a = 1.5, as we employ the same forms for the
Jastrow and BF terms and consider the entire energy
band. Although our system sizes are larger than those
used in previous studies, our extrapolation to the infinite
system size limit relies on only three data points, and
consequently, a x? analysis does not provide meaningful
information regarding the quality of the fit. The m™* of
the paramagnetic and ferromagnetic 2D-UEL obtained
by the VMC and DMC methods is plotted against N ~1-5
in Fig. [} We found that the FS errors in the VMC
results for m* are less than DMC. In addition, F'S errors
increase as density is reduced.

H. m" of 2D-UEL as a function of density

The effective mass m* against density parameter r,
for paramagnetic 2D-UEL, which is obtained by experi-
ments and theoretical methods, is shown in Fig. [l GW
results were calculated using the RPA effective interac-
tion [33], and the Kukkonen-Overhauser effective inter-
action by solving the Dyson equation self-consistently or
within the on-shell approximation [22]. We compare our
VMC and DMC results (pres. work) with previous VMC
and DMC results [24] 26], [59], and experiments [311, 32].
GW calculations [22, [33] show a steep increase in m* of
paramagnetic 2D-UEL by decreasing the density, which
is consistent with the initial experiment [32]. However,
the GW results can strongly be affected by the choice of
effective interaction and whether or not the calculations
are carried out self-consistently.
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FIG. 6. Effective mass m* of paramagnetic (¢ = 0) and ferro-
magnetic (¢ = 1) 2D-UEL obtained by VMC and DMC as a
function of N~1-%, where N is the number of electrons in the
simulation cell.

Our VMC and DMC results for m™* at high density ry =
1 suggest that the effective mass of paramagnetic 2D-
UEL is close to 1, which means that the renormalization
of the electron mass introduced by the electron-electron
interaction is negligible. The VMC and DMC values of
m* of the paramagnetic 2D-UEL in r, = 1 are 0.98(1)
and 0.95(1) a.u., respectively. We have previously found
that the DMC value of m* of the paramagnetic 3D-UEL
inrs =118 0.921(1) a.u. [39]. Then it can be concluded
that the electron-electron interaction in 3D-UEL and its
effect on the electron mass renormalization are stronger

Ts 1 2 3 4 5 10
a=20
VMC-Para 0.98(1) 1.060(7) 1.13(1) 1.20(2) 1.23(2) 1.34(5
DMC-Para 0.96(1) 1.05(1) 1.25(4

(2) 1.34(5)
1.08(2) 1.16(3) 1.11(3) 1.25(4)

VMC-Ferro 0.86 0.69(2) 0.59(2)
(2) 0.58(2)

A,_\,_\,_\
—_
— — — —

DMC-Ferro 0.86(1 0.69(2) 0.58(2
a=1.5
VMC-Para 0.98(1) 1.06(1) 1.12(1) 1.20(2) 1.22(3) 1.32(4)
DMC-Para 0.95(1) 1.05(1) 1.06(1) 1.15(4) 1.10(3) 1.25(5)
VMC-Ferro 0.87(1) - -- 0.69(2) 0.59(3)
DMC-Ferro 0.87(1) 0.69(2) 0.58(3)
a=1.0
VMC-Para 0.98(2) 1.06(1) 1.11(1) 1.19(2) 1.19(4) 1.27(3)
DMC-Para 0.94(2) 1.05(1) 1.03(1) 1.13(3) 1.06(3) 1.20(4)
VMC-Ferro 0.86(2) --- -+ 0.70(3) 0.59(3)
DMC-Ferro 0.86(2) 0.69(3) 0.58(3)
a=0.5
VMC-Para 0.98(1) 1.06(1) 1.09(4) 1.18(4) 1.1(1) 1.1(1)
DMC-Para 0.92(3) 1.05(3) 0.9(1) 1.1(1) 0.94(6) 1.1(1)
VMC-Ferro 0.87(5) --- 0.72(6) 0.60(5)
DMC-Ferro 0.86(5) 0.70(6) 0.56(5)
a=0.25
VMC-Para 0.98(2) 1.06(1) 1.03(8) 1.15(8) 0.9(2) 0.9(3)
DMC-Para 0.86(8) 1.05(8) 0.7(2) 0.9(2) 0.7(1) 0.9(2)
VMC-Ferro 0.9(1) <o 0.7(1) 0.6(1)
DMC-Ferro 0.9(1) 0.7(1) 0.5(1)

TABLE 1. Effective mass m” of paramagnetic and ferromag-
netic 2D-UEL at the thermodynamic limit obtained by VMC
and DMC methods and SJB wave function. The values at
the thermodynamic limit for different fitting parameter « are
listed: m*(N) = cN~% + m™*(c0).

than in 2D-UEL. In addition, the m™* of the paramagnetic
3D-UEL decreases as the density decreases [39], while the
m* of the 2D-UEL increases when the density is reduced.

