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Abstract 

Over the past decade, the field of terahertz driven magnetic phenomena has 

witnessed a remarkable surge of interest, particularly in the study of 

antiferromagnetic materials, which has emerged as a captivating sub-field within the 

area of ultrafast pump-probe spectroscopy studies.  

This thesis is dedicated to theoretical and experimental studies of a specific 

class of magnetic oxides, namely rare-earth orthoferrites (REOs) and the magnetic 

crystal known as Terbium Gallium Garnet (TGG). These materials are characterised 

by a plethora of fascinating physical phenomena, including the occurrence of spin 

reorientation phase transitions (SRTP), which can be effectively manipulated and 

controlled through the use of THz driving/excitation. 

The first two chapters of this thesis explain the motivations behind this 

research and provide an overview of the theoretical and experimental methods 

necessary for understanding the later chapters.  
Chapter 3 develops the theoretical formalism used to describe THz-driven 

magnetic switching phenomena in rare-earth orthoferrites with non-Kramers ions. It 

provides insights into the dynamics induced by THz radiation on iron spins and 

analyses the mechanisms that facilitate the iron spin-switching process during the 

spin-reorientation phase transition in Thulium orthoferrite (TmFeO3). Based on the 

available experimental data this chapter analyses static and dynamic properties of 

TmFeO3 in the course of SRPT, explains the effects responsible for the spin 

switching behaviour and presents theoretical results with the realistic values of 

threshold fields necessary for achieving effective and minimally dissipative iron spin 

switching showing a good match with experimental findings.    
Chapter 4 delves into our experimental results on the signatures of the 

magnetic analogue of the Jahn-Teller effect during the spin-reorientation phase 

transition in Terbium orthoferrite, (TbFeO3), supported by a developed theoretical 

analysis. It also explores the features of the strong coupling regime between Fe and 

Tb ions, comparing TbFeO3 with other strongly coupled systems as reported in 

previous research. 
Chapter 5 describes the experimental comparison of THz- and optically-

induced spin dynamics of Tb ions in Terbium Gallium Garnet (Tb3Ga5O12). This 

crystal is well-known for its magneto-optical properties but lacks the specific 

magnetic order found in orthoferrites, making it an ideal candidate for investigating 

the features of low-temperature magnetism of pure Tb3+ ions unaffected by 

interactions with other magnetic ions. 

The final chapter summarises our theoretical and experimental results obtained 

throughout this research. It provides an outlook of how these results correlate with 
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each other, and discusses future experimental and theoretical steps that emerged in 

the course of this work. 
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Chapter I. Introduction  

1.1. Magnetism through the history  

Lodestones in myths & legends. Magnetism has enchanted natural 

philosophers for more than three millennia, evolving from lodestone folklore to 

quantum field theory and nanoscale technology. Chinese chronicles place the earliest 

written evidence of magnetite in the Book of the Devil Valley Master (~4th c. BCE), 

which portrays a south-indicating lodestone spoon spinning on polished bronze [1]. 

Archaeologists have dated the “compass spoon” to as early as 2000 BCE [2]. In 

Europe, the etymology of magnet is traced to Magnesia in Anatolia, where Greek 

shepherd Magnes allegedly found iron nails sticking to his sandals. Homeric hymns 

invoke “stone of Hercules,” while Indian Ayurvedic texts prescribe aya-kashtha 

(iron-wood) as a tonic [3]. These myths foreshadow two perennial themes: 

magnetism as marvel and as instrument. Pre-Socratic thinkers saw purposeful spirits 

in the stone. Thales (c. 600 BCE) ascribed lodestone’s vitality to a soul-like 

essence [4], while animists such as Anaxagoras wove magnetism into elemental 

cosmography. By the 4th c. BCE mechanists—Leucippus, Democritus—proposed 

invisible effluvia. Lucretius Carus rendered these corpuscular chains in evocative 

Latin verse (1st c. BCE) describing "So strong the Magnet’s virtue as it darts from 

ring to ring and knits the attracted parts" [6]. Yet neither school measured or 

predicted magnetism; explanation remained poetic. 

Medieval compass & practical magnetism (8th–15th c.). Between China’s 

Han dynasty and the Tang–Song transition, the floating “south-pointing fish” refined 

direction-finding for geomancy and maritime navigation [6]. By 1044 CE, Chinese 

military manuals illustrated an iron fish pivoting toward the south. Islamic scholars 

transmitted the device westward; Al-Ashraf’s treatise (1282 CE) records a dry pivot 

compass [7]. In Europe, Pierre Peregrinus de Maricourt authored his Epistola de 

Magnete (1269), mapping poles, demonstrating attraction/repulsion symmetry, and 

inventing the terrella, a small spherical magnet modelling Earth [8]. 

The first experimental treatise, Gilbert’s De Magnete (1600), declared Earth 

itself a giant magnet and rejected folkloric superstitions (“onions and garlic ruin 

compass needles” — they do not)  [9]. René Descartes answered with a mechanistic 

theory of parties cannelées—threaded particles streaming through one-way ducts 

(1644) [10]. In the 18th c. electricity and magnetism were cast as fluids. Gray’s 

conduction experiments (1729) prompted Benjamin Franklin’s “one-fluid” model; 
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Franz Aepinus (1759) adapted it to magnetism  [11]. Rival “two-fluid” views by du 

Fay, Wilcke and Brugmans labelled poles austral and boreal. The decisive step was 

Coulomb’s torsion balance (1785) confirming an inverse-square force between 

magnetic poles and positing molecular polarisation [12]. Siméon-Denis Poisson then 

framed magnetostatics with a scalar potential V (1824) [13]. 

19th – 20th centuries. On 21 April 1820, Hans Christian Ørsted watched a 

current jolt a compass needle—linking electricity and magnetism [14]. Within 

months Arago, Ampère, Biot and Savart quantified the phenomenon. Ampère 

proposed microscopic circulating currents producing magnetism; Weber and Ewing 

refined molecular models. Michael Faraday pursued field lines, discovering 

diamagnetism and the rotation of polarisation (1845) [15]. James Clerk Maxwell 

unified Faraday’s experimental findings with mathematics by formulating his 

famous equations, which demonstrated that electric and magnetic fields are aspects 

of a single fundamental force—electromagnetism—and that light is an 

electromagnetic wave, thereby linking optics with electromagnetism [16]. 

Gas-discharge studies led G. Johnstone Stoney to coin term “electron” (1874) 

and J. J. Thomson to measure it (1897)  [17]. Pieter Zeeman discovered split of 

spectral lines due to the action of external magnetic field (1896) and H. A. Lorentz 

theoretically explained it [18]. Pierre Curie’s systematic measurements yielded 

susceptibility 𝜒  and identified a critical temperature, the Curie point  [19]. Paul 

Langevin explained diamagnetism as Lenz-induced electron orbits and 

paramagnetism as thermal alignment of permanent moments  [20]. Pierre Weiss 

introduced "molecular field" concept in 1907 to explain ferromagnetism, where the 

internal magnetic field within a material is proportional to the magnetisation of the 

material, and established the Curie–Weiss law: 𝜒 =  𝐶/(𝑇 – 𝑇𝐶) [21]. 

In the beginning of 20th century new experimental and theoretical foundations 

appeared: Stern–Gerlach split silver-atom beams, proving space quantisation 

(1922)  [22]. Pauli proposed the electron’s intrinsic spin and exclusion principle, 

defining the Bohr magneton 𝜇B (1920) [23]. Heisenberg (1928) derived exchange 

interaction 𝐽 force from quantum overlap, while Dirac merged relativity and spin, 

predicting the positron [24]. Felix Bloch identified spin waves (magnons) and 

derived his 𝑇3/2 magnetisation law (1930) [25]. Louis Néel conceived 

antiferromagnetism with negative J  between two sublattices  [26]. 

Band, domain & micromagnetic Pictures (1930–1980). Stoner and Slater 

advanced itinerant-electron ferromagnetism, using band filling to rationalize Ni–Cu 



17 
 

alloys and predicting a Stoner criterion for spontaneous polarisation [27]. Landau 

and Lifshitz (1935) and W.F. Brown Jr. (1962) independently formulated the 

equations describing the domain wall motion; Barkhausen clicks (1919) supplied 

experimental proof  [28]. Heisenberg sketched domain theory for Co; Bloch, Landau, 

Becker and Bozorth elaborated micromagnetics, culminating in Thiele’s analytic 

treatment of bubble domains (1969) and Callen–Josephs simplification (1971)  [29]. 

Bubble memory—cylindrical domains in orthoferrite films—became a 1970s data-

storage technology [30]. Dilute magnetic alloys spurred conceptual revolutions. J. 

Friedel questioned why certain impurities keep local moments in Cu [31]; P. W. 

Anderson modelled the impurity level hybridizing with the conduction band 

(1961) [32]. Jun Kondo explained the low-temperature resistance minimum via 

antiferromagnetic s–d exchange and logarithmic scattering (1964)  [33]; K. G. 

Wilson’s renormalization group (1975) and Andrei/Wiegmann Bethe-ansatz 

solutions (1980–81) closed the many-body circle  [34,35]. Low dimensions forced 

new paradigms. Onsager’s exact 2-D Ising solution (1944) prefigured Mermin–

Wagner’s theorem forbidding 2-D Heisenberg order at finite 𝑇 (1966) [36]. The 

Berezinskii–Kosterlitz–Thouless transition revealed topological vortices as order 

parameters (1973)  [37]. Work by Stanley & Kaplan (1966) underscored the richness 

of XY models. 

Magnetism in superconductivity & spintronics (1987 → Nowadays). The 

discovery of high-temperature superconductivity made by Bednorz & Müller 

(1986) [38] raised a fundamental question about nature of the superconductivity, not 

fitting into BCS  [39] - the theory of superconductivity made in (1957). Neutron work 

by Tranquada exposed charge and spin stripes in CuO2 planes linking magnetism to 

superconducting pairing [37]. Meanwhile, Albert Fert (1988) and Peter Grünberg 

(1989) discovered giant magnetoresistance, launching spintronics field; dense 

perpendicular-recording disks (Seagate 2005) echo magnetic-bubble physics. 

Magnetic semiconductors, first studied by Methfessel & Mattis (1960s), returned as 

Dilute Magnetic Semiconductors (GaMnAs, 1990s) for spin-valves and logic  [40]. 

Ab-initio density-functional calculations (Kohn–Sham, 1965; LDA + U, 1990s) now 

predict magnetic order and anisotropy from first principles. Single-domain magnetite 

nanoparticles power the orientation of magnetotactic bacteria, salmon, sea turtles and 

possibly migratory birds  [41]. Ferrimagnetic greigite (Fe₃S₄) fulfils a similar role. 

On planetary scales, convection of Earth’s liquid iron core drives the geodynamo; 

paleomagnetic stripes recorded on ocean floors underpinned plate-tectonic 

theory  [42]. 
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Technological advancements & modern applications.  

The commercial patenting of ferrites in 1909 ushered in a new age of magnetic 

materials engineering. Soft ferrites now permeate power electronics: transformers, 

inductors and electromagnetic-interference filters that raise energy efficiency and 

suppress noise in consumer devices and electric-vehicle drivetrains. Hard ferrites 

provide robust permanent magnets for wind-turbine generators, loudspeakers and 

computer hard-disk actuators, reinforcing the twin revolutions in renewable energy 

and data storage  [43].  

Today’s frontier technologies increasingly couple magnetism to other degrees 

of freedom. In biotechnology, super-paramagnetic nanoparticles guide 

chemotherapeutics directly to tumours and sharpen the contrast in magnetic-

resonance imaging (MRI). In micro- and nano-electronics, magneto-resistive effects 

underpin non-volatile memories; recent NiO‐based devices even exploit voltage-

controlled magnetic modulation to boost endurance and speed  [44]. Magnonics—

the use of magnons (spin-wave quanta) as information carriers—promises logic 

circuits that dissipate orders-of-magnitude less heat than charge-based 

transistors [45]. Finally, spintronics, which manipulates the electron’s spin 

alongside its charge, has evolved from giant-magnetoresistance read-heads to 

racetrack memories and spin-transfer-torque MRAM, targeting ultrafast, energy-

efficient data centres. 
 

1.2. Ultrafast magnetic recording technology 
The foundational work of Lev Landau and Evgeny Lifshitz, in which they 

introduced their famous dynamical equation  [46,47], provided theoretical insights 

into how magnetisation responds to external stimuli over microsecond to millisecond 

timescales. However, major experimental advancements became possible only with 

the development of femtosecond (fs) lasers in 80`s [48]. The 1990s marked a 

significant shift with the discovery of ultrafast magnetisation dynamics triggered by 

femtosecond laser pulses. This breakthrough, made by Beaurepaire et al.  [49], 

revealed that magnetisation could be manipulated on timescales far shorter than 

previously considered possible, leading to rapid demagnetisation within picoseconds 

of laser exposure paving a new way to approach ultrafast magnetic recording 

technologies [50]. 

1.2.1. Role of thermal and nonthermal effects in magnetisation 

Understanding the role of thermal and nonthermal effects in magnetisation 

dynamics is crucial for the advancement of ultrafast magnetic recording 

technologies. Initially, it was believed that thermal effects, primarily laser-induced 
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heating, dominated the ultrafast demagnetisation process. However, recent studies 

have highlighted the significance of nonthermal effects, such as direct interactions 

between laser electromagnetic fields and the electronic structure of magnetic 

materials, which can alter magnetisation without significant heating [50]. This 

distinction is vital for designing more efficient magnetic recording technologies, as 

nonthermal effects allow for precise magnetisation control with reduced energy 

input. The following subsections explore these effects in more detail. 

Thermal effects involve heat generation in laser-driven ferromagnetic 

systems, as modelled in ultrafast thermodynamics frameworks. These models help 

understand heat dissipation in materials like FeNi and CoFeB thin films, providing 

insights into controlling heat production in magnetic systems [51]. The three-

temperature model, which considers electron, spin, and lattice reservoirs, is used to 

simulate ultrafast demagnetisation in materials like body centered-cubic Fe and face 

centered-cubic Co. This model shows that lattice dynamics, particularly lattice 

damping, significantly influence magnetisation dynamics [52]. 

Nonthermal effects include the transport of ultrashort spin-polarised hot-

electrons (SPHE), which can manipulate magnetisation in ferrimagnetic alloys. 

These effects are characterised by spin transfer torque and thermal fluctuations 

induced by SPHE, as observed in Fe74Gd26 films [53]. Coherent magnetisation 

dynamics studies in nickel films reveal that nonthermal effects, such as spin wave 

excitations, play a crucial role in the remagnetisation process after ultrafast 

demagnetisation [54]. 

Below, we provide a few recent examples of research directions in the area of 

ultrafast magnetisation recording using thermal or nonthermal mechanisms. 

1.2.2. All-optical helicity-dependent switching (AO-HDS) 

All-optical helicity-dependent switching (AO-HDS) represents a significant 

advancement in magnetic recording technologies by enabling the control of 

magnetisation direction using the helicity of laser light, without external magnetic 

fields. This technique offers a faster and more energy-efficient method for data 

writing, with switching events occurring in less than 20 ps and heat loads below 6 

J/cm³ [55]. 
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Mechanisms of AO-HDS 

1. Inverse Faraday effect and Magnetic circular dichroism: AO-HDS primarily 

relies on the inverse Faraday effect (IFE) and magnetic circular dichroism 

(MCD) to induce magnetisation switching. The IFE generates a magnetic 

moment within the material, enhancing the switching probability, while MCD 

ensures helicity-dependent absorption. This leads to distinct electron 

temperatures and magnetisation quenching, effectively controlling the 

magnetisation state [56]. 

2. Landau-Lifshitz-Gilbert equation: The optical control of magnetisation via 

AO-HDS can be described using the Landau-Lifshitz-Gilbert (LLG) equation, 

where ultrashort optical pulses induce a helicity-dependent torque. This 

facilitates rapid and precise changes in magnetisation, allowing for efficient and 

controlled switching [57]. 

Material and laser specifics 

1. NiCo2O4 thin films: Demonstrating practical applications at room temperature, 

NiCo2O4 thin films exhibit helicity-dependent AOS. The switching efficacy is 

influenced by laser pulse characteristics and the operational temperature, 

showcasing the adaptability of AO-HDS in real-world applications [58]. 

2. GdFe alloys and other materials: Different materials, such as GdFe alloys, 

show varying responses to AO-HDS. The minimum achievable bit size for these 

materials is around 25 nm, which is governed by factors such as ultrafast lateral 

electron diffusion and optical damage thresholds. This highlights the material-

specific considerations necessary for optimising AO-HDS [59]. 

Speed and efficiency 

AO-HDS can achieve magnetisation switching within 1-10 ps, making it a 

highly promising candidate for ultrafast data storage technologies. The process's 

efficiency and speed are heavily dependent on the specific material and laser 

properties, with some materials requiring multiple pulses for effective switching, 

emphasising the need for tailored approaches in different application scenarios [60]. 

1.2.3. Hot-electron pulses 

Hot electrons, generated by intense laser pulses or electrical currents, can 

effectively and efficiently manipulate the magnetisation state. When electrons in a 

material are excited to higher energy states, they can transfer their angular 
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momentum to the magnetic lattice, altering its magnetic state. This process, 

demonstrated in materials like GdFeCo [61], enables for magnetisation reversal 

within 40 picoseconds, highlighting the potential of hot-electron pulses for ultrafast 

magnetisation control. This method is particularly promising for nanoscale 

spintronic devices due to its efficiency and the potential for integration without 

external magnetic fields. 

Mechanisms of hot-electron pulses 

1. Spin-polarised hot electrons: Femtosecond laser pulses can generate spin-

polarised hot electrons, which play a crucial role in ultrafast demagnetisation and 

magnetisation switching. These electrons can induce spin transfer torque and thermal 

fluctuations, leading to changes in magnetisation states in materials. This 

demonstrates the significant potential of hot-electron pulses in manipulating 

magnetisation states, offering promising applications in spintronics. 

2. Wave function engineering: In two-dimensional ferromagnets, ultrafast 

magnetisation can be achieved by controlling the spatial distribution of electron 

wavefunctions, rather than changing the carrier density. This method, known as 

wavefunction engineering, allows for sub-picosecond magnetisation manipulation, 

further expanding the capabilities of hot-electron pulses in advanced material 

systems [56]. 

Applications in spintronics 

1. Skyrmion-based data storage:  The manipulation of skyrmion 

magnetisation through high-speed carrier injections offers a robust and scalable 

solution for data storage. Spin-polarised electrons can dynamically change the 

topological state of skyrmions, enabling bitwise data storage. This application 

showcases the potential of hot-electron pulses in developing next-generation data 

storage technologies [62]. 

2. Synthetic antiferromagnets: In Co/Pt-based synthetic antiferromagnets, 

hot-electron spin currents assist in magnetisation switching, providing a method for 

ultrafast control of information operations in spintronic applications. This further 

underscores the versatility and efficiency of hot-electron pulses in complex magnetic 

systems [63]. 
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1.2.4. Nonthermal photo-magnetic recording 

Ultrafast nonthermal photo-magnetic recording in transparent media, such as 

ferrimagnetic cobalt-substituted garnet films, represents another emerging approach 

that promises to advance magnetic recording. This approach uses ultrafast laser 

pulses to induce changes in the magnetic state of a material without significant 

heating, thus maintaining the integrity of the material while achieving efficiency of 

magnetic recording. The technique leverages nonthermal pathways, where light-

matter interactions induce changes in magnetic properties through mechanisms other 

than heat, such as coherent optical control and photoinduced phenomena. This 

method is particularly advantageous as it avoids the detrimental effects of thermal 

processes, thus preserving the material's longevity and performance [64]. 

Nonthermal pathways in magnetic recording 

1. Interaction mechanisms: Nonthermal effects are achieved through ultrafast 

light-matter interactions that modify the magnetic state without heating. These 

interactions can result in transient modifications to the material's free-energy 

landscape, affecting quasiparticle populations and coupling strengths, which play 

a crucial role in the dynamics of magnetisation [65]. 

2. Control methods: In metallic ferromagnets, linearly polarised light can control 

magnetisation dynamics through optical rectification, which modulates magnetic 

energy via electrostriction-induced strain [66]. Additionally, the use of 

femtosecond laser pulses in multiferroic materials can amplify photomagnetic 

coupling, allowing for efficient optical control of magnetisation dynamics [67]. 

Advantages of nonthermal techniques 

Material integrity and efficiency: Nonthermal methods prevent the thermal 

degradation of materials, ensuring longer-lasting magnetic properties and reducing 

energy consumption  [66,67]. These techniques enable ultrafast control of 

magnetisation, significantly improving the speed and repetition rate of magnetic 

recording processes. 

Challenges. Differentiation and analysis: identifying and isolating nonthermal 

effects from thermal ones can be challenging, requiring advanced techniques like 

time-resolved resonant magnetic X-ray diffraction. The integration of various 

ultrafast spectroscopy techniques can provide deeper insights into nonthermal phase 

transitions and their underlying mechanisms [50,68]. 
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1.2.4. Antiferromagnetic spintronics 

Antiferromagnetic spintronics is an emerging field that leverages the unique 

properties of antiferromagnetic materials for advanced spintronic applications. 

Unlike ferromagnetic materials, antiferromagnets do not produce stray magnetic 

fields, allowing for denser data storage. Moreover, the manipulation of 

antiferromagnetic order by external radiation (like optical or THz pump pulses) 

enables ultrafast switching speeds (in the THz range) and potentially greater stability 

against magnetic disturbances. These features make antiferromagnetic materials 

highly suitable for future spintronic devices where speed, density, and stability are 

crucial [69]. 

Key aspects of antiferromagnetic spintronics 

1. Spin-polarised antiferromagnetic metals. Combining the benefits of spin 

polarisation with the absence of net magnetisation, these materials offer high 

electrical and thermal conductivities. They support strong interactions 

between charge transport and magnetic spin textures, crucial for spintronic 

applications  [70]. This characteristic enables ultrafast switching speeds (in the 

THz range) and potentially greater stability against magnetic disturbances, 

making them highly suitable for future spintronic devices where speed, 

density, and stability are crucial. 

 

2. Current-induced switching and spin textures. The ability to manipulate 

spin textures and the Néel vector through current-induced switching has been 

demonstrated in various antiferromagnetic films and bilayers. This technique 

enables efficient control of spin states, with the small size and topological 

stability of antiferromagnetic spin textures enhancing their attractiveness for 

applications. However, reading their magnetic state remains a challenge [71]. 

 

3. Antiferromagnetic tunnel junctions (AFMTJs). AFMTJs utilize the Néel 

vector as a state variable, allowing for efficient electric control and detection. 

These junctions can achieve large tunneling magnetoresistance effects and 

faster switching speeds compared to conventional magnetic tunnel 

junctions [72]. 

1.3. Theoretical background 

Magnetic interactions. Understanding microscopic magnetic interactions is 

crucial for analysing the complex behaviour of materials under various magnetic 
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conditions. These interactions at the microscopic level dictate the magnetic 

properties of materials, influencing everything from basic magnetic alignment to 

complex phenomena like magnetic resonance and domain formation. This section 

explores several key types of magnetic interactions that significantly impact material 

properties, complemented by corresponding mathematical descriptions and 

characteristics drawn from the literature  [73–75]. 

1.3.1. Exchange interaction 

The exchange interaction in physics is a quantum mechanical phenomenon 

and is the strongest form of magnetic interaction. It arises from the indistinguishable 

nature of particles, like electrons, and the Pauli exclusion principle. It governs how 

the spin of one particle influences the spin of another, leading to magnetic ordering 

in materials. It originates from the Coulomb repulsion between electrons and their 

spin alignment. According to the Pauli exclusion principle, two fermions (e.g., 

electrons) cannot occupy the same quantum state. When two electrons are close to 

each other, their wave function becomes either symmetric (parallel spins) or 

antisymmetric (antiparallel spins). If the spins are aligned parallel (symmetric wave 

function), the electrons tend to spatially separate to reduce Coulomb repulsion, 

lowering their overall energy. Conversely, when the spins are antiparallel 

(antisymmetric wave function), the electrons can occupy the same region of space, 

which may increase the Coulomb energy. This energy difference gives rise to the 

exchange energy, which determines whether a material exhibits ferromagnetism 

(parallel spins) or antiferromagnetism (antiparallel spins). 

1.3.2. Dzyaloshinskii-Moriya interaction (DMI)  

The DMI is a form of antisymmetric exchange interaction. It is essential for 

understanding non-collinear spin structures in systems with broken inversion 

symmetry. This interaction was first described phenomenologically by Igor 

Dzyaloshinskii as a relativistic adjustment to the standard exchange interaction [76] 

and later Moriya [77] identified spin-orbit coupling as the microscopic mechanism 

of the antisymmetric exchange interaction. DMI is crucial in systems exhibiting weak 

ferromagnetism. It facilitates a minor canting of spins, leading to more complex 

magnetic phenomena such as the creation of skyrmions—small, topologically stable 

vortices that hold great promise for future uses in data storage and spintronics. 
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1.3.3. Zeeman interaction  

The Zeeman interaction describes the effect of an external magnetic field on 

the energy levels of a magnetic system, such as electrons, atoms, or nuclei with 

magnetic moments, influenced by factors like light-induced electromagnetic 

waves [78]. This interaction occurs due to the coupling between the magnetic 

moment �⃗� of a particle with an external magnetic field �⃗⃗⃗�, leading to a splitting of 

energy levels, a phenomenon known as the Zeeman effect. This alignment alters the 

atom's energy states and can be significantly affected by external influences such as 

light, which can modify the effect of the magnetic field. 

