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Combining Propensity Scores and Common Items for Test Score Equating 

 

Abstract 

Ensuring that test scores are fair and comparable across different test forms and different test 

groups is a significant statistical challenge in educational testing. Methods to achieve score 

comparability, a process known as test score equating, often rely on including common test 

items or assuming that test taker groups are similar in key characteristics. This study explores 

a novel approach that combines propensity scores, based on test takers’ background covariates, 

with information from common items using kernel smoothing techniques for binary-scored test 

items. An empirical analysis using data from a high-stakes college admissions test evaluates 

the standard errors and differences in adjusted test scores. A simulation study examines the 

impact of factors such as the number of test takers, the number of common items, and the 

correlation between covariates and test scores on the method’s performance. The findings 

demonstrate that integrating propensity scores with common item information reduces standard 

errors and bias more effectively than using either source alone. This suggests that balancing the 

groups on the test-takers’ covariates enhance the fairness and accuracy of test score 

comparisons across different groups. The proposed method highlights the benefits of 

considering all the collected data to improve score comparability.  

Keywords: Educational testing, academic admission, fairness, equating, NEAT design  

 

Introduction 

Assessment tests in education are important tools for measuring students’ knowledge, skills, 

and development. These tests also play a significant role in educational decision-making, 

influencing everything from teaching practices to college admissions. Given their impact, it is 

essential to ensure that test score interpretations are both valid and fair (see Chapter 3, American 

Educational Research Association et al., 2014). When test forms change or when different 

groups take different test forms, ensuring fair and comparable scores becomes a significant 

statistical challenge.  

To address this challenge, traditional methods for adjusting scores often rely on including 

common items in the tests - known as anchor items - or assuming that the groups being 

compared are similar in their distributions of the latent ability the assessment test is designed 

to measure. These methods aim to adjust for variations in test difficulty and differences in group 
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abilities. However, when no common items are available, these methods may not fully account 

for group differences, potentially having significant impacts on, for example, academic 

admission decisions. Complicating matters further, the latent trait levels of the test-takers are 

not directly observable, which makes it non-trivial to condition the analysis on their values. 

In light of these challenges, test score equating has emerged as a routine statistical process 

for most large-scale testing programs around the world. Test equating methods, used to align 

scores from different test forms onto a common scale, account for variations in test difficulty 

and differences in the ability levels of test-taking groups (González & Wiberg, 2017). The 

choice of equating method depends on assumptions about the test-takers and the available data. 

When groups of test takers receiving different test forms can be assumed to be similar in their 

distributions of the ability the test is designed to measure, the Equivalent Groups (EG) design 

can be used. However, if these groups cannot be assumed equivalent but have completed a set 

of common items (an anchor test), the nonequivalent groups with anchor test (NEAT) design is 

suitable (von Davier, Holland, and Thayer, 2004). When test-taking groups are not similar and 

no anchor test is administered, but information about test takers’ covariates is available, the 

nonequivalent groups with covariates (NEC) design can be employed (Wiberg & Bränberg, 

2015). Examples of tests with non-equivalent groups but without anchor items include the 

Invalsi test (INVALSI, 2013), the Armed Services Vocational Aptitude Battery (Quenette et 

al., 2006), and, until 2011, the Swedish Scholastic Aptitude Test (SweSAT; Stage & Ögren, 

2004).  

The importance of flexible equating methods became even more apparent during the global 

spread of Covid-19, which created unprecedented challenges for many large-scale assessments. 

For instance, the SweSAT faced restrictions on test-taker eligibility, resulting in new 

demographics taking the test (Wiberg, Lyrén & Lind Pantzare, 2021). Despite these changes in 

the test-taking population, the need to compare scores with previous administrations remained 

crucial, given the role of SweSAT in college admissions. Historically, researchers addressing 

changing background distributions of test groups have employed either the NEAT design when 

an anchor test was available, or the NEC design. However, only a few attempts have been made 

to integrate information from both covariates and anchor tests, highlighting a gap in the current 

methodology. Notable exceptions include Wiberg and Bränberg (2015), who explored a case 

of merging NEAT and NEC designs using categorical covariates and anchor test scores, and 

Albano and Wiberg (2019), who examined traditional equating methods combining anchor 

scores with a single covariate. Further, Lu and Guo (2018) used simulations to include 

information from an anchor test with pseudo equivalent groups (PEG) in a NEAT design. They 
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concluded that if the ability group difference were large, to use only NEAT design was to be 

preferred over PEG, but the NEAT linking could be improved by using PEG procedures based 

on background variables. If group ability differences were small, PEG linking produced 

comparable results to NEAT. Further, Lu and Kim (2021) used statistically matching equating 

samples in a NEAT design, while Kim and Walker (2021) used PEG when examining 

nonequivalent groups caused by suboptimal randomization, a short anchor test of only five 

items, and minimal collateral information. Recently, Kim and Walker (2022) extended this 

study when building on the PEG approach and used resampling to evaluate the linking accuracy 

of group adjustment using sample weights via minimum discriminant information adjustment 

(MDIA) using test takers’ demographic information, a three-item anchor test, and a mixture of 

both. They concluded that using both sample weights via MDIA and a short anchor produced 

the most accurate equating results. More recently, Ozsoy and Kilmen (2023) compared NEAT 

and NEC designs in a modern equating framework, however they did not combine the two 

designs. 

A promising approach to incorporating information about test takers from covariates is to 

use propensity scores. Define for each test taker the propensity score 𝑒(𝐃), which is the 

probability of being assigned a specific treatment (in this case test form) given the covariate 

vector 𝐃 (Rosenbaum & Rubin, 1983). Set a treatment variable Z equal to 1 if test form Y 

(active treatment) is administered, and equal to 0 if test form X (control treatment) is 

administered. Then, the propensity score is defined as 𝑒(𝐃)=Pr(𝑍 = 1|𝐃). If 𝐃 contains every 

confounder of the relationship between (X, Y) and Z, the propensity score is a balancing score 

and it is enough to control for 𝑒(𝐃) to create balance in the test groups. The first study to 

consider propensity scores in test equating was Livingston, Dorans, and Wright (1990), who 

used them for sample matching. This approach was further developed by Yu, Livingston, 

Larkin, and Bonett (2004) and Paek, Liu, and Oh (2006). Subsequent researchers expanded 

these proposals, with Sungworn (2009) and Powers (2010) using propensity scores to improve 

traditional equating methods. Moses, Deng, and Zhang (2010) took a different approach, using 

propensity scores to combine two anchor test scores rather than incorporating external 

covariates in the analysis. Longford (2015) proposed equating based on matching with either 

inverse proportional weighting or matched pairs, derived from propensity scores based on 

background variables, while Haberman (2015) employed propensity scores to create PEG from 

nonequivalent groups before conducting equating.  

Wallin and Wiberg (2019) proposed to use propensity scores with the NEAT design, framed 

within a modern equating framework building on kernel smoothing techniques. Their work 
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demonstrated that stratifying on the propensity scores, an idea dating back to Rosenbaum and 

Rubin (1984), could achieve a similar level of precision and accuracy compared to the NEAT 

design, provided the propensity scores are known. Recognizing that propensity scores are never 

truly known in practice, Wallin and Wiberg (2023) conducted a sensitivity analysis of equated 

scores to various misspecifications in the propensity score model. Their findings revealed that 

omitting an important covariate leads to biased estimates of the equated scores, while 

misspecifying a nonlinear relationship between covariates and test scores increases the equating 

standard error in the tails of the score distributions. Encouragingly, they also found that the 

equating estimators are robust against omitting a second-order term and using an incorrect link 

function in the propensity score estimation model. 

Building upon this rich body of research, our paper introduces a novel approach in test 

equating by combining propensity scores with anchor test scores within the generalized kernel 

equating framework (Wiberg, González, & von Davier, 2025). An important reason to use 

kernel equating here is that kernel equating methods are used in practice to equate the college 

admissions test which we use in the empirical study. While recent studies have utilized 

propensity scores in kernel equating, none have explored the integration of both propensity 

scores and anchor test scores in this context, as proposed here. Our overall aim is to examine 

kernel equating with binary scored items when using propensity scores together with anchor 

test scores and covariates, comparing this approach with using either only anchor scores in the 

NEAT design or only propensity scores with the NEC design. We conduct both an empirical 

study and a simulation study. This allows us to assess the practical implications of our method 

in a real-world context while also investigating the bias, root mean squared error, and standard 

errors under varying conditions.  

The rest of this paper is structured as follows. In the next section, kernel equating in general 

is described, followed by a description of kernel equating with propensity scores. This is 

followed by an empirical study with some results and a simulation study. The last section 

contains a discussion with some concluding remarks and practical implications. 