Figure [7] shows the m* of ferromagnetic 2D-UEL as a
function of density parameter r5 obtained by the VMC,
DMC, and GW methods and compared to experiment.
Our VMC and DMC data agree relatively well with the
experimental data reported in Ref. 290 It should be clari-
fied that the 2D electron-liquid systems studied in the ex-
periments are different from the ideal 2D UEL considered
in this work. This is because the experimental samples
have finite widths and are subject to disorder. There-
fore, a precise quantitative comparison of our numerical
data with available experimental data would be inappro-
priate. Nevertheless, a qualitative behavior can provide
useful information. Our QMC data and GW results sug-
gest a suppression of m* of ferromagnetic 2D-UEL within
the range of density parameters of 1 < ry; < 10. How-
ever, the difference between the GW results obtained self-
consistently and in the on-shell approximation is signifi-
cant [23]. The behavior of m* of ferromagnetic 2D-UEL
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FIG. 7. Effective mass m™ as a function of density param-
eter 1, for paramagnetic (( = 0) and ferromagnetic (( = 1)
2D-UEL. The GW results were obtained using different ap-
proximations as discussed in the text.

as a function of density is similar to that of 3D-UEL [39],
as in both cases m* decreases with the reduction in den-
sity.

We discuss our QMC results for m* of 2D- (present
work) and 3D-UEL [39]. From a perturbation theory
point of view, effective mass renormalization comes from
the real part of self-energy ¥. The parameters that can

affect m* include exchange effects (dominate in high den-
sity, small r;), correlation effects (increasingly important
at low density, large ry), dimensionality, polarization and
screening. In paramagnetic systems, the Coulomb inter-
action is screened more efficiently in 3D, while the screen-
ing is weaker and less effective in 2D, especially at low
density (large rs). This screening in 3D-UEL improves at
lower densities causing the reduction of m*, while the cor-
relation effects become stronger in 2D-UEL by increasing
rs enhancing m*. The evidence is the difference between
m™* of 2D- and 3D-UEL which are obtained using SJ and
SJB wave functions, where the correlation energy is sig-
nificantly improved by including the BF. This difference
is negligible for 3D-UEL [39], while it is huge for 2D-UEL
as can be observed in Fig. Therefore, we argue that
the competition between correlation and screening is the
main reason for the difference between the behavior m*
of 2D and 3D paramagnetic UEL as a function of r, at
low densities.

Another evidence is spin-polarization effects that sup-
press correlation in both 2D and 3D UEL, causing a re-
duction of m* as density decreases. The reason that cor-
relation is suppressed in the spin-polarized case in com-
parison with the paramagnetic system is Pauli exclusion
which prevents electrons from coming close. Hence, we
can summarize that the electron-electron correlation en-
hances m* while the screening and spin-polarization de-
crease it.

IV. CONCLUSIONS

We used the VMC and DMC methods to calculate m*
of paramagnetic and ferromagnetic 2D-UEL within the
metallic density range 1 < ry < 10. We found that the
VMC and DMC effective masses agree within the error
bar. The m* of the paramagnetic 2D-UEL at the thermo-
dynamic limit increases when the density decreases, op-
posite to the ferromagnetic system where m* suppresses
by reducing density. We systematically investigated all
the parameters that may affect the VMC and DMC re-
sults. We found that choosing a correct DMC time step
is crucial in DMC calculation of the energy band of 2D-
UEL. Optimization of the wave function in each wave
vector k has a negligible effect on the DMC results, but
slightly increases m* obtained with VMC. The m* of
the paramagnetic 2D-UEL at high density r;, = 1 and
N = 146 electrons in the simulation cell which is ob-
tained using VMC and the optimized wave function in
each wave vector k is equal to the free electron m*. Com-
parison of the results of VMC and DMC obtained by the
SJ and SJB wave function indicates that the correlation
between electrons plays a crucial role in the behavior of
m* as a function of density. The m™ of the paramag-
netic 2D-UEL obtained by the SJ wave function is smaller
than one, while including the electron correlation in the
Slater determinant by using the BF transformation gives
a larger value than one for m*. Comparison of all VMC



and DMC results suggests that VMC is a reliable alterna-
tive to DMC for studying excite states as long as the trial
wave function is well optimized. Especially in the case of
large system sizes where the cost of DMC simulation is
much more than VMC.

It remains an open question whether the QMC
methodology employed in this work, which calculates the
single-particle energy for an occupied and unoccupied
state of finite-sized systems away from the Fermi surface,
can be exactly connected to the true definition of quasi-
particle energies or bandwidth. Most real-space QMC
calculations have primarily aimed to determine exact en-
ergy eigenstates of the many-body Hamiltonian for finite
systems. However, quasiparticles are not exact eigen-
states, but are defined as poles of the Green’s function
in the lower half of the complex energy plane. In the in-
finite system size limit, excitations away from the Fermi
surface acquire a finite lifetime, resulting in a broaden-
ing of the quasiparticle resonance. Consequently, a direct
one-to-one mapping between these exact eigenstates and
quasiparticle excitations (identified as resonance peak en-
ergies) is not guaranteed for states far from the Fermi
surface. Therefore, a careful reinterpretation and further
development of approaches based on Landau’s Fermi lig-
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uid framework offer a valuable opportunity for future in-
vestigation to clarify the disagreement with the results
obtained using Green’s function formalism.
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