1.3.4. Magnetic anisotropy  

Magnetic anisotropy describes the directional dependence of a material’s 

magnetic properties. It can arise from various sources such as dipolar interactions, 

which are responsible for the shape of anisotropy, magneto-crystalline anisotropy 

arising from the spin-orbit coupling and the structure of the crystal lattice, and 

magnetoelastic anisotropy, which directly depends on the stress applied to the 

material. This interaction is vital for the stability of magnetic storage media, as it 

defines the energy barriers that need to be overcome to reorient magnetic domains. 

1.3.5. Dipolar interaction  

This interaction involves forces between magnetic dipoles based on their 

distance and orientation relative to each other. It affects domains and domain wall 

formation in ferromagnetic materials, playing a key role in their macroscopic 

properties. 

Table I below provides a comparative analysis of the strength and range of all 

mentioned interactions, including the formulas used for their description: 
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1.4. General classification of magnetic materials  

According to the contemporary views, magnetic properties of materials are 

divided into diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic and 

ferrimagnetic. Quantitatively, magnetic properties of materials are usually estimated 

by the value of magnetic susceptibility 𝜒. 

1.4.1. Diamagnetism 

Diamagnets are substances whose atoms, ions, or molecules possess no 

permanent (intrinsic) magnetic dipole moment in the absence of an external field. 

When an external magnetic field 𝐵ext is applied, circulating electron currents are 

induced (Lenz’s law response). These currents generate an induced magnetic 

moment 𝑚ind that points opposite to 𝐵ext, giving a small negative magnetic 

susceptibility 𝜒 < 0.  In a non-uniform field, diamagnets are pushed toward the 

weaker-field region. In a uniform field, they feel no net force, but an elongated 

diamagnetic rod will orient perpendicular to the field lines (this minimises magnetic 

energy because its induced dipole is antiparallel to the field). Magnetic susceptibility 

in diamagnets is temperature-independent. It has to be pointed out that diamagnetism 

is inherent in all substances without exception: in solid, liquid and gaseous states, 

but it manifests itself weakly and is often suppressed by other effects. 

1.4.2. Paramagnetism 

Paramagnetic materials contain atoms, ions, or molecules with permanent 

magnetic moments (typically from one or more unpaired electron spins and, where 

not quenched, orbital angular momentum). Without an external field the bulk 

magnetisation is zero, because these moments are randomly oriented by thermal 

motion. Under an applied field, these intrinsic dipoles tend to align parallel to 𝐵ext, 
producing a positive magnetic susceptibility 𝜒 > 0. For non-interacting moments the 

susceptibility follows Curie’s law, 𝜒 =
𝐶

𝑇
; it increases as temperature decreases and 

saturates when most moments are aligned at very low 𝑇 or high 𝐵ext. 

1.4.3. Ferromagnetism 

Ferromagnets (FM) are substances in which the magnetic moments of atoms 

or ions are in a state of spontaneous magnetic ordering, and the resulting magnetic 

moments of each domain are nonzero. In an external magnetic field, all magnetic 

moments are oriented along the field direction (Fig.1.1(a)) i.e. parallel. As a result, a 

macroscopic magnetic moment arises, equal to the sum of the magnetic moments of 
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all atoms. In the absence of an external magnetic field, such a completely ordered 

state often becomes thermodynamically unfavourable and, as a result, breaks up into 

macroscopic regions (i.e. domains), within which the magnetic moments of the atom 

are parallel. In general, magnetic ordering results in the emergence of several 

magnetic sublattices, each of which combines ions with identical magnetic moments. 

However, the total magnetic moment of the sample is close to zero. In such materials 

transition to a ferromagnetic state occurs at a specific temperature known as the Curie 

point. FM`s exhibit very high magnetic susceptibility 𝜒  ≫ 1, which can vary 

significantly depending on the magnetic field strength and the proximity to the Curie 

temperature. 

1.4.4. Antiferromagnetism  

Antiferromagnets (AFM) are materials in which there is an orderly 

antiferromagnetic arrangement of magnetic moments of atoms or ions, yet no net 

magnetisation is present in the crystal. In the simplest case AFM structure can be 

depicted as two overlapping identical ferromagnetic crystalline sublattices with 

opposing magnetic moments �⃗⃗⃗�1 = −�⃗⃗⃗�2 (Fig.1.1(b)). A material typically becomes 

an antiferromagnet below a specific temperature, the Néel point, and maintains this 

state up to that temperature. The magnetic susceptibility of antiferromagnets is 

generally low and shows a peak near the Néel temperature due to the onset of 

magnetic ordering. 

1.4.5. Weak ferromagnetism 

Unlike "pure" AFMs, weak ferromagnets (or also called canted 

antiferromagnets) are characterised by a small noncollinearity (Fig.1.1(c)) of the 

sublattices caused by the specific relativistic Dzyaloshinskii-Moriya interaction. 

Since this interaction is significantly weaker than the exchange interaction, the 

resulting magnetic moment M is significantly smaller than the magnetisation of each 

of the sublattices. Examples of such structures are 𝛼 − Fe2O3, RFeO3, NiF2,  
MnCO3, CoCO3 etc. 

1.4.5. Ferrimagnetism 

Ferrimagnetic materials feature atomic magnetic moments in different 

sublattices (Fig.1.1(d)) oriented antiparallel, similar to antiferromagnetic materials, 

but with unequal moments between the sublattices, resulting in a non-zero net 

magnetic moment: �⃗⃗⃗� = ∑ �⃗⃗⃗�𝑖. In the simplest case, ferrimagnets have two collinear 

magnetic sublattices with different magnetic moments oriented antiparallel, so that: 
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�⃗⃗⃗� = �⃗⃗⃗�1 − �⃗⃗⃗�2 ≠ 0 . However, in the case of three or more sublattices, collinear 

orientation is not needed at all. The best-known example of a ferrimagnet is yttrium 

iron garnet (YIG), which has 20 sublattices. Like ferromagnets, ferrimagnetics 

exhibit high magnetic susceptibility, but with more complex temperature dependence 

due to the different contributions from the different magnetic sublattices. 

1.4.6. Magnetic frustration 

A magnetically frustrated structure refers to a magnetic system in which the 

spins (magnetic moments) of atoms or ions cannot simultaneously satisfy all their 

magnetic interactions due to the geometry of the lattice or competing interactions. 

This "frustration" prevents the system from settling into a simple, ordered ground 

state, leading to complex or degenerate arrangements of spins. Frustration commonly 

arises in systems with antiferromagnetic interactions (like Tb3Ga5O12), where 

neighbouring spins prefer to align antiparallel. For instance, in a triangular lattice 

(Fig.1.1(e)), if two spins align antiparallel, the third spin cannot satisfy its interaction 

with both neighbours simultaneously, resulting in frustration. 

 
Fig.1.1. Schematic representation of different types of ordering on a two-
dimensional lattice. Elements of one sublattice are highlighted in colour. (a): 
ferromagnet, (b) collinear antiferromagnetic structure of the Neel type with two 
equivalent sublattices (up-down), (c) weak ferromagnet, (d) collinear ferrimagnet, 
(e) frustrated magnetic structure (kagome lattice).  
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This phenomenon also occurs in other geometries, such as kagome lattices, 

pyrochlore structures, or spin ices, where multiple competing interactions contribute 

to frustration. Magnetic frustration leads to exotic phenomena like spin liquid states, 

where spins fluctuate even at very low temperatures, and spin glasses, where spins 

freeze into a disordered state. 

 

1.5. Landau theory of phase transitions 

Landau theory, developed by Lev Landau, provides a foundational framework 

for understanding phase transitions in materials, in particular those undergoing 

magnetic phase transitions [79–81]. This theory uses a phenomenological approach, 

focusing on the concept of symmetry breaking and the role of the order parameter, a 

measurable quantity that represents the degree of order within different phases of a 

material. The order parameter changes characteristically through a phase transition, 

distinguishing different states of matter (e.g., solid, liquid, gas) or magnetic states 

(e.g., ferromagnetic-paramagnetic). 

1.5.1. Thermodynamic Potential and Phase Transitions  

Landau’s phenomenological theory posits that near a phase transition, the 

thermodynamic potential can be expanded as a power-series (Taylor expansion) in 

terms of an order parameter that characterises the emerging order. The order 

parameter 𝜂 (magnetisation 𝑀, polarisation 𝑃, distortion, etc.) which generally 

depends on temperature and some other external parameters like pressure, magnetic 

field, etc., is chosen such that it is zero in the high-symmetry (disordered) phase and 

nonzero in the symmetry-broken phase, capturing the essence of the phase 

transition [80–82]. 

Near the transition point, Φ can be expanded as a power series of η: 

 

Φ = Φ0 + 𝛼𝜂 + 𝐴𝜂
2 + 𝐶𝜂3 + 𝐵𝜂4 +⋯.                            (1.1) 

Here, Φ0 is the regular part of the free energy that does not depend on the order 

parameter, and 𝐴,𝐵, and 𝐶 are parameter-dependent (i.e. temperature) coefficients. 

The form of the expansion depends on the symmetry of the order parameter and the 

nature of the phase transition, which could be 1st or 2nd order. For example, if a 

symmetry operation of the high-temperature phase changes the sign of the order 

parameter, then the free energy must be an even function of that order parameter (i.e. 

invariant under that operation): in a ferromagnet with no external field, the 

Hamiltonian is invariant under time reversal symmetry (which flips all spins, �⃗⃗⃗� →
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−�⃗⃗⃗�). Therefore, the free energy in the paramagnetic phase must satisfy  Φ(�⃗⃗⃗�) =

Φ(−�⃗⃗⃗�), implying that it can only contain even powers of �⃗⃗⃗�. Conversely, if the high-

temperature phase does not have a symmetry that enforces 𝜂 → −𝜂 equivalence, 

then odd-order terms are allowed in the free energy. A classic case is the liquid–gas 

transition: one can define an order parameter 𝜂 proportional to the difference in 

density between liquid and gas. In general, Landau’s theory states that all terms 

allowed by symmetry should be included (at least up to the lowest order that 

produces the observed behaviour). If an external field is applied that breaks the 

symmetry (e.g. a magnetic field �⃗⃗⃗� breaks time-reversal, or an electric field breaks 

inversion symmetry), then linear terms appear in Φ, changing the double-well 

potential landscape. 

Fig 1.2. (a-b) illustrates the change of the thermodynamic potential landscape 

as a function of order parameter 𝜂, and (c-d) shows the change in the order parameter 

𝜂(𝑇) across the 1st and 2nd order phase transitions. 

 

Fig.1.2. (a) Illustration of the alteration in the shape of thermodynamic potential 

with the change in temperature having only stable and metastable states; (b) shows 

the behaviour of the order parameter 𝜂 curve as a function of temperature having 

a jump-like behaviour across a 1st order phase transition. (c) Illustration of the 

continuous change in the shape of thermodynamic potential via a set of stable 

states and (d) the smooth changes in the order parameter 𝜂 curve across a 2nd order 

phase transition. 
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1st - order transitions: characterised by an abrupt jump of the order parameter 

with the change of temperature (see Fig.1b). 1st-order transitions in the Landau 

framework occur when the free energy curve as a function of the order parameter 

exhibits two distinct minima (see Fig.1a). These minima correspond to different 

thermodynamic phases – stable and metastable, which are separated by an energy 

barrier. In terms of the coefficients, cubic terms should be included; a negative B in 

the expansion can lead to a situation where the free energy curve has a bimodal form.  

2nd - order transitions: in second-order transitions, the change of the free 

energy curve as a function of the order parameter is continuous (Fig.1c). They are 

characterised by vanishing cubic terms (C = 0). The further requirement that 𝜂 = 0 

above 𝑇𝑐, but 𝜂 ≠ 0 for 𝑇 < 𝑇𝑐 (Fig.1d), leads to the requirement that the first 

nonzero term 𝐴𝜂2 in the expansion for Φ should obey the conditions: 𝐴 > 0 for 𝑇 >

𝑇𝑐 and 𝐴 < 0 for 𝑇 < 𝑇𝑐. 

1.5.2. Antiferromagnets: the case of rare-earth orthoferrites 

Landau theory could be extended to describe the features of the magnetic 

phase transitions occurring in antiferromagnets. In a theoretical description of  

antiferromagnets it is convenient to use two sublattice approximation (�⃗⃗⃗�1 and �⃗⃗⃗�2). 

In this regard, it is convenient to choose a Néel vector �⃗� as an order parameter which 

could be represented as normalised difference between two sublattices  �⃗� =
�⃗⃗⃗�𝟏−�⃗⃗⃗�𝟐

2𝑀0
  

(which is nonzero in the ordered phase, aligns oppositely on the two sublattices), 

often together with the net magnetisation vector �⃗� =
�⃗⃗⃗�1−�⃗⃗⃗�2

2𝑀0
, where 𝑀0 is the value 

of magnetic moment at 𝑇 = 0.  

In Landau theory one can treat the set of sublattice magnetisations as a “state 

vector” �⃗⃗⃗� entering the free energy expansion Φ. The free energy is then expanded 

in components of �⃗⃗⃗�, including all symmetries of the paramagnetic phase (like time-

reversal, lattice point-group symmetry, etc.) [83]. For a collinear antiferromagnet in 

zero field, the free energy will even be a function of |�⃗�|
𝟐
 (and higher even powers) 

because if all spins are flipped (�⃗� → −�⃗�, which is equivalent to a 180° rotation or 

time reversal followed by sublattice exchange), the energy is unchanged. Thus, only 

even terms like |�⃗�|
𝟐
, |�⃗�|

𝟒
, etc., appear for a simple antiferromagnetic order 

parameter, analogous to the ferromagnetic case. 
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Rare-earth orthoferrites. RFeO3 (where R represents a rare-earth ion or 

yttrium), crystallise in the distorted perovskite structure (Pbnm). They provide an 

important example of Landau theory applied to antiferromagnetic systems with 

complex magnetic order. These orthoferrites are predominantly antiferromagnetic 

in the Fe 3  sublattice (order sets in around 620–750 K for different R) with a slight 

canting of spins that produces a weak ferromagnetic moment (due to the 

Dzyaloshinskii–Moriya interaction). They exhibit spin-reorientation phase 

transitions at lower temperatures (typically in the range 50–100 K, depending on R) 

where the orientation of the Fe spins (and thus the weak ferromagnetic moment) 

rotates from one crystallographic axis to another as temperature changes. This is a 

change in the direction of the order parameter vector, driven by competing magnetic 

anisotropy terms and coupling between the Fe and R sublattices.  

To describe correctly behaviour of iron spin during SRPT in frames of Landau 

theory it is convenient to introduce the angular order parameter in the following form 

�⃗� = (𝐺𝑥, 𝐺𝑦, 𝐺𝑧) as 𝐺𝑥 = sin[𝜃], 𝐺𝑦 = 0, 𝐺𝑧 = cos[𝜃]. 

For the case of orthoferrites, the simple1 form of the thermodynamic potential 

in the presence of an external magnetic field can be written as: 

Φ =
1

2
𝐴�⃗�2 + 𝑑[�⃗� × �⃗�] − �⃗��⃗⃗⃗� + Φ𝐴.                              (1.2) 

Here,  A is the exchange interaction constant, d is the antisymmetric exchange 

parameter (or Dzyaloshinskii-Moriya constant), �⃗⃗⃗� is the external magnetic field and 

Φ𝐴 is anisotropy part determined by the magnetic symmetry group of the AFM under 

the study.  

In this thesis, we will focus on analysing the features of the second-order spin-

reorientation phase transition (SRPT) of iron spins in Thulium and Terbium 

orthoferrites, (Chapters 3 and 4). In orthoferrites, the 2nd order SRPT occurs in the xz 

(ac)2 plane of a crystal. Now let`s focus on the anisotropy part of Φ𝐴 the 

thermodynamic potential.   

For magnetic crystals with orthorhombic symmetry, one could write the 

anisotropy part of the free energy expansion in terms of sin[𝜃] or cos[𝜃], 

                                                             
1 This form of Ф does not take into account terms including exchange interaction with R-subsystems and others, we 
will extend it in Chapters III and IV providing more accurate and complete description 
2 In RFeO3 the Cartesian coordinates (x-y-z) correspond to the a,b,c, crystallographic axes 
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corresponding to invariants of the rotation symmetry [83] up to fourth order [84] in 

the following form: 

  Φ𝐴 = 𝐾1sin[𝜃]
2 + 𝐾2sin[𝜃]

4,                               (1.3) 

Here, 𝐾1 is also often denoted as 𝐾ac (corresponding to an anisotropy occurring in 

ac plane), and 𝐾2 are anisotropy coefficients that vary with temperature and 

contribute to the SRPT. In a simple case, 𝐾1 is the first anisotropy constant that 

distinguishes two easy axes (say 𝜃 = 0°, meaning that �⃗� is pointed along a(x) axis) 

or 𝜃 = 0°, �⃗� is pointed along c(z) axis), and 𝐾2 is a higher-order anisotropy that may 

prefer the spins to stay aligned along axes versus in between. The temperature 

dependence of these constants (often coming from the rare-earth sublattice or spin–

orbit effects) governs the reorientation (in Chapter III we consider this in more 

detail). If 𝐾1 changes sign as 𝑇 passes through some region (meaning the preferred 

easy axis switches), the spins will reorient. Whether this reorientation is continuous 

(2nd order) or abrupt (1st order), depends on the relative value and sign of 𝐾2 [83,84]. 

Empirically, rare-earth orthoferrites show both types of behaviour. 

1)  If 𝐾2 > 0, the free energy as a function of 𝜃, Φ(𝜃), may have a single minimum 

that smoothly moves from one angle to another as 𝑇 changes. In this case, the spin 

orientation changes gradually — this can be viewed as two consecutive second-

order transitions at the endpoints of the rotation. One where spins start to tilt away 

from the original easy axis, and another where they lock into the new easy axis (like 

in TmFeO3, ErFeO3, TbFeO3, YbFeO3 etc.). 

In this case, the SRPT consists of three phases during which a 90° reorientation 

of iron spins occurs, namely Г4-(high-T), Г24-(intermediate), Г2-(low-T), (see 

Fig.1.3). 

{
 
 

 
 

Г4: sin(𝜃) = 0;   𝐾ac ≥ 0, 𝑇 ≥ 𝑇1,

Г24: sin(𝜃) = √−
𝐾ac
2𝐾2

; 𝐾ac ≤ 0,𝐾ac + 2𝐾2 ≤ 0, 𝑇2 ≤ 𝑇 ≤ 𝑇1,

Г2: sin(𝜃) = 1;  𝐾ac + 2𝐾2 ≥ 0, 𝑇 ≤ 𝑇2.

(1.4) 

 The temperatures 𝑇1 and 𝑇2, where 𝐾ac(𝑇) = 0 and 𝐾ac(𝑇) + 2𝐾2 = 0, are 

the transition points between phases Г4 − Г42, and Г24 − Г2, respectively. 
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Fig. 1.3. Illustration of 2nd order SRPT in Tm/TbFeO3  

2) If 𝐾2 < 0, or a large positive higher-order term creates a secondary minimum in 

Φ, the system can get a bistable potential. Then as 𝐾1 approaches zero, the system 

might prefer to jump from one easy axis orientation to the other, because an 

intermediate tilted state is unstable (there is an energy barrier between orientations). 

In Landau terms, this means one needs to expand to higher orders and to find a term 

analogous to a negative quartic in sin[𝜃]2 that yields a first-order transition (the angle 

𝜃 jumps discontinuously at the transition temperature). In orthoferrites (like in 

HoFeO3), such a jump is marked by a sudden spin flip at a certain temperature. 

To summarize, the Landau theory offers a versatile and powerful method to 

describe and analyse phase transitions, providing insights into the behaviour of 

various magnetic materials under changing external conditions. By using this 

theoretical approach for the investigation of SRPT of the second order in Chapter 3 

and Chapter 4 in rare-earth orthoferrites, we will extend the anisotropy part of 

thermodynamic potential, accounting for all relevant interactions between Fe and 

Tm/Tb subsystems in TmFeO3/TbFeO3. 

1.6. Description of nonlinear dynamics in antiferromagnets 
The exploration of magnetisation dynamics began with the development of the 

Landau-Lifshitz-Gilbert (LLG) equation in the mid-20th century. This equation, first 

introduced by Lev Landau and Evgeny Lifshitz, published back in 1935 [46], 

reprinted [47], and later modified by T. L. Gilbert, describes the precessional motion 

of magnetisation in ferromagnetic materials due to magnetic fields and damping: 
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𝑑�⃗⃗⃗�

𝑑𝑡
= −𝛾�⃗⃗⃗� × �⃗⃗⃗�𝑀 + �⃗⃗�𝑀,                                              (1.5) 

Here, �⃗⃗⃗�𝑀 = −
𝜕Ф

𝜕�⃗⃗⃗�
 represents the effective field exerted on the magnetic moments 

within the sample, Ф-is the TP function of ferromagnet, reflecting their interactions 

(it also includes the external field �⃗⃗⃗�ext). The relaxation term is defined as follows: 

�⃗⃗�𝑀 =
𝛾𝜆

|�⃗⃗⃗�|
�⃗⃗⃗� × (�⃗⃗⃗� × �⃗⃗⃗�𝐹) ≅

𝜆

|�⃗⃗⃗�|
(�⃗⃗⃗� ×

𝑑�⃗⃗⃗�

𝑑𝑡
),                           (1.6) 

Despite the presence of a dissipative term of the type (1.6), equation (1.5) 

possesses the integral of motion (Ф2 = const). By multiplying it by the scalar �⃗⃗⃗�, we 

derive, that �⃗⃗⃗� ⋅
𝑑�⃗⃗⃗�

𝑑𝑡
= 0, or equivalently  

𝑑

𝑑𝑡
𝑀2 = 0. The motion represents the 

precession of �⃗⃗⃗� around �⃗⃗⃗�𝑀 with a gradual decrease in the transverse component 𝐹 

to zero at equilibrium. 

In the context of a two-sublattice model of antiferromagnets (like 

orthoferrites) characterised by magnetisations �⃗⃗⃗�1 and �⃗⃗⃗�2, we can write an equation 

analogous to (1.1) for each sublattice. If we then transition to the resultant equations 

in terms of dimensionless vectors �⃗� =
�⃗⃗⃗�1+�⃗⃗⃗�2

2
  and �⃗� =

�⃗⃗⃗�1−�⃗⃗⃗�2

2
, we obtain: 

{
 
 

 
 𝑑�⃗�

𝑑𝑡
= −𝛾(�⃗� × �⃗⃗⃗�𝐹 + �⃗� × �⃗⃗⃗�𝐺) + �⃗⃗�𝐹 ,

𝑑�⃗�

𝑑𝑡
= −𝛾(�⃗� × �⃗⃗⃗�𝐺 + �⃗� × �⃗⃗⃗�𝐹) + �⃗⃗�𝐺.

                                (1.7) 

If we designate the dissipative terms as �⃗⃗�𝐹=�⃗⃗�𝐺 = 0, then from (1.3) we obtain 

the conditions: 

�⃗�2 + �⃗�2 = 4𝑀0
2 , �⃗��⃗� = 0.                                (1.8) 

Those are characteristic for the two-sublattice model of an antiferromagnet. 

Here, �⃗⃗⃗�𝐹 = −
𝜕Φ

𝜕�⃗�
 and �⃗⃗⃗�𝐺 = −

𝜕Φ

𝜕�⃗�
  are the corresponding effective fields and Φ is the 

TP function in the form from (1.2). 

 By solving system (1.7) in case of linear approximation (i.e. small deviations 

from equilibrium) one could derive two antiferromagnetic resonance (AFMR) 

frequency modes namely:  
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𝜔1 = 𝛾√𝐻𝐴1𝐻𝑒𝑥,   𝜔2 = 𝛾√𝐻𝐴2𝐻𝑒𝑥.                         (1.9) 

Here, 𝜔1, 𝜔2 are the AMFR frequencies, and 𝐻𝐴1 = 𝐾1𝐹0, 𝐻𝐴2 = 𝐾2𝐹0 denote 

anisotropy fields and 𝐻ex =
1

2
𝐴𝐹0 is the exchange field. 

1.7. Magneto-optical effects  
Magneto-optical effects, emerging at the intersection of magnetism and optics, 

showcase the profound influence of magnetic order on the behaviour of light. These 

phenomena are not only intriguing from a scientific standpoint but also have 

substantial technological implications. The primary effects discussed here include 

the Faraday effect, the Cotton-Mouton effect, and the magneto-optical Kerr effect 

(MOKE), each of which provides insights into the interaction between light and 

magnetised materials [85],[32]. 

1.7.1. Faraday Effect 

The Faraday effect is a fundamental magneto-optical phenomenon observed 

in transmission geometry. It occurs when linearly polarised light passes through a 

magnetically active medium, causing the polarisation plane to rotate (Faraday 

rotation), see Fig. 1.4. 

 

Fig.1.4. Illustration showing the manifestation of Faraday effect as the change 

of polarisation rotation passing through the magneto-optical medium. 
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The following equation describes the angle of rotation: 

𝜃𝐹 = 𝑉 ⋅ 𝐵 ⋅ 𝑙.                                                  (1.10) 

Here, 𝜃𝐹 is the angle of rotation, V is the Verdet constant, 𝐵 is the magnetic field 

strength, and l is the path length through the medium. This effect is a manifestation 

of the Zeeman effect, wherein a magnetic field causes a split in electronic energy 

levels, resulting in different refractive indices for right-handed and left-handed 

circularly polarised light components. As a result, the plane of polarisation for 

linearly polarised light traversing the medium alters accordingly. Therefore, the 

Faraday effect is also referred to as magnetic circular birefringence (MCD). 

