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Abstract

Standard statistical modelling approaches are typically biased in tail behaviour

estimation due to the modelling parameters being driven by the main body of the

distribution. As such, the area of extreme value theory provides an asymptotically

justified approach to model the probabilistic behaviour of rare events. Extreme

value methods are used in a wide range of applications, for example they are often

used for modelling storm surges in hydrology and heatwaves in medical statistics.

Most of our work has been motivated by the well-established negative impacts of

poor air quality, more specifically, extreme episodes of ozone concentrations on

human health. Our focus has been on a multivariate ozone dataset, which shows

complex temporal and spatial trends. We begin by proposing the use of extreme

value theory to validate numerical process-based model forecasts. Next, we examine

the temporal dependence structure and propose a new measure to determine the

order of an extreme Markov process. Then we present novel applications of the

extreme Markov processes, simulating extremal chain behaviour of key health related

scenarios and short-lead-time forecasts of extreme events. Finally, we present a

spatial model to evaluate the risk of extreme events of ozone across Great Britain.
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Chapter 1

Introduction

1.1 Thesis outline

This thesis aims to use extreme value theory to model different characteristics of

a pollutant contributing to poor air quality, tropospheric ozone, across the United

Kingdom. The ideas and applications presented in this thesis could be used for policy

making and protecting public health. The structure of this thesis is as follows:

Chapter 2 provides an overview of tropospheric ozone. We begin by discussing the

formation of ozone and the impact high concentrations of ozone has on public health

and infrastructure. Then we detail the changing nature of guidelines and legislations

linked with managing air quality. We conclude this chapter by introducing the two

datasets we will use throughout the thesis: ozone observations from the Automatic

Rural and Urban Network (AURN) and ozone forecasts from the process-based

numerical model of the UK Meteorological (Met) Office, the Air Quality in the

Unified Model (AQUM).

Chapter 3 can be seen as a literature review introducing both the basic concepts

of extreme value theory and the corresponding inference. We start by deriving the

extreme value model under strict assumptions about the data. We then present

the concept of extremal dependence and detail multivariate extreme value methods

which can capture different types of extremal dependence structures.
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In Chapter 4 we explore the capabilities of the AQUM forecasts at capturing the

extreme values of ozone. We propose the use of univariate extreme value theory and

hypothesis tests to investigate if the type of distributional tail is captured and if

both the observations and forecasts come from the same distribution. This contrasts

to existing methods which predominantly focus on the full distribution. Then we

explore the joint behaviour of extreme ozone from AURN and AQUM and estimate

probabilities of successfully forecasting extreme events using the bivariate extreme

value distribution.

The question of how to analyse temporal dependence is tackled in Chapter 5. We

propose the use of a kth-order Markov extremes model, as presented by Winter and

Tawn (2017), to capture the asymptotic (in)dependence nature of extreme ozone

episodes. In contrast, we propose a new measure to determine the order of the

model which accounts for multiple characteristics of the process. After selecting

the appropriate model order, we demonstrate the functionalities of the approach by

forecasting through simulation the events of 2020.

In Chapter 6 we present a spatial model to evaluate the risk of extreme events of

ozone. This is done by using a spatial Bayesian hierarchical model to capture the

spatial variation in the marginal parameters of the generalised Pareto distribution

(GPD). In contrast to previous work in the literature, we propose to fix the rate

of exceedance and model the spatial structure of the thresholds through traditional

geostatistical methods. Geographical covariates are incorporated into the spatial

structure of the marginal GPD parameters and return level maps are generated

through interpolation of the model.

Chapter 7 concludes by summarising the contributions of this thesis and discussing

potential avenues for further work.
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Chapter 2

Ozone background and data

2.1 Ozone

Ozone (O3) is a natural constituent of the atmosphere and is present in both

the stratosphere and the troposphere. Although ozone is transported between the

stratosphere and the troposphere, the two are largely separate regimes (The Royal

Society, 2008). Stratospheric ozone, i.e. the ozone layer, is produced following the

photolysis of molecular oxygen and provides protection by filtering out dangerous

ultraviolet (UV) radiation from the sun. Tropospheric ozone is not emitted directly

into the air, but is a secondary, trans-boundary air pollutant (WHO, 2003). It is

created in the air through photochemical reactions between anthropogenic nitrogen

oxides (NOX = NO2+ NO) and volatile organic compounds (VOCs). These reactions

occur when precursor pollutants emitted by combustion of fossil fuels by cars, power

plants and other sources are in the presence of sunlight. When ozone is formed at

the tropospheric level, it can remain at ground-level from between a few hours and

a few days depending on the meteorological conditions. Slow-moving high-pressure

systems with clear skies and elevated temperatures allow for increased photochemical

reactions and the accumulation of ozone, while high winds and fast trans-boundary

movement reduces the localised ozone concentration but can increase precursor and

ozone concentrations downwind of the pollutant source (Guicherit and van Dop,
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1977; Vukovich et al., 1977). Further, ozone concentrations vary spatially and

temporally on various time scales due to the heterogeneity in ozone sources and

sinks, meteorological variability, and trends in precursor emissions (Cooper et al.,

2014).

Throughout the thesis we use ozone to refer to all levels of tropospheric ozone.

However, three levels of ozone require definitions: background ozone, ambient

ozone (air) and peak-level ozone. Background ozone refers to what the average

concentration of ozone would be without any human influence. Ambient ozone (air)

is the concentration (air) that occurs at a particular time and place outside of built

structures. Peak-level ozone refers to the largest concentrations over a particular

time, for example daily maxima.

2.2 Impacts

Many atmospheric pollutants, like ozone and nitrogen oxides, are not only important

climate forcing agents (Andreae et al., 2005; Arneth et al., 2009; Forster et al.,

2007) but pertain to negative effects on public health, agriculture and ecosystems

if concentrations are high. The people who are most at risk of incurring health

complications due to poor air quality include: sufferers of asthma, children, older

adults, active outdoor workers and those with certain genetic characteristics and

nutrient deficiencies. Short-term exposure to high ozone can lead to: coughing and

scratchy throat, difficulty breathing and aggravate pre-existing breathing issues like

asthma, emphysema and chronic bronchitis (Bell et al., 2004; Whitfield et al., 1996).

Prolonged exposure to high concentrations of ozone can cause the development of

asthma and other respiratory illnesses as well as potentially death (Bell et al., 2005).

The risk of health implications is exacerbated during heatwaves due to the increase

in emissions, which can result in a 20% increase in concentrations in urban areas

(Hou and Wu, 2016). For an extensive review of health effects of ozone see Devlin

et al. (1997). In the EU, approximately 21, 400 die prematurely each year due to
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excess exposure to ozone (EEA and WHO, 2007) and approximately one million

per annum globally. Furthermore, there is an estimated 7.7 million deaths per

annum due to other air pollutants (Lelieveld et al., 2019; Vohra et al., 2021), mainly

high concentrations of particulate matter less than 2.5µm in diameter (PM2.5). It is

estimated that poor air quality health implications cost the EU €166 billion annually

(CE Delft, 2018).

Prolonged exposure to high concentrations of ozone can cause significant problems

to the environment. Persistent exposure increases the risk of: biomass reduction

in sensitive plant species due to reduced capability to photosynthesise, reduction in

biodiversity and reduction in carbon uptake (Arneth et al., 2010; Mercado et al.,

2009; Sitch et al., 2007; Pleijel et al., 2014; Simpson et al., 2014). These result

in positive feedback which stimulates further global warming and in turn causes

vegetation to become more susceptible to other environmental stresses such as

high winds, extreme temperatures, pests and diseases (GCNTO, 2022). Further

consequences include negative impacts on local water and nutrient cycles. Ozone

sensitive crops have also been affected recently, resulting in a reduction in crop yield.

For example, an estimated €6.7 billion was lost due to impacts on arable crops in

the EU during 2000 (Holland et al., 2006).

The interactions between: changes in nitrogen deposition, increases in atmospheric

CO2 concentration, changes in aerosol burdens and increases in both background

and peak-levels of ozone are causing greater risk of further negative effects to occur.

Therefore, changing anthropogenic emissions is essential in improving air pollution

and the impacts of climate change by changing, in a complex system, interacting

feedbacks (Arneth et al., 2010; Raes et al., 2010). The following section provides

details of legislation that provides support to improve air quality.
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2.3 Legislation

The World Health Organisation (WHO) provides air quality guidelines (AQGs) to

support regional and national actions to achieve a level of air quality that protects

public health. These guidelines are based on the extensive body of scientific evidence

relating air pollution to their health consequences, see WHO (2021). The guidelines

were first introduced in 1987 and have been revised since, once in 2005 and again

in September 2021. The latest revision was due to new-found evidence that showed

even lower concentrations are having a greater impact on human health and well-

being than once thought (Vohra et al., 2021).

Ozone guidelines were initially set at 120µg/m3, based on the daily maximum of

eight-hour running mean (DM8), which got reduced to 100µg/m3 in 2005. This

value did not change in the 2021 revision, however, an additional guideline was added

stating that the six consecutive months of a year with the highest six-month running

average should not exceed 60µg/m3 (Huangfu and Atkinson, 2020). The precursors

to ozone did receive dramatic reductions to their guideline concentrations in the

2021 revision. These changes were influenced by the background ozone concentration

doubling between the late 19th century and 1980 from 30µg/m3 to 60− 70µg/m3,

which has since increased by another 10 − 20µg/m3, and experiences of health

risks at < 70µg/m3 (Huangfu and Atkinson, 2020; WHO, 2021). Reduction in

precursor concentrations will in turn reduce the background ozone and peak ozone

concentrations. Furthermore, these revisions are required to help improve the air

quality since 99% of the global population are living in places where the WHO air

quality guideline levels are not being met (WHO, 2022).

Although the WHO has set these guidelines, each country sets their own air quality

standards (National ambient air quality standards, NAAQS) to further protect the

health of their citizens. These do vary between countries due to the approaches

adopted to balance health risks, politics, and impacts to the economy and the

environment. Consequently, the air quality standards differ resulting in different

air quality indices and different threshold concentrations associated with each risk
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band. Table 2.1 shows the differences between ozone standards in India, Singapore,

USA and the UK.

India Good Satisfactory Moderately Polluted Poor Very Poor Severe
0-50 51-100 101-168 169-208 209-748 >748

Singapore Good Moderate Unhealthy Very Unhealthy Hazardous
0-118 119-157 158-235 236-785 786-1180

USA Good Moderate Unhealthy Very Unhealthy Dangerous
0-109 110-140 141-210 211-400 >400

UK Low Moderate High Very High
0-100 101-160 161-240 >240

Table 2.1: Showing the differences of ozone standards across countries. Note: all of these
values are based on the daily maximum of the 8-hour running mean (DM8), apart from
‘Hazardous’ in Singapore which is based on a one-hour average.