Kernel equating  

Kernel equating (von Davier, Holland & Thayer, 2004; Wiberg, et al., 2025) aims to equate test 

score X to test score Y on a target population T. For the NEAT and the NEC design, the target 

population T is not trivial to define since we are dealing with samples from two distinct 

population, P and Q. It is common to define a synthetic target population, defined symbolically 
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as 𝑇 = 𝑤𝑃 + (1 − 𝑤)𝑄, with 0 ≤ 𝑤 ≤ 1. In practice, 𝑤 > 0 is typically used to ensure 

comparability across administrations. 

Kernel equating comprises five steps: 1) Presmoothing, 2) Estimation of the score 

probabilities, 3) Continuization, 4) Equating, and 5) Evaluating the equating transformation. 

Denote the observations of X and Y by 𝑥𝑗, 𝑗 = 1, … , 𝐽, and ky , 𝑘 = 1, … , 𝐾, respectively. Let 

𝑟𝑗 = Pr( 𝑋 = 𝑥𝑗|𝑇) and 𝑠𝑘 = Pr( 𝑌 = 𝑦𝑘|𝑇) be the probabilities of a randomly selected test-

taker in the target population T scoring 𝑥𝑗 on test form X and ky  on test form Y, respectively. 

In the first presmoothing step, a log-linear model is typically fitted to the data to reduce the 

sampling variance. For the NEAT design, denote the observations of anchor test A by 𝑎𝑙, 𝑙 =

1, … , 𝐿, and define the joint probability as 𝑝𝑗𝑙 = Pr( 𝑋 = 𝑥𝑗 , 𝐴 = 𝑎𝑙), then 

 log( 𝑝𝑗𝑙) = 𝛽0 + ∑ 𝛽𝑥,𝑖𝑥𝑗
𝑖 +

𝑇𝑟
𝑖=1 ∑ 𝛽𝑥,𝑖𝑥𝑗

𝑖 +
𝑇𝑎
𝑘=1 ∑ ∑ 𝛽𝑥𝑎,𝑑𝑑′𝑥𝑗

𝑑𝑎𝑙
𝑑′𝑇𝑎𝑥

𝑑′
𝑇𝑥𝑎
𝑑  (1) 

By estimating the parameters using maximum likelihood estimation, the sample moments are 

preserved in the distribution being modelled. Several models are typically fitted and the best 

fitting model according to some criteria is chosen. From the fitted model we obtain the 

estimated test score probabilities in step 2. If some other proxy of ability is available, such as a 

propensity score, these can also be modelled in the presmoothing model which will be 

demonstrated later in the paper.  

To obtain the equating transformation, which maps the test scores onto a common scale, we 

define the cumulative distribution functions (CDFs) of X and Y in T as 𝐹(𝑥) = Pr( 𝑋 ≤ 𝑥|𝑇) 

and 𝐺(𝑦) = Pr( 𝑌 ≤ 𝑦|𝑇), respectively. Kernel equating defines equivalent scores as those that 

share the same relative position in their respective distributions, using the equipercentile 

equating transformation: 

𝑦 = 𝜑𝑌(𝑥) = 𝐺𝑌
−1(𝐹𝑋(𝑥)).   (2) 

The equipercentile transformation is the most commonly used method to equate test scores 

among large-scale testing organizations. As test scores are discrete, continuous approximations 

of the test score distributions are typically utilized. Kernel equating utilizes kernel functions for 

this purpose, most commonly a Gaussian kernel function. Let Φ(∙) represent the standard 

normal distribution function, and 𝒓 = (𝑟1, … , 𝑟𝐽)
𝑡
, then the continuized CDF for score X is 

defined as 

 𝐹ℎ𝑋
(𝑥; 𝒓) = Pr(𝑋(ℎ𝑋) ≤ 𝑥) = ∑ 𝑟𝑗𝑗 𝛷 (

𝑥−𝑎𝑋𝑥𝑗−(1−𝑎𝑋)𝜇𝑋

𝑎𝑋ℎ𝑋
), 
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where, 𝜇𝑋 = ∑ 𝑥𝑗𝑟𝑗𝑗  is the mean of X in population T, 𝑎𝑋 = √𝜎𝑋
2/(𝜎𝑋

2 + ℎ𝑋
2 ), 𝜎𝑋

2 is the variance 

of X in population T, and ℎ𝑋 > 0 is the bandwidth which determines the smoothness level of 

the continuous approximation. The bandwidth can be selected in several ways, and for a 

comparison of different bandwidth selection methods see Wallin, Häggström and Wiberg 

(2021). The continuization of the Y score distribution to obtain 𝐺ℎ𝑌
(𝑦; 𝒔), 𝒔 = (𝑠1, … , 𝑠𝐾)𝑡, is 

done in an analogous way. Equation 2 is then used to carry out the equating with these 

continuized CDFs.  

�̂�𝑌(𝑥) = 𝐺ℎ𝑌

−1(𝐹ℎ𝑋
(𝑥))    (3) 

Finally, the equating transformation can be evaluated with different measures, including the 

asymptotic standard error of equating (SEE; von Davier, et. al., 2004), which, using the delta 

method, is defined as 

SEE(x) = √Var(�̂�𝑌(𝑥)) = ||𝐉𝜑𝑌
𝐉DF𝐂||.    (4) 

The term �̂�𝑌(𝑥) is defined in Equation 3,  𝐉𝜑𝑌
 represents the Jacobian matrix of the equating 

function, 𝐉DF denotes the Jacobian matrix of the design function, and C is defined such that 

cov(𝑣(𝑷), 𝑣(𝑸)) = 𝑪𝑪′, where 𝑷 = {𝑝𝑗𝑙}
𝐽×𝐿

 and 𝑸 = {𝑞𝑘𝑙}𝐾×𝐿 and 𝑣(∙) denotes the 

vectorization of a matrix, where the columns are stacked on top of each other. The design 

function is defined such that (𝒓, 𝒔)′ = 𝐷𝐹(𝑷, 𝑸) and is, as the name suggests, design specific. 

See Wallin and Wiberg (2019) and von Davier et al. (2004) for the specific function 

specification for the NEAT design and NEC design with propensity scores. Lastly, note that the 

SEE definition gives us a standard error value for each test score x. The SEE therefore typically 

reflects the naturally occurring sparsity of data in the tails of the score distributions (only very 

few test-takers get a score of 0 or close to 0, and likewise for the highest scores).  

 

Kernel equating with the NEAT design and categorized covariates in the NEC design 

To perform kernel equating in the NEAT design we have two choices. First, we can utilize the 

mixture definition of the target population T to construct distributions of X and Y in T and obtain 

test score probabilities: 

 𝑟𝑗 = Pr(𝑋 = 𝑥𝑗 ∣ 𝑇) = 𝑤𝑟𝑃𝑗 + (1 − 𝑤)𝑟𝑄𝑗,  (5) 

and 

𝑠𝑘 = Pr(𝑌 = 𝑦𝑘 ∣ 𝑇) = 𝑤𝑠𝑃𝑘 + (1 − 𝑤)𝑠𝑄𝑘,           (6) 
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where 𝑟𝑃𝑗 = Pr(𝑋 = 𝑥𝑗 ∣ 𝑃), 𝑟𝑄𝑗 = Pr(𝑋 = 𝑥𝑗 ∣ 𝑄), 𝑠𝑃𝑘 = Pr(𝑌 = 𝑦𝑘 ∣ 𝑃) and 𝑠𝑄𝑘 = 𝑃𝑟(𝑌 =

𝑦𝑘 ∣ 𝑄) are the score probabilities of X and Y in populations P and Q, respectively. We can then 

equate the obtained distributions using kernel poststratification equating (KPSE) using 

Equation 3 directly. Secondly, we can link the different test forms through a chain and thus 

obtain kernel chained equating (KCE), defined as 

𝜑𝑌(𝑥) = 𝐺ℎ𝑌

−1(𝐻ℎ𝑌
(𝐻ℎ𝑋

−1(𝐹ℎ𝑋
(𝑥)))) (7) 

where 𝐻ℎ𝑌
 and 𝐻ℎ𝑋

  are the continuized CDFs for the anchor test forms given to the group that 

received test form X and test form Y.  

If we are using categorized covariates, as in Wiberg and Bränberg (2015), we just exchange 

the anchor test scores in Equations 3 and 7 to the categorized covariate information. How to 

proceed if we instead of categorized covariates use propensity scores is described next. 

Kernel equating with propensity scores  

Wallin and Wiberg (2019) proposed the use of propensity scores in the NEC design with both 

KPSE and KCE estimators and further expanded the theory in Wallin and Wiberg (2023). One 

advantage of using propensity scores in test equating is that they summarize multiple covariates 

into a single scalar, thereby reducing the dimensionality of the problem. This is particularly 

important when incorporating background variables in log-linear smoothing models, as 

modelling each covariate directly can lead to sparsity issues - many combinations of test scores 

and covariate values may have few or no observations, making parameter estimation unstable. 