The plane of polarisation of the linearly polarised light passing through the 

medium could be also expressed as: 

𝜃 =
 𝜔

2𝑐
(𝑛+  −  𝑛_)𝐿.                                         (1.11) 

Here, ω is the angular frequency of light, c is the speed of light in vacuum, 𝑛+ and 

𝑛_ are the refractive indices for the circular polarisations, and L is the path length 

through the material. 

1.7.2. Cotton-Mouton (Voigt) Effect 

The Cotton-Mouton, also known as the Voigt effect, involves a magnetic field 

applied perpendicular to the light's path, leading to a different refractive index for 

polarisations parallel and perpendicular to the field and could be expressed as: 

𝛥𝑛 = 𝐶𝐵2𝑑.                                                      (1.12) 

Here, 𝛥𝑛 is the change in refractive index, C is the Cotton-Mouton constant, 𝜆 is the 

wavelength of incident light, and 𝑑 is the material thickness.  

The Cotton-Mouton or Voigt effect is also referred to as magnetic linear 

birefringence (MLB). This linear birefringence is due to the alignment of 

anisotropic molecules, which alters the optical path differently for different 

polarisations (see Fig 1.5).  
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Fig.1.5. Illustration showing the Cotton-Mouton (Voigt) effect. 

The relative change in intensity of the reflected light 𝛿, upon re-magnetisation 

of the medium, used to identify the p-polarisation of the incident light. This effect, 

quadratic in magnetisation (~𝑀2) and proportional to 𝐼∥ − 𝐼⊥, could be described by 

the following equation: 

𝛿 =
𝐼∥ − 𝐼⊥
𝐼∥

.                                                       (1.13) 

Here, 𝐼⊥(∥) represents the intensity of light that is reflected or transmitted when the 

magnetisation is perpendicular (parallel) to the light's polarisation.  

1.7.3. Magneto-optical Kerr Effect 

The Kerr effect, also known as the quadratic electro-optic (QEO) effect, 

involves a change in the refractive index of a substance due to the application of an 

electric field. This effect is similar to the Faraday and Cotton-Mouton effects but is 

distinguished by its specific induction of polarisation rotation in light reflected from 

a magnetic surface. There are three distinct variants of the Magneto-optical Kerr 

effect—polar (PMOKE), longitudinal (LMOKE), and transverse (TMOKE)—are 

classified by the orientation of magnetisation relative to the sample plane and the 

angle of light incidence relative to the material's magnetisation, as illustrated in Fig. 

1.6. In PMOKE and LMOKE, the polarisation of the reflected light turns elliptical, 

whereas in TMOKE, the polarisation remains unchanged; only its intensity varies. 
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Fig.1.6. Kerr effect and its three configurations (PMOKE, LMOKE, and TMOKE). 

1.7.4. Comparison and detection geometries 

Each of these effects manifests distinctively depending on the material 

properties, light wavelength, magnetic field's strength and orientation. 

1. Faraday Effect: Detected in transmission geometry with the magnetic field 

aligned parallel to the light's path, commonly used in devices such as optical 

isolators. 

2. Cotton-Mouton Effect: Observed in transmission geometry but with the 

magnetic field applied perpendicularly, crucial for studying magnetic 

properties of liquids and gases. 

3. Kerr Effect: Observed in reflection geometry, making it important tool for 

investigating surface and thin-film magnetism, pivotal in magneto-optical 

data storage technologies. 

1.7.5. Application of magneto-optical effects in time-resolved studies 

Magneto-optical effects are integral to time-resolved studies, especially in the 

areas of ultrafast magnetisation dynamics and spintronics. These effects facilitate the 

observation and manipulation of magnetisation on extremely short timescales, 

shedding light on the fundamental mechanisms at play within magnetic materials.  

Here are several examples of such applications: 

Ultrafast Magnetisation Dynamics 

The Time-Resolved Magneto-Optical Kerr Effect (TRMOKE) is employed to 

investigate laser-induced magnetisation dynamics in metallic amorphous ribbons. 

This method exposes damped oscillations of the magnetisation vector, affected by 
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laser pulse fluence and external magnetic fields, pivotal for understanding the 

magnetoimpedance effect in the gigahertz frequency range. Such insights are 

invaluable for the development of broadband sensor devices [33]. 

Imaging of Magnetoelastic Waves. The Cotton-Mouton effect is applied in 

time-resolved magneto-optical imaging to visualize magnetoelastic waves. This 

method enables the direct observation of magnetisation dynamics, including 

excitation, propagation, and relaxation, in out-of-plane-magnetised films. Such 

imaging techniques broaden the scope of TRMO studies and provide crucial insights 

into laser-induced magnetisation dynamics relevant to spintronics  [88]. 

Terahertz Radiation and Nonlinear Effects. Ultrafast light-driven magneto-

optical nonlinearity in ferromagnetic heterostructures is explored using terahertz 

(THz) emission spectroscopy. This approach examines the picosecond-time-scale 

nonlinear magneto-optical effects, essential for understanding the roles of 

magnetisation-induced optical rectification and spin-to-charge current conversion in 

THz generation [89]. 
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Chapter II. Experimental methods 
 

In this chapter, we present an overview of the experimental techniques 

employed in the subsequent investigation as detailed within this thesis. First, we will 

elucidate the fundamental principles necessary for the understanding of the pump-

probe spectroscopy technique. Then we will provide a detailed description of the 

experimental setup utilized for the detection Jahn-Teller like magnetic phase 

transition in TbFeO3 (Chapter 4) and to investigate features of THz and optically 

driven spin dynamics in Tb3Ga5O12 (Chapter 5). 

2.1. Introduction 

The terahertz (THz) frequency domain constitutes a region of the 

electromagnetic spectrum located between the microwave and infrared ranges. This 

domain is commonly referred to as the "THz gap" owing to the historical challenges 

associated with the generation and detection of THz waves. The THz frequency 

domain is typically delineated as encompassing frequencies from 0.1 THz to 10 THz. 

In a physical context, 1 THz corresponds to a wavelength of 300 microns in vacuum, 

to 33.3 cm⁻¹ when expressed in wave numbers, to a photon energy of 4 meV, or to a 

temperature of 48 K (See Fig.2.1).  

 

Fig. 2.1. Electromagnetic radiation spectrum illustrating the THz gap. 
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THz waves exhibit the property to penetrate non-destructively a variety of 

materials, including non-metallic substances (such as papers and plastics), organic 

materials, gases, and liquids, thereby establishing themselves as a powerful tool for 

spectroscopic sensing. The distinctive characteristics of THz radiation, particularly 

its capacity to interact with fundamental excitations (like phonons, magnons, 

excitons etc.) present in materials, render it an effective tool for investigating and 

manipulating their properties. This frequency domain proved itself very effective for 

the examination of ultrafast magnetisation dynamics and nonlinear phenomena, 

which are essential for the progression of both fundamental studies in condensed 

matter physics and practical technological applications  [90,91]. The diverse 

applications of THz technology encompass a multitude of fields, including but not 

limited to material characterisation, which involves detailed analysis of material 

properties, biological imaging that enhances our understanding of biological 

systems, security scanning for safety measures, and wireless communications that 

promise faster and more efficient data transfer [92]. 

2.2. Pump-probe spectroscopy 

Pump-probe spectroscopy is a powerful technique which is used to study non-

equilibrium dynamical phenomena in different systems. This includes exploring 

magnetisation dynamics in magnetic materials, carrier dynamics in semiconductors, 

as well as cooper pairs and vortex dynamics in superconductors. The method 

employs a laser that emits ultrashort optical pulses, divided into two components by 

a beam splitter: pump and probe; delay control stage; detection bridge (Wollaston 

prism and photodetectors), see Fig 2.2: 

 

Fig. 2.2. A simplified representation of the standard pump-probe 
spectroscopy scheme.  

Pump Pulse: This stronger pulse excites the sample, triggering dynamical 

processes like a spin precession, which alters the sample's magnetic properties. 
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Probe Pulse: Following the pump pulse, this weaker, delayed pulse measures 

the changes in the sample caused by the pump, providing information about these 

changes.  

It has to be pointed out that depending on the research task pump and/or probe 

can be tuned to various spectral ranges, including far-infrared, optical, ultraviolet, or 

X-ray, each sensitive to specific electronic transitions. This tuning enables precise 

measurements of phenomena like polarisation rotation due to the Faraday or Kerr 

effects. 

2.2.1. Temporal and spectral resolution 

Temporal Control: By adjusting the delay time Δ𝑡 between the pump and probe 

pulses Δ𝑡 = 2Δ𝑥/𝑐, where Δx is the path difference introduced by the delay line and 

c is the speed of light, femtosecond resolution can be achieved. This control is crucial 

for capturing transient processes within the material. 

Spectral Sensitivity: Selecting the probe pulse's wavelength is important part as it 

determines the targeted electronic transition. Different wavelengths allow for the 

observation of various aspects of the phenomenon, providing a comprehensive 

understanding of the dynamic processes. 

2.2.2. Experimental geometry 

The typical pump-probe setup, as illustrated in Figure 2.3, includes a laser 

source, beam-splitter (BS) that divides the laser pulses into pump and probe beam 

lines. The probe beam is separated by a BS and delayed via delay stage with respect 

to the pump pulse. The detection component of the setup, known as polarisation 

bridge, consists of a Wollaston prism (WP) which splits the probe pulse into two 

orthogonal polarisation components. These components are captured by two 

balanced photodetectors (PDs) that measure the intensity and polarisation changes in 

the probe pulse, converting them in photocurrent. The differences in signals from 

these orthogonal components provide insights into polarisation rotation changes, 

which are detected using a lock-in amplifier. It is important to note that, before 

starting pump-probe measurements, photodetectors must be balanced by adjusting 

the half waveplate angle in the absence of a pump pulse to ensure zero voltage. This 

procedure is known as “balance detection scheme”. Once it is done the setup enables 

accurate, time-resolved measurements of subtle changes in the dynamical properties 

of the sample’s, like magnetisation. 
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Fig.2.3. Illustration of a general pump probe scheme. Details of the setup 
are in the main text. 

2.2.3. Practical applications and modifications 

 Magneto-Optical Effects: Our measurements focus primarily on magnetic 

dynamics, that in optical measurements results in the changes of polarisation state 

(rotation or ellipticity) in transmission (Faraday) or reflection (Kerr) geometry. 

Therefore, through this thesis the Faraday effect in orthoferrites and TGG crystal 

will be studied. However, such experimental setup could be adjusted for 

measuring in reflection geometry as well. 

 Modifications: This experimental setup can be further modified by introducing a 

nonlinear crystal, like LiNbO3 to generate THz pump pulses to perform THz 

pump optical probe spectroscopy measurements (Chapter 4) or by adding a Beta 

Barium Borate crystal for converting an 800 nm optical pump into a 400 nm pump 

(Chapter 5), which adds flexibility to the pump-probe technique. 

2.2.4. Lock-in-amplifier detection technique 

Lock-in amplifiers play a critical role across various scientific and engineering 

fields, including quantum mechanics, optical research, and biomedical engineering. 

These sensitive devices are crucial in detecting and analysing the slightest variations 

in electrical signals, making them indispensable for identifying weak alternating 

current (AC) signals obscured by noise. Their ability to precisely extract and amplify 
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signals at a specific reference frequency greatly reduces the interference from 

extraneous noise, thus enhancing the clarity and reliability of the measurements. 

Operational Principle. Lock-in amplifier primary function is phase-sensitive 

detection (PSD) – it amplifies only the components of the input signal at a given 

reference frequency and phase, decreasing the signal at other frequencies [93]. This 

is achieved by an internal architecture equivalent to a homodyne (synchronous) 

detector followed by a tuneable low-pass filter. In practical terms, if an experiment 

can imprint a unique modulation frequency on the signal of interest, a lock-in 

amplifier can “lock in” to that frequency and recover signals orders of magnitude 

weaker than the broadband noise (in some cases, signals 106 times smaller than the 

noise). This makes lock-in amplifiers indispensable in optical and electrical 

measurements where signal-to-noise ratios (SNR) are very low. 

For our experiments, we chose a reference frequency of 500 Hz, modulated by 

an optical chopper operating at half of the laser frequency repetition rate (see 

Fig.2.3). The lock-in amplifies the input signal 𝑉in and then multiplies it by reference 

𝑉ref using a phase-sensitive detector or multiplier. The output of the PSD could be 

represented simply as the product of two sine waves:  

𝑉out = 𝑉in𝑉ref = 𝑉sig𝑉L sin(𝜔L𝑡 + 𝜃sig) sin(𝜔ref𝑡 + 𝜃ref).             (2.1) 

Here, 𝑉sig and 𝑉L are signal and internal reference signal amplitudes; 𝜔L internal 

reference frequency; and 𝜃sig and 𝜃ref  signal and reference signal phases. 

This formula could be simplified using trigonometric identities to reveal a 

more manageable one that illustrates the interaction between the signals: 

𝑉out =
1

2
𝑉sig𝑉L[cos((𝜔r −𝜔L) 𝑡 + 𝜃sig − 𝜃ref) + cos((𝜔r −𝜔L) 𝑡 + 𝜃sig

+ 𝜃ref)].                                                                                                  (2.2) 

Here, 𝜔r is the frequency of the square wave used for sync with output function.  

By filtering out high-frequency components (the sum frequency), the lock-in 

amplifier focuses on the difference frequency, which ideally is zero (DC component), 

when 𝜔r = 𝜔L and 𝜃sig = 𝜃ref. The output from the phase-sensitive detector (PSD) 

is then: 
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𝑉PSD =
1

2
𝑉sig𝑉L[cos(𝜃sig − 𝜃ref)].                              (2.3) 

 The output from the PSD is straightforward, highlighting key signal 

characteristics and is proportional to the cosine of the phase difference. This value 

indicates how well the incoming signal aligns in-phase with the reference. To 

maximize signal amplitude, precise calibration of the phase shift between the 

reference and the input signal is essential, as minor discrepancies can significantly 

impact results. 

 To summarise, lock-in amplifiers significantly improve the signal-to-noise 

ratio by focusing on the signal portion in sync with the reference frequency. The 

remarkable specificity achieved by the narrow bandwidth of the low-pass filter 

applied after the PSD selectively amplifies frequencies close to the reference 

frequency. The narrow bandwidth ensures that only frequencies near the reference 

frequency contribute to the output, significantly reducing noise. 

2.3. THz Generation: Techniques and mechanism 

Terahertz time-domain spectroscopy (THz-TDS) relies on ultrafast THz 

pulses to probe low-energy excitations in materials. Generating these broadband, 

sub-picosecond THz pulses is challenging due to the so-called “THz gap” between 

electronic and optical frequencies. A variety of techniques have been established, 

utilizing nonlinear optics, ultrafast laser interactions, and plasmonic enhancements 

to generate high-quality THz radiation. This section outlines the methods employed 

in our experiments, specifically optical rectification and phase matching 

condition. 

2.3.1. Optical Rectification 

Optical rectification (OR) is a nonlinear optical process that allows to generate 

terahertz (THz) waves efficiently by leveraging the second-order nonlinear 

susceptibility 𝜒(2). In this process, an ultrafast infrared or visible laser pulse 

(typically from a femtosecond laser) passes through a nonlinear crystal and produces 

a transient polarisation at THz frequencies via second-order nonlinearity. Crucially, 

this process requires non-centrosymmetric crystals – only such materials have a 

nonzero second-order 𝜒(2) needed for OR [94]. In essence, when a high-intensity 

femtosecond laser pulse passes through a 𝜒(2) medium, the second-order polarisation 

𝑃(2)(𝑡) includes a difference-frequency or quasi-static component that oscillates at 

THz frequencies. Physically, the ultrafast pulse’s broad spectrum 𝜔3 contains many 
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frequency components that can mix via the 𝜒(2) nonlinearity (see Fig.2.4). The 

beating of frequencies 𝜔1 and 𝜔2 generates new components at the frequency 

difference 𝜔3 = 𝜔1 − 𝜔2, which falls into the THz range.  

 

Fig. 2.4. a) Illustration of the optical rectification (OR) process. Optical pulses are 
converted by a nonlinear crystal, which subsequently generates THz pulses. b) 
Frequency spectral domain showing the optical rectification as a form of Difference 
Frequency Generation (DFG) that arises among all possible frequency 
combinations, from higher to lower, within the laser pulse bandwidth.  

The governing equation for nonlinear polarisation 𝑃(2)(𝑡) in this process is 

given by: 

𝑃(2)(𝑡) = ϵ0𝜒
(2)𝐸(𝑡)2.                                             (2.4) 

Here, 𝑃(2)(𝑡) represents the second-order polarisation in the material, serving as the 

THz field source, ϵ0 denotes the dielectric constant, 𝐸(𝑡) refers to the electric field 

of the incident laser pulse, and 𝜒(2) is the crystal’s second-order nonlinear 

susceptibility tensor. 

The emergence of a second harmonic in polarisation can be predicted using 

the following mathematical reasoning: Consider the electric field component, 

represented as: 𝐸(𝑡) = 𝐸0cos (𝜔𝑡). Substituting this into the polarisation equation 

provides: 

𝑃2 = ϵ0𝜒
(2)𝐸0

2cos2(𝜔𝑡) =
1

2
ϵ0𝜒

(2)𝐸0
2(1 + cos(2𝜔𝑡)).          (2.5) 
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In this case, the transformation entails the use of the double-angle identity for 

cos square, which simplifies the overall expression. As can be seen in this equation, 

the first term represents a constant component, indicative of optical rectification. The 

second term corresponds to twice the frequency of the original optical field, 

associated with the dipole oscillations within the medium at that same frequency. 

2.3.2. Phase Matching and Pulse Propagation 

The effective generation of THz waves requires the phase velocity of the 

generated THz wave to match the group velocity of the incoming NIR pulses. This 

is described by the phase-matching condition [95]: 

𝛥�⃗⃗� = �⃗⃗�1 − �⃗⃗�2 − �⃗⃗�3 = 0.                                                (2.6) 

Here, �⃗⃗�1, �⃗⃗�2 represent the wave vectors of the incoming (NIR) pulses with 

frequencies 𝜔1, 𝜔2 and �⃗⃗�3 is the wave vector of the generated THz with frequency 

𝜔3, (see Fig.2.4(b)). If this condition is not met, then it results in THz waves 

generated at various locations within the crystal interfering destructively, which 

diminishes overall efficiency. In many materials, perfect phase matching is 

challenging due to dispersive differences in the refractive indices for optical and THz 

waves. Therefore, selecting an appropriate nonlinear crystal is crucial for the 

effective generation of strong THz pulses. 

2.4. Tilted pulse front technique 
In traditional optical rectification methods, the THz generation efficiency is 

limited by the phase mismatch between the optical pulse and the THz wave. This 

issue is circumvented with the use of the tilted pulse front technique. 

Tilted pulse front technique is an optimisation technique that enhances the 

efficiency of optical rectification and which optimises the phase matching condition 

by adjusting the temporal characteristics of the incident pump pulse. This method, 

first proposed by Hebling et al. [96], addresses the fundamental limitations of 

conventional phase-matching techniques, such as those used in periodically poled 

lithium niobate (PPLN) crystal, and offers a more efficient route for high-energy THz 

pulse generation. One of the significant advantages of the tilted pulse front technique 

is the ability to continuously tune the frequency of the generated THz radiation. By 

varying the tilt angle of the optical pulse front, the THz emission can be tuned across 

a broad spectral range. This tunability is particularly useful in applications such as 

THz spectroscopy, where precise control over the THz frequency is necessary for 
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probing material properties. Experimental demonstrations have shown that the tilt 

angle can be adjusted to cover the THz range from 0.1 to 4.4 THz, with the possibility 

of broader tunability depending on the material used [97]. 

2.4.1. Principle of the Tilted Pulse Front Technique 

The core principle of this technique lies in modifying the group velocity of the 

optical pump pulse to match the phase velocity of the generated THz wave by 

introducing a tilting angle of the pulse front (Fig.2.5.). 

 

Fig. 2.5. Illustration of the application of the tilted wave front technique in 

generating intense THz pulses through optical rectification.  

This tilt effectively compensates for the differences in the propagation 

velocities of the optical and THz waves inside the crystal, thus achieving velocity 

matching over the entire nonlinear interaction. 

Mathematically, this velocity matching is expressed as: 

𝑣THz
ph

= cos(𝛾) 𝑣NIR
gr
.                                               (2.7) 

Here,  𝑣NIR
gr

 is a NIR group velocity, 𝑣THz
ph

 is phase velocity of the generated THz 

pulse and γ is the angle by which the optical pulse front is tilted. By adjusting the tilt 

angle, the phase and group velocities of the pump and THz pulses are matching, 
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which is crucial for efficient THz generation. In our experiments the tilt angle is: 640, 

but our LiNbO₃ is cut at 620. 

2.4.2. Experimental Configuration 

The experimental setup for the tilted pulse front technique typically involves 

several key components: a diffraction grating, a beam-shaping optical system (often 

a telescope), and a nonlinear crystal such as lithium niobate (LiNbO₃), which 

facilitates the optical rectification process. The diffraction grating is used to 

introduce angular dispersion into the optical pulse, creating the desired tilt in its 

temporal front. This spatially tilted pulse which enters the nonlinear crystal, where 

the interaction between the optical pulse and the material generates THz radiation. 

To optimise the system's performance, the alignment and configuration of the optical 

components are crucial. The grating's dispersion must be carefully calibrated to 

achieve the correct tilt angle, and the beam-shaping lenses must ensure that the pulse 

remains collimated as it enters the nonlinear medium. Additionally, to reduce the 

impact of imaging errors—such as distortions in the beam profile due to lens 

aberrations—a telescopic optical setup, often involving achromatic lenses, is 

preferred. This setup has been shown to significantly minimize the divergence of the 

THz beam, ensuring a more stable and focused THz output [98].  

 

2.5. Experimental Setup 

In this section, we provide an overview of our intense THz pump-optical probe 

experimental setup. Firstly, we will point out that in our experiments we used delay 

line DL325 from Newport company with Bi-directional repeatability (distance 

error) 𝑅 = ±0.15 µ𝑚. Therefore, in our measurements the time error is very small: 

𝑡 =
𝑅

𝑐
=

15∗10−8

3∗108
= 5 ∗ 10−16 s. 

Fig. 2.6. illustrates our experimental setup containing a titanium sapphire (Ti: 

sapphire) laser, that emits pulses with a wavelength of 800 nm, a pulse energy of 7 

mJ, a pulse width of 40 fs, and a repetition rate of 1 kHz. After the emitted radiation 

passes through a beam splitter, it separates into the much weaker part, namely probe 

(1%< of initial pulse power) and the part of the pulse which will be used for THz 

generation. 
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Fig. 2.6. Illustration of intense THz pump-optical probe setup used in our 

experiments.  

THz Generation Pulse Path: The generation part of the laser beam then 

passes through a chopper, which reduces its repetition rate to 500 Hz (reference 

signal) which is necessary for the synchronising with lock-in-amplifier. After 

modulation by the chopper, the generation part of a pulse travels further and reflects 

from a diffraction grating, which is used to introduce angular dispersion into the 

optical pulse, creating the desired tilt (more details in section Tilted Pulse Front) in 

its temporal front. This spatially tilted pulse then enters the nonlinear crystal, where 

the interaction between the optical pulse and the material generates THz radiation. 

The residual 800 nm pump is filtered with a teflon plate and redirected using a set of 

two parabolic mirrors (PM1 and PM2) with focal lengths of 1 inch and 6 inches. 

Then it passes through the two wire grid polarisers which we use to control the 

polarisation the incoming THz pulses, after that it directed on the third parabolic 

mirror (PM3) with focal length of 2 inches which focuses the THz radiation on the 

sample placed inside a cryostat. 

Probe Pulse Path: the probe pulse is delayed via a delay stage to detect pump-

induced phenomena within the sample. This pulse travels through a half-wave plate 

(HWP) and 3rd parabolic mirror (PM3), to probe the sample after its excitation by the 

pump pulse. This leads to the changes in the probe polarisation state. 
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Detection Bridge:  These changes are analysed by directing the transmitted 

radiation through another half-wave plate and Wollaston prism onto a polarisation 

bridge. This signal is then processed by a lock-in amplifier to extract the signal of 

interest, thereby enhancing the signal-to-noise ratio. 

 Optical pump: In Chapter 5, we studied THz and optically induced dynamics 

of Tb ions in Terbium Gallium Garnet (Tb3Ga5O12) crystal. For this matter we 

modified our experimental setup by adding an additional mirror (dashed blue line) 

after beam splitter and installed beta Barium Borate (BBO) crystal (shown as light 

green rectangular) for the conversion of 800 nm laser pulses into 400 nm (shown in 

violet colour). Then we modified our setup by adding dichroic beam splitter (DBS) 

which reflects 400 nm and transmits 800 nm. After that we focused the 400 nm on 

the sample in the cryostat by using focused lens (l1).  

In the following sections of this chapter we provide more detailed information 

about the technique used to construct our setup. 

2.6. Terahertz Wave Detection 

2.6.1. THz detection by Electro-optical sampling 

Electro-optic sampling (EOS) is an optoelectronic technique that uses the 

linear electro-optic (Pockels) effect [99]. This phenomenon is defined by an electric 

field (like the one from the incoming radiation) that induces birefringence (causes 

the changes in refractive index value) of a nonlinear crystal, leading to changes in 

the polarisation state of an optical probe beam. The key components for the EOS 

technique must include: 

1) EO Crystals: Zinc telluride (ZnTe), gallium phosphide (GaP) or gallium arsenide 

(GaAs) are favoured due to their high electro-optic coefficient and broad 

detection bandwidth.   