The UK uses the Daily Air Quality Index (DAQI), which is a four-band system

approved by the Committee on Medical Effects of Air Pollutants (COMEAP). The

system derives the risk index, scaled 1 (low) to 10 (very high), from concentrations

of five key air quality pollutants: ozone, nitrogen oxide, sulphur dioxide, particulate

matter less than 2.5µm in diameter (PM2.5) and particulate matter less than 10µm

in diameter (PM10), (DEFRA and UK-AIR, 2022). Each pollutant has its own

average period and threshold levels (Connolly et al., 2013). For ozone, the average

period is 8-hours with thresholds of 100µg/m3, 160µg/m3 and 240µg/m3 for when

the public health risk goes from low (1− 3) to moderate (4− 6), moderate to high

(7 − 9) and high to very high (10), respectively. DAQIs for all five pollutants can

be found in Table 2.2. The overall index is calculated as the maximum of the five

pollutant DAQIs. Defra (Department of Environment, Food and Rural Affairs)

alongside the UK Met Office produces air quality forecasts so vulnerable individuals

can plan their day based on the health advice associated with the forecasted risk

level.
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Band Index O3 NO2 SO2 PM2.5 PM10

Running 8h Hourly 15 min 24h 24h
mean mean mean mean mean
(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)

Low 1 0− 33 0− 67 0− 88 0− 11 0− 16
2 34− 65 68− 134 89− 177 12− 23 17− 33
3 66− 100 135− 200 178− 266 24− 35 34− 50

Moderate 4 101− 120 201− 267 267− 354 36− 41 51− 58
5 121− 140 268− 334 355− 443 42− 47 59− 66
6 141− 160 335− 400 444− 532 48− 53 67− 75

High 7 161− 187 401− 467 533− 710 54− 58 76− 83
8 188− 213 468− 534 711− 887 59− 64 84− 91
9 214− 240 535− 600 888− 1064 65− 70 92− 100

Very High 10 > 241 > 601 > 1065 > 71 > 101

Table 2.2: Daily Air Quality Index (DAQI) for five pollutants: ozone, nitrogen dioxide,
sulphur dioxide, PM2.5 (particulate matter less than 2.5µm in diameter) and PM10

(particulate matter less than 10µm in diameter) respectively.

2.4 Ozone data

2.4.1 Observations - Automatic Rural and Urban Network

(AURN)

To monitor and assess the air quality across the country, measurement sites

are employed. Many networks exist to measure pollutant concentrations and

meteorological activity across the UK, for example the London Atmospheric

Emissions Inventory (LAEI, 2024) and the Scottish Air Quality Database (SAQD,

2024). However, our focus is on the Automatic Rural and Urban Network (AURN)

(Defra, 2020) since it is the largest automatic monitoring network in the UK and is

the main network used for reporting compliance against the Ambient Air Quality

Directives. Further, it provides a nationwide dataset which includes sites within

large cities that also have their own local networks (London, Manchester, etc). This

network measures a wide range of pollutants: ozone, nitric oxide, nitrogen dioxide,
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sulphur dioxide, carbon monoxide, PM2.5 (hourly and daily), PM10 (hourly and

daily), non-volatile PM2.5, non-volatile PM10, volatile PM2.5, volatile PM10. The

network also provides numerical model estimates for several meteorological variables:

wind speed, wind direction and temperature. The network has historical data which

goes back to July 1972. However, not all sites are in operation for the entire period

due to malfunctions, replacements and introduction of new sites. Further not all

sites measure all variables.

Figure 2.1: Map showing the AURN sites that have data available between 2011 − 2019
and their corresponding site types.
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There is a total of 274 sites within the network and currently 171 active sites.

Throughout this thesis our focus is on ozone and the years 2011 − 2019 to avoid

the need to account for decadal changes. This results in a sample of 72 AURN

sites which can be seen in Figure 2.1. The sites are categorised into different types

based on their location with respect to pollutant sources: rural background (RB),

urban background (UB), suburban background (SUB), urban traffic (UT), urban

industrial (UI) and suburban industrial (SUI), of which we have 41, 20, 3, 3, 4 and

1 respectively. For details about site type classification see uk-air.defra.gov.

uk/networks/site-types. Here, we refer to sites that are not classified as rural

background or urban background as Other. Figure 2.1 shows the relatively poor

coverage of Scotland and Wales. The data can be downloaded from the website

http://www.airquality.co.uk/archive/data_and_statistics.php.

All but three sites have less than 10% of data missing during the measurement

period. Some of the missingness is due to the monitoring sites malfunctioning and

waiting for repair, however it does appear at random and does not hinder our ability

to characterise certain times of the year. The missingness is low enough to still

provide enough data to perform the analysis in this thesis.

2011 2012 2013 2014 2015 2016 2017 2018 2019

All 0.417 0.210 0.394 0.212 0.149 0.211 0.153 0.875 0.589
RB 0.684 0.474 0.684 0.389 0.368 0.450 0.200 1.000 0.800
UB 0.281 0.088 0.289 0.179 0.077 0.125 0.146 0.854 0.488

Other 0.333 0.111 0.222 0.000 0.000 0.091 0.091 0.727 0.636

Table 2.3: The proportion of AURN sites that exceed the UK Air Quality Strategy
objective, exceeding 100µg/m3 on more than 10 days.

Table 2.3 shows the proportion of sites by type which do not meet the UK Air

Quality Strategy, i.e. for which there were at least 10 days of concentrations above

100µg/m3 a year. On average 56% of rural background sites observe at least 10 days

above the moderate risk threshold, compared to 28% and 25% at urban background
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and Other sites, respectively. The range of observed values differ between the three

types as seen in Figure 2.2. The maximum observed value at rural background sites

is 214.0µg/m3 compared to 191.2µg/m3 and 162.4µg/m3 at urban background sites

and Other sites, respectively. Due to the limited number of sites of type SUB, UT,

UI and SUI and the reduced number of moderate risk observations we focus on only

rural background sites and urban background sites throughout the thesis, which will

be depicted by (◦) points and (△) points in figures unless stated otherwise.

Figure 2.2: Box plot showing the distribution of DM8 ozone observations at each site
type. Orange dashed line indicates the concentration of moderate risk level (100µg/m3)
and red dashed line indicates the concentration of high-risk level (160µg/m3).

2.4.2 Forecasts - Air Quality in the Unified Model (AQUM)

Numerical process-based forecast models are deterministic tools that use the under-

lying processes of meteorological variables to estimate the atmospheric composition

at different levels. The UK Met Office air quality forecasts are produced using the

on-line air quality model, Air Quality in the Unified Model (AQUM), which is a

11



CHAPTER 2. OZONE BACKGROUND AND DATA

configuration of the Met Office Unified Model (MetUM). AQUM currently operates

with a 12km horizontal resolution grid covering the UK and Northwest Europe, with

the native model grid being on a rotated-pole coordinate system with the North Pole

at latitude 37.5 and longitude 177.5. For details of the mechanics behind the model

see Savage et al. (2013). This numerical model produces hourly forecasts for up to

five days of forecasts for each grid point. The model forecasts undergo bias correction

known as Statistical Post-Processing of Observations (SPPO). At observation sites,

this method is an extension of the Hybrid Forecast (HF) method described by Kang

et al. (2008), where the HF at a single site i at time t+∆t is given by,

HFi,t+∆t = mi,t+∆t + µi,t,

where µi,t is given by

µi,t = 0.5(oi,t −mi,t) + 0.5[medianj∈C(oj,t −mj,t)],

oi,t is the observed concentration at time t, mi,t and mi,t+∆t are the model predicted

concentrations at time t and forecast time t + ∆t respectively and C denoting the

classification of site i. The Ordinary Kriging technique (Denby et al., 2005) is then

used to spread i, t onto a gridded field Rt. The final improved gridded forecast is

therefore given by

SPPOt+∆t =Mt+∆t +Rt

whereMt+∆t is the raw model forecast at this future time t+∆t and Rt is the gridded

field of µi,t. Further details of the SPPO procedure can be found in Neal et al. (2014).

In the analysis of Chapter 4, we use the day one SPPO data from the operational

air quality forecast from January 2012 to December 2019. This corresponds to the

UK Met Office operational suites OS27-OS43, during which various improvements

where made to the raw AQUM. From here on in, we refer to the sampled SPPO

data as AQUM data.
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2.4.3 Ozone season

With ozone being a photochemical reaction, high concentrations typically occur

during low-moving high-pressure systems with clear skies and elevated temperatures.

Consequently, showing strong seasonality in when high concentrations usually occur,

this being in Spring and Summer. As such, restricting our datasets to only these

periods allow for easier modelling since we would not need to account for seasonality.

Therefore, defining a period known as the ozone season.

In this thesis we work with two definitions of ozone season. The first uses

conventional definitions of Spring and Summer in the atmospheric literature, March

to August, and will be used solely in Chapter 6. The second definition is a novel

approach in defining such a season. We define the ozone season as the months where

at least 2% of the monthly DM8 observations exceed the 95th quantile of the full

series at each site. We obtain this definition through sensitivity checks of both the

number of exceedances and the quantile defining an exceedance. This optimises

the number of exceedances available and upholds the approximate independence

modelling assumption needed in our analysis of Chapter 4. The second ozone season

definition will be used in Chapter 4 and Chapter 5.

The second ozone season definition results in all but thirteen sites having ozone

seasons starting in March, with those thirteen starting in April. Three sites have

a season that ends in May or June, four ending in September and the rest in July

or August. The shortest seasons are three months (at three sites) but more often

seasons last for five or six months (32, 16 respectively), with two sites having a

season lasting seven months. See Table A.1 in Appendix A for the ozone season for

each sampled monitoring site.
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Chapter 3

Theory

3.1 Introduction

Extreme value theory is a field developed throughout the twentieth century starting

from asymptotic arguments derived by Tippett and Fisher (1928), formalised into

statistical methods by Gumbel (1958) and greatly extended by the likes of Pickands

(1975); Smith (1989); Ledford and Tawn (1996, 1997); Heffernan and Tawn (2004).

The area of extreme value theory is motivated by wanting a way to accurately model

the probabilistic behaviour of events that by definition are rare, i.e. the tails of a

distribution where the number of observations are intrinsically small. Standard

statistical modelling approaches are typically biased in tail behaviour estimation

due to the modelling parameters being driven by the main body of the distribution

where most observations lie. This creates limited confidence in the estimates for

high quantiles and measures. There is often an interest in extrapolating beyond the

observed upper limit of the data. Extreme value models provide an asymptotically

justified approach for such extrapolation.

Section 3.2 reviews existing theory and inference for univariate extreme value

approaches. In Section 3.3 we introduce multivariate extreme value theory and the

concept of extremal dependence. We discuss an approach for modelling asymptotic

independence, the joint tail model of Ledford and Tawn (1996, 1997), in Section

14



CHAPTER 3. THEORY

3.4. Note the Heffernan and Tawn (2004) model can capture both asymptotic

independence and asymptotic dependence and is presented in Chapter 5. Section

3.5 details the bootstrapping approaches used throughout the thesis.

3.2 Univariate extreme value theory

3.2.1 Overview

Univariate extreme value distributions exist based on asymptotically derived theory

that allows the analysis of extreme events. From using extreme value analysis,

inference and prediction about rare events that have not yet been observed can

be made. Two types of modelling approaches are discussed below in their simplest

forms, modelling block maxima and modelling exceedances of a high threshold. With

all approaches here, one can reparametrise to build in more complex structures, for

example including covariate effects.

3.2.2 Block maxima approach

Theory

Let X1, . . . , Xn be n independent and identically distributed (IID) random variables

with common distribution function F , known as the marginal distribution. The

maximum order statistic is defined as,

MX,n = max (X1, . . . , Xn).

For example, the daily maxima MX,24 can be obtained from the hourly values

X1, . . . X24. We remark that any theory developed for the maxima can be applied

to the minima through the relation

min (X1, . . . , Xn) = max (−X1, . . . ,−Xn).
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For notational simplicity the subscript X is dropped from MX,n. Due to the

independence assumption of X1, . . . , Xn, the distribution of Mn can be derived

exactly as

Pr(Mn ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x)

= Pr(X1 ≤ x) . . .Pr(Xn ≤ x)

= [F (x)]n.