By using propensity scores, we avoid sparsity issues while still adjusting for observed 

confounders. 

A fundamental property of propensity scores is that if 𝑫 contains all confounders of the 

relationship between test form assignment and test scores then conditioning on 𝑒(𝑫) is 

sufficient to balance the groups. Specifically, we assume that: 

𝑃 (𝑋 = 𝑥𝑗|𝑍 = 1, 𝐴, 𝑒(𝑫)) = 𝑃 (𝑋 = 𝑥𝑗|𝑍 = 0, 𝐴, 𝑒(𝑫)),  

which implies that once we control for the anchor score 𝐴 and the propensity score 𝑒(𝑫), any 

remaining differences between the groups are random rather than systematic. This balancing 

assumption allows us to compare test scores fairly between groups, even when direct matching 

on all covariates is not feasible. 

There are multiple ways to estimate propensity scores. In this paper, we use logistic 

regression, following the common approach of subdividing test takers into strata based on the 

percentiles of their estimated propensity scores (Rosenbaum & Rubin, 1984). Within each 
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stratum, test takers are assumed to be comparable in ability. The number of strata is chosen 

based on the covariate distribution to ensure adequate balancing while maintaining a sufficient 

number of observations in each stratum. 

Other methods for balancing covariates include weighting techniques, such as the minimum-

variance balancing method proposed by Zubizareta (2015), which adjusts the empirical 

distribution of covariates to achieve a prespecified level of balance. Additionally, a range of 

quantitative and qualitative diagnostics can be used to assess balance between test forms after 

weighting or stratification. For a comprehensive review of propensity score methods, we refer 

to Austin and Stuart (2015). 

 

The KPSE estimator with propensity scores 

To obtain a KPSE estimator with propensity scores, i.e., the PS-KPSE estimator, denote the 

stratified propensity score for strata l, 𝑙 = 1, . . . , 𝐿, by 𝑒𝑋𝑙(𝐃) and 𝑒𝑌𝑙(𝐃) for populations P and 

Q, respectively. Let d represent the observed value of D and let 𝑝𝑗𝑙 = Pr( 𝑋 = 𝑥𝑗 , 𝑒(𝐃𝑋𝑙) =

𝑒(𝐝𝑋𝑙) ∣ 𝑃) and 𝑞𝑘𝑙 = Pr(𝑌 = 𝑦𝑘, 𝑒(𝐃𝑌𝑙) = 𝑒(𝐝𝑌𝑙) ∣ 𝑄) denote the joint probabilities of the 

test scores and the categorized propensity scores for population P and Q, respectively. 𝑟𝑄𝑗 and 

𝑠𝑄𝑘 can be estimated directly through �̂�𝑃𝑗 = ∑ �̂�𝑗𝑙𝑙  and �̂�𝑄𝑘 = ∑ �̂�𝑘𝑙𝑙 . By design, there is no data 

to estimate 𝑟𝑄𝑗 and 𝑠𝑃𝑘 but if we assume that the conditional distributions of X given 𝑒(𝐃) and 

Y given 𝑒(𝐃) is the same in population P and Q respectively they can be estimated as follows 

�̂�𝑄𝑗 = ∑ (
𝑝𝑗𝑙

∑ 𝑝𝑗𝑙𝑗
⋅ ∑ �̂�𝑘𝑙𝑘 )𝑙  and �̂�𝑃𝑘 = ∑ (

�̂�𝑘𝑙

∑ �̂�𝑘𝑙𝑘
⋅ ∑ �̂�𝑗𝑙𝑗 )𝑙 .  (8) 

Equations 8 are then plugged into Equations 3, 5 and 6 and we can obtain the PS-KPSE 

estimator as follows 

𝜑𝑌(𝑥; �̂�, �̂�)PSE = 𝐺ℎ𝑌

−1(𝐹ℎ𝑋
(𝑥; �̂�); �̂�).   (9) 

 

The CE estimator with propensity scores 

To define an estimator when using CE with propensity scores, i.e. the PS-KCE estimator, define 

the continuized CDFs for X and Y in population Q as 𝐹ℎ𝑃
(𝑥; �̂�𝑃) = �̂�ℎ𝑃

(𝑥), and 𝐺ℎ𝑄
(𝑦; �̂�𝑄) =

�̂�ℎ𝑄
(𝑦), where 𝒓𝑃 = (𝑟𝑃1, . . . , 𝑟𝑃𝐽)𝑡 and 𝒔𝑄 = (𝑠𝑄1, . . . , 𝑠𝑄𝐾)𝑡. However, we also need to define 

the continuized CDFs H for the anchor tests 𝐻ℎ𝑒𝑋𝑙
(𝑒𝑋𝑙(𝒅); �̂�𝑃) = �̂�ℎ𝑒𝑋𝑙

(𝑒𝑋𝑙(𝒅)), and 

𝐻ℎ𝑒𝑌𝑙
(𝑒𝑌𝑙(𝒅); �̂�𝑄) = �̂�ℎ𝑒𝑌𝑙

(𝑒𝑌𝑙(𝒅)), with score probabilities𝑡𝑃 = (𝑡𝑃1, … , 𝑡𝑃𝐿)𝑡 and 𝑡𝑄 =
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(𝑡𝑄1, . . . , 𝑡𝑄𝐿)
𝑡
, where 𝑡𝑃𝑙 = Pr(𝑒𝑋𝑙(𝑫) = 𝑒𝑋𝑙(𝒅)|𝑃) and 𝑡𝑄𝑙 = Pr(𝑒𝑌𝑙(𝑫) = 𝑒𝑌𝑙(𝒅)|𝑄). The 

PS-KCE estimator can then be defined as  

 �̂�𝑌(𝐶𝐸)(𝑥) = 𝜑𝑌(𝐶𝐸)(𝑥; �̂�𝑃, �̂�𝑃, �̂�𝑄 , �̂�𝑄) = �̂�ℎ𝑌𝑄

−1 (�̂�ℎ𝑒𝑌𝑙
(�̂�ℎ𝑒𝑋𝑙

−1 (�̂�ℎ𝑋𝑃
(𝑥)))).    (10) 

 

Combining anchor test and covariate information 

Anchor test information can be incorporated in at least two different ways when using kernel 

equating with propensity scores. Either they can be incorporated directly in the propensity score 

model (labelled PSwA) or they can be a separate part of the presmoothing models (labelled 

PSwoA). If the anchor scores are incorporated directly into the propensity‐score model, the 

resulting presmoothing log-linear models, which we call “inner models”, are obtained: 

 log( 𝑝𝑗𝑙) = 𝛽0 + ∑ 𝛽𝑥,𝑖(𝑥𝑗)𝑖 +
𝑇𝑟
𝑖=1 ∑ 𝛽𝑒,𝑘(𝑒𝑙)

𝑘 +
𝑇𝑒
𝑘=1 ∑ ∑ +

𝑇𝑒𝑥
𝑑′ 𝛽𝑥𝑒,𝑑𝑑′(𝑥𝑗)𝑑(𝑒𝑙)

𝑑′𝑇𝑥𝑒
𝑑  

If the anchor scores instead are incorporated separately in the log-linear models, we obtain outer 

models: 

log 𝑃(𝑋 = 𝑥𝑗 , 𝑒(𝑫𝑋𝑙′) = 𝑒(𝒅𝑋𝑙′), 𝐴 = 𝑎𝑙) = log( 𝑝𝑗𝑙𝑙′) = 𝛽0 + ∑ 𝛽𝑥,𝑖(𝑥𝑗)𝑖 +
𝑇𝑟
𝑖=1

∑ 𝛽𝑎,𝑘(𝑎𝑙)
𝑘 +

𝑇𝑎
𝑘=1 ∑ 𝛽𝑒,𝑘(𝑒𝑙′)

𝑘 +
𝑇𝑒
𝑘=1 ∑ ∑ 𝛽𝑥𝑒,𝑑𝑑′(𝑥𝑗)𝑑𝑇𝑒𝑥

𝑑′

𝑇𝑥𝑒
𝑑 (𝑒𝑙′)

𝑑′ + ∑ ∑ 𝛽𝑒𝑎,𝑐𝑐′(𝑒𝑙′)
𝑐𝑇𝑎𝑒

𝑐′
𝑇𝑒𝑎
𝑐 𝑎𝑙

𝑐′ +

∑ ∑ 𝛽𝑥𝑎,𝑑𝑑′
𝑇𝑎𝑥
𝑘=1

𝑇𝑥𝑎
𝑖=1 𝑥𝑗

𝑑𝑎𝑙
𝑑′.  

The obtained models are then used to estimate the score probabilities when performing kernel 

equating. 