2) Balanced Detectors: The modulated probe beam splits into two orthogonal 

components by Wollaston prism and quarter-wave plate is used for monitoring 

changing in ellipticity and a Wollaston prism, which aids in reconstructing the 

field. 

For our EOS experiments, a GaP nonlinear detection crystal with a thickness 

of 100 µm  [100] was placed in the sample position of our setup as shown in Fig.2.7. 



54 
 

 

Fig. 2.7. Schematic of the EO sampling setup. The off-axis parabolic mirrors 
PM1, PM2, and PM3 have effective focal lengths of 25.4, 152.6, and 50.8 mm, 
respectively. Their respective diameters are 10, 50, and 50 mm. M: mirror, 
λ/4: quarter-wave plate, WP: Wollaston prism, PD: photodetector. 

The THz wave's electric field induces temporary birefringence which is 

linearly proportional to the strength of the applied electric field in the detector crystal 

through the Pockels effect. This effect alters the properties of the probe pulse, 

changing its polarisation from linear to elliptical. The resultant change, proportional 

to the THz field strength, is detected by a balanced photodiode setup. Analysis of the 

photodiode's output, relative to the time delay between the THz and probe pulses, 

allows for accurate reconstruction of the THz field profile in the time domain. 

To ensure that we obtain clear THz profiles independent of air humidity, we 

used a purge box with dry air. Figure 2.8 shows the THz profiles and the 

corresponding spectrum without the box and humid air and with the box and purge 

dry air. 
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Fig. 2.8. a) THz wave profiles in humid air (black) and dry air (violet) and their 
spectra; b) obtained with the use of TTLP technique and measured with the use of 
EOS. 
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Chapter III. Theory of THz-driven magnetic 

switching in rare-earth orthoferrites: the case of 

TmFeO3 
 

“If it (your guess or theory) disagrees with experiment, it’s wrong. In that 

simple statement is the key to science.” 

— Richard Feynman 

 

This chapter reports a theoretical formalism that describes a dynamic magnetic 

response of rare-earth orthoferrites (REOs), particularly those with non-Kramers 

rare-earth (R) ions, when driven by strong THz fields. We derive a total 

thermodynamic potential for the exchange coupled R-Fe system by constructing an 

effective Hamiltonian and employing a mean-field theory approximation. We 

investigate static properties of the R and Fe subsystems across the spin reorientation 

phase transitions and obtain resonance frequencies for Fe and R magnetic sub-lattices 

as a function of temperature. Taking an example of the archetypical orthoferrite 

TmFeO3, we perform numerical modelling to accurately describe the behaviour of 

its anisotropy functions vs temperature. Finally, we analyse switching dynamics of 

Fe spins and nonlinear effects in the R subsystem of TmFeO3 driven by strong THz 

radiation. 

3.1. Motivation 
Rare-earth orthoferrites, with a chemical formula of RFeO3, have been 

attracting significant attention since their discovery in the 1940s due to their unique 

magnetic properties  [101–103]. The coexistence of two different magnetic ions (R3+ 

and Fe3+) in this class of magnetic oxides results in a unique combination of various 

effects and phenomena such as spin reorientational phase transitions (SRPT) [104–

110], strong magneto-optical effects [111–114], high-frequency spin 

dynamics [115–120], high-harmonic generation [121], strong magneto-elastic 

effects [122–125], multiferroicity [126–129] and as a new platform to simulate the 

quantum optics phenomena [130–133]. In this way orthoferrites proved to be a 

remarkable model system for several fields of physics. Beside this scientific 

importance, orthoferrites served as a prototypical platform for the bubble domain 

memory [30]. 
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In the past two decades, the orthoferrites have gained renewed interest as a 

proof-of-concept platform for ultrafast magnetism with significant implications for 

spintronic applications. It has been experimentally demonstrated that circularly-

polarised femtosecond (fs) laser pulses can induce ultrafast non-thermal control in 

DyFeO3 [134] and that SRPT phenomena are highly sensitive to external optical 

excitation [135,136]. Very recently, the RFeO3 class became a subject of extensive 

investigations in the field of nonlinear phononics [37–40] and magnonics  [141,142]. 

Nova and colleagues [138] explored effects of optically driven phonons in ErFeO3. 

They found that simultaneous excitation of multiple lattice modes can mimic the 

application of a magnetic field, breaking time-reversal symmetry and thereby driving 

coherent spin precession. Afanasiev, et al [139] focused on the resonant ultrafast 

excitation of IR-active phonons in DyFeO3, leading to coherent manipulation of 

macroscopic magnetic states. By using intense mid-infrared electric field pulses, they 

induced long-lasting changes in the exchange interaction between Dy3+ and Fe3+ ions. 

The magnonics research on RFeO3 materials underscores their potential for future 

spin wave-based computing. Studies made by Hortensius, et al. [141] regarding spin-

wave transport in DyFeO3, the recent work of Leenders, et al. [142], describing 

canted spin order as a platform for the ultrafast conversion of magnons, together with 

the theoretical studies [143] on this topic collectively highlight the transformative 

potential of RFeO3 in enabling high-speed, low-dissipation information transfer 

through coherent spin waves. As research progresses, these materials will likely play 

a pivotal role in developing next-generation magnonic and spintronic technologies. 

However, it should be pointed out that while optical and infrared pulses can 

induce changes in magnetism, they do so indirectly via electronic or phononic 

excitations. However, the development of THz time-domain spectroscopy (THz-

TDS) techniques allowed the study of various types of excitations, including spin 

dynamics, by directly interacting with atomic spins using THz radiation. This method 

offers more precise and controlled manipulation of magnetisation dynamics in 

magnetic materials through the resonant excitation of spins by strong ultrashort THz 

magnetic field [144–149]. Another interesting idea was to use intense THz fields to 

achieve control over nonlinear spin reorientation transition and switch of iron spins 

in REOs due to the changing crystalline magnetic anisotropy via R subsystem, which 

is driven by laser pulses [150–152]. In [151] Baierl, et al. demonstrated that in 

TmFeO3 the resonant THz pumping of electronic orbital transitions significantly 

alters the magnetic anisotropy of Fe3+ spins, leading to coherent spin oscillations with 

large amplitudes. This mechanism is inherently nonlinear and can be tailored by 

shaping the THz waveforms, offering a more efficient control scheme compared to 
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linear Zeeman coupling. In [152] Schlauderer, et al. expanded this approach by 

demonstrating ultrafast all-coherent spin switching by combining electric-field-

induced anisotropy changes with the local near-field enhancement from metal 

antennas.  

However, the complementary theoretical description of the ultrafast dynamics 

in the orthoferrites remains a challenge. Only the role of the Fe subsystem has been 

well understood, and the role of the R subsystem is still a blind spot. The first 

quantum-phenomenological approach for describing REOs was proposed and 

successfully verified in a series of works [108,115,116], with a more detailed 

explanation provided in [153]. The main idea of this approach is to consider the 

crystal field's influence on the properties of rare-earth ions by constructing 

microscopic Hamiltonians accounting for interactions with the crystal field, d-f 

exchange and internal f-f exchange. These Hamiltonians are not calculated from first 

principles but constructed using the general symmetry properties of the system and 

known data on the specific spectrum of the rare earth ion in the crystal. The 

parameters of these Hamiltonians are extracted from the experiment. Then by 

applying mean-field theory approach one should derive thermodynamic potential 

(Helmholtz free energy) to describe Fe and Re subsystems in a macrospin 

approximation.   

However, it should be pointed out that these earlier theoretical works did not 

consider the strong optical and THz excitations of the orthoferrites at the ultrafast 

timescale and, therefore, can only provide a basis for further theoretical description 

of the current experiments. Recent studies have increasingly focused on the role of 

the rare-earth (R) subsystem in orthoferrites featuring Kramers ions, such as 

SmFeO3, DyFeO3, and NdFeO3. For instance, the research reported in [154] 

investigated the contributions of the samarium (Sm) subsystem to the magnetism of 

SmFeO3. Concurrently, work  [155] revealed that interactions between iron and 

samarium spins result in pronounced spin-phonon coupling. In  [156], the authors 

introduced a model for temperature-driven spin switching and exchange bias in 

ErFeO3, while in [157], they proposed a model of nonequilibrium thermodynamics 

for the same compound. Additionally, reference [59] combined experimental results 

with theoretical analysis to elucidate the spin-reorientation phase transition and 

induced spin reversals in NdFeO3. References [60] and [61] explored the 

implications of external radiation on DyFeO3 using quantum theory. In this work, we 

aim to develop a theoretical model that can describe the nonlinear spin dynamics in 

REOs with non-Kramers ions driven by strong THz radiation. Our approach takes 
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into account the coupled nature of dynamics of Fe and R systems to correctly relate 

the effects of strong THz fields on REOs. 

The chapter is organized as follows. In Section 3.2. we discuss the theoretical 

foundations necessary for the further theoretical investigations of static and 

dynamical properties RFeO3 with non-Kramers ions, namely an effective 

microscopic Hamiltonian is constructed that accounts for the effects of crystal field 

interaction with R, d-f exchange, f-f exchange, interaction with external electro-

magnetic fields caused by THz radiation. Then, by applying the mean-field approach 

to the Hamiltonian, the free energy function or a total thermodynamic potential for 

RFeO3 with non-Kramers rare-earth ions is derived. Section 3.3 starts with the 

description of the static properties of REOs over a broad temperature range, with 

anisotropy temperature functions retrieved from the free energy function for 

archetypical orthoferrite TmFeO3 as an example. Then it focuses on the dynamical 

properties of TmFeO3. Firstly, resonance frequencies for the coupled Tm-Fe 

subsystems are derived. Secondly, numerical modelling is performed to investigate 

the spin response to the Zeeman torque caused by the magnetic field component of a 

THz pulse. Then, the influence of the anisotropy-driven torque caused by THz 

pumping of orbital states of Tm3+ ions, either through the Zeeman or Stark effects, is 

investigated. In Section 3.4, the results of the work are summarized. Appendix 

sections 3.5-3.8 provide supplementary information about the obtained theoretical 

results. 

 

3.2. Theoretical formalism 

REOs belong to a wide class of compounds of the ABO3 type, which have a 

distorted perovskite structure (Fig.3.1). The crystal structure of orthoferrites is 

described by the rhombic space group 𝐷2ℎ
16 − 𝑃𝑏𝑛𝑚 [161,162]. Their unit cell 

contains four RFeO3 molecules (see Fig. 1). Since the crystal and magnetic cells in 

orthoferrites coincide, then to characterise the magnetic structures as a whole, one 

can use four magnetic sublattices of Fe3+ ions and four of R3+ ions.  

However, to describe qualitatively and quantitatively the magnetic properties 

of RFeO3, the two-sublattice approximation [153,163] is normally sufficient. 

Therefore, we employ it in this work. The relative strength of the various microscopic 

interactions determines the specific type of magnetic structure in REO crystals.  
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Fig.3.1. Distorted perovskite structure of the rare-earth orthoferrites3.    

The strongest one is the antiferromagnetic exchange Fe-Fe interaction, which 

leads to ordering of the Fe3+ spins according to the G-type (i.e. Néel or checkerboard 

structure where nearest-neighbour spins are aligned antiparallel). The corresponding 

Neel temperatures for the different orthoferrites are in a range 620-740 К  [164,165]. 

Weaker (anisotropic) interactions cause the magnetic moments to deviate from the 

purely antiferromagnetic configuration and stabilize their orientation relative to the 

crystal axes. The most important between them is the antisymmetric Fe-Fe 

Dzyaloshinskii-Moriya exchange (DMI), which leads to spin canting and thereby to 

the appearance of a weak ferromagnetic moment. The same interaction, along with 

the single-ion anisotropy of the Fe subsystem and the spin-spin dipole interactions, 

contributes to the energy of the magneto-crystallographic anisotropy, which in turn 

defines the orientation of the magnetic order parameter of REOs [166,167].  

It should be noted that for all the importance of these interactions of the Fe 

subsystem, considering these interactions alone is not sufficient to explain the wide 

variety of magnetic properties of orthoferrites. At room temperature, the effect of 

rare-earth ions on the magnetic properties of orthoferrites is insignificant. This is 

evidenced, in particular, by the fact that almost all orthoferrites (except SmFeO3), at 

high temperatures have the same magnetic configuration Г4, for which the iron spins 

lie along a-axis of the crystal. This Г4 magnetic phase is stabilized by the anisotropy 

energy of the Fe subsystem [165]. However, upon decreasing of temperature the 

                                                             
3 Picture is a courtesy of Dr. Oleksandr Kovalenko 
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properties of REO, are largely determined by the type of rare-earth ion, which 

manifests itself in various temperature dependences of the weakly ferromagnetic 

moment of the crystal, the presence of magnetisation compensation points and, 

mainly, the existence of various spin reorientational phase transitions (SRPT), both 

spontaneous and induced by an external magnetic field. It has been established [153] 

that such a variety of properties of orthoferrites is associated primarily with the 

individual features of the magnetism of the R-ion in the crystal and its interaction 

with the subsystem of Fe-ions via so-called d-f exchange anisotropic interaction. This 

is due to the fact that the isotropic R-Fe exchange of a pair of Fe3+-R3+ ions is almost 

completely compensated in the crystal due to the antiferromagnetic ordering of the 

Fe subsystem. As for the weaker R-R interaction, it is important only at low 

temperatures (T < 5 K), leading in some cases to the antiferromagnetic ordering of 

the R subsystem. 

In the existing theoretical description of rare-earth oxides, it is essential to note 

that the commonly used phenomenological approach is insufficient to describe the R 

subsystem's properties in contrast to the Fe subsystem. Instead, the microscopic one 

is more efficient  [108,153]. In it, the R subsystem is described with the help of 

microscopic Hamiltonians including the crystal field, d-f exchange, f-f exchange and 

so on, which are obtained by using the symmetry properties of the system, as well as 

known experimental data on the actual spectrum of rare-earth ions. The parameters 

of these Hamiltonians should be ultimately determined from experiments. Moreover, 

such an approach is potentially more productive in investigating the dynamical 

properties of REOs for Fe and R subsystems, which are, strictly speaking, coupled. 

This allows applying two sublattice approximations and, as a result, solving two sets 

of equations of motion to get pair of two resonance modes for the Fe and R 

subsystems and to investigate their dynamical features in a broad temperature range. 

Also one should take into account that when it comes to the theoretical 

description of RFeO3 one should distinguish cases with Kramers (odd number of 4f 

electrons) and non-Kramers ions (even number of 4f electrons). According to 

Kramers’ theorem, any ion with an odd electron count (half-integer total angular 

momentum 𝐽) retains at least a double degeneracy (a Kramers doublet) under time-

reversal symmetry, no matter how low the crystal-field symmetry. In contrast, an 

even-electron (integer 𝐽) ion is not guaranteed any such protected degeneracy; a low-

symmetry crystal field can fully split its ground multiplet into nondegenerate singlets 

(though sometimes two lowest singlets lie close in energy as a “quasi-doublet”). This 

distinction leads to very different magnetic behaviour. In zero field, both Kramers 
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and non-Kramers ions have no net moment (either due to exact doublet state 

cancellation for Kramers, or a nonmagnetic singlet wavefunction for non-Kramers). 

However, any small internal or external field will split a Kramers doublet and induce 

a magnetic moment (Curie-like paramagnetism). A non-Kramers singlet, on the other 

hand, is magnetically inert to first order – it only develops moment via excited-state 

mixing (Van Vleck susceptibility). In essence, Kramers ions behave as robust 

magnetic moments at low temperature, whereas non-Kramers ions often behave as 

“Ising” or easy-axis singlets that can be magnetised only by stronger fields or thermal 

population of higher levels. From a theoretical point of view, according to existing 

literature  [124,125], the situation with Kramers ions is more complicated due to the 

larger number of terms in the thermodynamic potential responsible for f-d and f-f 

exchange interactions. 

Therefore, in our theoretical model, the ultimate goal is to describe equilibrium 

and non-equilibrium properties for the case of non-Kramers REO by constructing the 

effective Hamiltonian and then to derive the total thermodynamic potential, which 

includes all interactions between Fe-R subsystems while taking into account effects 

caused by THz radiation. As an indicative material of interest, we choose TmFeO3, 

due to its well-established magnetic properties, and since it has been employed in the 

recent ultrafast and THz experiments [135,151,152,168,169]. 

3.2.1. Thermodynamic potential for Fe-subsystem 

To describe the Fe-subsystem, a phenomenological (macroscopic) 

approach [120,153,170] can be employed, which is based on the expansion of the 

thermodynamic potential for the Fe subsystem (ФFe) in terms of the powers of the 

components of the basis vectors �⃗� and �⃗�: 

2
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ac ab 2 2 2
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Here, the first term corresponds to the d-d exchange interaction, the second is the 

Dzyaloshinskii-Moriya exchange interaction, the third term is the Zeeman effect, and 

4th and 5th correspond to the magneto-crystalline anisotropies. �⃗� =
�⃗⃗⃗�1+�⃗⃗⃗�2

𝑀0
 and �⃗� =

�⃗⃗⃗�1−�⃗⃗⃗�2

𝑀0
 are defined as dimensionless vectors of ferromagnetism and 



63 
 

antiferromagnetism, expressed as a half-sum and half-difference of two 

magnetisation sub lattices �⃗⃗⃗�1 and �⃗⃗⃗�2. These vectors comply with the conditions 

�⃗�2 + �⃗�2 = 1 and (�⃗��⃗�) = 0. Here, 𝑀0 = 5𝜇𝐵 denotes the magnetisation of the Fe 

sublattices, with 𝜇𝐵 representing a Bohr magneton. A is defined as the isotropic d-d 

exchange constant and d is Dzyaloshinskii constant, �⃗⃗⃗� is identified as the external 

magnetic field, while 𝐾𝑎𝑐, 𝐾𝑎𝑏, 𝐾2, 𝐾2
′, 𝐾2

′′ are the crystallographic anisotropy 

constants.  Here, x,y,z coordinate frame is aligned with the a,b,c crystallographic axes 

respectively. One may introduce additional terms in (3.1), consistent with the 

symmetry of the crystal, but we present a minimal model that captures the essential 

dynamics of rare-earth orthoferrites without introducing excessive complexity.  

At the same time, it should be noted that in rare earth orthoferrites, the 

anisotropy energy includes contributions from various interactions, such as those 

between iron and rare earth ions sublattices. Because of this, the anisotropy constants 

significantly depend on temperature and rare-earth subsystem, which can lead to spin 

reorientation phase transitions [107]. In this regard the rare-earth subsystem should 

be introduced. 

3.2.2. Effective Spin-Hamiltonian for the R-subsystem 

The central problem in the magnetism of orthoferrites is the description of the 

R-subsystem by considering the real spectrum of R3+ ion in a low-symmetry crystal 

field of Cs symmetry and its exchange interaction with the Fe subsystem. In this 

paper, we present the theory for the orthoferrites with non-Kramers R3+-ions (with 

an even number of electrons and integer total angular momentum), taking 

archetypical TmFeO3 as a model system.  We assume that the largest contribution to 

the magnetic properties of Tm3+ arise from the two lowest-energy singlet levels of 

Tm3+ ion. Thus we consider it as two-level system with effective spin  𝑆eff =
1

2
. This 

significantly simplifies the problem and allows one to described it by constructing 

effective spin Hamiltonian [120,153]. Moreover, one should bear in mind that in 

REOs THz radiation can excite not only resonant Zeeman type excitations of iron 

magnons, but electronic excitations of R3+ ions via the Zeeman and Stark effects. 

Therefore, by taking all these interactions into account effective spin 

Hamiltonian for the REO with non-Kramers ions can be presented in the following 

form: 
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       
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.
i j


 

Here, 𝜉, η and ζ are indices for the axes to a local coordinate system of R sublattices. 

In this formula 𝜎𝜉,𝜁 = 〈𝜎𝜉,𝜁〉, representing the mean values of the Pauli matrices for 

the two-level system representing the R3+ ion. These matrices are crucial for 

determining the relative magnitude and the magnetic moment of a R. Δcf denotes the 

energy splitting in the crystal field, and α represents the polarisability coefficient. 

�⃗⃗⃗� and �⃗⃗� symbolize the external electric and magnetic fields (i.e. those of the THz 

pulse), respectively and �⃗�0 = �⃗�0
± = (𝜇𝑥, ±𝜇𝑦, 0)  is the magnetodipolar moment of 

the two-level transition. The  a and b denote isotropic and anisotropic d-f exchange 

interaction constants, respectively, and 𝜆𝑖𝑗 represent f-f exchange interaction 

constants. The first term under the first sum sign is the strongest interaction, i.e., the 

interaction of the R with the crystal field, the second term accounts for the Stark 

effect caused by an external electric field, the third for the linear interaction of R3+ 

ions with external magnetic radiation, and the fourth term for d-f exchange 

interaction. Lastly, the final sum term is responsible for considering the summation 

of the nearest R3+ ions for the low-temperature f-f exchange. 

3.2.3. Thermodynamic potential for coupled Fe-R system 

In order to qualitatively investigate the statistic and dynamic properties of the 

coupled Fe and R subsystems, one should derive thermodynamic potential which 

accounts for the all interactions within the system as well as interactions with 

external fields.  

By following the approach outlined in [153] such thermodynamic potential 

can be represented as follows: 

4

eff

1

1
( , , ) ( , ) ( ).    (3.3)

4
i d

i

F G F G H T S     


      
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Here, 𝑆(𝜎) = ln2 −
1

2
(1 + 𝜎1)ln(1 + 𝜎1) −

1

2
(1 − 𝜎2)ln(1 − 𝜎2) is the entropy 

function for the two-level system. In analogy to the �⃗� and �⃗� vectors, one can 

introduce the following symmetric combinations of R-vectors 𝑓 =
�⃗⃗⃗�1+�⃗⃗⃗�2

2
, 𝑐 =

�⃗⃗⃗�1−�⃗⃗⃗�2

2
, 𝜎1,2 = |𝑓 ± 𝑐|  [116,171] ⟨�̂�eff⟩ is the averaged value of the effective spin 

Hamiltonian per one rare-earth spin from equation (1). 

Considering the expression for ФFe(�⃗�, �⃗�) from (1) the total thermodynamic 

potential for the R-Fe subsystem with non-Kramers R ions can be written in the 

explicit form: 

2 2
cfFe

2 2
1 2

( , , , ) { [ ( ) ] ( )( , )

(3.4)1 1 1
( ) } [ ( ) ( )].

2 2 2

x x x z x y

y y y f c

F G f c f H aF bG f E E fF G

c H aF f c T S S

  

  

 

    

         

     

 

In this formula, the ФFe(�⃗�, �⃗�) term includes all interactions for the Fe 

subsystem from (1), the first term in the brackets describes the anisotropic d-f 

exchange, the second is responsible for the interaction of the R-subsystem with a 

crystal field, the third for the linear interaction with external electromagnetic fields, 

the fourth – for the Stark effect, the fifth and sixth are for the f-f exchange, and 

seventh describes a thermal population effect. 

 

3.3. Results 

3.3.1. Static magnetic properties. Anisotropy parameters 

behaviour 

In the investigation of the static magnetic properties of REOs one should take 

into account the magnetic phase diagram summarized in [172], which delineates 

special temperature regions, where spin reorientational phase transition (SRPT) 

phenomena occur. It is essential to note that SRPTs can be categorized as either first-

order (Morin-type) or second-order phase transitions. However, in the present article 

we will concentrate on the most prevalent path of spin reorientation transitions Г2-

Г24-Г4, in which �⃗� continuously rotates in xz plane as schematically shown in Fig.3.2. 

This path is observed for the RFeO3, with R elements including Pr, Nd, Sm, Tb, Ho, 

Er, Tm and Yb.  
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Fig.3.2. Illustration of the dynamics of the antiferromagnetic vector �⃗� across 

three temperature phases. 

The mechanism of spin reorientation phase transitions (SRPT) Г2-Г24-Г4 in the 

Fe-R system is driven by two primary factors: anisotropy and d-f exchange 

interactions. At elevated temperatures, the Fe spins adopt the high-temperature Г4 

phase, characterised by the presence of only 𝐺𝑥 component. As the temperature is 

reduced to a critical value Т1, the anisotropy parameter Kac is fully compensated by 

the d-f exchange interaction, thereby initiating the SRPT phenomenon. This induces 

a rotation of the �⃗� within the xz plane. Upon further cooling to temperature Т2, the 

SRPT culminates, resulting in the �⃗� vector aligning along the 𝐺𝑧 vector component 

within the low-temperature Г2 phase. Therefore, the question arises about theoretical 

description of anisotropy functions as a function of temperature and the behaviour of 

the antiferromagnetic vector �⃗� along the SRPT temperature path Г4-Г24-Г2. 

In this regard, let us apply our model to describe this behaviour. From now on 

all terms/their combinations in formula (3.4) will be expressed in Kelvin units (see 

Appendix D). To commence our analysis for �⃗� and anisotropy functions within the 

xz plane, one should calculate the equilibrium values of the subsystem parameters in 

magnetic phases Г4, Г24, Г2 and analysing their stability. For that matter by 

minimizing the thermodynamic potential (TP) from Eq. (3.4) with respect to 

�⃗�, 𝑓 and 𝑐 under the conditions (�⃗��⃗�) = 0,  �⃗⃗⃗⃗�
2
+ �⃗⃗⃗⃗�

2
= 1 and (𝑓𝑐) = 0,  �⃗⃗⃗�

2
+ �⃗⃗⃗�

2
=

𝑓0
2
= tanh

2
[ Δ𝑅
𝑘B𝑇
], one can obtain for the phases Г4, Г24, Г2:𝐹𝑦 = 0, 𝑓𝜂 = 0, 𝑐 =

(𝑐𝜉 , 𝑐𝜂, 𝑐𝜁) = 0, (see Appendix A for more details):  
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Here, ΔR(𝑇) is the total energy splitting parameter, expressed as the square root of 

the crystal field splitting Δcf and the contribution arising from the d-f exchange 

Δex(T). By substituting equations (3.5) – (3.8) into (3.4) one can obtain a TP 

depending only on �⃗�. In collinear phases 𝐺𝑥 = ±1,𝐺𝑧 = 0 (Г4) and 𝐺𝑧 = ±1, 𝐺𝑥 =

0 (Г2).  