Since F is unknown, we can study the behaviour of F n as n → ∞. However

as n → ∞, the maximum order statistic tends to a point mass x∗ on the upper

endpoint of F ; the asymptotic distribution of Mn is degenerate. In the same way

that the Central Limit Theorem (CLT) concerning the mean value of a sample,

asymptotic results exist for the distribution of Mn. More precisely, if there exists

sequences an > 0 and bn ∈ R such that as n→ ∞

Pr

(
Mn − bn
an

≤ x

)
→ G(x), (3.2.1)

where G is a non-degenerate distribution function, then G belongs to the extreme

value distribution family. Leadbetter et al. (1983) constructs and proves the

Extremal Types Theorem, which states the limit distribution of the maximum values

is one of the following forms:

I : G(x) = exp

{
− exp

[
−
(
x− b

a

)]}
, −∞ < x <∞;

II : G(x) =

0, x ≤ b,

exp
{
−
(
x−b
a

)−α}
, x > b;

III : G(x) =

exp
{
−
[
−
(
x−b
a

)α]}
, x < b,

1, x ≥ b;
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which correspond to the Gumbel, Fréchet and Negative Weibull families, respec-

tively. These families possess the property of max-stability ; a distribution G is

max-stable if for every n > 0 there exists constants An > 0 and Bn ∈ R such that

G(Anx+Bn) = [G(x)]n .

A parametrisation is commonly used to unify the three distinct classes. The

generalised extreme value (GEV) distribution, written as GEV(µ, σ, ξ), is defined

as

G(x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

}
, (3.2.2)

where −∞ < µ < ∞, σ > 0, −∞ < ξ < ∞ and c+ = max(c, 0). The GEV

distribution exists on the set {x : 1 + ξ(x− µ)/σ > 0} and the parameters (µ, σ, ξ)

are known as the location, scale and shape parameters respectively. We say F is in

the domain of attraction of G and the limit distribution of F is determined by the

shape parameter ξ value, where

• ξ > 0 corresponds to the Fréchet distribution which has a heavy upper tail

with an infinite upper endpoint and finite lower limit,

• ξ → 0 corresponds to the Gumbel distribution which has an exponentially

decaying tail and

• ξ < 0 corresponds to the Negative Weibull distribution which has a tail tending

towards a finite upper limit and infinite lower endpoint.

Block size choice

The GEV distribution is used to model the distribution of block maxima and assumes

that the limit of equation (3.2.1) holds for some finite n, where the data is split

into k equal blocks of size n. The choice of block length amounts to a trade-off

between bias and variance: too short a block size the approximation by the limit

model in equation (3.2.2) is likely to be poor and lead to bias in estimation and
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extrapolation due to taking the maximum of not sufficiently many observations and

thus violating the independence assumption; too long a block will generate too few

block maxima, leading to large estimation of variance. In practical applications

the length of block n is usually given by the context, i.e. in many environmental

applications taking annual maxima ensures the resulting maximum order statistic

is stationary. Inference for the GEV model is typically carried out with likelihood-

based or moment-based estimation with respect to the parameters (µ, σ, ξ). However,

there exists no analytical solution, therefore numerical optimisation methods are

employed.

Return levels

In practice, interest lies in the time to, or the severity of, the next sufficiently large

extreme event. For a stationary series, the inference is expressed by return levels

and return periods. The return period of level xp is the expected time between

exceedances of xp. This relates to the 1/p-block return level which is defined as the

level for which the expected time to wait between block maxima exceedances is 1/p

blocks. Therefore, the 1/p block return level xp is the 1 − p quantile of the GEV

distribution for 0 < p < 1. From this definition, the limiting distribution for block

maxima, equation (3.2.2), can be rearranged to provide an expression for xp,

x̂p =

µ̂− σ̂

ξ̂

[
1− {− log(1− p)}−ξ̂

]
if ξ̂ ̸= 0

µ̂− σ̂ log{− log(1− p)} if ξ̂ = 0,

where (µ̂, σ̂, ξ̂) are the estimates of (µ, σ, ξ). Throughout the thesis, modelling

parameters θ are estimated using the maximum likelihood approach and are denoted

by θ̃. Maximum likelihood estimates are not always obtainable due to violation

of the usual regularity conditions resulting in the standard Gaussian asymptotic

likelihood results to not be automatically applicable. Smith (1985) studied this and

found:
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• when ξ > −0.5, maximum likelihood estimators are regular, i.e. having the

usual asymptotic properties,

• when −1 < ξ < −0.5, maximum likelihood estimates can be obtainable, but

not have the usual asymptotic properties and

• when ξ < −1, maximum likelihood estimators are unlikely to be obtainable.

3.2.3 Threshold exceedance approach

Motivation

Although the block maxima approach is easily interpretable, it can be a wasteful

approach to extreme values as there is a strong probability that other observations

are large enough to be characterised as extreme, i.e. fall within the range of smallest

and largest block maxima. Despite these tail values being more extreme than

some block maxima, the block maxima approach will ignore these, resulting in the

potential misclassification of the full tail behaviour of the distribution.

Figure 3.1 shows the time series of DM8 ozone concentrations measured at an AURN

monitoring site in Aston Hill between 2011 and 2019. The solid red dots are the

values that fall above 100µg/m3, whereas the blue triangles are the annual maxima

as defined by the block-maxima approach. It is evident that some blocks contain

more than one value above 100µg/m3. Consequently, threshold exceedance methods

can offer a better alternative to block maxima methods by utilising the values that

block maxima approaches would ignore, which could provide extra information about

the tail behaviour.
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Figure 3.1: DM8 ozone concentration (µg/m3) measured at an AURN monitoring site in
Aston Hill during 2011 − 2019. Solid red points are exceedances of 100µg/m3 and blue
triangles are the annual maxima as defined by block maxima approach.

Theory

Let X1, . . . , Xn be a sequence of independent and identically distributed variables

with common distribution function F . Assuming the asymptotic theory of equations

(3.2.1) and (3.2.2) hold, then a sequence of point processes P1, P2, . . . can be

constructed on [0, 1]× R using Pn

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
; i = 1, . . . , n

}
.

Consequently, by construction, we can learn about the tail of F by examining the

limit behaviour of Pn as n → ∞. The limit process is non-degenerate since the

distribution of the normalised maxima is non-degenerate. Small points of the process
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are normalised to the same value bl, with

bl = lim
n→∞

xF − bn
an

,

while large points of the process are retained in the limit process. Under these

conditions on Pn, the limiting point process is defined on the set [0, 1]× (bl,∞)

Pn → P as n→ ∞, (3.2.3)

where P is a non-homogeneous Poisson process (PP) with intensity function

λ(t, x) =
1

σ

{
1 + ξ

(
x− µ

σ

)}−1−1/ξ

+

,

for (t, x) ∈ [0, 1]× (bl,∞). This limit result motivates that the behaviour of all large

values from F are asymptotically determined by the characteristics of an, bn and

ξ, likewise with the block maxima approach. Assuming the conditions for limit in

equation (3.2.3) hold, Pickands (1975) and Smith (1989) show for x > 0 and X ∼ F

Pr(X > un + anx | X > un) →
[
1 + ξ

x

ψ

]−1/ξ

+

(3.2.4)

as n→ ∞, where un → x∗ as n→ ∞, ψ > 0 and ξ ∈ R. The distribution function

G(x) = 1−
[
1 + ξ

x

ψ

]−1/ξ

+

for x > 0, corresponds to the generalised Pareto distribution (GPD), with scale

parameter ψ > 0 and shape parameter ξ ∈ R, denoted as GPD(ψ, ξ). The limit

of equation (3.2.4) shows that as the threshold tends to the upper endpoint of the

distribution, under weak conditions, the scaled excesses of the threshold tends to a

GPD(ψ, ξ).

The limiting results of equation (3.2.4) motivates that for sufficiently large threshold
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un,

Pr(X > x | X > u) =

[
1 + ξ

(
x− u

σu

)]−1/ξ

+

, (3.2.5)

for x > u with u = un, i.e.

(X − u) | X > u ∼ GPD(σu, ξ). (3.2.6)

The GPD possesses the threshold stability property which states that if X − u is

distributed as in equation (3.2.6), then for any larger threshold v > u

(X − v) | X > u ∼ GPD(σu + ξ(v − u), ξ). (3.2.7)

Thus, the shape parameter ξ is constant with threshold, i.e. is invariant to threshold

choice, whereas the scale parameter σv = σu + ξ(v − u) is not (Davison and Smith,

1990).

Threshold choice

Modelling extreme events identified by exceeding a high threshold u can provide

better alternatives to the block maxima. However, the choice of threshold u directly

affects the number of threshold exceedances which in turn creates an analogous issue

to the block size in the block maxima approach, bias-variance trade-off. Choosing a

low threshold increases the amount of data that is used which reduces the uncertainty

in the estimation of the model parameters making the statistical inference more

efficient. However, this increases the chance that the asymptotic basis of the model

will break down and introduce bias. Setting a threshold too high will generate

too few excesses leading to increased variance in the model parameter estimation.

Although the choice of threshold using diagnostics has been studied by Tancredi

et al. (2006) and Wadsworth and Tawn (2012) there are no specific rules in choosing

the best threshold. This being said, there are two commonly used diagnostic plots

to aid in threshold choice, namely the mean residual life (MRL) plots and parameter
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stability plots (Scarrott and MacDonald, 2012).

In the construction of the MRL plot first consider a set of threshold exceedances

Xi | Xi > u for i = 1, . . . nu, that follow a generalised Pareto distribution with

parameters σu and ξ. Then, provided that ξ < 1, the expected value of an arbitrary

X threshold excesses X − u is given by

E[X − u | X > u] =
σu

1− ξ
.

With the assumption that the GPD is valid for the excesses of the threshold u, then

it should be equally valid for all higher thresholds v > u. Therefore, for v > u,

E[X − v | X > v] =
σu + ξ(v − u)

1− ξ
, (3.2.8)

if ξ < 1. We call u a suitable threshold for the modelling data points above if the

mean excesses in equation (3.2.8) is linear in v for v > u.

In the construction of the parameter stability plots, first assume X follows a GPD

above the threshold u as in equation (3.2.6) then for any higher threshold v ≥ u,

X above the higher threshold v follows the distribution given in equation (3.2.7).

This shows the shape parameter is constant for the higher threshold, but the scale

parameter varies with threshold.

To assess parameter stability we reparametrise the scale parameter for the higher

threshold v to the modified scale σ∗ such that σ∗ = σv − ξv. Consequently, both

shape parameter ξ and the modified scale σ∗ are threshold invariant for suitably

high threshold. The choice of threshold from the parameter stability is determined

by the lowest possible value for u such that the estimates of the modified scale

and shape parameters remain approximately constant above this level. Figure 3.2

provides a demonstration of parameter stability plots. These plots indicate that, in

the case of the DM8 ozone observations at Aston Hill, the lowest possible value for

u is approximately the 90th quantile, subject to estimation uncertainty depicted by

the 95% confidence intervals.
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Figure 3.2: Parameter stability plots for (top) modified-scale parameter (bottom) shape
parameter at Aston Hill, where the black vertical lines indicate the 95% confidence intervals
and the red line indicates the empirical 90th quantile.

Return levels

Return levels are computed using a similar process to the block maxima approach,

however we must undo the conditioning in equation (3.2.5) since the data are con-

ditional upon exceeding a sufficiently high threshold u. To undo this conditioning,
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we multiple by the rate of exceedance φu = Pr(X > u) such that for x > u,

Pr(X > x) = Pr(X > u) Pr(X > x | X > u)

= φu

[
1 + ξ

(
x− u

σu

)]−1/ξ

+

. (3.2.9)

Inverting the unconditional probability distribution function given in equation

(3.2.9) gives the return value that is exceeded once every m observations

x̂m =

u+
σ̂u
ξ̂

[
(mφu)

ξ − 1
]

for ξ̂ ̸= 0

u+ σ̂u log(mφu) for ξ̂ = 0,

(3.2.10)

where m > φ−1
u and (σ̂u, ξ̂) are the maximum likelihood estimates of (σu, ξ). Since

the estimates have no closed forms, we use numerical optimisation to maximise the

likelihood.