An alternative approach to presmoothing is the EM-based log-linear method proposed in 

Liou (1998), which integrates test scores, anchor items, and group membership into a unified 

model. This approach explicitly accounts for ignorable and nonignorable missing-data 

mechanisms. While our method shares a conceptual foundation with this framework, it differs 

in that we use the propensity score 𝑒(𝑫) as a scalar balancing measure rather than modelling 

group membership effects directly. This allows for a flexible incorporation of background 

covariates while maintaining the benefits of log-linear smoothing 

 

Empirical study 

Data from the college admissions test SweSAT was used to illustrate the proposed extension of 

using propensity scores together with information from anchor tests within the kernel equating 

framework. SweSAT contains 160 multiple-choice, binary scored items, comprising a verbal 

section and a quantitative section of 80 items each. The two sections are equated separately. 

The test takers were also administered either an external 40 items (verbal or quantitative) anchor 
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test or 40 (verbal or quantitative) try-out items. Typically, the SweSAT is given twice a year to 

between 28,000 and 60,000 test takers, and about 2,000 test takers receive the 40 items 

quantitative anchor test. Before using anchor tests when equating the scores, the equating was 

done by using a set of covariates as described in Lyrén and Hambleton (2011). Although anchor 

tests are available nowadays, covariates are still of interest when equating the SweSAT as the 

empirical covariate distributions are not necessary the same at different administrations. Note 

that currently, when equating the SweSAT, several equating methods are used in practice 

including the KCE, KPSE and PS equating methods.  

We used four administrations of the quantitative section as well as the quantitative anchor 

test to present two scenarios. For each scenario, we used the same covariates that are recorded 

and used in past administrations (Altintas & Wallin, 2021, Bränberg, et al 1990, Wallin & 

Wiberg, 2019, 2023) and the fact that we had access to them. Descriptive statistics of the verbal 

test scores (range 0–80), age, highest attained education and sex are given in Table 1 and 2. The 

verbal SweSAT test scores were grouped into four strata based on previous studies and 

analyses: [0–32], [33–43], [44–55], and [56–80]. Age was grouped into four strata: [0–20], [21–

24], [25–29], [30–oldest], which is like Wallin and Wiberg (2019, 2023) except that we merged 

the two age categories with few test takers into a single highest age range (30-39 and 40-oldest). 

Highest attained education (Educ) was grouped into six strata which is reasonable from the 

Swedish school system: [9y; 9 school years], [AE; Adult education], [G2; 2 years upper 

secondary school], [G34: 3-4years upper secondary school, [2yC; 2 years of college], [m2yC; 

more than 2 years of college]. The quantitative anchor test was also used. 

We assumed that we always equated a new test form X to an old test form Y. In scenario 1, 

we equated two test forms which had very different empirical distributions with respect to sex, 

age and education compared with all other administrations (see first two rows of Table 1). The 

reason was that test X1 was administered during a covid year, and it was equated to a test form 

given before Covid-19. The SweSAT is highly affected by the Swedish unemployment rate, as 

more test takers want to apply for university if they lose their jobs. The unemployment was 

higher during covid than the years before the pandemic. In the second scenario, we equated two 

administrations which had similar empirical distributions with respect to sex, age, and 

education (row 3 and 4 in Table 1) and the test forms were not administered during the 

pandemic. KPSE was used to equate the test forms when propensity scores were used. 

In each scenario we compared the following method and designs: 1) NEC design with anchor 

test within the propensity score model (PSwA), 2) NEC design with propensity scores but 
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anchor outside the propensity score model (PSwoA), 3) propensity scores with a NEC design 

without anchor information (PS), 4) NEAT design with KCE, 5) NEAT design with KPSE. 

Propensity scores were obtained with logistic regression using all covariates including the 

anchor test in 1), and all covariates excluding the anchor test in 2) and 3). The estimated 

propensity scores from the fitted model were divided into several strata according to the 

percentiles. The propensity score models were assessed by checking the covariate balance in 

the strata using the absolute standardized mean difference (ASMD) in which a difference of 

less than 0.1 indicate good balance (Austin, 2008). The AMSD is defined as 

 ASMD = ||
𝜇𝐷

(𝑇)
−𝜇𝐷

(𝐶)

√[𝜎𝐷
2(𝑇)

+𝜎𝐷
2(𝐶)

]

2

||, 

where 𝜇𝐷
(𝑇)

 and 𝜇𝐷
(𝐶)

 are the means of test form X (treatment) and test form Y (control) for 

covariate D and 𝜎𝐷
2(𝑇)

 and 𝜎𝐷
2(𝐶)

 are their respective variances. We chose to use the number of 

strata so that this was achieved for as large fraction of strata as possible for every covariate. In 

our study, this was achieved with 13 strata. The average ASMD for the used covariates when 

anchor scores were within the propensity scores ranged from 0.02 (Gender) to 0.20 (Anchor) 

and when the anchor test scores were outside the propensity scores the range was 0.02 (Educ) 

to 0.15 (Age).  

The Bayesian information criterion (BIC, Schwarz, 1978) was used to choose 

parametrization of the log-linear models in the presmoothing step as it has been shown to have 

a high selection accuracy for bivariate smoothing (Moses & Holland, 2010). The following log 

linear models were chosen for KCE and KPSE: 𝑋3, 𝐴, 𝐴𝑋, 𝐴𝑋2. For PS without anchor (PS) 

and PS with anchor inside (PSwA): 𝑋3, 𝑝𝑠2, 𝑝𝑠𝑋 and for PS with anchor outside (PSwoA): 

𝑋3, 𝑝𝑠2, 𝐴, 𝑝𝑠𝑋, 𝑝𝑠𝐴. Note that,  𝑋3 means that all lower terms are also included in the model, 

i.e. in this case also  𝑋2 and 𝑋. The Gaussian kernel was used in the continuization step as that 

is used when kernel equating methods are used to equate the SweSAT. 
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Table 1 

Descriptive statistics of the four administrations in total and for the anchor test groups  

  Sex Age Educ  Verbal test scores 

Total      

Adm N F -

20 

21-

24 

25-

29 

30-

39 

40- 9y AE G2 G4 2C m2C 0-33 34-44 45-55 56-80 

Y1 55,072 52 58 23 10 6 2 3 1 3 76 9 5 15542 14290 12605 12635 

X1 28,165 56 45 30 13 9 3 2 2 5 70 12 6 6877 7047 7120 7121 

Y2 39,246 53 62 21 9 6 3 2 2 3 79 8 5 8501 10011 9312 10522 

X2 58,990 52 63 23 7 5 2 2 1 3 81 7 3 15664 15403 13736 12572 

Anchor                  

AY1 1578 53 52 24 13 8 2 3 2 4 74 10 5 500 431 355 292 

AX1 1299 55 44 28 15 11 3 2 2 6 75 9 4 284 349 337 329 

AY2 1727 53 63 21 9 5 2 1 1 4 81 8 5 335 476 448 468 

AX2 2615 50 63 25 6 4 1 1 1 1 82 8 3 667 697 711 540 

Adm = Administration, N = Number of test takers, F = Female percentage, 9y=9 school years, AE= Adult 

Education, G2=2 years of upper secondary school, G4 = 3-4 years of upper secondary school, 2C = 2 years of 

college, m2C = more than 2 years of college. AY1, AX1, AY2, AX2 = The anchor test forms given at the same 

administration as test forms Y1, X1, Y2 and X2. 

 

Summary statistics including correlation are given in Table 2. Note that some of the covariates 

are quite similar over the four administrations, however for education it differs substantially. 

The means differed considerably, and the standard deviations differed a lot in scenario 1. 
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Table 2  

Mean, standard deviation (SD) and correlation of the four administrations used in the two 

scenarios in the empirical study 

 Mean SD Correlation 

Scenario1   Sex Age Educ Verb A 

Y1 43.79 12.54 -0.23 -0.16 0.13 0.57 0.84 

X1 41.17 15.48 -0.25 -0.16 0.19 0.55 0.89 

AY1 19.55 7.59 -0.24 -0.14 0.17 0.54 - 

AX1 21.06 7.62 -0.26 -0.10 0.16 0.53 - 

   Correlation 

Scenario 2 Mean SD Sex Age Educ Verb A 

Y2 46.27 15.23 -0.22 -0.15 0.15 0.58 0.90 

X2 45.05 16.25 -0.23 -0.17 0.11 0.55 0.92 

AY2 21.75 7.93 -0.25 -0.10 0.16 0.56 - 

AX2 22.75 8.14 -0.24 -0.12 0.12 0.56 - 

 

SD= Standard deviation, Educ = maximum education, Verb = Verbal test scores, A = anchor test scores. AY1, 

AX1, AY2, AX2 = The anchor test forms given at the same administration as test forms Y1, X1, Y2 and X2. The 

correlation for the variable Sex is point-biserial correlation and Spearman correlation for Educ and Age.  