The stability of the Г2 and Г4 phases is determined by the condition of positive 

sign of the increment 𝛷(�⃗�) in case of deviation of �⃗� from the equilibrium values: 

4 2Г Г
eff 2 eff 2 eff 2 eff 2
ac ab ca cb

1 1
( ),  ( ).     (3.9)

2 2
z y x yK G K G K G K G           

Therefore for the phases Г2, Г4, one can get the following expressions for the 

anisotropy functions: 
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The values of anisotropy functions 𝐾ac
eff(𝑇), 𝐾ab

eff, 𝐾ca
eff(𝑇), 𝐾cb

eff(𝑇) determine 

resonance frequencies (which we will derive in section B) for the Fe subsystem and 

characterise the rigidity of the system when deviating from the equilibrium 

orientations considering that vectors �⃗�, 𝑓, 𝑐 follow order parameter �⃗� in equilibrium 

manner. At 𝑘𝐵𝑇 ≫ ∆𝑅(𝑇), when �̃� → 𝑇, the effective anisotropy functions approach 

to the normal anisotropy constants in the corresponding planes. The TP of the 

TmFeO3 in this case can be represented as Ф(�⃗�) = ФA(�⃗�), in which one just need 

to replace 𝐾ab,ac
eff (𝑇) → 𝐾ab,ac: 

2 2 2 2 4 4
A ac ab 2 2 2

1 1
( ) ( ) ( )        (3.14)

2 4
z y y z z yG K G K G K G G K G K G        

Within the phase Г24, the equilibrium values of the components of the vector 

�⃗� are given by the equations: 

eff eff
ac ac

2 2

( ) ( )
sin , cos 1           (3.15)z x

K T K T
G G

K K
        

Using the derived formulas (3.10) and (3.12) for anisotropy functions 

𝐾ac
eff(𝑇), 𝐾ab

eff(𝑇) as well as formulas (3.8) and (3.15) for ΔR(𝑇) and 𝐺z and by 

extracting relevant parameters for TmFeO3 from [125], we performed numerical 

modelling in the temperature range corresponding to the spin reorientation path Г2-

Г24-Г4 (see Fig.3 a,b,c). 
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Fig.3.3. Temperature dependencies over the Г2-Г24-Г4 temperature interval 

for (a) energy splitting parameter ΔR(𝑇), (b) antiferromagnetic vector 

component  𝐺z  and (c) the effective anisotropy functions 𝐾ac
eff(𝑇), 𝐾ca

eff(𝑇) 

for TmFeO3. 

As one can see (Fig.3.3. (a,b,c)), from the obtained formulas in our model, we 

were able to recreate the behaviour of all major temperature dependent functions 

namely energy splitting parameter ΔR(𝑇), antiferromagnetic vector component  𝐺z 

and the effective anisotropy functions 𝐾ac
eff(𝑇), 𝐾ca

eff(𝑇) considering the boundaries 

of SRPT (80-90 K) in the case of TmFeO3.  

Thus, let us comment on the significance of d-f exchange in the context of 

SRPT. Upon analysing the formula (3.8) governing ΔR(𝑇) (see Fig. 3.3(a)), it 

becomes apparent that in Г4 phase there is no d-f exchange (ΔR(𝑇) = Δcf) this 

corresponds to the situation when 𝐺𝑥 = 1 and 𝐺𝑧 = 0 (see Fig.3.3(b)). As the system 

transitions in Г24 phase there appears contribution from the d-f exchange and SRPT 

transition starts with 𝐺𝑥 = cos 𝜃 and 𝐺𝑧 = sin 𝜃, as it follows from Eq. (3.15) during 

this transition the value of 𝐺𝑧 changes from 0 to 1 and vice versa for 𝐺𝑥. By lowering 
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temperature further to Г2 phase when ΔR(𝑇) reaches maximum value with 𝐺𝑧 =

1 and 𝐺𝑥 = 0. 

In the high-temperature orthogonal Г4 phase, the anisotropy functions, as 

shown in Fig.3.3(c), exhibit 𝐾ac
eff(𝑇) > 0 and  𝐾ca

eff(𝑇) < 0. This behaviour 

corresponds to the scenario where only 𝐺𝑥 component is present, and there is no d-f 

exchange (i.e. ΔR(𝑇) = Δcf). As the temperature decreases, a critical temperature 

point T1 emerges at which 𝐾ac
eff(𝑇1) = 0 and 𝐾ca

eff(𝑇1) < 0 signifying the onset of 

SRPT. This transition brings the iron spin system into the Г24 intermediate phase with 

𝐺𝑥 and 𝐺𝑧 components. By lowering temperature further to T2 when 𝐾ca
eff(𝑇2) =

0 and 𝐾ac
eff(𝑇2) < 0, spin reorientation is completed and spins system reaches low-

temperature Г2 phase (with maximum value of ΔR(𝑇)). 

3.3.2. Dynamical equations for the coupled R-Fe subsystems. 

Resonant frequencies for R3+ and Fe3+ sub-lattices 

Previous theoretical studies [125,173] have identified that in order to 

investigate the dynamics of the coupled R-Fe subsystems in REOs, it is necessary to 

construct two sets of  equations of motion within a two-sublattice approximation for 

each of the subsystems. 

Utilizing the total thermodynamic potential from equation (3.4), the dynamical 

equations for the R subsystem take the following form [116,120]: 

([ ] [ ]) ,( )
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  
     
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In these equations, 𝜇𝐵 is the Bohr magneton and 𝛾 =
2𝜇𝐵

ℏ
 is the gyromagnetic 

ratio, and 𝑅𝑓, 𝑅𝑐  are relaxation terms of the AFM [174,175]. 

 For the Fe subsystem, dynamical equations are similar to (3.16) with changing 

sign for the dynamical part in the equations right-hand side and by changing 𝜇𝐵 to 

𝑀0 = 5𝜇𝐵.   
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Here, 𝑅�⃗� and 𝑅�⃗�  are relaxation terms with the same meaning for the Fe-subsystem 

as 𝑅𝑓 and 𝑅𝑐   for the R-subsystem.  

Each of these terms contains three dissipation parameters: one – relativistic 

and two of exchange nature (for details see Appendix B). When it comes to the 

description of antiferromagnetic dynamics there are two distinct dissipative 

channels: relativistic and exchange relaxation [176,177]. Relativistic dissipation 

constants are phenomenological parameters that quantify damping due to spin–orbit 

and spin-lattice interactions (e.g. magnetic anisotropy, dipole-dipole coupling). 

These “relativistic” processes can transfer angular momentum to the lattice, allowing 

the Néel vector or net magnetisation to lose energy (analogous to Gilbert damping in 

ferromagnets). In contrast, exchange dissipation constants characterise dissipation 

arising from exchange interactions within the spin system. Exchange-driven 

dissipation processes conserve total spin but damp the relative motion of sublattice 

magnetisations, stabilising their mutual orientation. Microscopically, exchange 

relaxation can be viewed as internal friction mediated by high-frequency exchange 

modes or two-magnon scattering within the antiferromagnet, whereas relativistic 

damping stems from weaker spin–orbit coupling (a relativistic effect) and spin-

phonon interactions [178]. 

Rare-earth orthoferrites exemplify how these two dissipation channels lead to 

multi-stage spin dynamics. Owing to the very large exchange stiffness in iron 

sublattices, any perturbation triggers a rapid initial relaxation: the sublattice moments 

quickly realign antiparallel (restoring �⃗�) due to exchange damping (“exchange 

relaxation”)  [176]. This fast stage (often on sub-nanosecond or THz time scales) 

effectively equalises the sublattices and minimises the induced net magnetisation. 

Subsequently, a slower relaxation stage follows in which the overall orientation of 

the magnetisation/Néel vector approaches equilibrium via relativistic processes 

(spin–lattice coupling and anisotropy). 
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3.3.3. Linearisation and fitting 

It should be noted that previous studies typically used only ΦFe(�⃗�, �⃗�) to 

describe frequency behaviour of Fe subsystem. Therefore, we will begin our analysis 

of the dynamic properties of both the R and Fe subsystems by examining the 

temperature dependencies of the resonance frequencies. To achieve this, we linearise 

the two sets of LLG equations (3.16) and (3.17). In the case of the R-subsystem, we 

got two modes corresponding to the two resonance frequencies 𝜔𝑓 and 𝜔𝑐. 

Similarly, for the Fe subsystem, there are also two antiferromagnetic resonance 

(AFMR) modes known as quasi-ferromagnetic (q-FM) and quasi-antiferromagnetic 

(q-AFM) and they are well-established in the literature [179–181]. The quasi-FM 

features the precession of the weak magnetisation vector �⃗� where the relative angle 

between the two sublattices remains fixed. On the other hand, the quasi-AFM mode 

periodically modifies the canting angle, but the �⃗� remains pointing along its 

equilibrium orientation, with its amplitude oscillating in time. For the case of 

TmFeO3 the q-FM mode is denoted as "soft" one, implying that its frequency 

approaches zero at the transition temperatures T1 and T2.   

By linearising the system of equations (3.17) (for more details see Appendix 

C), we got two AFMR frequencies corresponding to q-FM and q-AFM modes, 

respectively: 

qFM ac ex qAFM ab ex
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M M

 
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𝐻ac, 𝐻ab are the anisotropy effective fields, and 𝐻ex is the exchange field.   

To derive R-frequencies, one has to linearise the system of equations (3.16) 

(procedure is provided in Appendix C) that yields: 
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To begin our analysis, we first specify the energy value for the crystal field 

splitting of the effective two-level transition in Tm3+ ion within the multiplet 3H6 

(Fig.3.4(a)) as ∆cf= 57.6 K, (40 cm
−1 or 1.2 THz), based on the data from the 

reference [182]. It should be noted, however, that reference [80] also indicates that 

the energy difference between the first and second singlets (depicted in green), which 

form the lowest transition, is 25.2 K (17.5 cm-1 or 0.52 THz). On the other hand, 

experimental data from reference [52] identifies that the electronic transition 

responsible for the THz-driven anisotropy torque is at 1.2 THz. Notably, this value 

corresponds to the transition between the first and third singlets as described in 

reference [80], both of which are highlighted in red (Fig.3.4(a)). Thus, we assume 

that this transition contributes to the anisotropy functions and plays the main role in 

the THz-induced dynamics, hence the chosen value for ∆cf. 

Using this value, we performed fitting for the expressions presented in 

formulas (3.18) and (3.19) to experimental results from [151] (Fig.3.4(b)), with the 

derived parameters summarized in Table II in Appendix D (we converted the units 

to SI system, while our original equations are in cgs system). 

The fitting results indicate that the rare-earth resonance frequencies are 

significantly higher (1.17 and 1.22 THz at 85 K), compared to the antiferromagnetic 

resonance (AFMR) frequencies, which are lower (0.1 and 0.82 THz at 85 K). This 

substantial frequency separation justifies the use of the adiabatic approximation, 

suggesting that the resonance frequencies of the R and Fe subsystems do not interact 

or undergo mode hybridization. This finding aligns with the existing literature, as 

noted in reference [120].  

As one can see for the case of TmFeO3 we managed to precisely reproduce the 

behaviour of AFMR modes, where q-FM mode experienced softening during the 

transition from Г4 to Г24 and from Г24 to Г2 temperature phases. It also should be 
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pointed out that in TmFeO3, the AFMR mode frequencies are well separated from 

the R modes, which essentially means that there is no dynamical interaction (which 

can manifest itself in avoided crossing behaviour like in HoFeO3 or TbFeO3  [120]) 

between these two types of modes. Finally, our formulas for AFMR modes agree 

well with previous studies [179–181], and numerical results are in excellent match 

with the experimental data from [151]. 

 

Fig.3.4. (a) Illustration of the energy levels of the Tm3+ ion [182] in TmFeO3 along 

with photon energy of the THz pump pulse (blue arrow) used in experiment [52]. 

(b) Calculated temperature dependence of the Fe resonance frequencies in TmFeO3 

(𝜈qFM and 𝜈qAFM) shown as solid lines in comparison to the experimental results 

from [151] shown as circles. The dashed lines indicate phase transitions 

temperatures. 

3.3.4. Modelled dynamics of the R-Fe subsystems 

Theoretical estimations in [151] and experimental results in [152] have shown 

that ultrafast switching of iron spins (�⃗� vector) by anisotropy-driven torque can be 

achieved by an external THz pulse in the middle of the temperature interval of Г24 

phase for TmFeO3. The Zeeman torque was found to be too weak to induce the 

switching. Instead, the nonlinear anisotropy-driven torque arising from pumping the 

rare-earth subsystem was sufficient.  
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In our model, the anisotropy parameters are renormalised through the R-

subsystem, resulting in the temperature-dependent functions (3.10) - (3.13). 

Additionally, the crystal symmetry group 𝐷2ℎ
16 of  REOs allows for a free energy term 

quadratic with respect to the terahertz electric field �⃗⃗� and the antiferromagnetic 

vector �⃗�, which microscopically is the Stark effect term in Eq. (3.2). Therefore, to 

verify the reliability of our model, we considered three cases. Firstly, we numerically 

estimated the threshold field required to exert Zeeman torque on the Fe subsystem 

strong enough to realize its switching. Then we investigated the minimum values of 

�⃗⃗⃗�THz and �⃗⃗�THz, (i.e. Zeeman and Stark mechanisms), respectively, required to pump 

the R-subsystem, which in its turn modifies the anisotropy-driven torque, required to 

achieve spin switching. 

Below, we present numerical modelling results for TmFeO3 in the middle of 

Г24 magnetic phase with T=85 K (Fig.3.5). For the numerical modelling of the 

dynamical equations (Eq.3.17) for the iron subsystem, we took the thermodynamic 

potential from (Eq.3.4), and considered a real THz wave-form pulse (Fig.3.5(a)) for 

the magnetic (𝐻THz) and electric (𝐸THz) field components taken from [52], which we 

inserted in the components 𝐻𝑥,𝐸𝑥, and 𝐸𝑦 in Eq.3.4.    

Our numerical modelling results indicate that the minimum magnetic 

threshold fields necessary for inducing spin switching via the Zeeman mechanism 

are 2.35 T for 90° switching and 2.6 T for 180° switching. These threshold values 

are significantly lower—by an order of magnitude—than those estimated in prior 

research [151]. For the subsequent scenarios, subjecting the R subsystem to a 

terahertz magnetic field of HTHz=2.7 and 3.1 T, along with ETHz=0.9 and 1.0 MV/cm 

which is equal in values of HTHz to 2.7 and 3.0 T, facilitates the alteration of the 

anisotropy. This, in turn, manifests as a torque on the Fe spins, effectively leading to 

their switching. 
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Fig. 3.5. (a) Magnetic field waveform of a THz pulse used in [151]. The corresponding 

Fourier spectrum is shown in the inset. (b) Illustrates the dynamics of the G vector 

components (Gx, Gz) of Fe spins at T=85 K. The red dashed lines mark the beginning of 

oscillations. Open circles indicate the switching of G vector in the xz plane by 90° at 

HTHz=2.35 T, followed by a 180° switching at HTHz=2.6 T. (c), (e) Depict the dynamics of 

𝑓𝜉  vector components of Tm3+ ions pumped by HTHz=2.7 T and ETHz=0.9 MV/cm. (d), (f) 

Show the dynamics of the G vector components (Gx, Gz) at T=85 K switched by rare-

earth anisotropy torque (same curves style as in the case of Pic (b)) on 90° (2.7 T and 

0.9 MV/cm) and 180° (3.1 T and 1.0 MV/cm) respectively.     



77 
 

3.3.5. Switching mechanism 

In addressing iron spin-switching mechanism within the Г24 magnetic phase, 

we consider the vector components Gx and Gz. By substituting these components into 

formula (3.4) and incorporating subsequent equations (3.5) through (3.8), we derive 

and plot the total  thermodynamic potential energy as a function of the angle of iron 

spins orientation 𝜃 (see. Fig. 3.6). Analysis of Fig. 3.6 reveals four distinct minima 

corresponding to the four orientations of iron spins namely 90°, 180°, 270° and 360°. 

 

Fig.3.6. Illustration of the total free-energy thermodynamic potential as a 

function of angle θ(T) in the middle of Г24 temperature phase. The four 

distinctive minima correspond to the switching of iron spins on 90°, 180°, 

270° and 360°, respectively. 

Furthermore, as depicted in Fig. 3.6, the application of a terahertz AC 

magnetic field HTHz equal to 2.35 T stimulates 90° rotation of the Fe spins, as 

indicated by the red solid line. To achieve 180° rotation, one needs to apply the HTHz 

= 2.6 T, which is indicated as a purple solid line. However, if we consider the 

influence of the rare-earth subsystems as an external driving force on iron spins, the 

situation becomes more interesting. 

As illustrated in Figure 3.5(d), invoking the torque generated by the rare-earth 

anisotropy via the magnetic field component of the terahertz radiation demands an 

increased HTHz of 2.7 and 3.1 T for 90° and 180° switching of Fe spins, respectively. 

As can be seen in this case the threshold fields are even slightly higher than in the 
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case of direct Zeeman mechanism. However, if we consider the Stark effect, which 

scales quadratically, in this case, the retrieved threshold electric fields 𝐸THz  =

0.9 MV cm−1 and 𝐸THz  = 1.0 MV cm−1 are enough to pump the R subsystem and 

to achieve 90° and 180° iron spins switching. 

Table 2 shows the indicative minimal threshold fields required for the iron 

spins switching on 90° in the case of Zeeman mechanism and rare-earth anisotropy-

driven torques in all three magnetic phases of TmFeO3. From a theoretical 

perspective, the Γ24 phase, being a phase of lower symmetry, is inherently more 

susceptible to external perturbations compared to the higher symmetry orthogonal 

phases, Γ2 and Γ4, where the threshold fields are an order of magnitude larger than in 

Γ24. This differential sensitivity is crucial for understanding the dynamics of Fe spins 

reorientation under varying external conditions. 

 

Let us analyse the dependence between electromagnetic fields required for 90° 

switching of iron spins and dissipation parameters of iron subsystem. Figure 7 (a, b) 

shows the interplay between the dissipation parameters 𝛬0, 𝛬⊥ and 𝛬∥ and the 

threshold fields, HTHz and ETHz, respectively. 

Table 2.  Values of threshold spin switching fields  

T Zeeman  
mechanism (T) 

Linear  
Anisotropy (T) 

Nonlinear Anisotropy  
(Stark effect) (MV/cm) 

50 K (Г2) 13.1 24.6 5.2 

85 K(Г24) 2.35 2.7 0.9 

120 K (Г4) 14.5 27.2 5.6 
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Fig.3.7. (a, b). The magnitude of the threshold AC THz electromagnetic fields 

required for 90° switching on the dissipation parameters 𝛬0, 𝛬⊥, 𝛬∥. In the 

previously examined cases (Fig. 5, b, d, f), we assigned realistic values based 

on  [116,125] to the dissipation parameters as 𝛬0 = 4 × 10−4, 𝛬⊥ = 9.0 ×

10−5, 𝛬∥ = 7.0 × 10
−5 corresponding to the points illustrated as a star on 

the graphs (for simplicity only the 𝛬0 parameter is used for horizontal axis). 

One can see from Figure 7 that decreasing the values of dissipation parameters 

by 25, 50, 75 and 90% relative to the initial value indicated as a "star", leads the 

different behaviour for the dynamics driven by HTHz and ETHz components, 

respectively. This behaviour is due to the fact that in the case of HTHz we have the 

Zeeman effect which is linear in the excitation field and therefore, in the case of 

consequently decreasing decay parameter by a value of 25% decreases linearly. 

However, in the case of ETHz, we have the Stark effect, which is quadratic and 

therefore decreases quadratically. 

3.3.6. Energy estimation 

Let`s estimate the energy dissipation within in the iron spin system driven by 

Zeeman mechanism. By substituting the parameters delineated in equations (5) 

through (8) into equation (4) as well as numerical solutions obtained in the case of 

iron spin switching we calculate the time-evolution of the free energy shown in Fig. 

8. 
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Fig.3.8. Dynamics of total thermodynamic potential curvature as a function 

of temperature modelled with dynamical solutions from equation (17) in the 

case of Zeeman switching mechanism (in the cases when rare-earth 

anisotropy torque is switching force, the corresponding graphs have similar 

shape), 𝑡0 = 0 ps corresponds to the time when components of �⃗� start to 

oscillate due to the arrival of the pump pulse; red dashed curve is added to 

indicate the start of oscillations. 

By calculating the difference between 𝑡0 = 0 ps and 𝑡end = 100 ps, we got 

that the dissipation of the iron spin system normalised by the number of spins in 

volume unit in the case of a) Zeeman switching 𝛥Φ ≈ 105 mK or 9.0 μeV, b) R 

subsystem as an external torque driven by HTHz is 135 mK or 11.6 μeV, and c) in the 

case of Stark mechanism is 51 mK or 4.4 μeV. This is in a good agreement with the 

experimental result obtained in [152]. 
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3.4. Conclusions 

 To summarize, we have formulated a theoretical model based on the 

microscopic approach to elucidate the magnetic switching of RFeO3 subjected to 

strong THz excitation. TmFeO3 was chosen as an indicative material due to its well-

documented properties and the availability of the experimental data. Initially, to 

ascertain the model's validity in the equilibrium state, we have deduced the 

anisotropy functions across all magnetic temperature phases and established the 

criteria for the spin reorientation phase transitions. Subsequently, we derived and 

numerically modelled the resonance frequencies of the coupled R-Fe subsystems. 

Numerical results in the case of AFMR modes are a good match with the 

experimental data from [151]. Moreover, based on our theoretical model, we 

performed the numerical simulation of iron spin dynamics under the action of intense 

THz radiation. We identified the values of threshold fields necessary for inducing 

spin switching, whether through the Zeeman mechanism or an anisotropy-driven 

torque, which is modified via the R-subsystem. We estimated the energy dissipations 

involved in the switching process and found a good agreement with the experimental 

values from [151]. 

The present model applies to RFeO3 with non-Kramers ions, in which there is 

no cross-over between the rare-earth and iron modes so that they can be considered 

in the adiabatic approximation (like in TmFeO3). The R-Fe adiabatic coupling 

determines their frequencies behaviour vs temperature, but dynamical interaction 

between the modes does not play a role. The situation is different in TbFeO3 and 

HoFeO3, as there are temperatures at which the rare-earth frequencies cross over (i.e. 

are equal to) the frequencies of the antiferromagnetic resonances. In this case, the 

dynamical interaction is important and results in avoided crossing between the 

modes. Future work will, therefore, include extending our theoretical formalism to 

describe this more sophisticated case. Furthermore, our approach can also be 

expanded to include the case of Kramers ions, for instance the recently reported THz-

driven switching in SmErFeO3 [183], in which the f-d interaction leads to more 

cumbersome thermodynamic potential [124,125]. To conclude, our results are the 

first major milestone in theoretical understanding THz-driven nonlinear dynamics of 

coupled Fe spins and rare-earth ions in the orthoferrites with non-Kramers ions. 
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3.5. Appendix A: Derivation of the equilibrium components for 

the coupled R-Fe subsystems 

Before proceeding to the derivation of equilibrium values 𝐹𝑥 , 𝐹𝑧 , 𝑓𝜉 , 𝑓𝜁, let us 

introduce the auxiliary parameters: 
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Here, Δex is the d-f exchange interaction energy and all other parameters are the 

same as in the main text. 

By minimizing the thermodynamic potential (3.4) with respect to 𝐹𝑥 , 𝐹𝑧 , 𝑓𝜉 

and 𝑓𝜁 , one can derive the corresponding equilibrium values: 
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Solving equation (A.4) with respect to 𝑓𝜉 yields:  
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Equating expressions (A.5) and (A.6) and expanding equation in a Taylor 

series with respect to the small parameter �̃�f, one obtains the following result:  
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3.6. Appendix B: Derivation of the decay functions for the 

coupled R-Fe subsystems 

The non-equilibrium state of the R subsystem is ascribed to the mean values 

of the Pauli matrices of its i-th ion, which is denoted as 〈�⃗�𝑖〉 = �⃗�𝑖 as for the sake of 

brevity, we shall omit the averaging symbol hereafter. The dynamical equations 

governing the behaviour of �⃗�𝑖 can be obtained by applying the nonequilibrium 

statistical operator method, as explained in [173] in the following form: 
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In this context, the function Φ(�⃗�, �⃗�,�⃗�𝑖) serves as a thermodynamic potential 

that characterises the system's nonequilibrium state. As for the relaxation term �⃗⃗�𝑖 in 

equation (B.1), it can be described through the approach presented in [65]. 

Specifically, a simplified expansion of the thermodynamic potential can be 

employed, yielding the following expression: 
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Here, 𝜆0, 𝜆⊥, 𝜆∥ are the dissipation constants for the R-subsystem. Noteworthy 𝜆⊥ has 

a relativistic nature, and 𝜆0, 𝜆∥ are exchange constants. At 𝜆0, 𝜆∥ = 0, the equations 

(16) are similar to the usual Landau-Lifshitz-Gilbert equations. 