3.3 Multivariate extreme value theory

3.3.1 Motivation

For many types of data either or both of the independent and identically distributed

modelling assumptions are not realistic. For example, if temperature is high then

there is a higher probability that air quality is of unhealthy levels than if the

temperature was low. Contextually, the definition of multivariate extreme events

will naturally lead into the type of modelling approach to use (Barnett, 1976). Two

types of modelling approaches are discussed below, modelling using componentwise

maxima; the maximum of each variable, which is a natural extension of the

univariate block maxima approach; and the multivariate threshold approaches, an

extension of the univariate threshold approaches. In Section 3.3.3 both approaches

are outlined with a semi-parametric conditional approach given in Chapter 5.
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3.3.2 Copula theory

In multivariate modelling, it is important to consider the dependence properties of

the variables. Copulas provide a method to separate out the marginal behaviour

from the dependence structure, allowing one to model these features separately (Joe,

1997).

By Sklar’s theorem (Sklar, 1959), if X = (X1, . . . , Xd) has joint distribution F , and

has continuous marginal distributions Xi ∼ Fi, for i = 1, . . . , d, then there exists a

unique copula C such that

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}.

The copula C is a joint distribution function with the property that every marginal

distribution is uniform on the interval [0, 1]. This result and the probability integral

transform allows for transformation between different marginal distributions without

changing the dependence structure. Consequently, if Fi has an inverse distribution

F−1
i , then by the probability integral transform, U = Fi(X) ∼ Uniform(0, 1) with

F−1
i (U) ∼ Fi. So for example, we can obtain a copula with standard Fréchet margins

by

F (x1, . . . , xd) = C

{
− 1

logF1(x1)
, . . . ,− 1

logFd(xd)

}
.

These results are often used in multivariate extreme value theory as transforming

margins can highlight features associated with the extreme values. For example,

when transforming onto Fréchet margins the largest values are magnified, as seen

in Figure 3.3 (bottom left). To estimate the extremal dependence the variables are

transformed onto common margins prior to modelling the dependence structure.

Following Coles and Tawn (1991), we model the marginal distributions of two

random variables X1 and X2 as

FXi
(x) =

 1− [1− F̃Xi
(ui)]

[
1 + ξi

(
x−ui
σu,i

)]−1/ξi

+
, for x > ui,

F̃Xi
(x), for x ≤ ui,

(3.3.1)
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where F̃Xi
(x) is the empirical marginal cumulative distribution function of Xi and

i = 1, 2.

Figure 3.3: Scatter plots of DM8 ozone data from two AURN sites on (top left) the original
scale (top right) uniform scale (bottom left) Fréchet scale and (bottom right) Laplace scale.

Having estimated the marginal structure, which can be obtained using methods

such as, standard likelihood approaches, L-moments or the empirical cumulative

distribution function, an appropriate choice of transformation onto common margins

is required before characterising the extremal dependence. At different stages

of the thesis we require Fréchet and Laplace margins. The probability integral

transformation is used to obtain the appropriate marginal distributions. For
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standard Fréchet margins,

XF,i = −1/ log{FXi
(Xi)}, (3.3.2)

which gives Pr(XF,i ≤ xF ) = exp(−1/xF ). For standard Laplace margins,

XL,i =

 log{2FXi
(Xi)}, if FXi

(Xi) < 1/2,

− log{2[1− FXi
(Xi)]}, if FXi

(Xi) ≥ 1/2.
(3.3.3)

3.3.3 Theory

Componentwise maxima

Let (Xj,1, . . . , Xj,d), where j = 1, . . . , n, be d-dimensional vectors which for each j

has joint distribution function G and is independent over j. We denote the vector of

componentwise maxima by Mn = (Mn,1 . . . ,Mn,d), where Mn,k = maxj∈{1,...,n}Xj,k

for k = 1, . . . , d. Analogous to the univariate case, if there exists normalising

constants an,k > 0 and bn,k for k = 1, . . . , d such that

Pr

(
Mn,1 − bn,1

an,1
≤ z1, . . . ,

Mn,d − bn,d
an,d

≤ zd

)
→ F (z1, . . . , zd),

as n → ∞ where the limiting distribution function F is non-degenerate in each

margin, then F is a d-dimensional multivariate extreme value distribution. Each

marginal Zk follows a GEV distribution with parameters (µk, σk, ξk), as given in

equation (3.2.2). Common practice in studying the dependence structure of F is to

assume that each margin follows a common distribution, for example the standard

Fréchet distribution, i.e. GEV(1, 1, 1), exp(−1/zk) for zk > 0. Choosing standard

Fréchet marginal distributions is the usual choice for modelling componentwise

maxima as it emphasises the largest values. Consider the vector of random variables

Z1, . . . , Zd with common Fréchet marginal distributions. The multivariate extreme
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value distribution of F is written as

F (z1, . . . , zd) = exp{−V (z1, . . . , zd)} for zk > 0, (3.3.4)

where k = 1, . . . , d and the exponent measure V on the unit simplex, Sd−1 = {ω ∈

[0, 1]d :
∑d

k=1 ωk = 1}, is defined as

V (z1, . . . , zd) = d

∫
Sd−1

max
k=1,...,d

(
ωk
zk

)
dH(ω), (3.3.5)

with the spectral measure H, an arbitrary distribution function on [0, 1], satisfying

the moment constraint ∫
Sd−1

wkdH(ω) =
1

d
.

In the bivariate case, consider the pair of random variables (Z1, Z2) with common

Fréchet marginal distributions, then the exponent measure V is given by

V (z1, z2) = 2

∫ 1

0

max

{
ω

z1
,
1− ω

z2

}
dH(ω). (3.3.6)

The pair is independent if V (z1, z2) = z−1
1 + z−1

2 and H({0}) = H({1}) = 1/2;

perfectly dependent if V (z1, z2) = max(z−1
1 , z−1

2 ) and H({1/2}) = 1.

Several parametric models belong to the class of multivariate extreme value

distributions, including the logistic distribution (Gumbel, 1960), for which the

exponent measure is

V (z1, . . . , zd) =

(
d∑

k=1

z−αk

)1/α

, (3.3.7)

for α ∈ (0, 1]. For this model, taking α = 1 leads to independence between the

variables, while as α → 0 we approach exact dependence. Another parametric model

is the Dirichlet distribution (Coles and Tawn, 1991) which confines all mass to the

interior of Sd while allowing for marginal bivariate asymmetry. In the bivariate case,
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the exponent measure for the Dirichlet distribution has the form

V (z1, z2) = 1/z1[1− Be(q;α + 1, β)] + 1/z2Be(q;α, β + 1) (3.3.8)

where q = αz1/(αz1+βz2) and Be(q;α, β) is the beta distribution function evaluated

at q. Complete dependence is obtained in the limit as α = β tends to infinity.

Independence is obtained as α = β approaches zero and when one of α, β is fixed

and the other approaches zero.

Other parametric models belonging to the class of multivariate extreme value

distributions include: the asymmetric logistic model (Tawn, 1988, 1990), the

negative logistic model (Galambos, 1975), the negative asymmetric logistic model

(Joe, 1990), the Hüsler-Reiss distributions (Hüsler and Reiss, 1989), the bilogistic

model (Smith, 1990a), the negative bilogistic model (Coles and Tawn, 1994) and the

asymmetric mixed model (Tawn, 1988).

The link between V and H

The exponent measure V and the spectral measure H are related through the

definition of V in equation (3.3.5). Coles and Tawn (1991) show that these measures

are linked by further relations. Let hj,c be the class of densities for H, then for

c = {i1, . . . , im} the spectral density is given by

∂V

∂zi1 . . . ∂zim
= −m

(
m∑
j=1

zij

)−(m+1)

hm,c

(
zi1∑
zij
, . . . ,

zim∑
zij

)
(3.3.9)

on {z ∈ Rp
+ : zα = 0 if α /∈ c}. To show how this is obtained, we focus on the

bivariate case where the exponent measure is given by equation (3.3.6). Assuming

H is differentiable everywhere, we can rewrite the integral in terms of ω,

V (z1, z2) = 2

∫ 1

0

max

{
ω

z1
,
1− ω

z2

}
h(ω)dω.
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We can simplify the integral by splitting the interval into two regions: the part

where ω/z1 > (1 − ω)/z2 and the part where (1 − ω)/z2 > ω/w1. To do this, we

need to solve the equation ω/z1 = (1 − ω)/z2 for ω, which is ω = z1/(z1 + z2). As

such, the integral becomes

V (z1, z2) = 2

∫ z1
z1+z2

0

ω

z1
h(ω)dω + 2

∫ 1

z1
z1+z2

1− ω

z2
h(ω)dω. (3.3.10)

Computing the integral in equation (3.3.10) and differentiating twice with respect

to z1 and z2 yields the required result of

∂2

∂z1∂z2
V (z1, z2) = − 2

(z1 + z2)3
h(ω). (3.3.11)

To demonstrate how to obtain the spectral density using the result of Coles and Tawn

(1991), lets consider the 2-dimensional case of the logistic model with exponent

measure given in equation (3.3.7). By equation (3.3.11), using ω as the pseudo-

coordinate space where ω = z1/(z1 + z2),

∂V

∂z1∂z2
= (z1 + z2)

−3α (1/α− 1) [ω(1− ω)]−(α+1) [ω−α + (1− ω)−α
]1/α−2

.

Consequently, the bivariate logistic dependence model has the spectral density given

by,

h(ω) = (α− 1)[ω(1− ω)]−(α+1)
[
ω−α + (1− ω)−α

]1/α−2
. (3.3.12)

Generalising to the d-dimensional case yields

hp,cp(ω) =

[
p−1∏
j=1

(jα− 1)

](
p∏
j=1

ωj

)−(α+1)( p∑
j=1

ω−α
j

)1/α−p

, (3.3.13)

for hj,c ≡ 0 and j < p. If α = 1 in the exponent measure then the variables are

independent, which corresponds to h1,(i) ≡ 1 for all i and hj,c ≡ 0 for all j > 1,

therefore all the mass is confined to the vertices of Sp.
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Multivariate threshold model

Suppose that X1, . . . ,Xn are independent realisations of a random d-dimensional

vector Xi = (X1, . . . , Xd) with joint distribution function F . For suitable thresholds,

u1, . . . , ud the marginal distributions of F , Fi, each approximately takes the form

Fi(x) ≈ 1− φ

{
1 +

ξ(x− u)

σ

}−1/ξ

,

for x > u, with parameter sets (φi, σi,ξi), for i = 1, 2, . . . , d. We choose to transform

(X1, . . . , Xd) onto the unit Fréchet to allow us to use the simplest expression of the

multivariate extreme value distribution. Therefore, define Zi = −1/ log(Fi(Xi)) for

each i, such that P (Zi ≤ z) = exp(−1/z) for 0 < z <∞. Then,

F∗(z1, . . . , zd) = F (x1, . . . , xd),

where F∗ denotes the joint distribution function of (Z1, . . . , Zd). Resnick (1987)

gives the following necessary and sufficient conditions for the above to hold,

lim
t→∞

logF∗(tz1, . . . , tzd)

logF∗(t, . . . , t)
= lim

t→∞

1− F∗(tz1, . . . , tzd)

1− F∗(t, . . . , t)
=

logG∗(tz1, . . . , tzd)

logG∗(t, . . . , t)
, (3.3.14)

where G∗ is a multivariate extreme value distribution that has Fréchet marginal

distributions such that F∗ is in the domain of attraction of G∗. Therefore we

approximate

F∗(z1, . . . , zd) ≈ G∗(z1, . . . , zd) = exp{−V (z1, . . . , zd)} (3.3.15)

for zi > ri, where the ri are high thresholds and V takes the form in equation

(3.3.5) (Pickands, 1981; Coles and Tawn, 1991, 1994). Alternatively, for large

n, the homogeneity of order −1 property of V allows us to make the following
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approximation,

F∗(z1, . . . , zd) = F n
∗ (z1, . . . , zn)

1/n

≈ [exp{−V (z1/n, . . . , zd/n)}]1/n

= exp{−V (z1, . . . , zd)}.