 

Figure 1 displays the four test score distributions, and it is clear from both the mean and SD 

in Table 2 and Figure 1 that the test distributions are quite different, especially in the mid score 

range. 
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Figure 1 

Test score distributions for both scenario 1 and scenario 2 

 

 

To evaluate the equating methods used in the empirical study we used the same measures as 

Wallin and Wiberg (2019, 2023) used in their empirical studies, i.e., difference between the 

equated score and the raw score, and the SEE. The empirical study was carried out in R with 

the package kequate (Andersson, Bränberg, & Wiberg, 2013). To use propensity scores using 

kequate, one can simply replace the function call for the anchor with a call to the estimated and 

stratified propensity scores. 

 

Results from the empirical study 

The first row in Figure 2 illustrates the difference between equated scores and raw scores and 

the second row illustrates the equating transformations for the two scenarios when either NEAT 

design is used (KPSE and KCE) or NEC design with propensity scores is used (PS), or NEC 

design with anchor test within propensity scores (PSwA) or NEC design with propensity scores 

but anchor outside (PSwoA). The differences between equated scores and raw scores are much 

larger for lower test scores and are especially large in scenario 1. Clearly the equating 

transformations are quite similar, especially in scenario 2 regardless of the method used. In 

scenario 1, PS and PSwoA differed most from the other equating transformations.  
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Figure 2  

Difference between equated scores and raw scores (first row) and the equating transformations 

(second row) for scenario 1 (left) and scenario 2 (right) 

  

    

 

Figure 3 displays the SEE, and from this figure it is evident that when anchor test scores are 

included in the propensity scores the SEE is lower than if the anchor test scores are modelled 

as a separate term in the loglinear presmoothing models. The SEE is much higher in the low 

and high score range for both scenarios but as expected much lower in scenario 2. It is also 

interesting to note that SEE for KCE is higher in the mid score range than for the methods using 

covariate information in both scenarios. To demonstrate how loglinear presmoothing works, we 

added histograms comparing the distributions of non-smoothed and smoothed Form X scores, 
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as well as comparisons between the methods, and they can be seen in the Appendix A, figures 

A1 and A2. 

Summing up, when there are significant differences in the test distributions (Scenario 1), the 

SEE and the discrepancies between equated scores and raw scores were larger than when the 

score distributions were more similar (Scenario 2). Also, when anchor test scores are 

incorporated within the propensity score estimation, we obtained lower SEE compared to when 

they are treated as separate covariates. 

Figure 3 

SEE for scenario 1 to the left and scenario 2 to the right 

  

Simulation study 

To be able to examine several different conditions we conducted a simulation study in which 

we varied number of test takers, anchor items, and the correlation level between the covariates 

and the test scores. In addition, the abilities of the test taker groups, and the difficulty of the 

anchor test were varied. In the following, the simulation design and the evaluation measures re 

described. For each simulation scenario, 500 replications were used. First, we summarize the 

scenarios considered, before describing how the simulated data was generated. 

• Two populations, 𝑃 and 𝑄, were generated, each with a population size of 200,000 test 

takers. 

• A subset of either 1,000 or 2,000 test takers was sampled for each replication. A regular 

test length of 80 and a varying anchor test length of either 20 or 40 were used.  

• Low and moderate correlations between the covariates and the test scores were considered.  
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With two sample sizes, two anchor test lengths, and two correlation scenarios, we had 32 

scenarios in total (see Table 3). Next, a description on how the data was generated is given. 

Table 3 Scenarios (S) in the simulation study. 

S P=Q P Ab Amax weak 

corr 

moderate 

corr 

N 

S1 X   20 X  1000 

S2 X   20  X 1000 

S3 X   40 X  1000 

S4 X   40  X 1000 

S5  +  20 X  1000 

S6  +  20  X 1000 

S7  +  40 X  1000 

S8  +  40  X 1000 

S9 X  + 20 X  1000 

S10 X  + 20  X 1000 

S11 X  + 40 X  1000 

S12 X  + 40  X 1000 

S13  + + 20 X  1000 

S14  + + 20  X 1000 

S15  + + 40 X  1000 

S16  + + 40  X 1000 

S17 X   20 X  2000 

S18 X   20  X 2000 

S19 X   40 X  2000 

S20 X   40  X 2000 

S21  +  20 X  2000 

S22  +  20  X 2000 

S23  +  40 X  2000 

S24  +  40  X 2000 

S25 X  + 20 X  2000 

S26 X  + 20  X 2000 

S27 X  + 40 X  2000 

S28 X  + 40  X 2000 

S29  + + 20 X  2000 

S30  + + 20  X 2000 

S31  + + 40 X  2000 

S32  + + 40  X 2000 

Note. P=Q: P and Q have similar ability, P = Group P is more (+) capable, Ab = Anchor test form is more (+) 

difficult than the regular test forms, Amax = number of anchor items, N = sample size. 

 

Note that the simulation condition S23 (or S7 with a smaller sample) is the closest to the 

empirical study. From the anchor test results presented in Table 2, it is evident that X samples 
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performed better than Y samples. Correlations between the scores and covariates were weak. 

In operational settings, anchor sample sizes ranged from 1000 to 2000, with the majority being 

closer to the upper end of that range. 

 

Data-Generating Process 

Two matrices, 𝑷 and 𝑸, were initialized with dimensions corresponding to the population 

size (𝑁) and the total number of items plus covariates (𝑀 + 𝐿1 + 𝐿2 + 𝐿3), where 𝑀 is the total 

number of items (regular test items and anchor items) and 𝐿1 = 3, 𝐿2 = 4, and 𝐿3 = 5 represent 

the number of categories for each covariate, respectively. While we used categorized covariates 

in this study to match our empirical data conditions, the propensity score equating method is 

flexible and can accommodate continuous covariates as well. Researchers with access to 

continuous variables such as age or test scores may choose to use them directly in the propensity 

score estimation without categorization. The choice between categorical and continuous 

covariates should be guided by data availability and the specific research context.  

For each test taker in the population, item responses were generated using the item response 

theory (e.g. van der Linden, 2018) logistic function: 

𝑃(𝑌𝑖𝑗 = 1|𝜃𝑖) =
1

1 + 𝑒−𝑎𝑗(𝜃𝑖−𝑏𝑗)
, 

where 𝜃𝑖 represents the latent ability of test taker 𝑖, and 𝑎𝑗 and 𝑏𝑗 represents discrimination and 

difficulty for item j, respectively. Latent abilities for populations 𝑃 and 𝑄 were drawn from 

normal distributions N(0,1) and N(0.2,1), respectively. The item difficulty parameters were 

drawn from a N(0,1) distribution, and the item discrimination parameters were drawn from a 

U(0.5,2) distribution. All item parameters were drawn independently of each other. The binary 

responses were then determined by comparing the logistic probability to a uniform random 

variable: 

𝑌𝑖𝑗 = {
1, if 

1

1 + exp (−𝑎𝑗(𝜃𝑖 − 𝑏𝑗))
> 𝑈

0, otherwise

 

where 𝑈 ~𝑈(0,1). The sum scores for the regular test items and the anchor items from the 

generated item responses were computed for each test taker. The covariates for each test taker 

were generated similarly. For each test taker 𝑖 and covariate 𝑘, 

𝑃(𝐶𝑘,𝑖 = 1|𝜃𝑖) =
1

1 + 𝑒−𝑎𝐶𝑘
(𝜃𝑖−𝑏𝐶𝑘

)
, 
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where 𝑏𝐶𝑘
~𝑁(0, 1) and the covariate item parameters 𝑎𝐶𝑘

 were generated according to different 

correlation structures: 

• Low correlation setting: 𝑎𝐶𝑘
~𝑈(0.1, 0.5) 

• Moderate correlation setting: 𝑎𝐶𝑘
~𝑈(0.5, 1.5) 

Lastly, we calculated the sum score of each covariate, thus creating three categorical covariates. 

 

Population model and four estimators  

We examined a population model and four alternative estimators. For each scenario and 

estimator, the best-fitting log-linear models were selected separately using the Akaike 

information criterion (AIC; Akaike, 1974), BIC, and the likelihood ratio test (LRT; Haberman, 

1974a, 1974b). This resulted in at most six unique models – one for (𝑋, 𝐴) and one for (𝑌, 𝐴) 

per criterion. In the second step, all possible combinations of these model pairs were evaluated, 

and the pair that minimized the average SEE across test scores was chosen, following the 

approach suggested by Wallin and Wiberg (2024).  

Population model: Using the population-level data, propensity scores were estimated using a 

logistic regression model with the covariates as predictors. Test takers were stratified into 15 

groups based on these propensity scores. Equating was thereafter performed using KPSE and 

KCE methods. 

Common procedure for Estimators 1-3: For all propensity score estimators, test takers were 

stratified into 15 groups based on propensity scores, and the strata acted as predictors in the 

log-linear model together with the score variables. The estimators differ in their propensity 

score specification: 

Estimator 1: Equating with propensity score that includes only covariates (PS) 

• Propensity scores were estimated using covariates only. 