For the two RE sub-lattices the dynamic part in the equation (B1) will take 

the next form:  
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In this regard equation (B.1) can be rewritten as: 
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For a quantum two-level system with an effective spin of 1/2, as described 

in [171], the rare-earth vectors 𝑓 and 𝑐 can be expressed in terms of the mean values 

of the Pauli matrices as follows: 
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Therefore the dissipative terms �⃗⃗�𝑓 = �⃗⃗�1 + �⃗⃗�2 can be expressed as: 
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Finally, the resulting expression is: 
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Considering the conditions on the vectors 𝑓 and 𝑐: (𝑓𝑐) = 0,  𝑓2 + 𝑐2 =

𝑓0
2 = tanh2[

Δ𝑅

𝑘𝐵𝑇
], it is possible to derive the following result: 
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The same approach as before can be used to obtain the term �⃗⃗�𝑐 = �⃗⃗�1 − �⃗⃗�2. 

The final result can be expressed as: 
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The method used to derive equations of motion for the Fe subsystem is similar 

to that used for the R subsystem. However, instead of the Pauli matrices �⃗�𝑖, the sub-

lattice magnetisation functions �⃗⃗⃗�𝑖 must be employed. 

1
[ , ] .

2

i
i i

i

m
m R

t m

 
 

 
                                    (B.9) 

Employing a two-sublattice approximation for the dynamic part in the 

equation (B9):  

1 2

1 2
1 2,

[ ] [ , ] [ , ].,

i

i
i m m m

m m m
m m m



  
 

  

                   (B.10) 

With relaxation term as 

 2
0 [( ( , )] ( ).)i i i i i i

i i i i

R m m m m m
m m m m


   

     
   

      

(B.11) 

Here, 𝛬0, 𝛬⊥, 𝛬∥ are the dissipation constants with the same meaning for the Fe-

subsystem as 𝜆0, 𝜆⊥, 𝜆∥ for the R-subsystem. 

By following the same approach, the resulting expression for the term �⃗⃗�𝐹 

and �⃗⃗�𝐺  can be expressed as follows: 

0
0

1
( ( )[ ( , ) ( , ) ( , ) ( , )]),

2
FR F F F G G F G G

M F F F FG G
 

     
        

    
          

(B.12) 
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 

     
        

    
     

(B.13) 

 

3.7. Appendix C: Derivation of resonance frequencies for 

coupled R-Fe subsystems 
In the Г24 phase, the components of the vectors �⃗� and �⃗� can be expressed as 

the sum of their equilibrium and time-varying components as follows: 𝐹𝑥(𝑡) →
𝑑

𝐴
𝐺z0 + 𝑓𝑥(t), 𝐹𝑦(𝑡) → 𝑓𝑦(t), 𝐹𝑧(𝑡) → 𝑓𝑧(t), 𝐺𝑥(𝑡) → 𝐺𝑥0 + 𝑔𝑥(𝑡),  𝐺𝑦(𝑡) → 𝑔𝑦(𝑡), 

𝐺𝑧(𝑡) → 𝐺𝑧0 + 𝑔𝑧(t).  
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Through such a transformation, a linearised system of equations can be 

derived that describes the quasi-ferromagnetic resonance, as shown in the systems of 

equations (C.1). 

2
eff 2 4

2

2
eff 2 4

2

( )
( )( cos cos ),

( )
( ),

( )
( )( cos cos ).

y
x ac

z
y

x
y ac

df t d
g t K K

dt A

df t
df t

dt

dg t d
f t A K K

dt A

  



  


  








   


               (C.1) 

This system indicates that the behaviour of 𝑓𝑦(𝑡) adheres to a harmonic 

oscillator model, detailed in equation (C.2): 

2
2
qFM2

( )
( ) 0,

y
y

d f t
f t

dt
                                      (C.2) 

In this context, 𝜔qFM ≈
𝛾

𝑀0
√𝐻ex𝐻ac represents a quasi-ferromagnetic 

frequency mode, while 𝐻ex =
1

2
𝐴, and  𝐻𝑎𝑐 =

{
 
 

 
 

𝐾ac
eff(𝑇),   𝑇 > 𝑇1

2𝐾2√−
𝐾ac
eff(𝑇)

𝐾2
[1 +

𝐾ac
eff(𝑇)

𝐾2
] , 𝑇2 < 𝑇 < 𝑇1

(−𝐾2−𝐾ac
eff(𝑇)) , 𝑇2 > 𝑇

 are anisotropy and exchange fields, 

respectively.  

To analyse quasi-antiferromagnetic resonance, a similar procedure is applied, 

resulting in the system (C.3): 
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(C.3) 

This system provides the equation of motion for 𝑔𝑦(𝑡) as a harmonic 

oscillator, as expressed in equation (C.4):  

2
2
qAFM2

( )
( ) 0,

y
y

d g t
g t

dt
                                    (C.4) 

Here, 𝜔qAFM ≈
𝛾

𝑀0
√𝐻ex𝐻ab denotes the quasi-antiferromagnetic frequency mode, 

𝐻ex = 𝐴 and  

𝐻𝑎𝑏 =

{
 
 

 
 𝐾ab

0 ,   𝑇 > 𝑇1

(𝐾ab
0 + [1 +

𝐾ac
eff(𝑇)

𝐾2
] (𝐾2

′′+𝐾2)), 𝑇2 < 𝑇 < 𝑇1

𝐾ab
0 + 𝐾2

′′+𝐾2, 𝑇2 > 𝑇

 

represents the corresponding exchange and anisotropy fields. 

The resonant frequencies for the rare-earth subsystem can be obtained using 

the same linearisation procedure, with adjustments made to account that: 

𝑓ξ(𝑡) → 𝑓ξ0 + 𝛿𝑓ξ(𝑡), 𝑓η(𝑡) → 𝛿𝑓η(𝑡), 𝑓ζ(𝑡) → 𝑓ζ0 + 𝛿𝑓ζ(𝑡), 𝑐ξ(𝑡) → 𝛿𝑐ξ(𝑡),

𝑐η(𝑡) → 𝛿𝑐η(𝑡), 𝑐ζ(𝑡) → 𝛿𝑐ζ(𝑡).
 

The resulting system of equations is (C.5): 
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                 (C.5)          

The equation of motion (C.6) for 𝛿𝑓𝜂(t) is derived from the system (C.5), 

taking on the structure of a harmonic oscillator equation:                                                         
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Here,  

2 2exR f R
f cf f

B R B R

2
(1 tanh[ ] ) ( tanh[ ] )z x xbG aF

k T k T


  

 
     

 
 

𝜔f is the 1st RE resonance mode.   

Similarly, one could get the system (C.7): 
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(C.7) 

System (C.7) results in an equation of motion for 𝛿𝑐𝜂(t) that adopts the form 

of a harmonic oscillator equation: 

2
2
с2

( ( ))
( ) 0,

d c t
c t

dt





                                                          (C.8) 

Here, 
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2 2c exR R
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The frequency 𝜔c is recognized as the 2nd RE resonance mode. 

 

3.8. Appendix D: Parameters of magnetic interactions in 

TmFeO3 

In this section, we provide the table with relevant parameters from the results 

of fitting and taken from the corresponding literature [182]. 

Table II Numerical values for the corresponding parameters in TmFeO3 

Param. Values Units Param. Values Units Param. Values Units 

A 1947.22 K 𝐾2
′ -0.12 K µy 7.2µB JT-1 

d 98.12 K 𝐾2
′′ -0.87 K a 10.48 T 

𝐾𝑎𝑐
0  0.90 K ∆cf 57.6 K b 6.5 K 

𝐾𝑎𝑏
0  1.05 K α 2.24∙10-

8 

cm−3K

J
 

𝜆𝑓 -13.14 K 

𝐾2  0.03 K µx 2.61µB JT-1 𝜆𝑐 -9.87 K 
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Chapter IV. THz spin dynamics of Fe and Tb 

subsystems in TbFeO3 

THz-frequency signatures of exchange interactions between iron magnons and 

electronic transitions in R ions during the spin-reorientation phase transition (SRPT) 

in the RFeO3 orthoferrites have led to experimental observations of cooperative 

phenomena such as the ultrastrong coupling (USC) regime and Dicke cooperativity 

in orthoferrites containing Kramers ions, such as Erbium orthoferrite (ErFeO3) [130–

133]. However, some similar magnetic systems such as rare-earth zircons (DyVO4, 

TmVO4, TbVO4) exhibit another fundamental phenomenon known as the 

cooperative Jahn-Teller effect [82,185]. In this chapter, we show that in Terbium 

orthoferrite (TbFeO3), the magnetic analogue of the cooperative Jahn-Teller effect 

provides a valuable platform for understanding the characteristics of spin-

reorientation phase transitions due to the strong coupling between the Fe and Tb 

subsystems.  

4.1. Motivation 
In 1937, Jahn and Teller, while studying polyatomic molecules, formulated a 

very important theorem [186]. They stated that "all nuclear configurations, except 

for linear ones, are unstable when the electronic state is degenerate with respect to 

orbital momentum". A direct consequence of the Jahn-Teller theorem is the absence 

of orbital degeneracy in the ground state of a non-linear molecule. This theorem is 

generally applicable only to non-Kramers ions in a crystal. Jahn and Teller also noted 

that molecules possessing an odd number of electrons consistently display a twofold 

spin degeneracy, that remains intact in any electric field and does not contribute to 

molecular configuration instability. Initially focused on molecules, Jahn and Teller's 

research is fully applicable to magnetic crystals as well.  

In this chapter, we present our experimental studies on THz-induced spin 

dynamics in Terbium orthoferrite (TbFeO3), which display characteristics of the 

magnetic phase transition of the Jahn-Teller type manifesting itself in SRPT of Fe 

spins influenced by Tb subsystem with a close frequency. We complement our 

experimental findings with theoretical model, which we developed to explain the 

features of SRPT in TbFeO3. In the previous chapter, we used a two-level 

approximation to introduce the R subsystem, considering the lowest-energy quasi-

doublet, which helped us to obtain a thermodynamic potential that takes into account 

all interactions between the Fe and Tb subsystems in the case of TmFeO3. However, 

in that case the strong-coupling between Fe and Tm ions is absent due to the big gap 
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in their resonance frequencies which justified the use of adiabatic approximation. In 

the case of orthoferrites (like TbFeO3), where the lowest-lying energy doublet is split 

due to a strong coupling between the Fe and Tb subsystems with similar frequencies, 

this approximation is no longer valid. From theoretical perspective, this actually 

means that to accurately describe the dynamic behaviour of AFMR and R modes 

upon solving equations of motion one needs to take into account strong dynamic 

coupling between Fe and Tb subsystems and to obtain general analytical solutions. 

4.2. Magnetic properties of TbFeO3 

 Let us revisit some of the magnetic properties of Terbium orthoferrite. Like in 

other orthoferrites, TbFeO3 exhibits an orthorhombic perovskite structure and is 

categorized under the 𝐷2ℎ
16(𝑃𝑏𝑛𝑚) space group, containing four TbFeO3 molecules 

per unit cell. The interaction between Fe3+ ions leads to an antiferromagnetic (AFM) 

configuration within the Fe subsystem at a Neel transition temperature of TN≈ 650 

K [101]. This configuration, identified as 𝛤4(𝐺𝑥, 𝐹𝑧), demonstrates G-type 

antiferromagnetic order along the a(x) axis due to negative symmetric super 

exchange interactions, and F-type ferromagnetic canting along the c axis resulting 

from antisymmetric Fe3+-Fe3+ super-exchange (Dzyaloshinskii-Moriya) interactions. 

Regarding the temperature-dependent behaviour of magnon antiferromagnetic 

resonance modes q-FM and q-AFM (AFMR) in TbFeO3, at room temperature these 

modes display resonance frequencies of 0.32 and 0.53 THz, respectively [120]. As 

the temperature decreases, both modes gradually increase in frequency, with the q-

FM mode reaching a plateau of approximately 0.5 THz at 40 K and the q-AFM mode 

continuing to rise to 0.66 THz at lower temperatures [187]. Moreover, in contrast to 

other orthoferrites like TmFeO3 and ErFeO3, where the q-FM mode is typically soft, 

TbFeO3 exhibits a qualitatively different behaviour. This is attributed to the presence 

of a low-lying soft Tb mode that interacts with the q-FM mode, preventing its 

softening [120].  

At 𝑇 > 4 𝐾, the Tb subsystem remains paramagnetic, polarised along two 

Ising axes within the ab plane at an angle 𝛼 = ±36°  from a axis, influenced by the 

Fe-Tb interactions as the antiferromagnetic vector �⃗� of Fe spins exit the ab 

plane [108]. This condition initiates a two spin-reorientation phase transitions, 1st  

starting at 𝑇𝑆𝑅1  ≈  9 𝐾, where Fe spins begin a continuous rotation within the ac 

plane, transforming their configuration from Γ4 to Γ2 at 𝑇𝑆𝑅2  ≈  5.5 𝐾. At the same 

time, the Tb magnetic moments align within the ab plane as per the Γ2 

configuration [188]. With a further decrease in temperature, the interaction among 

Tb moments induces their antiferromagnetic ordering [189]. Studies [108,190] 

indicate this transition progresses through two phases: initially, at 𝑇𝑁
𝑇𝑏 = 3.3 K, Tb 
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moments form the intermediate 𝛤82(𝑓𝜉𝑐𝜂) rare-earth temperature phase. This leads to 

the occurrence of a 3rd  SRPT for Fe spins at 𝑇𝑆𝑅2 ≈ 3.1 K, transitioning them from 

𝛤2 to 𝛤4, while Tb spins reorient into a strictly antiferromagnetic 𝛤8 phase.  

4.3. Selection rules for AFMR modes in RFeO3 

 Before we proceed with the discussion of our experimental results on THz-

induced spin dynamics in TbFeO3 it is also important to mention the selection rules 

for the excitation of AFMR magnon modes (q-FM and q-AFM) in RFeO3. These 

magnon modes can be selectively excited by THz radiation and respond linearly due 

to magneto-dipolar interaction. The activation of these modes is driven by a Zeeman 

torque mechanism. The selection rules for these excitations can be briefly described 

as follows: q-FM modes are excited when the magnetic field component of the THz 

radiation is perpendicular to the net magnetisation vector (�⃗⃗⃗�THz ⊥ �⃗�) and q-AFM 

modes is excited when it is parallel (�⃗⃗⃗�THz ∥ �⃗�). 

The Fig 4.1. illustrates the AFMR magnon modes polarisation selection rules 

in RFeO3. As can be seen these rules are influenced by the alignment of the THz 

field's polarisation with respect to the major crystallographic axes. 

 

Fig. 4.1. Illustration of six possible configurations for F and G vectors in Г2 and Г4 

temperature phases. The yellow (pointed vertically) and green (pointed 

horizontally) components of HTHz indicate the excitation of q-FM or q-AFM with 

respect to �⃗� and �⃗� vectors, according to the magnon polarisation selection rules.   
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4.4. Experimental setup 

In our experiment (see the sketch in Fig. 4.2 (a)), we investigate the spin 

dynamics in TbFeO3 by using intense THz pulses (electric field value up to 1 MV/cm 

see Fig. 4.2 (b)) generated by optical rectification in LiNbO3
. and focused onto the 

sample through a series of three parabolic mirrors. We detect the spin dynamics by 

measuring the Faraday rotation of time-delayed probe pulses, using a Wollaston 

prism and a pair of balanced photodetectors, as described in more detail in Chapter 

2. The samples were placed in a closed-cycle helium cryostat, which allowed us to 

control the temperature of the samples and reach it down to 3.5 K, and an external 

magnetic bias field was applied. 

 

 

Fig.4.2. a) Schematic of the experiment. The THz pump (orange) and near-infrared 
probe (wavelength 800 nm) pulses (NIR, cyan) are collinearly focused onto the 
TbFeO3 sample with a variable delay time t. Polarisation control of the NIR probe 
pulses has been done by using λ/2 plate. Wollaston prism (WP) and two balanced 
photodiodes (PDs), respectively. b) Time domain waveform of THz pump pulse with 
its spectrum c) covering frequency ranges of Tb and AFMR modes. 
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We used a pair of wire-grid polarisers to control the THz fluence, and such 

combination allows us to perform control over the polarisation of the THz pulses.  
 

4.5. THz-induced spin dynamics in TbFeO3 

In this section, we present our experimental results from THz pump-optical 

probe measurements on Terbium orthoferrite (TbFeO3) using a-cut and b-cut 

samples, each with a thickness of 61 micrometers. Our experimental setup includes 

a set of two wire grids, which direct the magnetic field component of the THz pulse 

along the b or c axis for the a-cut samples and along the a or c axis for the b-cut 

samples. 

Figure 4.3 shows our findings on the a-cut sample, positioned in a closed-cycle 

cryostat. In this setup, the c axis is oriented vertically, with a static external magnetic 

field applied along the b axis (Hext||b) and the THz field applied along the c axis 

(HTHz||c), with a probe pulse angled at 67.5° relative to the c axis. Temperature 

measurements spanned the temperature spin reorientational path from Γ4 to Γ2, with 

a spin reorientational phase transition (SRPT) occurring from 6.8 (Γ4) to 5.5 (Γ2) K. 

Figure 4.3(a) displays the temperature-dependent oscillations of Fe spins driven by 

THz radiation, with the highest amplitude of oscillations during the SRPT in the 

intermediate Γ24 phase. Figure 4.3(b) shows the corresponding Fourier spectra 

derived from Figure 4.3(a), identifying two distinct resonance frequencies 

corresponding to the q-AFM mode in Γ4 and Γ2, and the q-FM mode in Γ24 phase, 

consistent with the selection rules for AFMR modes. Figures 4.3 (c) and (d) present 

Fourier map plots extracted from data in (b). Figure 4.3(d) details the SRPT pathway 

occurring due to the increasing cumulative effects of d-f exchange, crystal field 

splitting and thermal population, which begin to compete with magnetocrystalline 

anisotropy, leading to the two SRPT (Γ4 to Γ24 and Γ24 to Γ2). This physical 

mechanism will be discussed in more detail in subsequent sections. Figure 4.3 (c) 

illustrates the occurrence of the 3rd SRPT for iron spins from Γ2 to Γ4 caused by the 

ordering of Tb3+ ions. 
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Fig.4.3. (a) shows the time-domain signal as a function of temperature for THz-

driven spin dynamics in a-cut sample. (b) presents the corresponding Fourier 

spectrum of the time-domain data from (a). (c, d) are Fourier map plots derived 

from data in (b); (c) highlights the narrow temperature range (3.8-3.75 K) where 

ordering of Tb3+ ions is observed; (d) illustrates the temperature range (between 

dotted lines) where the two SRPTs from Γ4 to Γ2 occurs. 

Figure 4.4. shows results of THz pump-optical probe polarisation 

measurements for the b-cut sample positioned in a cryostat. In this setup, the c-axis 

is horizontal, with a static external magnetic field applied along the a-axis (Hext||a), 

while the THz field is directed along the c-axis (HTHz||c), and the probe pulse 

polarisation is aligned along the a-axis. 
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Fig.4.4. (a) shows the time-domain signal as a function of temperature for THz-

driven spin dynamics in the b-cut of TbFeO3. (b) presents the corresponding Fourier 

spectrum of the time-domain data in (a). (c) is a Fourier map plot derived from data 

in (b), showing the transition path from Γ4 to Γ2. (d) Data comparison between the 

experiment and the model.   

Figure 4.4 (a), shows the temperature-dependent measurements of THz pump-

induced iron spin dynamics across the temperature reorientation path from Γ4 to Γ2, 

with the two SRPTs occurring from 9.4 (Γ4) to 8.35 K (Γ2).  Interestingly, alongside 

the magnetic oscillations corresponding to the q-FM frequency mode, some short-

lived, fast oscillations occur between 5 to 10 picoseconds, whose nature remains 

uncertain as they do not correspond to any recognized magnetic or phononic 

oscillations. Fig 4.4(b) shows the corresponding Fourier spectra taken from (a) 

revealing two distinct resonance frequencies corresponding to the q-AFM mode in 

Γ4 and q-FM mode in Γ24 phase, which is consistent with the selection rules.  Figure 



98 
 

4.4(c) shows the Fourier map plot derived from data in (b) and Figure 4.4. (d) 

illustrates a very good match between experimental results from (c) and numerical 

modelling obtained from our quantum-phenomenological theory, which we will 

details in the next section of this chapter. 

To summarize, our findings indicate that the overall trend in SRPT behaviour 

for the q-FM mode is consistent across both sample cuts. In their corresponding 

geometries in Г4 phase, the q-AFM mode is initially observed. Upon cooling 

temperature to T1, 1
st SRPT begins, and q-FM modes emerge as shown in Figures 

4.3. (a) and 4.4. (a). As the temperature further decreases to T2, reaching the Γ2 phase 

(2nd SRPT), only the q-FM mode is observed, which is in complete agreement with 

the selection rules for AFMR modes.  

However, unlike in the b-cut (Fig. 4.4. (c)) the a-cut (Fig. 4.3. (d)) does not 

exhibit a significant frequency decrease in the q-FM mode during SRPT, which we 

attribute to the interaction between magnon q-FM and impurity mode upon 

intersection or it might be due to the domain size of the sample which are not uniform 

and can be quite small up to a 10-20 µm while the probe size is around 60 µm. After 

reaching the Γ2 phase at T2, the q-FM frequency begins to increase again, reaching 

up to 0.4 THz in both cuts. However, unlike the b-cut, where no ordering of Tb3+ 

ions below 3.8 K was observed, the a-cut exhibits such ordering, which induces an 

additional 3rd SRPT, as shown in (Fig. 4.3 (c)), which leads to the reorientation of 

iron spins from Γ2 to Γ4 and as a result the emergence of the q-AFM mode is observed 

in the experiment. This behaviour is consistent with previous reports [108,190].  

It should be noted that in both sample cuts, we did not directly observe 

oscillations of the Tb mode. On one hand, this may be due to the fact that our THz 

pump pulse does not excites this mode effectively, as its spectrum is well tuned to 

the AFMR modes frequency range (see Fig. 4.2(c)) or/and the wavelength of the 

probe pulse is insensitive. On the other hand, we observe the Tb mode indirectly 

through its interaction with the q-FM mode at T2, where the softening of the q-FM 

mode stops due to strong dynamical repulsion with the Tb mode. This observation is 

consistent with previous reports [191,192].  

Finally, in the b-cut sample (Fig.4.4. (d)) we achieved a very good agreement 

between experimental results and our quantum-phenomenological theoretical model, 

which will be discussed in detail in the following section. 
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4.6. Theoretical model for the coupled dynamics between Fe and 

Tb subsystems in TbFeO3 

4.6.1. Physical mechanism 

The splitting of energy levels of a rare-earth ion in magnetic crystals like 

orthoferrites is influenced by the interplay of various effects, including crystal field, 

exchange interactions, and external magnetic fields  [153]. These factors collectively 

shape the energy levels, depending on their relative orientations and alignment with 

the crystal axes. While the crystal field primarily establishes the energy level 

structure, exchange interactions and external fields introduce additional splitting 

mechanisms. In this section, we develop a phenomenological theoretical model 

based on qualitative considerations, assuming that in orthoferrites, with magnetic 

structure, in which the ground state of Tb3+ ions is degenerate or nearly degenerate 

becomes unstable at sufficiently low temperatures [193]. This instability represents 

a magnetic analogue of the cooperative Jahn-Teller effect. In cases where the 

magnetic crystal hosts ions with a degenerate ground state, coupled to the crystal 

through exchange (or dipole) interactions, such degeneracy can be lifted through the 

deformation of the magnetic structure. This deformation leads to a reduction in the 

magnetic symmetry of the ion’s environment. If this deformation is cooperative, it 

could involve the entire magnetic configuration.  

4.6.2. Thermodynamic potential  

Based on the framework of the model developed in Chapter 3, let us now 

explore a version that accounts for magnetic Jahn-Teller-type phase transitions. As 

previously noted, to accurately describe the dynamics features of AFMR and R 

modes, it is essential to construct a thermodynamic potential that accounts for all 

relevant interactions within the two magnetic systems along the SRPT path. It has to 

be point out that, in rare earth orthoferrites (REOs), AFMR and R modes are 

interconnected, a factor that becomes particularly significant when the magnetic 

systems are closely aligned on the energy scale, as observed in TbFeO3, but their 

analytical description is somewhat complex. However, in the case of rare-earth ions 

with non-Kramers ions, it is feasible to isolate pairs of frequency modes (ωqFM −

 ωf  and ωqAFM − ωc) that interact with each other, while neglecting interactions 

with other modes [125,153]. Moreover, based on the findings from the THz pump-

optical probe experiment, our primary interest lies in describing the coupled 

behaviour of ωqFM − ωTb. 
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For this matter, we consider thermodynamic potential for the coupled Fe and 

Tb subsystems accounting only for �⃗� and 𝑓 vectors in the following form:  

Φ(�⃗�, 𝑓) =
1

2
(𝐾𝑎𝑐𝐺𝑧

2 + 𝐾2𝐺𝑧
4) − 9𝜇𝐵𝑓𝜉𝑏𝐺𝑧 − 𝑓𝜁∆cf −

−
1

2
𝑘B𝑇 [(1 + √𝑓0

2) ln [1 + √𝑓0
2] − (1 − √𝑓0

2) ln [1 − √𝑓0
2]]

   (4.1) 

However, for more in-depth investigation of the mutual dynamics between the 

two magnetic subsystems, one needs to express the Neel vector �⃗� as a function of 

angle 𝜃 as expressed below: 

Φ(𝜃, �⃗�) =
1

2
(𝐾𝑎𝑐sin[𝜃]

2 + 𝐾2sin[𝜃]
4) − 9𝜇

𝐵
𝑓
𝜉
𝑏sin[𝜃] − 𝑓

𝜁
∆cf −

−
1

2
𝑘B𝑇 [(1 +√𝑓0

2) ln [1 + √𝑓0
2] − (1 −√𝑓0

2) ln [1 −√𝑓0
2]]

    (4.2) 

Here, the first two terms in the brackets account for the magnetocrystalline 

anisotropy, the third term describes the d-f exchange interaction, the fourth term is 

associated with the interaction with the crystal field, and the fifth term addresses the 

thermal population effect within the lowest-lying Tb quasi-doublet. The presence of 

the linear term in 𝜃 in the third term in the thermodynamic potential equation leads 

to the system`s instability; the quadratic term in 𝜃 limits the development of 

instability and stabilises the symmetric phase at relatively high temperatures. 