The approximation in equation (3.3.4) motivates a model in which joint exceedances

of suitably high thresholds allow the dependence structure of F∗ to be that of

an exact multivariate extreme value distribution. Note that when the marginal

variables are independent, the joint distribution for F is given by the product of the

marginal distributions for xi > ui.

3.3.4 Asymptotic dependence modelling

Dependence structure between variables is a popular feature of interest since it

describes how variables interact. As such, selecting a suitable distribution to

model the structure is vital, as different distributions can only capture certain

types of dependence structures. For example, Clayton and Gumbel distributions

can model independence and positive dependence whereas the Frank, Gaussian and

Student-t distributions can model negative dependence, independence and positive

dependence, but omits tail dependence.

In modelling multivariate extremes, the tail dependence structures are a critical

consideration and determining the class of tail dependence is vital in model selection.

The tail (extremal) dependence class, of the random variables (X1, X2) is determined

by the probability of one variable being extreme conditional on the other also being

extreme:

lim
x→x∗

χ(x) = lim
x→x∗

Pr(X2 > x | X1 > x) →

 0, if asymptotically independent

p > 0, if asymptotically dependent
(3.3.16)

where x∗ is the upper endpoint of FX and p ∈ [0, 1] is the strength of asymptotic
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dependence if X1 and X2 are on common margins (Coles et al., 1999). Coles et al.

(1999) introduced a measure to determine the strength of asymptotic independence,

χ̄. This is given by

χ̄ = lim
x→x∗

2 log Pr(X1 > x)

log Pr(X1 > x,X2 > x)
, (3.3.17)

which takes values [−1, 1]. The pair (X1, X2) are said to be asymptotically

independent with positive association if 0 < χ̄ < 1, asymptotically independent

with negative association if −1 ≤ χ̄ < 0 and independent if χ̄ = 0.

3.4 Modelling asymptotic independence

The previous joint tail estimation methods are based on the multivariate extreme

value distribution, which require the assumption that the data is either asymp-

totically dependent or exactly independent. However, in many environmental

applications the data exhibits asymptotic independence. As such a broader range

of models have been constructed by Ledford and Tawn (1996, 1997) that includes

the case of asymptotic independence.

Ledford and Tawn (1996) specifies that, under broad conditions, the joint survivor

function of an arbitrary random pair (X1, X2) with unit Fréchet marginal distribu-

tions satisfies, for large u,

Pr(X1 > u,X2 > u) ∼ L(u) Pr(X1 > u)1/η, (3.4.1)

where L(u) is slowly varying as u → ∞, that is, L(u) satisfies L(tu)/L(u) → 1

as u → ∞ for all fixed t > 0, and η ∈ (0, 1] is known as the coefficient of tail

dependence. The coefficient η describes the type of limiting dependence between the

variables, and L(u) is the relative strength of the dependence given a value of η. The

motivation for this model is detailed in Ledford and Tawn (1996), which investigates

the score statistic for the bivariate normal distribution with correlation ρ < 1 and

compares the probabilities of lying in the jointly large (x1 > u, x2 > u) region for
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asymptotic independence and exact independence. The bounding cases occur when

η → 0 and η = 1 with L = 1, corresponding to perfect negative dependence and

perfect positive dependence respectively, with η = 1/2 and L(u) = 1 corresponding

to exact independence. When η = 1 and L(u) → c > 0 as t → ∞, the variables

are classified as asymptotically dependent, and the variables are asymptotically

independent when 0 < η < 1. The asymptotic conditions are obtained through

the conditional probability,

Pr(X1 > u|X2 > u) ∼ L(u)u1−1/η. (3.4.2)

Ledford and Tawn (1996) identified three classes of positive dependence through

equation (3.4.2), namely: asymptotic dependence (η = 1 and L(u) ↛ 0), positive

association (1/2 < η < 1) and near independence (η = 1/2 and L(u) ≥ 1).

An example of asymptotic dependence is the upper tail of a bivariate extreme

value distribution. The distribution function for this distribution is F (x1, x2) =

exp{−V (x1, x2)} with V as defined in equation (3.3.5). Using the Taylor series

expansion of exp(x) and the homogeneity of order −1 property of V the joint

probability is given by,

Pr(X1 > u,X2 > u) = F̄ (u, u) = 1− F̄1(u)− F̄2(u) + F̄12(u, u),

= 1− 2 exp(−1/u) + exp{−V (u, u)}

∼ u−1[2− V (1, 1)] = [2− V (1, 1)] Pr(X1 > u).

Consequently, asymptotic dependence is achieved when η = 1 and the slowly varying

function L(u) takes the form 2 − V (1, 1) while being in the range of (0, 1], exact

independence when V (1, 1) = 2 and perfect dependence when V (1, 1) = 1.

We are interested in performing inferences on events in the region (u,∞)× (u,∞).

In order to do this we can rewrite the joint probability of (X1, X2) being greater
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than some large value u as,

Pr(X1 > u,X2 > u) = Pr(min(X1, X2) > u), (3.4.3)

allowing us to reduce the bivariate survivor function to a univariate variable, say

T = min(X1, X2). Thus,

Pr(T > u) = Pr(X1 > u,X2 > u) ∼ L(u)u−1/η (3.4.4)

as u→ ∞. Coles and Tawn (1994) coined T as the structure variable. For a structure

variable that satisfies the survivor function in equation (3.4.4), exceedances of a high

threshold u satisfy

Pr(T > u+ t|T > u) ∼ L(u+ t)

L(u)
(1 + t/u)−1/η ∼ (1 + t/u)−1/η (3.4.5)

since L is slowly varying. We can express this conditional probability in the form of

a univariate generalised Pareto distribution,

Pr(T > u+ t|T > u) ∼ (1 + ξt/σu)
−1/ξ. (3.4.6)

Equating equations (3.4.5) and (3.4.6) we see ξ = η and σu = ηu, which provides a

method in estimating the coefficient of tail dependence. Furthermore, χ and χ̄ can

be obtained by the relationships derived by Ledford and Tawn (1996, 1997) between

η and L(u):

χ̄ = 2η − 1,

χ =


c if χ̄ = 1 and L(u) → c > 0 as t→ ∞,

0 if χ̄ = 1 and L(u) → 0 as t→ ∞,

0 if χ̄ < 1.
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3.5 Bootstrapping

Throughout the thesis, estimates of the uncertainty of extremal quantities and

statistical summaries will be derived by non-parametric bootstrapping (Efron, 1979),

due to the simplistic nature compared to other methods, e.g. cross-validation and the

delta method (Doob, 1935; Stone, 1974; Oehlert, 1992), which are computationally

intensive and require asymptotic assumptions. Bootstrap sampling algorithms aim

to generateN pseudosamples (bootstrap samples) x(1)
B , . . . ,x

(N)
B based on the original

data x1, . . . , xn. For each i = 1, . . . , N , x
(i)
B is created through sampling of the

original data with replacement until x(i)B has length n. For each x
(i)
B we compute

the measure of interest θ̂(i)B . With the vector of estimates θ̂B we approximate the

sampling distribution of θ̂ by taking the 2.5% and 97.5% quantiles of θ̂B to construct

the 95% bootstrapped confidence interval of θ̂.

In Chapter 4 we require sampling of bivariate data (X1, X2) which is done by

sampling pairs of data, i.e. we sample with replacement (x1k, x2k) where k denotes

an arbitrary point in the time series. In Chapter 5 we require a different approach

as we need to maintain the temporal structure. One approach would be to split the

data into b equally sized blocks and sample with replacement the blocks until xB

is of length n. However, a more technical approach is adopted and is explained in

Section 5.3.4.
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Chapter 4

Evaluation of process-based extreme

forecasts

4.1 Introduction

Air quality models (AQMs) are numerical models designed to emulate the underlying

processes of meteorological variables and estimate the degree of emissions. Air

quality models can provide deterministic real-time forecasts which are used to assess

the risks from poor air quality to both the environment and public health and to aid

in policy making. These models have become increasingly complex and sophisticated

due to the importance of including extra layers such as the atmospheric composition

(Eyring et al., 2013; Kukkonen et al., 2012). Model validation is a key aspect of

the modelling process, but it is specifically important for poor air quality episodes

since there is strong evidence linking short-term exposure to poor air quality and

respiratory issues and mortality (EEA and WHO, 2007; Ji et al., 2011; Lavigne

et al., 2014; Lelieveld et al., 2019; Vohra et al., 2021). As such, increasing awareness

of extreme events and introducing new ways to assess the performance of AQMs at

the extremal level is vital in providing sufficient public warnings.

The most common method of model validation is a direct comparison between

the model output and measurement data, for instance monitoring network mea-
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surements or satellite observations. There is a vast selection of statistical tools

available to perform such a comparison. These include: summary statistics, which

capture the variability and summaries the bias and linear relationship in the mean

behaviour (Borrego et al., 2008; Thunis P, 2013; Lin et al., 2017; Neal et al., 2014),

categorical metrics, which are used as a measure of model skill and to evaluate risk

of health-threatening events (Kang et al., 2005; Savage et al., 2013) and statistical

distance measures, which examines the difference between the underlying probability

distributions and the significance of such difference (Düsterhus and Hense, 2012).

Examples of each type can be seen in Table 4.1.

Measure Type Formula

Root-mean-squared error (RMSE) Summary
√∑n

i=1
(mi−oi)2

n

Hit rate Categorical Pr(m > x | o > x), x ∈ R

Kullback-Leibler divergence (KLD) Distance
∑

x∈X P (x) log
P (x)
Q(x)

Table 4.1: A selection of different statistical tools available to compare model output and
measurement data, where m is the model output, o is the observations and Q and P are
the respective probability distributions.

These statistical tools for model validation can be extended, for example Jolliff

et al. (2009) proposed the use of RMSE normalised by the standard deviation of the

observations in order to provide a standardised metric to compare model outputs.

Further, Thunis et al. (2012) introduced a new method to evaluate air quality models

through deriving a consistent set of Model Performance Criteria (MPC) for four

statistical indicators. The MPC is calculated based on the observation uncertainty,

i.e. the statistical indicators are normalised by the uncertainty in the observations.

However, as the MPC are based on a comparison of data characteristics with their

uncertainty, the MPC will vary by site type, pollutant, geographic area etc.

Although such measures provide a solid basis for air quality model validation, AQMs

rarely consider extreme events in their model validation process and are optimised to

predict the mean behaviour of the process. Since events (extremes) occurring in the
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tails are typically rare, RMSE and correlation coefficients can mask the behaviour

of the extreme values, especially if the data is of high temporal resolution. The

use of categorical metrics is an initial step in exploring the capabilities of capturing

the behaviour in the extremes as they can be constructed to measure accuracy in

forecasting extremes. However, these metrics quantify only a very specific aspect

of the model performance, and there are other characteristics of the predicted data

that it would be useful to explore.