• Equating was performed using KPSE and KCE methods. 

Estimator 2: Equating with propensity scores that includes both covariates and anchor scores 

(PSwA) 

• Propensity scores were estimated including both covariates and anchor items. 

• Equating was performed using KPSE and KCE methods. 
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Estimator 3: Equating with anchor score outside of propensity score (PSwoA) 

• Propensity scores were estimated only with covariates. 

• A three-dimensional contingency table was created for the sum score, propensity score 

strata, and anchor score. 

• Equating was performed using the PSE method. 

Estimator 4: NEAT Equating (KCE/KPSE) 

• Kernel equating with the NEAT design using both KCE and KPSE was conducted as a 

baseline comparison. 

Evaluation measures 

To evaluate the equating transformations, we used four evaluation measures. We examined 

bias, over R replications 

Bias(�̂�𝑌(𝑥𝑖)) =
1

𝑅
∑ (�̂�𝑌

(𝑔)
(𝑥𝑖) −𝑅

𝑔=1 𝜑(𝑥𝑖)), 

where 𝜑(𝑥𝑖) is the true equating transformation. The true equating transformations for each 

estimator (population-level KPSE and KCE) were defined based on the true propensity scores, 

which were calculated using a logistic function of the anchor scores and the covariates. The 

NEAT KCE estimators were compared against the identity function, a valid procedure due to 

the data-generating process with difficulty parameters drawn from the same distribution 

(Laukaityte & Wiberg, 2024, Leoncio, Wiberg & Battauz, 2023). The equating transformations 

were then derived from log-linear models fit to the population-level frequency tables of test 

scores and categorized propensity scores. This setup ensured that the equating transformations 

reflected the true relationship between the test scores, the covariates and the anchor scores. 

We examined the SEE from Equation 4, and the root mean squared error (RMSE),  

RMSE(�̂�𝑌(𝑥𝑖)) = √
1

𝑅
∑ (�̂�𝑌

(𝑔)
(𝑥𝑖) −𝑅

𝑔=1 𝜑(𝑥𝑖))2, 

and the standard error (SE) 

SE(�̂�𝑌(𝑥𝑖)) = √
1

𝑅−1
∑ (�̂�𝑌

(𝑔)
(𝑥𝑖) −𝑅

𝑔=1 �̄�𝑌
𝑔

)2,  

where and �̄�𝑌
𝑔

=
1

𝑅
∑ 𝜑𝑌

(𝑔)
(𝑥𝑖)𝑅

𝑔=1 . The simulation study was carried out in R with the R package 

kequate (Andersson, Bränberg & Wiberg, 2013). The used code can be found on the following 

github: https://github.com/gabrieltwallin/Equating_anchor_PS. 

Results from the Simulation Study 
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In the simulation study, in addition to varying sample sizes, anchor test lengths, and correlation 

strength, we also varied the abilities of the test-taker groups and the difficulty of the anchor test. 

Note, in all figures in this section the left figures are based on the KPSE estimator, and the right 

figures are based on the KCE estimator. Figures 4 and 5 present the results for the baseline case 

where the groups had similar abilities, and the difficulty of the regular test forms and the anchor 

test form were comparable. The difference between the two figures is the strength of the 

correlation between the covariates. When the correlation between the covariates was 

moderately strong (see Figure 4a, b), the differences in bias between the studied equating 

methods were larger compared to when the correlation was weak (see Figure 8a, b), especially 

for KPSE. However, the differences in bias between the various anchor test lengths were more 

pronounced when the correlation was weak. For KCE, the differences in bias across different 

correlation strengths or anchor test lengths were small. 

The main differences in SEE were observed between the different methods, with the 

smallest SEE occurring when the anchor score was outside of the propensity score (PSwoA) 

and the anchor test consisted of 40 items for KPSE (see Figure 4c and 5c), and for the NEAT 

design when using KCE (see Figure 4d and 5d). 
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Figure 4  

Bias (a and b) and SEE (c and d) for the baseline case when correlation between covariates 

was moderate strong and the size of an anchor test form was either 20 items (S2) or 40 

items(S4) 

  

a) b) 

  

c) d) 

 

Note that for KPSE, we do not show the bias results for the PS method, as the bias is so large 

(see Appendix Figures B1a and B2a) that it obscures the differences between the other methods. 

For KCE, we used an identity function as a criteria function when evaluating bias for NEAT 

KCE. Otherwise, it resulted in large bias values similar to the PS results for KPSE (see 

Appendix Figures B1b and B2b). 
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Figure 5  

Bias (a and b) and SEE (c and d) for the baseline case when correlation between covariates 

was weak and the size of an anchor test form was either 20 items (S1) or 40 items(S3) 

  

a) b) 

  

c) d) 

 

Figure 6 displays the RMSE and SE for the baseline case in Figure 4. As their results are similar 

to the bias and SEE figures – we draw the same conclusions from them. For subsequent 

scenarios, we have therefore omitted RMSE and SE figures, but these can be obtained upon 

request from the corresponding author. 
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Figure 6  

RMSE (a and b) and SE (c and d) for the baseline case when correlation between covariates 

was moderate and the size of an anchor test form was either 20 items (S2) or 40 items(S4) 

  

a) b) 

  

c) d) 

 

Figure 7 presents the results for bias and SEE for the baseline case for different sample sizes: 

1000 (S2) and 2000 (S18). The bias only indicated minimal or no differences. The sample size, 

however, impacted the SEE results, with the largest differences occurring for equating with 

propensity scores (PS) and with propensity scores that included both covariates and anchor 

scores (PSwA). 
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Figure 7  

Bias (a and b) and SEE (c and d) for the baseline case when correlation between covariates 

was moderate and the sample size N was either 1000 (S2) or 2000 (S18) 

 
 

a) b) 

  

c) d) 

 

Figure 8 displays result similar to those shown in Figure 4. However, in this case, the scenarios 

involve one group with average ability and another with higher ability. SEE values for KPSE 

are nearly identical to those in the baseline case shown in Figure 4. For KCE, when the 

correlation between the covariates is moderate, SEE values are slightly lower at the high scores, 

especially for PswA and PS with longer anchor test (see Figure 10b) compared to the baseline 

case. In contrast, when correlation is weak, SEE values are higher at the high scores for these 

same methods (see Appendix Figure B3). The differences in group abilities had a slightly 

greater impact on bias values, particularly for KPSE compared to KCE. When the correlation 
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between the covariates was weak, bias increased for the lower scores for KPSE equating, unlike 

in the baseline case. 

 

Figure 8  

Bias (a and b) and SEE (c and d) for groups differing in ability when correlation between 

covariates was moderate and the size of an anchor test form was either 20 items (S6) or 40 

items(S8) 

  

a) b) 

  

c) d) 

 

If the anchor test form is more difficult than the regular test forms, the bias results change 

significantly, especially when the correlation between the covariates is moderate (see Figure 9). 

The largest changes in bias are observed for equating methods using propensity scores. 

Interestingly, when the correlation between the covariates was weak, the bias results for KCE 
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were similar to the baseline case (see Figure 4). The difficulty of the anchor test had only a 

minor effect on SEE values. 

 

Figure 9  

Bias (a and b) and SEE (c and d) for groups similar in ability when anchor test form was more 

difficult than the regular test forms, correlation between covariates was moderate and the size 

of an anchor test form was either 20 items (S10) or 40 items(S12). 

  

a) b) 

  

c) d) 

 

Figure 10 displays the equating results when the anchor test form is more difficult than the 

regular test forms and one group has higher ability than the other. For the KPSE based methods, 

PSwoA had the lowest SEE and PSwA had in general the lowest bias. The greatest impact on 

bias values was seen for the KPSE methods, compared with the KCE methods. 
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Figure 10  

Bias (a and b) and SEE (c and d) for groups differing in ability when anchor test form was more 

difficult than the regular test forms, correlation between covariates was moderate and the size 

of an anchor test form was either 20 items (S14) or 40 items(S16). 

  

a) b) 

  

c) d) 

 

Discussion 

The primary objective of this study was to propose and evaluate a novel approach that could be 

incorporated into generalized kernel equating. The proposed approach integrates propensity 

scores with anchor test scores. This approach was compared against two established methods: 

the NEAT design alone and the NEC design using propensity scores without anchor test scores. 

The empirical study showed that when test distributions exhibited significant differences 

(Scenario 1), the SEE and the discrepancies between equated scores and raw scores were more 
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pronounced. This finding aligns with the results of Laukaityte and Wiberg (2024). Notably, the 

use of propensity scores led to a lower SEE, consistent with the conclusions of Wallin and 

Wiberg (2019), although their study did not examine the combined use of anchor test scores, 

and propensity scores derived from covariate information. As expected, incorporating anchor 

test scores within the propensity score estimation resulted in a lower SEE compared to treating 

them as separate covariates. This suggests that the integration of anchor test information into 

propensity scores may enhance the precision of equating. This is also in line with the results of 

Kim and Walker (2021; 2022) who concluded that using both sample weights via MDIA and a 

short anchor produced the most accurate equating results. 