By using the TP in the form of (4.2) we have been able to explore both static 

and dynamic properties (for more details see Appendix E) of the coupled Fe and Tb 

subsystems across the temperature path Γ4-Γ2 as well as to define the conditions for 

SRPT.  

Fig. 4.5 below illustrates the results of modelling for the rare-earth (Tb) vector 

components and the deviation angle 𝜓 of the rare-earth vector in Hilbert space as 

functions of 𝜃 across the temperature interval Γ4-Γ2. 
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Fig.4.5. The rare-earth (Tb) 𝑓 vector components (a,b,c) and deviation angle 𝜓 

(more details are in the Appendix E); (d) in Hilbert space as a functions of 𝜃 across 

the temperature interval Γ4-Γ2. Dashed lines indicate SRPT transition region. 

4.6.3. Dynamical equations for the coupled Fe-Tb subsystems 

We use a coupled oscillators model to describe the coupled dynamics of Fe 

and Tb subsystems in TbFeO3 across the temperature transition path from Γ4 to Γ2. 

In this regard, one needs to construct a set of the dynamical equations of motion for 

both subsystems. For that reason, we use the Euler-Lagrange equation for the Fe and 

Landau-Lifshitz-Gilbert equation for Tb subsystem, as follows: 

{
 
 

 
 
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝜃
= 0,

𝜇𝐵
𝛾

𝑑𝑓

𝑑𝑡
= [𝑓 ×

𝜕Φ

𝜕𝑓
] .

                                          (4.3) 
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Here, ℒ =
𝑀Fe

2𝑘𝐵𝛾𝐻ex
�̇�2 − Φ(𝜃, 𝑓)- is Lagrangian function, 𝑀Fe and 𝐻ex are the 

magnetisation and the effective field of iron sublattice, 𝑘B is a Boltzmann constant 

and 𝛾 is a gyromagnetic ratio. 

By solving system (4.3) analytically (for more details see Appendix E), one 

could get the following solutions: 

𝜏1 =
1

2
(𝜔qFM

2 + 𝜔Tb
2 −√4𝛼𝛽 + 𝜔qFM

4 − 2𝜔qFM
2 𝜔Tb

2 + 𝜔Tb
4 )

𝜏2 =
1

2
(𝜔qFM

2 + 𝜔Tb
2 + √4𝛼𝛽 + 𝜔qFM

4 − 2𝜔qFM
2 𝜔Tb

2 +𝜔Tb
4 )

          (4.4) 

Below, we present the results of numerical simulations across the temperature 

transition path from Γ4 to Γ2 based on these solutions: 

 

Fig.4.6. (a) Shows the numerical modelling of the solutions for the dynamical 

equation of the coupled Fe-Tb subsystems across the temperature path from Γ4 to 

Γ2. The dashed black and red lines illustrate the behaviour of ωqFM and ωTb when 

coupling is neglected; the solid blue and light green lines take into account the 

coupling. The green circle at Г2 indicates the temperature point where hybridization 

between modes occurs. (b) A zoomed view of the temperature interval (Г24 phase) 

where the spin-reorientation phase transition (SRPT) of iron spins occurs, also 

showing the avoided crossing behaviour due to the strong coupling between Fe and 

Tb subsystems. Dashed violet lines indicate SRPT transition region. 
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It is interesting to note that, as it follows from our model, during SRPT the q-

FM mode experiences softening only at T2, as a result of dynamic repulsion due to 

avoided crossing with the Tb frequency mode only in the intermediate region (Г24), 

and experiences hybridization (green circle) in the low-temperature region Г2. At the 

same time, the Tb mode softens at both temperatures T1 and T2 and approaches zero, 

which means that it experiences two phase transitions of the second kind. 

4.7. Discussion of the results 

Now, let us discuss in detail our results revealing signs of a cooperative 

magnetic Jahn-Teller effect during the course of SRPT in TbFeO3.  

 

Fig.4.7. (a,b,c,d) Two antiferromagnetic iron spins coupled through the d-f exchange 
interaction to the Tb3+ ion, depicted as a Bloch sphere, the radius of which grows as 
temperature decreases; (e) Shows the results of the numerical modelling for the 
energy splitting function of the lowest quasi-doublet across the temperature path 
from Γ4 to Γ2  phase. Dashed black lines indicate the SRPT transition region. 

Fig. 4.7(a) illustrates two antiferromagnetically aligned iron spins coupled to 

an unpolarised Tb³⁺ ion represented as a Bloch sphere of a two-level system in 
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Hilbert space, in the Γ4 temperature phase. In this phase, the sphere has a small radius 

due to an equal population of electronic states within the lowest Tb quasi-doublet. 

As the temperature decreases to T1, the 1st SRPT starts and the system enters the 

intermediate Γ24 temperature phase, during which the radius of the sphere begins to 

increase. This change reflects a shift in the electron population of the quasi-doublet 

states, enhancing the susceptibility of the Tb³⁺ ions to polarisation by the exchange 

field from the Fe subsystem. 

From a theoretical perspective, as described in Eq. 4.2, this reorientation 

results from the common influence of d–f exchange, crystal field, and thermal 

population effects, which begin to compete with the magnetocrystalline anisotropy 

components upon entering the Γ24 phase at T1. This competition drives the 

reorientation of the Fe spins into a more energetically favourable state, as illustrated 

in Fig. 4.7(a–d). As the temperature continues to drop and the SRPT progresses, the 

energy splitting ∆R of the lowest quasi-doublet increases, as shown in Fig. 4.7(e). 

Upon reaching T2 (the 2nd SRPT), the Fe spin system completes a 90° rotation, and 

∆R reaches its maximum. This transition ultimately lifts the degeneracy of the Tb³⁺ 

energy levels, providing clear evidence of the magnetic Jahn–Teller effect. 

These results prove the reliability of our model, even when only one pair of 

AFMR and Tb frequency modes are considered. Moreover, this model enabled us to 

predict the behaviour of the Tb frequency mode, despite its absence in experimental 

observations, possibly due to the non-sensitivity of our 800 nm probe pulse to this 

mode. Additionally, within the framework of our model, we have successfully 

predicted the behaviour of this unobserved mode, identifying it as the soft one. This 

contrasts with the situation in TmFeO3, considered in Chapter 3, where the q-FM 

mode is identified as a soft one. As stated in [54,98], the anisotropic parameters of 

the d-f exchange should be of the same order as the crystal field splitting, and 

according to our simulation results, these parameters are: Δcf=3.5 K, (bμB)=2.39 K. 

Additionally, our model allowed us to calculate all functions of the Tb subsystem 

depending on 𝜃 and to numerically model their behaviour across the Γ4 to Γ2 

temperature path.  

Finally, it is of interest to estimate the coherence time parameter for TbFeO3 

within the framework of our model and to compare our results with existing quantum 

optics literature [194]. In quantum electrodynamics contexts (whether cavity QED 

or circuit QED), coherence refers to the ability of a coupled light–matter system to 

maintain well-defined phase relationships and undergo reversible (unitary) dynamics 

rather than merely decaying. In practical terms, a coherent light–matter interaction 

means the excitation can oscillate back-and-forth between a matter excitation (e.g. 
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an atom or qubit in an excited state) and a light excitation (a photon in a cavity) 

multiple times before dissipating. Achieving the strong coupling (SC) regime is 

essential for observing such coherent dynamics. Strong coupling is defined by the 

light–matter coupling strength 𝑔 exceeding the relevant loss rates (the cavity field 

decay rate 𝜅 and the emitter’s decay rate 𝛾). When 𝑔 is comparable to or larger than 

these decay rates, the system can undergo vacuum Rabi oscillations (repeated 

coherent energy exchange between light and matter) instead of decaying 

immediately. According to  [194], strong coupling “is necessary to observe coherent 

quantum dynamics between light and matter,” enabling fundamental single-

photon/single-atom interactions and serving as a foundation for quantum information 

technologies. By contrast, if the coupling is weaker than losses, any excitation is lost 

to the environment before a coherent exchange can occur, resulting in incoherent 

(damped) dynamics. 

While coherence describes the property of the quantum state (phase stability 

and reversible dynamics), the coherence time quantifies how long the system can 

maintain that coherence before environmental noise or dissipation destroys it. More 

specifically, a coherence time is the characteristic time over which a superposition 

state retains its phase information. In a two-level system (qubit), one often 

distinguishes between: (1) the energy relaxation time 𝑇1 (the lifetime of an excitation 

before decaying) and (2) the dephasing time 𝑇2 (the time over which phase coherence 

between, two states is lost). In high-quality circuit QED devices, for example, qubit 

excited-state lifetimes 𝑇1 can be tens of microseconds and dephasing times 𝑇2  of 

similar order, enabling many coherent Rabi oscillations to occur before the system 

decoheres. In coupled systems, the shorter of these timescales (qubit or cavity) 

usually limits the overall coherence of the joint dynamics. Measuring coherence 

times can be done in the time domain or in the frequency domain. 

Therefore, we calculated the coherence time in our TbFeO3 using the following 

empirical formula: 

𝑈 = √(𝜔qFM −𝜔Tb)
2
𝑡qFM𝑡Tb,                                  (4.5) 

Here, 𝜔qFM, 𝜔Tb represent the resonance frequencies, and 𝑡qFM, 𝑡Tb are the lifetimes 

of the Fe and Tb modes, respectively. 

According to the results obtained from our model and by comparing it 

with [194], TbFeO3 exhibits a strong coupling regime between Fe and Tb magnetic 

systems with the coherence parameter equal 7.3, as shown in Fig. 4.8. 
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Fig.4.8. (a) Numerical modelling of the coherence parameter for the TbFeO3 and its 
comparison (star sign) with the existing literature (b), reproduced with permission 
from [194]. Dashed black lines indicate the SRPT transition region. 

4.8. Conclusions 

To summarize, we performed THz pump-optical probe measurements in 

TbFeO3 to reveal the signatures of the magnetic analogue of Jahn-Teller effect during 

spin-reorientation phase transitions of iron spins from Γ4 to Γ2 phase, leading to the 

changes in the magnetic symmetry of TbFeO3. We achieved a very good match 

between our experimental results and quantum-phenomenological model, which we 

developed based on a two-level approximation for the R subsystem. This model 

elucidates the signatures of the magnetic Jahn-Teller effect by providing reliable 

values for the d-f exchange, crystal field splitting, and magneto-crystalline 

anisotropy parameters. We also successfully determined the removal of energy level 

degeneracy in Tb3+ ions, as well as the strong coupling between Fe and Tb ions, 

comparing it with other strongly coupled systems as documented in the existing 

literature  [194]. Additionally, we observed the ordering of Tb3+ ions, below 3.8 K, 

leading to the induction of a third SRPT of iron spins in the a-cut sample, though 

these results require further theoretical development. Finally, we observed short-

lived, fast oscillations of unknown nature, requiring further experimental and 

theoretical exploration. From a theoretical perspective, our model shows potential 

for extensions to describe other orthoferrites characterised by the avoided crossing 

behaviour of the q-FM mode during SRPT, and featuring an R mode with low-energy 

doublet states, such as in HoFeO3 [195], ErFeO3  [196], YbFeO3  [197]. 
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4.9. Appendix E. Theoretical model for the coupled Fe-Tb 

subsystems. 

In this supplementary section, we present the results of analytical derivations 

made from the form of thermodynamics potential from Eq (4.2): 

Φ(𝜃, �⃗�) =
1

2
(𝐾𝑎𝑐sin[𝜃]

2 + 𝐾2sin[𝜃]
4) − 9𝜇

𝐵
𝑓
𝜉
𝑏sin[𝜃] − 𝑓

𝜁
∆cf −

−
1

2
𝑘B𝑇

[
 
 
 
 (1 + √𝑓𝜉

2 + 𝑓
𝜂
2 + 𝑓

𝜁
2) ln [1 +√𝑓𝜉

2 + 𝑓
𝜂
2 + 𝑓

𝜁
2] −

−(1 −√𝑓𝜉
2 + 𝑓

𝜂
2 + 𝑓

𝜁
2) ln [1 −√𝑓𝜉

2 + 𝑓
𝜂
2 + 𝑓

𝜁
2]
]
 
 
 
 

(E. 1) 

As the first step let`s define the equilibrium values for the 𝑓 vector 

components. By repeating similar procedure as described in Supplementary Section 

A in Chapter III, one can get that: 

{
 

 √𝑓𝜉
2 + 𝑓𝜂

2 + 𝑓𝜁
2 = 𝑓0 ⟹ 𝑓0 = tanh [

ΔR
𝑘𝐵𝑇

]

𝑓𝜉 =
Δex
ΔR

tanh [
ΔR
𝑘𝐵𝑇

] , 𝑓𝜂 = 0, 𝑓𝜁 =
Δcf
ΔR
tanh [

ΔR
𝑘𝐵𝑇

]  

      (E. 2) 

Then, 

𝑓0
2 − [(

𝑓0𝑏𝜇𝐵 sin[𝜃]

𝑘𝐵𝑇arctanh[𝑓0]
)

2

+ (
𝑓0Δcf

𝑘𝐵𝑇arctanh[𝑓0]
)

2

] = 0, 

tanh [
ΔR
𝑘𝐵𝑇

]
2

−

[
 
 
 

(
tanh [

ΔR
𝑘𝐵𝑇

] 𝑏𝜇𝐵 sin[𝜃]

ΔR
)

2

+(
tanh [

ΔR
𝑘𝐵𝑇

] Δcf

ΔR
)

2

]
 
 
 

= 0, 

tanh [
ΔR
𝑘𝐵𝑇

]
2

− tanh [
ΔR
𝑘𝐵𝑇

]
2

[(
𝑏𝜇𝐵 sin[𝜃]

ΔR
)

2

+ (
Δcf
ΔR
)
2

] = 0, 

[(
𝑓0𝑏𝜇𝐵 sin[𝜃]

𝑘𝐵𝑇arctanh[𝑓0]
)

2

+ (
𝑓0Δcf

𝑘𝐵𝑇arctanh[𝑓0]
)

2

] = 1. 
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Finally, one can write the following one: 

{
 

 ΔR = √Δex
2 + Δcf

2 ,

𝑓0 = tanh [
ΔR
𝑘𝐵𝑇

].  

                                        (E. 3) 

Dynamics of any two-level system including atomic energy levels or qubit is 

convenient to describe by introducing a Bloch sphere in an abstract Hilbert space. 

Let`s have a look on a picture (see Fig.4.9) which represents a two-level system of 

the rare-earth (Tb3+) ion as a Bloch sphere. 

From this picture, one could see that: 

𝑓 = (𝑓0sin𝜓cos𝜒, 𝑓0sin𝜓sin𝜒, 𝑓0cos𝜓),
𝑓𝜉0

𝑓0
= cos𝜒0,

𝑓𝜁0

𝑓0
= cos𝜓0.

 

 In this regard, the thermodynamic potential 

will become a function depending also on ψ and χ 

namely: 

Φ(𝜃, 𝑓) ⟶ Φ(𝜃, 𝜓, 𝜒) 

All parameters for the Tb subsystem as a 

function of θ(T) have the following form: 

∆R= √∆cf
2 + (𝑏𝜇Bsin[𝜃0])

2={
Г2: 𝜃0 =

𝜋

2
⟹√∆cf

2 + (𝑏𝜇B)
2

Г4: 𝜃0 = 0⟹ Δcf

,          (E. 4)   

𝑓𝜉0 =
𝑏𝜇B sin[𝜃0]

√∆cf
2 + (𝑏𝜇B sin[𝜃0])2

tanh [
√∆cf

2 + (𝑏𝜇Bsin[𝜃0])
2

𝑇
] =

=

{
 
 

 
 

Г2:
𝑏𝜇B

√∆cf
2 + (𝑏𝜇B)2

tanh [
√∆cf

2 + (𝑏𝜇B)
2

𝑇
]

Г4: 0

,                                                        (E. 5) 
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𝑓𝜁0 =
∆cf

√∆cf
2 + (𝑏𝜇Bsin[𝜃0])

2

tanh [
√∆cf

2 + (𝑏𝜇Bsin[𝜃0])
2

𝑇
] =

=

{
  
 

  
 

Г2 : 
∆cf

√∆cf
2 + (𝑏𝜇B)

2

tanh [
√∆cf

2 + (𝑏𝜇B)
2

𝑇
]

Г4: tanh [
∆cf
𝑇
]

,                                (E. 6) 

𝑓0 = √𝑓𝜉0
2 + 𝑓𝜁0

2={Г2: tanh [
√∆cf

2 +(𝑏𝜇B)
2

𝑇
],

Г4: tanh [
∆cf

𝑇
]

                         (E. 7) 

cos [𝜓0] =
𝑓𝜁0

𝑓0
={
Г2 : 

∆cf

√∆cf
2 +(𝑏𝜇B)

2
,

Г4: 1

                         (E. 8) 

4.10. Dynamical equations for the coupled f-d subsystems 

To describe the dynamical properties of the coupled f-d subsystems, one needs 

to construct the following set of dynamical equations: 

{
 
 

 
 

 
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝜃
= 0,

𝜇𝐵
𝛾

𝑑𝑓

𝑑𝑡
= [𝑓 ×

𝜕Φ

𝜕𝑓
] .

                                   (E. 9)    

Let`s start with the LLG equation in (E. 9). Considering the case that χ0 = 0 

and ψ0 ≠ 0, linearisation takes the following form: 

{

sin𝜒 = sin𝜒0 + 𝛿𝜒cos𝜒0 = 𝛿𝜒,
cos𝜒 = cos𝜒0 − 𝛿𝜒sin𝜒0 = 1,
sin𝜓 = sin𝜓0 + 𝛿𝜓cos𝜓0,
cos𝜓 = cos𝜓0 − 𝛿𝜓sin𝜓0.

 

In this regard, one could solve linearised LLG equation as: 
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cf

cf 0 cf 0 0 0 0 0

0

( ),

( ) sin sin ( ) cos ( ),

sin ( ).
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 By introducing the new variable 𝑥 = 𝛿�̇�, one could write the following 

oscillatory equation for the Tb subsystem: 

 
𝑑2(𝛿𝜒)

𝑑𝑡2
+ 𝛿𝜒𝜔Tb

2 =𝛼𝑥.                                   (E. 10) 

Here, 𝜔Tb = √(
𝛾

𝜇𝐵
Δcf)

2 + (𝛾𝑏sin𝜃0)
2  - is the resonance frequency of the Tb 

mode, and 𝛼 = −𝛾𝑏𝑓𝜁0cos𝜃0 - is the coupling rate coefficient for Tb subsystem. 

 Let`s proceed to the Euler-Lagrange equation from (E.9).   

ℒ =
𝑀Fe

2𝛾2𝐻ex
𝛿�̇�2 −Φ(𝜃,𝜓, 𝜒),   

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝜃
= 0, 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕(𝛿�̇�)
) =

𝑀Fe

𝛾2𝐻ex
𝛿�̈�. 

 By applying the same linearisation procedure and considering that sin(𝜒0) =

0, cos(𝜒0) = 1 and 𝜓0 ≠ 0, one can write that linearised Euler-Lagrange equation 

has the following form: 

𝜕ℒ

𝜕(𝛿𝜃)
= −

𝜕Φ(𝜃,𝜓,𝜒)

𝜕𝜃
= 𝛿𝜓

𝑏2𝜇B
2sin2𝜃0cos𝜒0cos𝜓0tanh

ΔR
𝑘B𝑇

ΔR
+ 𝛿𝜃(𝐾ac(cos𝜃0)

2 −

𝐾ac(sin𝜃0)
2 + 6𝐾2(cos𝜃0sin𝜃0)

2 − 𝐾2(sin𝜃0)
4 − 2

𝑏2𝜇B
2cos2𝜃0cos𝜒0sin𝜓0tanh

ΔR
𝑘B𝑇

ΔR
), 
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𝛿�̈�
𝑀Fe

𝛾2𝐻ex
+ 𝛿𝜃(𝐾ac(cos2𝜃0)

2 + 6𝐾2(cos𝜃0sin𝜃0)
2 − 𝐾2(sin𝜃0)

4 −

2
𝑏2𝜇B

2cos2𝜃0cos𝜒0sin𝜓0tanh
ΔR
𝑘B𝑇

ΔR
) = −𝛿𝜓

𝑏2𝜇B
2sin2𝜃0cos𝜒0cos𝜓0tanh

ΔR
𝑘B𝑇

ΔR
. 

 By differentiating it with respect to the time one could get:  

𝑑3(𝛿𝜃)

𝑑𝑡3
+
𝛾2𝐻ex
𝑀Fe

𝑑(𝛿𝜃)

𝑑𝑡
(𝐾ac(cos2𝜃0)

2 + 6𝐾2(cos𝜃0sin𝜃0)
2 − 𝐾2(sin𝜃0)

4

− 2
𝑏2𝜇B

2cos2𝜃0cos𝜒0sin𝜓0tanh
ΔR
𝑘B𝑇

ΔR
) =

= −
𝑑(𝛿𝜓)

𝑑𝑡

𝛾2𝐻ex
𝑀Fe

𝑏2𝜇B
2sin2𝜃0cos𝜒0cos𝜓0tanh

ΔR
𝑘B𝑇

ΔR
. 

 By substituting the following formula for ψ  angle  
𝑑(𝛿𝜓)

𝑑𝑡
=

−γ𝑏𝑠𝑖𝑛(𝜃0)𝛿𝜒 = 𝛽, cos𝜒0 = 1 and by substituting variables 
𝑑(𝛿𝜃)

𝑑𝑡
= 𝑥: 

𝑑2𝑥

𝑑𝑡2
+ 𝜔Fe

2 𝑥 = 𝛽𝛿𝜒.                                   (E. 11) 

Here, 𝜔Fe =

√𝛾
2𝐻ex

𝑀Fe
(𝐾ac(cos2𝜃0)

2 + 6𝐾2(cos𝜃0sin𝜃0)
2 − 𝐾2(sin𝜃0)

4 − 2
𝑏2𝜇B

2cos2𝜃0sin𝜓0tanh
ΔR
𝑘B𝑇

ΔR
) 

and 𝛽 = −
𝛾3𝐻ex

𝑀Fe

𝑏3𝜇B
2sin2𝜃0cos𝜓0tanh

ΔR
𝑘B𝑇

ΔR
 are the Fe mode's resonance frequency and 

the Fe subsystem's coupling rate coefficient. 

At this point one, let`s construct the following set for the coupled oscillators, 

namely: 

{
 
 

 
 

 
𝑑2(𝛿𝜒)

𝑑𝑡2
+ 𝜔Tb

2 𝛿𝜒 = 𝛼𝑥,

𝑑2𝑥

𝑑𝑡2
+ 𝜔Fe

2 𝑥 = 𝛽𝛿𝜒.

                                   (E. 12) 

 Solutions for this set could be obtained by using the following matrix 

approach:  
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|
(𝜆2 + 𝜔qFM

2 ) −𝛼

−𝛽 (𝜆2 + 𝜔Tb
2 )
| = 0,                         (E. 13) 

 

𝜆4 + 𝜆2𝜔qFM
2 + 𝜆2𝜔qFM

2 +𝜔qFM
2 𝜔Tb

2 − 𝛼𝛽 = 0,              (E. 14)  

By making the substitution: 𝜆2 = 𝜏,  𝜆4 = 𝜏2, we derived the following 

solutions: 

𝜏1 =
1

2
(𝜔qFM

2 + 𝜔Tb
2 − √4𝛼𝛽 + 𝜔qFM

4 − 2𝜔qFM
2 𝜔Tb

2 +𝜔Tb
4 )

𝜏2 =
1

2
(𝜔qFM

2 +𝜔Tb
2 +√4𝛼𝛽 + 𝜔qFM

4 − 2𝜔qFM
2 𝜔Tb

2 +𝜔Tb
4 )

          (E. 15) 
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Chapter V. Ultrafast dynamics of rare-earth low-

energy states in Tb3Ga5O12 

 

5.1. Motivation 

Terbium gallium garnet (TGG) Tb3Ga5O12 belongs to the rare-earth garnet 

material class, known for its exceptional magneto-optical properties, high 

transparency across a broad spectral range, and robust thermal and mechanical 

stability. Its unique magnetic and optical properties have made it essential in various 

photonic and magneto-optical devices, including Faraday modulators and optical 

lasers. The complex sublattice arrangements of TGG provide a rich magnetic 

structure that enables a wide range of applications and positions it as a model system 

for studying fundamental magneto-optical effects. Despite its extensive practical 

applications, some gaps remain in understanding the low-temperature magnetism of 

Tb3+ ions. Unlike the situation in rare-earth orthoferrites, in garnets, there are no 

strong interactions between rare-earth ions and Ga. Therefore, the primary objective 

of this chapter is to investigate and compare the effects of THz and optical excitations 

on Tb3+ crystal field states in Tb3Ga5O12. 