This chapter will look at two air quality datasets for the UK, the Automatic Urban

and Rural Network (AURN) and the Air Quality in the Unified Model (AQUM), as

described in Section 2.4. The latter is a numerical process-based forecasting model

that includes a post-processing bias correction technique (Neal et al., 2014). This

technique has seen an improvement in the forecasting skill of ozone during July

2012 to July 2013, with Pearson correlation coefficient increasing from 0.64 to 0.76,

bias decreasing from 7.02 to 0.53µg/m3 and the RMSE decreasing from 20.85 to

15.42µg/m3 (Neal et al., 2014). However, there have been no investigations into the

behaviour of extremes in these bias-corrected forecasts.

We demonstrate how extreme value theory can be used as a validation tool for the

AQUM ozone forecasts. There are some previous examples of similar studies in

the literature. Contzen et al. (2022) uses a clustering block maxima approach to

validate the upper tail of the AWI-ESM global climate model. Weller et al. (2012)

used bivariate extreme value theory to investigate the pineapple express phenomenon

and validate Weather Research and Forecasting regional climate model, driven by

reanalysis. In contrast, we explore the marginal characteristics of extreme ozone

events by using the peaks-over-threshold (POT) approach to fit a generalised Pareto

distribution (GPD) (Smith, 1989; Davison and Smith, 1990) and estimate return

levels. We also use multivariate extreme value methods to identify the class of

extremal dependence between the observations and forecasts as this provides clarity

to the forecasting capability of AQUM at the extremal level. Finally, we estimate

hit rates of exceeding relevant thresholds, which is the conditional probability
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Pr(XAQUM > x | XAURN > x) for some sufficiently large x, through modelling

the joint probabilistic behaviour of AURN and AQUM.

The chapter is structured as follows. After introducing the methodology in Section

3.2, we present the ozone datasets used in this study in Section 3.3. The results

from applying extreme value theory to the data are presented in Sections 3.4 and

3.5. A section on conclusions finalises the chapter.

4.2 Extreme value theory background

Extreme value theory provides a framework for studying the behaviour of rare events,

i.e. the upper tail of a probability distribution where the number of observations is

intrinsically small. We provide a brief review of the methodology with focus on the

bivariate case.

4.2.1 Univariate threshold exceedances

An extreme value analysis does not require knowledge of the underlying distribution

and allows for asymptotically justified consideration of only data deemed extreme.

Two types of modelling approaches exist: modelling block maxima and modelling

exceedances of a high threshold. If a random variable X is in the domain of

attraction of an extreme value distribution, that is there exists sequences an > 0 and

bn ∈ R such that limn→∞ F n(anx+bn) → G(x) where F is the marginal distribution

of X and G is the generalised extreme value distribution, then in the limit the

conditional distribution ofX|X > u follows a generalised Pareto distribution (GPD),

as given in equation (3.2.5).

The GPD parameters can be estimated and used to obtain the T -year return level,

a useful quantity to estimate as it allows one to extrapolate beyond the observed

data period and is often used to guide legislation changes. The T -year return level

is the value expected to be exceeded once every T -years, under the assumption of

no system change, which can be estimated using equation (3.2.10).
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4.2.2 Bivariate extremes and tail dependence

For random variables (X1, X2) the covariance and correlation measures are useful

dependence measures. However, they do not capture the tail dependence as they are

dominated by the main body of the distribution. As such, we categorise the joint

upper tail differently to the whole joint distribution. The tail dependence class of the

random variables (X1, X2), given they are on common margins, can be quantified by

the measure χ, established by Coles et al. (1999) and is given by equation (3.3.16).

Whilst Coles et al. (1999) provides a measure of asymptotic independence χ̄, Ledford

and Tawn (1996, 1997) developed an early formation for different tail dependences.

Assuming X1 and X2 have standard Fréchet marginal distributions so that Pr(Xi <

x) = exp(−1/x) for x > 0 and i = 1, 2, then the joint tail behaviour can be modelled

using the model of Ledford and Tawn (1996), as described in Section 3.4 and by

equation (3.4.1).

The coefficient of tail dependence η determines the strength of association in

the asymptotically independent case and indicates that the pair (X1, X2) are

asymptotically dependent when η = 1. Consequently, Ledford and Tawn (1996,

1997) developed a hypothesis test using a likelihood ratio test to determine the type

of tail dependence testing H0 : η = 1 against H1 : η ̸= 1.

4.2.3 Spectral measure

The extremal dependence structure can be characterised by the spectral measure

(Fougères, 2004). A commonly used tail characterisation of X is in terms of its

pseudo-polar coordinates (R,W), the radial and angular components respectively.

Consider the random vector X = (X1, X2), with standard Fréchet marginal

distributions. As such the radial and angular components, for an arbitrary norm

|| · ||, are defined as R = ||X|| and W = X/R, with R > 0 and W ∈ S = {(ω1, ω2) ∈

[0, 1]2 : ω1+ω2 = 1}, the unit simplex. Here we take the L1 norm, i.e. ||x|| = x1+x2.

Then under the assumption of multivariate regular variation, that is if there exists

a sequence an such that on Borel subsets of C = [0,∞)\{0}
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nPr

(
X

an
∈ ·
)

→ ν(·) (4.2.1)

as an → ∞ and n→ ∞ where ν is a measure (Resnick, 2007),

lim
n→∞

Pr

(
R

an
> r,W ∈ B

)
→ r−1H(B) (4.2.2)

for r ≥ 1, where H is the spectral measure that satisfies the moment constraint

∫
S
ω(1− ω)dH(ω) =

1

2
. (4.2.3)

Throughout we will assume that H is differentiable such that a spectral density

h exists. Note that under this definition the pair is: independent if H({0}) =

H({1}) = 1/2, perfectly dependent if H({1/2}) = 1, asymptotically independent if

all the mass in H lies uniformly on the vertices, and asymptotically dependent if

the mass in H lies away from the axes. This formulation of H links to the exponent

measure V of the bivariate extreme value distribution (BVEVD) which is defined

as,

F (x1, x2) = exp{−V (x1, x2)} for xk > 0, (4.2.4)

where k = 1, 2 and V is defined as

V (x1, x2) =

∫
S
max

(
ω

x1
,
1− ω

x2

)
dH(ω). (4.2.5)

Coles and Tawn (1991) provide justification for the use of the BVEVD to model joint

exceedances of sufficiently large thresholds (u1, u2). As such, to obtain estimates for

the dependence parameters θ contained in the model for V we have to maximise,

using numerical optimization, the censored likelihood

L(θ;x1,x2) =
n∏
i=1

φ(θ; (x1i, x2i)), (4.2.6)
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where

φ(θ; (x1, x2)) =



∂2F
∂x1∂x2

∣∣∣
(x1,x2)

if (x1, x2) ∈ R1,1,

∂F
∂x1

∣∣∣
(x1,u2)

if (x1, x2) ∈ R1,0,

∂F
∂x2

∣∣∣
(u1,x2)

if (x1, x2) ∈ R0,1,

F (u1, u2) if (x1, x2) ∈ R0,0,

andR0,0 = (−∞, u1)×(−∞, u2), R1,0 = [u1,∞)×(−∞, u2), R0,1 = (∞, u1)×[u2,∞),

R1,1 = [u1,∞) × [u2,∞), (Coles, 2001). Each term is derived from the joint tail

approximation in equation (4.2.4).

4.3 Ozone data pre-processing

The hourly ozone observations from AURN, described in Section 2.4.1, and the

hourly forecasts from AQUM, described in Section 2.4.2, are aggregated to the daily

maximum of the 8-hour running mean scale (DM8). At each of the 61 sampled

AURN sites, the observations are then matched to the corresponding forecasts

obtained by using the nearest-neighbour algorithm, i.e. matched to the closest grid

cell. Since we are interested in the period where most exceedances occur, we discard

all pairs which do not fall within the site-specific ozone season, as defined in Section

2.4.3, and discard all days that are not complete, i.e. either or both observations and

forecasts have no data available. We use subscript AURN and AQUM to denote

which dataset we are using and subscript j to denote the jth site.

4.4 Investigating the marginals

The AQUM forecasts determine the publicly displayed Daily Air Quality Index

(DAQI), as such it would be desirable if AQUM captures the observations well,

especially at higher concentrations due to the greater public health risk. We begin
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by examining the differences between AURN and AQUM, that is, the extent to

which extreme AQUM forecasts correspond to the extreme AURN observations.

We first follow standard methodology by performing marginal quantile comparisons

and evaluating metrics above and below the 90th quantile to motivate the use of

extreme value methods.

Figure 4.1: Relative difference in the marginal quantiles of the pairwise AURN DM8 ozone
data and the AQUM DM8 ozone forecasts.

4.4.1 Marginal characteristics

We first look at the marginal characteristics of AURN and AQUM at each

site separately. Figure 4.1 shows the relative difference; defined as (XAURN −

XAQUM)/XAURN ; in marginal 25th, 50th, 75th and 90th quantiles between AURN

observations and AQUM forecasts. Negative values indicate AQUM forecasts
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overestimates the observed ozone concentration whereas positive values indicate an

underestimation, assuming the AURN measurements are all correct. On average the

forecasts are closer to the observations in Scotland and North England than the rest

of the UK, as seen in Figure 4.1, however the common trend is AQUM overestimates

the ozone distributions. The largest overestimations occur at UB sites, with all four

overestimations of at least 15% occurring at UB sites.

Figure 4.2: Absolute difference in the marginal 90th and 99th quantiles of AURN
observations and AQUM forecasts, respectively, with 95% bootstrapped confidence
intervals. (◦) points denote rural background sites and (△) points denote urban background
sites.

Across all common site types the average of the absolute (relative) difference of

the four estimated quantiles is 2.27 − 2.72µg/m3 (−0.18% to 1.13%) and 4.54 −

5.01µg/m3 (−4.20% to -3.10%) for RB sites and UB sites respectively, as seen

in Figure 4.2. The maximum underestimation of 10.80µg/m3 (relative difference

9.84%) occurs at an UB site in Nottingham, whereas the largest overestimation of
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21.78µg/m3 (relative difference 30.24%) occurs at an UB site in Manchester. The

difference between AURN and AQUM increases with quantile, however the sampling

uncertainty in the estimates also increase as depicted by the 95% bootstrapped

confidence intervals in Figure 4.2. The average absolute difference is 12.81µg/m3

for RB sites and 7.66µg/m3 for UB sites.

Figure 4.3: Map showing the KLD estimate between the AURN observations and the
AQUM forecasts for below and above the marginal 90th quantile, respectively. (◦) points
denote rural background sites and (△) points denote urban background sites. Note: sites
in grey indicate values above the upper endpoint of the colouring scale.

Next, we evaluate the Kullback-Leibler divergence (KLD) and root-mean squared

error (RMSE) metrics above and below the site-specific 90th quantile of AURN

(denoted q90,AURN). The latter metric indicate the capability of the model to

capture the observations conditional on position in a time series, whereas the

former is a measure of closeness between two probability distributions. Figure

4.3 shows the KLD estimate between the probability distributions of AURN

observations and AQUM forecasts below and above the marginal 90th quantile of

AURN respectively, where a value of zero indicates perfect match between the two

probability distributions. The KLD estimates for below q90,AURN indicates that

AQUM approximately captures the distribution of ozone, with an average of 0.029

and 0.064 for RB and UB sites respectively. However, the probability distribution

tails (above q90,AURN) of the rural background sites in North England and Scotland,
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as well as all sites in East Anglia and South-East England, are poorly captured as

indicated by larger KLD estimates. On average the tails of RB sites are captured

more poorly than the UB sites, with average KLD estimates of 0.437 and 0.278

respectively.

Figure 4.4: Scatterplot of the KLD estimate above and below the marginal 90th quantile
at rural background sites and urban background sites, respectively. The dotted line is the
y = x line.

The scatterplot of KLD estimates, as seen in Figure 4.4, highlights the difference

between the captured marginal distribution below q90,AURN and above q90,AURN .