From the simulation study, we concluded that when the correlation between the covariates 

was moderately strong, the differences in bias and RMSE between the methods were larger 

compared to when the correlation was weak, especially when using KPSE. The difference was 

also more pronounced when a shorter anchor test was used in conjunction with weak 

correlation. This is not surprising, as a shorter anchor test and weaker correlation yield less 

overall information. For KCE, the differences in bias across different correlation strengths or 

anchor test lengths were small. For KPSE, the smallest SEE and SE occurred when the anchor 

score was outside of the propensity score (PSwoA) and the anchor test consisted of 40 items. 

For the NEAT design, the smallest SEE and SE occurred when using KCE. This is expected, 

as more information about the test takers should yield a smaller error, as seen, for example, in 

Bränberg and Wiberg (2011), who examined observed score linear equating with covariates. 

Varying the sample sizes had little effect on bias but did impact the SEE results, with the 

largest differences occurring when equating with propensity scores (PS) and with propensity 

scores that included both covariates and anchor scores (PSwA). In general, SEE was lower 

when anchor test scores were used as a separate covariate (PSwoA) compared to when they 

were included within the propensity score (PSwA). This is probably because treating the anchor 

scores as a separate covariate provides more information about the test takers than when the 

anchor scores are combined with other covariates within the propensity score. 

When the ability between the groups differed, the SEE values for KPSE were nearly identical 

to those in the baseline case. This is in line with Lu and Guo (2018) who concluded that if the 

ability group difference were large, to use NEAT is preferred in terms of RMSE and bias, 

instead of using only information in background variables through PEG. Also, our conclusion 

to use background information together with anchor test information is in line with their 

conclusion of using PEG procedures based on background variables together with the anchor 

test to improve the equating. When group ability differences were small (baseline case), the 
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SEE were low when either PSwoA or NEAT (KCE/KPSE) were used. Although we used a 

different approach and used bias and SEE to evaluate, our result is in line with Luo and Gao 

(2018), who concluded that using only NEAT design compared with using PEG without an 

anchor test gave comparable results, in terms of bias and RMSE.  

When the correlation was moderate, SEE values were slightly lower at the higher scores, 

especially for PSwA and PS with a longer anchor test when KCE was used. This result is 

contrary to the findings of Ricker and von Davier (2007), who concluded that a shorter anchor 

yields a larger bias for KCE compared to KPSE; however, they did not examine the effect of 

correlation. Note that when the correlation was weak, the SEE values are higher at the higher 

scores for the same methods. The differences in group abilities had a slightly greater impact on 

the bias values, especially for KPSE compared to KCE. This is in line with, for example, Puhan 

(2010) and Power and Kolen (2014), who concluded that CE is less affected by group 

differences. When the correlation between the covariates was weak, bias increased for the lower 

scores for KPSE equating, unlike in the baseline case. Luo and Gao (2018) conclusion that if 

the anchor test is weak (i.e. few items and low correlation), is like the conclusion here, i.e. that 

we can then improve the equating with background information. When the anchor test form is 

more difficult than the regular test form, the bias results change significantly, particularly when 

the correlation between the covariates is moderate. Notably, the bias is especially large when 

using propensity scores without anchor test information. A possible explanation is that the 

propensity scores diverge too much from the anchor test scores, though this requires further 

investigation. 

In summary, when the anchor test form is more difficult than the regular test forms and one 

group has higher ability than the other, the bias was more affected when using KPSE methods 

compared to KCE methods. These results are consistent with those of Laukaityte and Wiberg 

(2024), who studied how differences in group abilities impact kernel equating methods. If one 

has access to covariates, it is advisable to include them in the presmoothing model, as this can 

reduce the SEE. When multiple covariates at different levels are available, using propensity 

scores is an effective way to incorporate a large amount of information. In our study, it was also 

evident that, in terms of bias and SEE, it is better to include the anchor scores as a standalone 

covariate rather than incorporating them into the propensity score model. 

This study has some limitations. First, we included only binary-scored items; in the future, 

polytomously scored items and mixed-format tests incorporating information from covariates 

should be examined. For example, Wallmark, Josefsson, and Wiberg (2023) examined kernel 

equating in mixed-format tests. A second limitation is that we examined only a few 
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presmoothing models. Wallin and Wiberg (2020; 2024) have shown that the presmoothing 

model has a significant impact on the equating transformation; therefore, several other models 

should be explored in future research. Another limitation concerns the choice of covariates and 

future studies should investigate other covariates and their usefulness when equating test scores. 

Note, there is a trade-off between test takers performance and precision of the test depending 

on the design of the test. On one hand, to include an anchor test prolongs the testing time and 

thus makes test takers more fatigue, on the other hand more information about the test takers is 

collected when including an anchor test and thus the precision of the equating can be increased. 

While our primary focus was on horizontal equating scenarios where test-taker ability 

distributions differ but test content is similar, our approach may also be applicable to vertical 

equating. In vertical equating, test forms are tailored for different school grades, introducing 

additional complexities in modelling ability differences. As suggested in prior work (Liou, 

1998), nonignorable missing-data models may be more appropriate in such contexts. Our 

method could potentially be adapted for vertical equating by extending the log-linear model to 

include additional covariates representing developmental differences across grades. Exploring 

this extension remains an interesting possibility for future research. Furthermore, continuous 

propensity scores can be used directly as conditioning variables in equating without requiring 

stratification, similar to how anchor scores function in traditional equating designs. 

Another limitation is that the current standard error estimation approach does not explicitly 

account for the covariance between the empirical distributions F and G in the synthetic 

population. While we follow the framework of Wallin & Wiberg (2019) which provides 

estimates for the variances within each distribution, incorporating the covariance component 

would provide more accurate standard error estimates for the equated scores. Future 

methodological work should address how this covariance can be systematically incorporated 

into the standard error calculations for propensity score equating methods. 

Finally, given that adjusting test score scales is a practical issue in many large-scale 

assessments, we included an empirical study to address this problem. Our results suggest that 

utilizing information from covariates, when they are available and informative, can be 

beneficial. However, we emphasize that an anchor test should also be used if available.  

 

References 

Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on 

Automatic Control, 19(6), 716-723. 



32 
 

Albano, A. & Wiberg, M. (2019). Linking with external covariates: examining accuracy by 

anchor type, test length, and sample size. Applied Psychological Measurement. 43(8), 597-

610, https://doi.org/10.1177/0146621618824855 

Altintas, Ö. & Wallin, G. (2021). Equality of admission tests using kernel equating under the 

non-equivalent groups with covariates design. International Journal of Assessment Tools 

in Education, 8(4), 729–743. 

Andersson, B., Bränberg, K. & Wiberg, M. (2013). Performing the kernel method of test 

equating using the package kequate. Journal of Statistical Software, 55, 1-25. 

Austin, P. C. (2008). Goodness-of-fit diagnostics for the propensity score model when 

estimating treatment effects using covariate adjustment with the propensity score. 

Pharmacoepidemiology and Drug Safety, 17(12), 1202–1217. 

Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using inverse 

probability of treatment weighting (IPTW) using the propensity score to estimate causal 

treatment effects in observational studies. Statistics in Medicine, 34(28), 3661-3679. 

Bränberg, K., Henriksson, W., Nyquist, H., & Wedman, I. (1990). The influence of sex, 

education and age on test scores on the Swedish scholastic aptitude test. Scandinavian 

Journal of Educational Research, 34(3), 189–203. 

Bränberg, K., & Wiberg, M. (2011). Observed score linear equating with covariates. Journal 

of Educational Measurement, 48(4), 419-440. 

Dorans, N. J., & Feigenbaum,M. D. (1994). Equating issues engendered by changes to the 

SAT and PSAT/NMSQT (ETS Research Memorandum No. RM-94-10). Princeton, NJ: 

ETS. 

González, J. & Wiberg, M. (2017). Applying test equating methods – using R. Cham, 

Switzerland: Springer. 

Haberman, S. J. (1974a). The analysis of frequency data, University of Chicago Press. 

Haberman, S. J. (1974b). Log-linear models for frequency tables with ordered classifications, 

Biometrics, 30(4), 589–600. 

Haberman, S. J. (2015). Pseudo-equivalent groups and linking. Journal of Educational and 

Behavioural Statistics 40, 254-273. 

Häggström, J. & Wiberg, M. (2014). Optimal bandwidth in observed-score kernel equating. 

Journal of Educational Measurement, 51(2), 201-211. 