5.2. Magnetic properties of Tb3Ga5O12 

5.2.1. Crystal structure and electronic configuration 

TGG crystallizes in a cubic garnet structure characterised by a complex atomic 

arrangement. This structure is composed of a three-dimensional network of oxygen 

ions that create polyhedral sites occupied by terbium (Tb) and gallium (Ga) ions. The 

Tb3+ ions are located in dodecahedral sites with distorted cubic symmetry, which 

significantly impacts their electronic and magnetic properties. The electronic 

configuration of Tb3+ ions leads to a highly localized 4f orbital, shielded by outer 

electrons, resulting in well-defined energy levels with minimal overlap with 

neighbouring ions. This configuration also results in strong spin-orbit coupling and 

crystal field effects, which split the ground multiplet ⁷F₆ into several sublevels. These 

energy levels are critical for the material’s optical and magnetic properties, enabling 

transitions that contribute to its magneto-optical properties [198,199]. 
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5.2.2. Optical and magnetic properties 

At high temperatures, TGG is valued not only for its large Verdet constant and 

high transparency, which make it suitable for Faraday rotators and optical 

isolators [200], but also for exhibiting additional phenomena such as the acoustic 

Faraday effect [201,202], the Cotton-Mouton effect [203], and the thermal Hall 

effect  [204,205], for which it is considered a prototypical system. These phenomena 

establish TGG as a model system for studying these effects, underscoring the crucial 

role of spin-lattice interactions within the material. The Tb3Ga5O12 crystal 

demonstrates high transparency in the visible and near-infrared regions, enhancing 

its use as a component in optical isolators and modulator devices. Regarding its 

magnetic properties, TGG exhibits Ising-like behaviour of Tb ions and their 

placement within the garnet lattice. Above its Néel temperature of approximately 

0.25 K [206], transitioning to complex magnetic ordering at lower temperatures. The 

six magnetic sublattices interact anisotropically, leading to unique spin dynamics 

observable under external magnetic fields.  

5.2.3. Spectroscopic Studies 

Advanced spectroscopic techniques have provided deeper insights into the 

behaviour of TGG under varying conditions of temperature, magnetic fields, and 

light polarisation and have proven it not only as a functional material but also as a 

platform for exploring fundamental opto-magnetic interactions. For instance, recent 

optical pump-probe studies have revealed ultrafast phenomena such as terahertz 

modulation of the Faraday rotation by laser pulses via the optical Kerr effect [207], 

and tuneable magneto-optical modulation [208]. 

However, the challenge in using the whole optical pump-probe technique in 

Terbium Gallium Garnet (TGG) arises from the influence of the optical pump on 

both the magnetic order and the magneto-optical coefficient, denoted as: 

∆𝜃~𝜒magn−opt(𝑀, 𝐿). Consequently, such experimental results yield not 

straightforward interpretations, leading to debates about the reliability of the signals 

obtained from optical pumping and how accurately they reflect the actual 

magnetisation dynamics. 

For instance, in experiments conducted on a 1 mm thick sample in the optical 

pump-probe setup with a substantial applied magnetic field (up to 70 kG)  [207], 

harmonic oscillations were observed with frequencies dependent on the magnetic 

field strength. Although these oscillations resembled the magnetic resonance, they 

were found not to possess a magnetic nature. Instead, their occurrence was identified 
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as a manifestation of the measurement peculiarities, where the polarisation plane of 

the pump/probe pulse in TGG induces such "spatial oscillations" with frequencies 

similar to the spin ones. 

Therefore, it can thus be concluded that while experiments with optical 

pumping and probing may produce results resembling magnetic responses, these are, 

in fact, optical artefacts.  

Consequently, investigations of TGG have turned to the THz 

spectroscopy [209]. This study has demonstrated the coupling of high-frequency 

magnetic excitations with the crystal's spin subsystem, revealing characteristics of 

an anisotropic g-tensor and providing insights that are crucial for understanding 

material properties such as magnetic susceptibility and thermal conductivity under 

diverse conditions.  

In the work  [210], the authors investigated the interaction between light and 

magnetism on femtosecond timescales using the related compound Dy3Al5O12, 

particularly focusing on the validity of the inverse Faraday effect (IFE). Contrary to 

the predictions of the conventional thermodynamic IFE model, the experiments 

revealed unexpected results. Instead of inducing quasi-static magnetisation, the laser 

pulse generated a coherent oscillation at 2.17 THz. This frequency significantly 

exceeds what is typically expected for conventional magnetisation precession, 

suggesting an alternative underlying mechanism. The observed oscillation coincided 

with the energy splitting between the crystal-field levels of the Dy³⁺ ions, indicating 

that the pump pulse induces a coherent superposition of magnetic sublevels, rather 

than directly magnetising the material. 

In our pump-probe spectroscopy studies, we examined the magnetic dynamics 

of Tb3+ ions in Tb3Ga5O12, which are not affected by the interaction with Ga ions. 

We used two types of pump pulses: a 400 nm pulse for stimulated Raman excitations 

and a THz pulse for resonant excitations, which effectively excites electron 

transitions between the lowest energy state formed by two closely located singlets 

and the next energy state of the Tb3+ ions within the ground-state multiplet 7F6. We 

compared the effects of these resonant and Raman-stimulated excitations by 

analysing the temperature-dependent behaviour of the crystal field (CF) mode. 

5.3. Experimental setup  

In this section, we present time-resolved studies of ultrafast dynamics 

conducted on 10 mm × 5 mm × 1 mm Tb3Ga5O12 single crystal cut such that the 

surface plane is the [111] plane. Measurements were performed in transmission 
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geometry using two types of excitations: Raman (400 nm) and resonant (THz), see 

Fig. 5.1. 

 

Fig.5.1. Sketch of the experimental geometries: (a) for the 400 nm pump-800 nm 
probe, (b) for the THz pump-800 nm probe, (c) Time-resolved THz pulse form 
obtained with the use of EOS and its spectrum (d), (e) Electronic structure of the 
Tb3+ ions in Tb3Ga5O12 along with photon energies of the pump and probe pulses 
used in the experiment.  

For Raman excitation, we used a 400 nm pump and an 800 nm probe setup 

(see Fig.5.1. (a)). For resonant excitation, we employed an intense THz pump with 

an 800 nm probe (shown in Fig.5.1. (b)). The sample was placed in a closed-cycle 

liquid helium cryostat, allowing temperature control down to 3.4 K (the lowest T 

which we could achieve), with an external magnetic bias field applied at 45° with 

respect to the [111] plane to obtain the best signal accuracy. More details about the 

pump-probe technique are discussed in Chapter 2. Fig.5.1. (c) shows the intense THz 

pulses (with electric field values up to 1 MV/cm) and the corresponding Fourier 

spectrum (Fig.5.1. (d)), which were generated using the optical rectification 

technique in LiNbO3. Fig. 5.1. (e) illustrates the electronic structure of Tb3+ ions in 

the distorted cubic symmetry of Tb3Ga5O12, emphasising the electronic transitions 

within the ground-state multiplet 7F6  [199]. The first closely located singlet states 

Z1,2 form the quasi-doublet. Our THz pump effectively excites the transition between 

this quasi-doublet and the next energy level Z3.  
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5.4. THz and laser-induced dynamics of Tb3+ ions in Tb3Ga5O12 

 

Fig.5.2: (a) Time-resolved measurements at 3.4 K of 400 nm (blue) and THz (red) 

pump pulses; (b) Fourier transforms of the time-domain data from (a).  

Figure 5.2(a) displays time-resolved measurements for 400 nm and THz pump 

pulses at the lowest temperature of 3.4 K, where the highest signal amplitude was 

detected. Figure 5.2(b) presents the Fourier transforms calculated from the time-

domain data in (a), in particular from the area magnified by a factor of 10 and 

indicated after the dotted line. Based on the calculated data from [211], we attribute 

this mode of Tb3+ ions to the crystal field (CF) mode between Z1,2 and Z3 energy 

levels within the 7F6 multiplet (see Fig.5.1. (e)).   

Fig.5.3.(a,b) shows probe (800 nm) and pump (400 nm) polarisation 

dependences both measured at 3.4 K. Here, the zero-angle reference for the probe 

and pump polarisations is oriented horizontally relative to the [111] surface of the 

sample and lies in the plane of the external magnetic field. 
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Fig.5.3. a) 800 nm probe and b) 400 nm pump polarisation dependencies at 3.4 K. 

In the case of probe polarisation dependence, we observed a maximum at 45°, 

which is indicative of the Cotton-Mouton effect. Our pump polarisation 

measurements detected two oscillating Raman modes with the same frequency but 

with different excitation mechanisms (symmetry). These modes were revealed by 

analysing the Fourier spectra for all time-domain values of pump polarisation angles 

from 0 to 360 with a step in 5° at 3.4 K. Existing research [211,212] explains the 

occurrence of two Raman modes at the same frequency in a similar rare-earth garnet 

(Tb3Al5O12) through both resonance and non-resonance Raman excitations. 

 To quantify their amplitudes, we fitted the time-domain data measured at 

different angles using the following formula: 

Sig1 = (𝐴1 + 𝐵1) sin[𝜔𝑡 + 𝜙0] ∙ exp [−
𝑡

𝐶
]              (5.1)  

Here, 𝐴1 and 𝐵1 represent the amplitude values for the first and second modes, 

respectively, 𝜔 denotes the angular frequency of the mode, 𝜙0 is the phase shift, t is 

the time, and C is the decay parameter. 

Fig.5.4 (a,b) shows 800 nm probe and THz pump polarisation dependences at 

3.4 K. Similar to the case of the optical pump, here the probe polarisation 

dependence, shows the similar signature of the Cotton-Mouton effect. In the case of 

the THz pump, the largest torque effect is observed when the external magnetic field 

is perpendicular to the magnetic component of the THz pulse.  
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Fig.5.4. a) 800 nm probe and b) THz pump polarisation dependencies at 3.4 K.  

Fig 5.5. shows the results of measurements of Tb3+ ions in Tb3Ga5O12 using a 

400 nm pump and 800 nm probe as a function of the sample temperature. In this 

configuration, the polarisation of the pump and probe pulses were oriented at an 

angle of 45° with respect to the horizontal orientation and the external magnetic field, 

which was applied at 45° with respect to the sample plane [111], to obtain the best 

signal.  

Temperature-dependent measurements were performed from 3.4 to 60 K (Fig. 

5.5(a)). As can be seen, the magnetic oscillations have lifetimes from 3.0 to 7.5 ps, 

and the amplitude of the oscillations decreases with increasing temperature. The 

Fourier transforms (Fig. 5.5(b)), calculated from the time-domain data in Fig. 5.5(a), 

show a mode with a resonant frequency of 1.26 THz. Fig. 5.5(c) shows the 

temperature dependence of the amplitude of this mode, taken from Fig. 5.5(b). As 

observed, the peak amplitude starts to decrease with increasing temperature. Fig. 

5.5(d) shows the dynamic signals in the time domain for three orientations of the 

external magnetic field and one in the absence of the external magnetic field. 

Given that the transition occurs between the lowest energy level formed by 

two closely spaced singlets and the first excited state in the 7F6 multiplet, and 

neglecting other high-energy states, the Tb3+ ions can be considered as an ensemble 

of two-level systems (TLS). For a two-level system interacting with light [213], 

Boltzmann statistics predicts a nearly uniform population distribution of the 

eigenstates at low occupancy. 
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Fig.5.5. a) Temperature dependence of the 400 nm induced dynamics in Tb3Ga5O12; 
b) Fourier transforms of the time domain data from a); c) Extracted amplitudes of 
the 1.26 THz mode from the spectra in b); d) dynamical signal for the different 
configurations of the external magnetic field (the measurements in a) were 
performed at the +45°). 

   

Upon pulsed excitation, the population distribution is consistent with 

Boltzmann statistics. With increasing occupancy, the system transitions to quantum 

statistics, leading to an effective population of the ground state and saturation of the 

upper level, consistent with the predictions of statistical mechanics. 

In this regard, the dynamics of the occupation difference ∆𝑛(𝑇) between the 

two levels could be described by using the Boltzmann distribution function in the 

following form:   

∆𝑛(𝑇) = 𝐴 ∙ tanh [
∆𝐸

𝑘𝐵𝑇
]

1

(𝑇+8.2)
                              (5.2)                               
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Here, A is a constant, ∆𝐸 is the energy gap of 5.2 meV (42 cm-1) between the Z1,2 and 

Z3 levels within the 7F6 multiplet according to [199], T is the temperature, and 
1

(𝑇+8.2)
 

accounts for the detection part with θCW=-8.2 K is the Curie-Weiss parameter. 

Fig 5.6. shows the results of THz-pump and 800 nm-optical probe 

measurements of Tb3+ ions in Tb3Ga5O12, performed in a similar configuration to the 

previous case. For these measurements, the polarisation of the pump pulse was set at 

90°, the probe polarisation was oriented at 45° relative to the horizontal plane, to 

optimise signal detection and the external magnetic field, which was applied at 45° 

with respect to the sample plane [111]. 

 
Fig.5.6. a) Temperature dependence of the THz-induced dynamics in Tb3Ga5O12; b) 
Fourier transforms of the time-domain data from a); c) Extracted amplitudes of the 
1.26 THz mode from the spectra in b); d) dynamical signal for the different 
configurations of the external magnetic field (the measurements in (a) were 
performed at the +45°).  
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Temperature-dependent measurements were performed across the temperature 

interval from 3.4 to 70 K (Fig. 5.6 (a)). As can be seen, similarly to the optical pump 

case, the magnetic oscillations have lifetimes from 2.0 to 6.0 ps, and the amplitude 

of the oscillations decreases with an increase in temperature. The corresponding 

Fourier transforms (Fig 5.6 (b)), calculated from the time-domain data in Fig. 5.6(a), 

revealed the same crystal field mode with an oscillation frequency of 1.26 THz. Fig 

5.6 (c) displays the temperature dependence of the amplitude of this mode, and Fig 

5.6 (d) shows the dynamic signals for the two opposite orientations of the external 

magnetic field, which have opposite behaviour. 

As shown in Fig. 5.6(c), the curve depicting the temperature dependence of 

the amplitude of the crystal field (CF) mode has a larger curvature compared to the 

previous cases, which implies a different nature of the excitation. In this case, the use 

of the Boltzmann distribution function is no longer valid due to the impossibility to 

reach the necessary curvature. Instead, we managed to fit this curve by using the 

following phenomenological formula:  

Sig2 = (
𝐴2

(𝑇 + 8.2)
+

𝐵2
(𝑇 + 8.2)2

).                           (5.3) 

Here, 𝐴2 (98) and 𝐵2 (2057) are the amplitude constants, and 𝑇 is the temperature. 

As can be seen from the formula the obtained dependence has the following 

behaviour: 𝑀 +𝑀2, which indicates a more complex excitation mechanism, 

requiring a more sophisticated theoretical analysis.  

 

5.5. Conclusions  
We performed a systematic measurements of spin dynamics in Tb3Ga5O12 as 

a function of temperature. For this we used pump-probe technique with two types of 

excitations: optical (400nm) and THz. The detection of spin dynamics has been done 

using transient polarisation of 800 nm probe, in a temperature range from 3.4 to 70 

K. In both setups, we observed a 1.26 THz frequency of the crystal field mode which 

corresponds to the energy gap of 42 cm-1 or 5.2 meV between Z1,2 and Z3 energy 

levels according to [199]. However, in our optical pump (400 nm) experiment, we 

revealed two modes with the same frequency but different excitation mechanisms 

(symmetry), which we attributed to resonance and non-resonance Raman excitations 

according to the existing research [211,212] on a similar compound Tb3Al5O12. By 

applying the Boltzmann distribution function, we achieved a good match between 

the temperature-dependent amplitudes of the observed modes and theoreticaly 
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predicted amplitude. Under THz pump excitation, although the same frequency was 

observed, a phenomenological formula had to be used to achieve good agreement 

with the experimental results. In this regard, a more sophisticated theoretical 

framework is needed to accurately explain the underlying excitation mechanisms. 
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Chapter VI. Summary and Outlook 
   

6.1. Summary 

This thesis work describes theoretical and experimental studies of the spin 

reorientation phase transition in orthoferrites with non-Kramers ions, namely 

TmFeO3 and TbFeO3 and the ultrafast spin dynamics in Terbium gallium garnet 

(Tb3Ga5O12) crystal.    

The exploration of rare-earth orthoferrites (RFeO3) has unveiled a wealth of 

magnetic phenomena driven by the interplay of rare-earth (R) and iron (Fe) 

subsystems. In this thesis work we have made significant strides in understanding 

the nonlinear spin dynamics in RFeO3 materials, particularly under the influence of 

strong terahertz (THz) fields. Through a combination of theoretical modelling and 

experimental investigation, we have characterised the mechanisms of spin-

reorientation phase transitions (SRPT) in TmFeO3 and TbFeO3, resonances of 

AMFR modes, behaviour of anisotropy magnetic functions, defined the values of the 

threshold fields required for the iron spins switching, revealed signatures of 

cooperative phenomena such as the magnetic analogue of the Jahn-Teller effect 

across the SRPT in TbFeO3, estimated the coupling rate between Fe and Tb 

subsystems and finally defined the coherence time parameter in frames of quantum 

optics. These findings provide a robust framework for further investigation and 

developments of orthoferrites in the course of antiferromagnetic spintronics.  

In Chapter 5, we explored THz and light-induced spin dynamics of rare-earth 

low-energy states in Terbium gallium garnet (Tb3Ga5O12). This crystal is 

representative of the family of magnetic garnet crystals, renowned for its applications 

in spintronics, magnonics, and optoelectronics. The objective of this chapter was to 

compare the effects of different excitation mechanisms on the dynamics of Tb3+ ions 

across a broad temperature range.  

The work and results presented in this thesis are summarized as follows: 

6.2. Theory: Results 

6.2.1. THz-driven magnetic switching in rare-earth ortho-

ferrites: the case of TmFeO3 

In Chapter 3, we developed a theoretical framework for analysing and 

modelling the dynamics of iron spins through the spin reorientation transition 
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pathway (Г2-Г24-Г4) in orthoferrites with non-Kramers ions, taking the case of 

TmFeO3 due to the availability of experimental results. We constructed a 

microscopic Hamiltonian and used the mean field approximation to derive a 

thermodynamic potential that takes into account all relevant interactions. These 

interactions include d-d exchange, d-f exchange, f-f exchange, the interaction of the 

rare-earth subsystem with the crystal field, external electromagnetic fields, and 

thermal population effects.  

For the static case, our model accurately describes the behaviour of anisotropy 

functions across the temperature phases Г2-Г24-Г4, aligning well with experimental 

observations. In the dynamic case, we were able to apply our model to fit 

experimental results from [151] for the AFMR modes with an excellent accuracy and 

to obtain the corresponding parameters for the interactions included in our model, 

which we then used in a numerical modelling of the iron spin switching behaviour 

using the LLG equations. Our numerical simulations predicted realistic values of the 

threshold fields required for terahertz-induced spin switching and identified different 

mechanisms that could lead to scenarios such as Zeeman torque and anisotropy 

modulation through the R subsystem, those are in excellent agreement with 

experiments from  [152]. Moreover, we estimated the energy dissipation involved in 

the switching process and found good agreement with the experimental values 

from [151].  

To summarise, the obtained results highlight the viability of our model for the 

description of the orthoferrites with non-Kramers ions in a non-equilibrium state 

subjected to the strong external radiation. 

6.2.2. THz spin dynamics of Fe and Tb subsystems in TbFeO3 

Chapter 4 expands the scope of this thesis, focusing on TbFeO3. Unlike 

TmFeO3, TbFeO3 has closely spaced Fe and Tb modes due to the lowest-energy 

quasidoublet of Tb ions, eliminating the need for the adiabatic approximation. Using 

a two-level approximation for the Tb subsystem, we achieved strong agreement 

between our experimental results from THz pump-optical probe spectroscopy 

measurements and our quantum-phenomenological model. We accurately aligned 

our experimental results for the q-FM resonant mode with theoretical predictions 

during the SRPT from Γ4-Γ24-Γ2 phases. Our findings reveal that unlike in TmFeO3, 

the q-FM mode in TbFeO3 is not soft, due to repulsion from interactions with the 

low-frequency Tb mode. Moreover, our model successfully described the behaviour 

of this previously unobservable mode, identifying it as soft, and calculated all 

functions of the Tb subsystem depending on the order parameter of the iron spin 
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angle as a function of temperature 𝜃(𝑇). We also numerically modelled their 

behaviour across the Γ4-Γ24-Γ2 phases. 

In summary, our model explains the signatures of the magnetic Jahn-Teller 

effect by providing accurate values for the observed resonance frequencies of the 

magnetic modes. It effectively shows the removal of energy level degeneracy in Tb3+ 

ions and the strong coupling between Fe and Tb ions, comparing it with other 

strongly coupled systems as referenced in the literature [194]. Additionally, it 

provides a basis to estimate the coherence time parameter for TbFeO3, marking it as 

a system with a strong coupling regime in the context of quantum optics.  

6.2.3. Comparative analysis between TmFeO3 and TbFeO3 

The obtained results for TmFeO3 and TbFeO3 underline an important 

distinction for the orthoferrites with different non-Kramers ions. In TmFeO3, the 

dynamics between the Fe and Tm subsystems are less complex, permitting an 

adiabatic approach that simplifies the analysis of AFMR modes across all 

temperature phases. In contrast, TbFeO3 requires a more complex analysis due to the 

strong dynamical coupling between the Fe and Tb ions, which results in changes to 

the magnetic symmetry of TbFeO3. These differences underscore the diversity of 

SRPT phenomena in orthoferrites with non-Kramers ions. Despite belonging to the 

same subgroup (with non-Kramers ions) within the RFeO3 class, they exhibit distinct 

properties within the same phenomenon, influenced by different non-Kramers ions.  

6.3. Experimental Results 

1. Experimental setup modifications: we have adapted the existing pump-probe 

experimental setup to accommodate both optical pump-optical probe and intense 

THz pump-optical probe spectroscopy. Additionally, our setup now supports 

double-pump measurements if needed. These modifications have enabled 

resonant excitation of magnetisation dynamics in orthoferrites and Terbium 

Gallium Garnet at cryogenic temperatures down to 3.4 K.  

2. THz pump-optical probe polarisation measurements: Our THz pump-optical 

probe polarisation measurements of AFMR modes in TbFeO3 revealed signatures 

of the magnetic analogue of the Jahn-Teller effect during spin-reorientation phase 

transitions. Our findings also include the induction of a second SRPT mediated 

by the ordering of Tb ions at temperatures below 3.75 K. Moreover, we observed 

transient high-frequency oscillations which do not correspond to any known 

phenomena, nor to phonon modes, requiring additional experimental and 

theoretical investigation.  
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3. Spectroscopy Measurements in Tb3Ga5O12: We performed a THz pump-optical 

probe and optical pump-optical probe spectroscopy measurements on Tb3Ga5O12 

to study the induced magnetisation of Tb spins. Our findings show that, while the 

frequency associated with the crystal field mode was observable in both cases, 

the behaviour under the influence of a 400 nm pump pulse can be explained using 

the Boltzmann distribution function for a two-level system of the Tb3+ ions 

ensemble. In contrast, the results from THz impulsive excitation require a more 

sophisticated theoretical analysis. 

6.4. Outlook 

 In this section of the thesis, we provide an outlook for the potential further 

extensions of the presented research, from theoretical and experimental perspectives. 

Theoretical perspective. 

Within the existing theoretical framework for non-Kramers ions: 

1. The developed theoretical model shows potential for application to other 

orthoferrites with non-Kramers ions and available experimental data like 

HoFeO3. It also aims to be extended to incorporate scenarios involving the 2nd 

SRPT mediated by the ordering of Tb ions in TbFeO3. 

2. It is of interest to model the behaviour of iron spin switching during the SRPT in 

TbFeO3, estimate threshold fields, and compare them with those from TmFeO3. 

3. While our current model provides a robust foundation for the orthoferrites with 

non-Kramers ions, it also shows potential for extension to orthoferrites with 

Kramers ions like Erbium (ErFeO3) and Ytterbium (YbFeO3) to describe both 

static and dynamic properties across SRPT. As the ErFeO3 shows similar features 

to TmFeO3 in terms of the SRPT and YbFeO3 might exhibit the magnetic 

analogue of the Jahn-Teller effect similarly to TbFeO3. It is also interesting to 

estimate the spin-switching mechanisms in these orthoferrites. 

4. In the case of Tb3Ga5O12 a more sophisticated model is required to describe the 

crystal field mode as a function of temperature under the influence of intense THz 

excitation.    

Experimental perspective. 

Throughout our work, we managed to distinctly observe only AFMR modes 

but no signatures of Tb modes in TbFeO3. This is likely due to the fact that the THz 

pump pulse does not excites this mode effectively, as its spectrum is well tuned to 

the AFMR modes frequency range or/and the wavelength of the probe pulse is 
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insensitive. It might be reasonable to perform additional series of THz pump, but 

with a varying probe wavelength measurements which could be done with the 

existing setup complemented by an optical parametric amplifier (OPA).  

Furthermore, there is still uncertainty regarding fast and short-lived (3-5 ps) 

dynamic modes of unknown nature observed in TbFeO3. They do not correspond to 

any known magnetic or phonon modes. Given this, it makes sense to apply pump 

pulse with a different wavelength, like 400 nm, as a first step. However, on the 

experimental side, advancements in ultrafast spectroscopy techniques are offering 

exciting opportunities. For example, combining THz pump-probe setups with 

ultrafast X-ray or neutron scattering could provide new insights into spin-lattice 

coupling. 
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