One key observation is, the smaller the discrepancy below the marginal threshold

at urban background sites the larger the discrepancy range above the marginal

threshold. This indicates the skewness in the forecasted distribution, i.e. AQUM

struggles to capture the upper tail behaviour of ozone at urban background sites

more so when the distribution below q90,AURN is captured well.

Figure 4.5 shows the RMSE given above and below the site-specific q90,AURN . The

across site average RMSE is 12.62µg/m3 for below q90,AURN and 17.54µg/m3 above.

No obvious spatial pattern can be observed in the RMSE below the 90th quantile,

however above the 90th quantile we see larger values on the east-coast and across

South England. Further, RB sites on average see better forecasts below q90,AURN

but poorer forecasts above. Across all RB sites the average bias in the data above
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q90,AURN is 12.72µg/m3 compared to 6.28µg/m3 at UB sites, indicating AQUM is

more than 2-fold underestimating the largest concentrations in rural areas compared

to urban background areas. Note, AQUM provides accurate forecasts for when

AURN observations are below their respective 90th quantiles.

Figure 4.5: Root-mean squared error (in µg/m3) between AURN observations and AQUM
forecasts conditional on (left) AURN being below the site-specific 90th quantile and (right)
AURN being above the site-specific 90th quantile. (◦) points denote rural background sites
and (△) points denote urban background sites.

4.4.2 Modelling threshold exceedances

While the bulk seems to be captured relatively well, the metrics studied in Section

4.4.1 indicate relatively poor matchings between AURN observations and AQUM

forecasts for higher quantiles, i.e. the marginal tails. As such, as a preliminary step

in examining the upper tail dependence in (AURN, AQUM), the generalised Pareto

distribution (GPD) is used to estimate the margins separately. We fit a GPD to the

exceedances of a suitably high threshold at each site and for each dataset separately.

The suitably high threshold is determined through stability plots (Coles, 2001) and

is taken to be the site-specific dataset-specific marginal 90th quantile.

Figure 4.6 shows the difference between the maximum likelihood estimates of the

scale and shape parameters for AURN and AQUM. There is a large discrepancy in

the magnitude of the scale parameter where in some instances the AQUM estimates

are more than half the AURN estimates. Further, the AQUM forecasts misidentifies
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the type of tail structure at 39% of sites, i.e. estimates of the shape parameter

are of opposite sign. However, it is encouraging that the estimates of the shape

parameter ξ are of the same sign at 61% of sites. These plots would suggest that on

average the threshold exceedances come from differently scaled but similarly shaped

distributions.

Figure 4.6: Plot showing the maximum likelihood estimates of the (top) scale parameter
and (bottom) shape parameter of the generalised Pareto distribution fitted to (black) the
AURN observations and (blue) the AQUM forecasts, with vertical lines representing the
95% confidence intervals. Solid symbols indicate the same sign of shape parameter and
hollow symbols indicate opposite sign between the AURN and AQUM estimates. (◦) points
denote rural background sites and (△) points denote urban background sites.

Figures 4.7 and 4.8 show the differences between the estimated one- and ten-year

return levels from the individually fitted generalised Pareto distributions between

AURN and AQUM. The one(ten)-year return level estimates of AQUM underesti-

mates by at most 43.51(98.62)µg/m3 and overestimates at most 23.13(16.36)µg/m3.

On average RB sites have the largest return level estimates and consequently

the largest differences observed. Rural background sites on average have wider

confidence intervals than urban background sites, which could be attributed to the
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larger shape parameters and wider ranges of observed concentrations. The one-

year estimates from AQUM are typically under the lower bound of the confidence

intervals of AURN at rural background sites. Whereas on average the confidence

intervals overlap for the ten-year return level estimates. Further, sites which are

located on the east-coast have larger underestimations with the greatest being in

East Anglia (site numbers 15, 16 and 46 in Figures 4.6 and 4.7) and in Nottingham

(site number 45 in Figures 4.6 and 4.7).

Figure 4.7: Plot showing the estimated (top) one-year return levels and (bottom) ten-
year return levels from the individually fitted generalised Pareto distribution to (black)
the AURN observations and (blue) the AQUM forecasts, with vertical lines representing
the 95% confidence intervals. (◦) points denote rural background sites and (△) points
denote urban background sites.

To examine the GPD model fits further we pool the data across the two datasets

and fit three separate models. These being a model in which the two datasets have

common scale and shape parameters (M1), one in which the datasets have a common

shape parameter but different scale parameter (M2), and one in which both scale and

shape parameters are free between the datasets (M3). Since these are nested (M1 in
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M2, M2 in M3) we can then do a likelihood ratio test (LRT) between these models to

see whether a single set of parameters is sufficient to describe both distributions, or

whether you need separate scale parameters, or whether you need the full flexibility

of separate scale and shape parameters.

Figure 4.8: Scatterplot comparing the estimates of the (left) one-year return levels and
(right) ten-year return levels using the AURN observations and AQUM forecasts. Colours
denote the outcome of the LRT. (◦) points denote rural background sites and (△) points
denote urban background sites.

The LRT indicated that 80% of RB sites required either the scale or both parameters

to be free and 63% of UB sites required either the scale or both parameters. This

indicates that the observations and forecasts have the same marginal distribution at

20% of RB sites and 37% of UB sites. These results are reflected in the return level

estimates shown in Figure 4.8.

4.5 Investigating and modelling tail dependence

The LRT showed that the marginal distributions of the extreme observations and

forecasts differed at 69% of the studied sites. However, to estimate the probability

of joint exceedance, that is where both AURN and AQUM are extreme at the
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same time, we investigate the upper tail dependence structure. Probability integral

transformations are applied in each margin by using the fitted GP distributions

above the marginal threshold and the empirical distribution function below. That

is, we model the marginal distribution of X as

FX(x) =

 1− φu

[
1 + ξ̂

(
x−u
σ̂u

)]−1/ξ̂

+
, for x > u,

F̃X(x), for x ≤ u,

where c+ = max(c, 0), u is a suitably high threshold, φu = Pr(X > u), F̃X(x)

is the empirical marginal cumulative distribution function of X and σ̂u > 0 and

ξ̂ ∈ R are the maximum likelihood estimates of the scale and shape parameters

respectively. Then to obtain unit Fréchet margins, we use the probability integral

transformation X̃ = −1/ logFX(x). This allows the identification and modelling of

tail dependence through the use of the bivariate extreme value distribution model,

as given in equation (4.2.4).

4.5.1 Extremal dependence estimation

To assess whether the AQUM forecasts and AURN observations exhibit asymptotic

dependence we use the hypothesis test of Ledford and Tawn (1996). For exceedances

of the marginal 90th quantile, this results in p-values greater than 0.05 for all but two

sites, Lerwick (LERW) and Portsmouth (PMTH), suggesting η = 1, that is the joint

tail exhibits asymptotic dependence for all sites except Lerwick and Portsmouth.

Increasing to the marginal 95th quantile, no sites indicate asymptotic independence

at up to significance level of 0.1.

We estimate the strength of asymptotic dependence χ̂(q95) where q95 is the 95th

empirical quantile in each margin. Across all sites this ranges between 0.228

(0.013, 0.313) and 0.731 (0.670, 0.822) where the 95% bootstrapped confidence

intervals are given in parentheses. On average UB sites having stronger asymptotic

dependence which indicates closer joint tails and thus better forecasts of AQUM.
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The χ̂(q95) estimates for Lerwick and Portsmouth are respectively 0.271 (0, 0.630)

and 0.434 (0.171, 0.698), where the 95% confidence intervals are given in parentheses.

The estimates at Portsmouth suggest asymptotic dependence, whereas at Lerwick

the estimate and confidence intervals suggest weak asymptotic dependence to

asymptotic independence. Figure 4.9 (middle) shows the estimated χ(q95) across

all sites. The sites along the coast on average have lower tail dependence and

thus suggest poorer forecasts of extreme ozone events. This could be due to the

resolution of AQUM compared to the observations, i.e. picking up a sea point

with different ozone characteristics rather than a point over land. Further, sites

that are closer together have similar tail dependence. This could be expected since

local atmospheric conditions are more likely to be similar, however site type may

dominant the level of similarity.

Figure 4.9: Maps showing (left) p-values from the L&T hypothesis test (middle) χ
evaluated at the 95th quantile and (right) estimate of the dependence parameter α from the
logistic spectral measure model, in equation (4.5.1). (◦) points denote rural background
sites and (△) points denote urban background sites.

4.5.2 Models for the spectral measure

The extremal dependence measure and the hypothesis test indicate the tails of

AURN and AQUM are asymptotically dependent. As such we use the established

procedure detailed in Section 4.2.3 and Coles (2001) to estimate the dependence

parameters contained in the model for V . We start by fitting a one-parameter
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model whose spectral density is given by

h(ω;α) =
1

2
(α−1 − 1){ω(1− ω)}−1−1/α

[
ω−1/α + (1− ω)−1/α

]α−2
, (4.5.1)

which corresponds to the logistic model with dependence parameter α for the

exponent measure of the bivariate extreme value distribution (Gumbel, 1960).

Estimating the parameters of the spectral density, we obtain estimates for α ranging

from 0.469 to 0.756. These values indicate weak to moderate asymptotic dependence;

as α → 1 the variables become independent and as α → 0 the variables are perfectly

dependent. Figure 4.9 (right) presents the estimated dependence parameter α at

each site. The sites closer to the coastline exhibit weaker tail dependence compared

to those further inland, which is in agreement with χ̂(u95).

We start to increase the complexity of the spectral measure by using the two-

parameter Hüsler-Reiss distributions (Hüsler and Reiss, 1989). Then we increase

the flexibility of the spectral measure by accounting for asymmetry, i.e. removing

the exchangeability of X1 and X2. We use several different models that account

for asymmetry: asymmetric logistic model (Tawn, 1988, 1990), the negative logistic

model (Galambos, 1975), the negative asymmetric logistic model (Joe, 1990) and

the Dirichlet distribution (Coles and Tawn, 1991).

Figure 4.10 shows the estimated spectral densities h(ω) at two sites: Aston Hill

(AH), a rural background site, and Wirral Tranmere (TRAN), an urban background

site. These figures provide a visual representation of the dependence structure and

provide a visual diagnostic for the goodness-of-fit of the models. The asymmetry in

the dependence structure at Wirral Tranmere is captured well by Dirichlet model

and the asymmetric logistic model. At Aston Hill, the dependence structure is less

obvious, and each model captures a different feature. For instance, the Hüsler-Reiss

model captures the two peaks, however puts equal mass between them, since it is

a symmetric model, whereas the Dirichlet model captures the asymmetry and the

decreasing frequency of larger ω.
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Figure 4.10: Histogram of ω values associated with the exceedances of the marginal 90th
quantile at Aston Hill, a rural background site and Wirral Tranmere, an urban background
site, respectively. Lines show estimates of h(ω) for models: log (logistic), alog (asymmetric
logistic), hr (Hüslser-Reiss) and ct (Dirichlet).

To determine which model is preferable we chose the model which has the lowest

Akaike information criterion (AIC). This results in a Dirichlet distribution model for

Aston Hill and an asymmetric logistic model for Tranmere Wirral. Across all sites

this results in 1 asymmetric logistic model, 7 negative logistic models, 14 Dirichlet

distribution models, 19 logistic models and 20 Hüsler-Reiss distribution models.

Sites close together require the same type of model, with the majority of sites on

the east-coast requiring a logistic model, as seen in Figure 4.11. Figure 4.11 also

presents the empirical proportion of joint exceedances (nu,v) to the marginal AURN

exceedances (nu), often referred to as the empirical hit rate, which will be used to

assess model fit in the following section.
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Figure 4.11: Map showing the preferable model at each site determined by the AIC value
and coloured by the empirical proportion of joint exceedances to the marginal exceedances.
Model acronyms: log (logistic), alog (asymmetric logistic), neglog (negative logistic), ct
(Dirichlet), hr (Hüsler-Reiss).