INVALSI (2013). Rilevazioni nazionali sugli apprendimenti 2012-13. Technical report, 

INVALSI Publishing. Retrieved May 25, 2023, from  

www.invalsi.it/snvpn2013/rapporti/Rapporto_SNV_PN_2013_DEF_11_07_2013.pdf/ 



33 
 

Kim, S., & Walker, M. E. (2021). Comparisons among approaches to link tests using random 

samples selected under suboptimal conditions. (Research Report No. RR-21-14). 

Educational Testing Service. http://doi.org/10.1002/ets2.12328 

Kim, S., & Walker, M. E. (2022). Adjusting for Ability Differences of Equating Samples When 

Randomization Is Suboptimal. Educational Measurement: Issues and Practice, 41(3), 26-

37. 

Kolen, M. J. (1990). Does matching in equating work? A discussion. Applied Measurement in 

Education, 3, 97–104. https://doi.org/10.1207/s15324818ame0301_7 

Laukaityte, I. & Wiberg, M. (2024). Impacts of differences in group abilities and anchor test 

features on three non-IRT test equating methods. Practical Assessment, Research, and 

Evaluation. 29(5), 1-23. https://doi.org/10.7275/pare.2020  

Leoncio, W., Wiberg, M., & Battauz, M. (2023). Evaluating equating transformations in IRT 

observed-score and kernel equating methods. Applied psychological measurement, 47(2), 

123-140. 

Livingston, S. A., Dorans, N. J., & Wright, N. K. (1990). What combination of sampling and 

equating methods works best? Applied Measurement in Education, 3, 73–95. 

Liou, M. (1998). Establishing score comparability in heterogeneous populations. Statistica 

Sinica, 8, 669-690. 

Longford, N. T. (2015). Equating without an anchor for nonequivalent groups of examinees. 

Journal of Educational and Behavioral Statistics, 40, 227-253. 

Lu, R., & Guo, H. (2018). A simulation study to compare nonequivalent groups with anchor 

test equating and pseudo-equivalent group linking (Research Report No. RR-18-08). ETS 

Research Report Series. https://doi.org/10.1002/ets2.12196 

Lu, R., & Kim, S. (2021). Effect of statistically matching equating samples for common‐item 

equating. (Research Report No. RR-21-02) ETS Research Report Series, 

https://doi.org/10.1002/ets2.12313 

Lyrén, P.-E., & Hambleton, R. K. (2011). Consequences of violated the equating assumptions 

under the equivalent group design. International Journal of Testing, 36, 308–323. 

Moses, T., Deng, W., & Zhang, Y-L. (2010). The use of two anchors in the nonequivalent 

groups with anchor test (NEAT) equating. ETS research report RR-10-23. 

Moses, T., & Holland, P. W. (2010). A comparison of statistical selection strategies for 

univariate and bivariate log-linear models. British Journal of Mathematical and Statistical 

Psychology, 63(3), 557–574. 



34 
 

Ozsoy, S.N. & Kilmen, S. (2023). Comparison of kernel equating methods under NEAT and 

NEC designs, International Journal of Assessment Tools in Education, 10(1), 56-75. 

Paek, I., Liu, J., & Oh, H. J. (2006). Investigation of propensity score matching on 

linear/nonlinear equating method for the P/N/NMSQT (Report SR-2006-55). Princeton, 

NJ: ETS. 

Powers, S. J. (2010). Impact of matched samples equating methods on equating accuracy and 

the adequacy of equating assumptions. PhD thesis, University of Iowa. 

http://ir.uiowa.edu/etd/875 

Powers, S. & Kolen, M. J. (2014). Evaluating equating accuracy and assumptions for groups 

that differ in performance. Journal of Educational Measurement, 51(1), 39-56. 

https://www.jstor.org/stable/24018322 

Puhan, G. (2010). A comparison of chained linear and poststratification linear equating under 

different testing conditions. Journal of Educational Measurement, 47(1), 54-75. 

https://doi.org/10.1111/ 

Quenette, M. A., Nicewander, W. A., & Thomasson, G. L. (2006). Model-based versus 

empirical equating of test forms. Applied Psychological Measurement, 30(3), 167–182. 

Ricker, K. L., & von Davier, A. A. (2007). The impact of anchor test length on equating 

results in a nonequivalent groups design. ETS Research Report Series, 2007(2), i-19. 

https://doi.org/10.1002/j.2333-8504.2007.tb02086.x 

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in 

observational studies for causal effects. Biometrika, 70, 41–55. 

Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using 

subclassification on the propensity score. Journal of the American Statistical Association, 

79, 516–524. 

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–

464. 

Stage, C., & Ögren, G. (2004). The Swedish Scholastic Assessment Test (SweSAT): 

Development, results and experiences (EM No. 49). Umeå, Sweden: Umeå University, 

Department of Educational Measurement. 

Sungworn, N. (2009). An investigation of using collateral information to reduce equating 

biases of the post-stratification equating method, PhD thesis. Michigan State University. 

van der Linden, W. J. (Ed.). (2018). Handbook of item response theory: Three volume set. 

CRC Press.  



35 
 

von Davier, A. A., Holland, P. W., and Thayer, D. T. (2004b). The kernel method of test 

equating. New York: Springer. 

Wallin, G., Häggström & Wiberg, M. (2021). How important is the choice of bandwidth in 

kernel equating? Applied Psychological Measurement, 45(7-8), 518-535. https://doi.org/ 

10.1177%2F01466216211040486. 

Wallin, G. & Wiberg, M. (2019). Propensity scores in kernel equating for non-equivalent 

groups. Journal of Educational and Behavioral Statistics. 44(4), 390-414. 

https://doi.org/10.3102/1076998619838226 

Wallin, W. & Wiberg, M. (2020). Model selection for presmoothing of bivariate score 

distributions in kernel equating. In Wiberg, M., González, J., & Molenaar, D., Böckenholt, 

U., & Kim, S-J. (Eds.) (2020). Quantitative Psychology – 84th Annual Meeting of the 

psychometric society, Santiago, Chile, 2019, New York: Springer. 97-105. 

Wallin, G. & Wiberg, M. (2023). Model misspecification and robustness of test score equating 

using propensity scores. Journal of Educational and Behavioral Statistics, 

https://doi.org/10.3102/10769986231161575  

Wallin, G. & Wiberg, M. (2024). Smoothing bivariate test score distributions - model selection 

targeting test score equating. Journal of Educational and Behavioral Statistics, In press. 

Wallmark, J., Josefsson, M. & Wiberg, M. (2023). Efficiency analysis of item response theory 

kernel equating for mixed-format tests. Applied Psychological Measurement. 47(7-8), 496-

512. https://doi.org/10.1177/01466216231209757 

Wiberg, M. & Bränberg, K. (2015). Kernel equating under the non-equivalent groups with 

covariates design. Applied Psychological Measurement, 39(5), 349-361. 

Wiberg, M. & González, J. (2016). Statistical assessment of estimated transformations in 

observed-score equating, Journal of Educational Measurement, 53(1), 106-125. 

Wiberg, M., González, J., & von Davier (2025). Generalized kernel equating with applications 

in R, Boca Raton, FL: CRC Press. 

Wiberg, M., Lyrén, P-E, & Lind Pantzare, A. (2021). Schools, Universities and Large-Scale 

Assessment Responses to COVID-19: The Swedish Example. Education Sciences. 11(175), 

1-16. 

Yu, L., Livingston, S. A., Larkin, K. C., & Bonett, J. (2004). Investigating differences in 

examinee performance between computer-based and handwritten essays (ETS Research 

Report RR-04-18). Princeton, NJ: Educational Testing Service. 

Zubizarreta, J. R. (2015). Stable weights that balance covariates for estimation with incomplete 

outcome data. Journal of the American Statistical Association, 110(511), 910-922.  



36 
 

Appendix A 

The comparison between the distributions of non-smoothed and smoothed with NEAT model 

Form X scores for scenarios 1 and 2 is presented in Figure A1. Smoothing results with other 

models are almost identical to the presented ones and thus are omitted. 

Figure A1 

The comparison between the distributions of non-smoothed and smoothed with NEAT model 

Form X scores for scenarios 1 and 2 

  
Scenario 1 Scenario 2 

 

 

Figure A2 shows the comparison of smoothed distributions between different models used in 

the study. Only the results for Scenario 1 are presented here, as the results for Scenario 2 are 

almost identical. 
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Figure A2 

The comparison between the methods for Scenario 1 
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Appendix B 

Figure B1  

Bias for the baseline case when correlation between covariates was moderate and the size of 

an anchor test form was either 20 items (S2) or 40 items(S4) 

  

a) b) 

 

Figure B2  

Bias for the baseline case when correlation between covariates was weak and the size of an 

anchor test form was either 20 items (S1) or 40 items(S3) 

  

a) b) 
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Figure B3  

Bias (a and b) and SEE (c and d) for groups differing in ability when correlation between 

covariates was weak and the size of an anchor test form was either 20 items (S5) or 40 

items(S7). 

  

a) b) 

  

c) d) 

 

 