4.5.3 Conditional metrics for categorical prediction

Conditional metrics, such as false-alarm ratio and hit rate, are frequently used to

evaluate the forecasting capability of a model and highlight the risk of health-

threatening events. Consequently, this can indicate the need for further risk

management and can drive changes to policies. As such, we demonstrate the

capabilities of the bivariate extreme value model in capturing the tail behaviour

of AQUM forecasts and AURN observations by obtaining model-based estimates of

the hit rate, the conditional probability Pr(XAQUM,j > x | XAURN,j > x) where

x ≥ q90,j. To obtain such estimates, we use the survivor function of the bivariate

extreme value model associated with the spectral measure chosen by minimising

AIC. We set x to be 100, 120, 140 and 160µg/m3 which correspond to the moderate

to high (4 to 7) risk bands of the Daily Air Quality Index (DEFRA and UK-AIR,

2022).
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Figure 4.12: Map showing the hit rate of AQUM, that is AQUM correctly forecasting the
concentration being above a) 100µg/m3, b) 120µg/m3, c) 140µg/m3 and d) 160µg/m3

given the AURN observation is above 100µg/m3, 120µg/m3, 140µg/m3 and 160µg/m3

respectively. Grey indicates that: (a) the marginal 90th quantile is larger than 100µg/m3,
(b, c, d) the chosen value is above the upper endpoint of either marginal distributions. (◦)
points denote rural background sites and (△) points denote urban background sites.

Figure 4.12 shows the forecasting skill of AQUM through the estimated hit rates.

Of the 61 modelled sites, 19 have marginal thresholds above 100µg/m3, depicted in

grey in top left panel. For 100µg/m3, the average estimated hit rate at UB sites is

0.599 (0.376, 0.939) and at RB sites is 0.472 (0.355, 0.670), where the range is given

in parentheses. Increasing the concentration to 120µg/m3 decreases the hit rate

probability to an average of 0.447 (0.008, 0.876) at UB sites and 0.322 (0.178, 0.573)

at RB sites. These continue to reduce to 0.212 and 0.126 above 160µg/m3 for UB

and RB sites respectively. There are five sites that see an increase in hit rate when
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comparing the estimate for above 140µg/m3 and above 160µg/m3. This could

be explained by 160µg/m3 being above the maximum value observed so little to

no empirical information is guiding the estimation and the misclassification of the

marginal shape parameter could be influencing these enlarging hit rate.

As a way to assess the model fit, we compare the model-based estimates of hit rate

to the empirical estimates for x equal to the marginal 90th quantile, x = 120µg/m3

and x = 140µg/m3. For the first case, the empirical hit rate ranges between 0.365

and 0.663 whereas the model-based estimates range between 0.370 and 0.638. The

difference between the empirical and model-based estimates is no more than 4.70%

with a median difference of 0.015. Increasing the concentration to 120µg/m3 the

median difference becomes −0.036, indicating a slight overestimation of hit rate

by the bivariate extreme value distribution models. The overestimation more than

doubles to 0.088 when increasing the concentration to 140µg/m3. This indicates

that the model captures the dependence structure well, however improvements could

be made at higher quantiles.

4.6 Conclusions

In this study, we have demonstrated several ways in which extreme value theory

can be used to validate numerical process-based forecasts. We first investigated

the tails of the marginal distributions by modelling the threshold exceedances of

both AURN and AQUM by a generalised Pareto distribution. We then contrasted

the parameter estimates and found that AQUM underestimated the magnitude of

the scale parameter on average 3.013 and misidentifies the tail structure at 39% of

sites. To assess if AQUM forecasts and AURN observations come from the same

distribution we constructed likelihood ratio tests. These concluded that the forecasts

and observations at 20% of RB sites and 37% of UB sites come from the same

distribution.

To probabilistically estimate conditional probabilities, such as the hit rate, we
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require a statistical model for the joint tail behaviour of AURN and AQUM. After

estimating the extremal dependence measure χ and performing a likelihood ratio

test (Ledford and Tawn, 1996) we concluded the joint tail exhibits asymptotic

dependence. The bivariate extreme value distribution is fitted to the joint tail of

AURN and AQUM. The survivor function of the fitted bivariate extremes model is

used to obtain estimates of conditional probabilities. Such conditional probability

estimates indicate that when ozone events become more extreme and pose greater

risk to public health, AQUM struggles to accurately capture the magnitude

particularly for observed events at least 120µg/m3. Comparing the model-based

estimates and empirical estimates of hit rate showed that a bivariate extreme

value distribution captures the dependence structure well, however improvements

for higher quantiles are needed.

One extension of this work would be to explore the dependence structure between

day T and day T+∆T to extend the evaluation into an on-line operational validation

tool. This could be done by a new post-processing technique; given that an

exceedance has been observed on day T then forecasts on day T + ∆T could be

corrected by an amount obtained from a similar bivariate extremes value model.

Further extensions include: allowing the threshold to vary across the seasons, fit a

non-stationary model to the hourly ozone measurements and forecasts by having the

GPD parameters as Fourier series of time, and include meteorological covariates such

as temperature and wind direction in the marginal parameters. Another extension

could be to use the Heffernan and Tawn (2004) conditional extremes model to

capture the temporal dependence in the observations, and contrast the structure

to the AQUM forecasts. The temporal dependence structure of the observations is

modelled using the conditional extremes model in Chapter 5 and is applied to allow

for short-lead-time extreme event forecasts to be made, see Section 5.5.
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Chapter 5

Modelling the temporal dependence

structure of extreme ozone events

5.1 Introduction

Air pollution episodes are periods of time where the concentration of a pollutant

is unusually elevated. Such episodes draw witness to only the largest values and

are often termed extreme events. Exposure to these extreme events poses risks:

development of respiratory issues for example ozone alone attributed to 254, 000

added deaths globally from chronic obstructive pulmonary disease in 2015 (Cohen

et al., 2017; Murray et al., 2020), reduction in photosynthesis and damaging crop

yields (Dingenen et al., 2009) and structural integrity of buildings (Brimblecombe

and Grossi, 2007). These events can add stress to health care systems and has cost

the EU approximately €166 billion in social costs during 2018 across 432 EU cities

(CE Delft, 2018). Therefore, it is important to quantify and predict the risk of

extreme events to mitigate these impacts.

Due to public health risks, warning systems are commonly used to forecast the short-

term risk of poor air quality. The UK uses the Daily Air Quality Index (DAQI) which

quantifies the health risk associated with concentrations of sulphur dioxide, nitrogen

oxide, ozone, PM2.5 and PM10, (DEFRA and UK-AIR, 2022). The index is a ten-
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point scale divided into four bands: low (1− 3), moderate (4− 6), high (7− 9) and

very high (10). The DAQI is defined for each pollutant as the average concentration

over 15-minute, 1-hour, 8-hour, 24-hour and 24-hour intervals respectively, (Connolly

et al., 2013). The published value is taken to be the maximum of the five pollutant

DAQIs. This method of computing and presenting health risk has been approved by

the Committee on Medical Effects of Air Pollutants (COMEAP, 2011). For ozone,

the risk level increases from low to moderate at 100µg/m3, from moderate to high

at 160µg/m3 and from high to very high at 240µg/m3, see Table 2.2 for full DAQI

breakdown for each pollutant.

The DAQI is formed from forecast concentrations to provide warnings for upcoming

air pollution episodes. Short-lead-time forecasts of pollutant concentrations typically

involve complex numerical models that describe chemical and physical processes and

their interactions. These forecasts are deterministic and are usually optimised to

predict the mean behaviour of the process. However, these models rarely consider

extreme events in their calibration process. Therefore, a more bespoke modelling

approach is needed to capture extreme events.

Extreme value theory provides such an approach by allowing for the characterisation

of the tail behaviour of any distribution. Let Xt be a time-series representing the

concentration of a pollutant with marginal distributions given by FX . Assuming

that the series is stationary, the generalised Pareto distribution can be fitted to

the independent exceedances of a high threshold uX , see Sections 3.2.3 and 5.2.1

(Pickands, 1975; Leadbetter et al., 1983). However, the independence assumption

may not be appropriate as extremes often occur in clusters. Here a cluster is defined

by the runs method as a group of threshold exceedances in which any two consecutive

cluster members are separated by at most l− 1 non-exceedances where l is referred

to as the run length (Smith and Weissman, 1994). Modelling clusters is more

complicated due to the need to capture both the marginal distribution and the

dependence structure of the extremes. Joe (1997) suggests modelling the marginal

distribution of all exceedances and the dependence structure separately.
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Before describing a modelling approach for the within-cluster dependence structure

of clusters of extremes we first need to define the two classes of extremal dependence:

asymptotic dependence and asymptotic independence. The extremal dependence

class, of the random variables (X0, Xt) at lag t, is determined by the probability of

one variable being extreme conditional on the other also being extreme,

lim
x→x∗

χt(x) = lim
x→x∗

Pr(Xt > x | X0 > x) →

 0, if asymptotically independent

pt > 0, if asymptotically dependent
(5.1.1)

where x∗ is the upper endpoint of FX and limx→x∗ χt(x) = χt = pt ∈ [0, 1] determines

the strength of asymptotic dependence (Coles et al., 1999). We term χt(x) as

the sub-asymptotic extremal dependence measure. To determine the strength of

asymptotic independence, the measure χ̄t was introduced by Coles et al. (1999) and

is given by

χ̄t = lim
x→x∗

2 log Pr(X0 > x)

log Pr(X0 > x,Xt > x)
, (5.1.2)

which takes values [−1, 1]. The pair (X0, Xt) are said to be asymptotically

independent with positive association if 0 < χ̄t < 1, asymptotically independent

with negative association if −1 ≤ χ̄t < 0 and independent if χ̄t = 0.

Both measures together, (χt, χ̄t), provide a summary of the extremal dependence

between X0 and Xt. For example, if χ̄t = 1, the variables are asymptotically

dependent, and the value of χt summarises the strength of extremal dependence.

Whereas, if χ̄t < 1, then χ = 0 and the variables are asymptotically independent,

and the value of χ̄t is the strength of extremal dependence.

Identifying the type of extremal dependence structure is critical in model selection

as not all models can describe asymptotic (in)dependence and misclassification

could lead to underestimation of the dependence structure and measures of interest.

Such measures include Dv, the number of exceedances of v in a cluster, π(i, v) the

distribution of Dv, θ(v), the sub-asymptotic extremal index introduced by Ledford

and Tawn (2003) which can be computed as the reciprocal of the mean cluster size
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π(·, v), and the measure given in Winter and Tawn (2017),

ψT (i, v) = 1− exp

{
−θ(v)[1− F̃ (uX)]nTΠ(i, v)

[
1 + ξ

(
vX − uX
σuX

)]−1/ξ

+

}
, (5.1.3)

where nT is the number of observations in time period T , F̃ is the empirical

distribution and Π(i, v) =
∑∞

j=i π(j, v). This measure can be interpreted as the

probability of observing at least one cluster containing at least i exceedances in a

given time period. These measures are termed cluster functionals.

A wide range of models are used to capture extremal temporal dependence. Smith

et al. (1997) use a first-order Markov chain approach for modelling threshold

exceedances; however, they assume asymptotic dependence at lag one which

consequently implies asymptotic dependence at all lags. Extensions of this approach

to kth-order Markov chains can be found in Fawcett and Walshaw (2006) and

Ribatet et al. (2009), however, their models are still limited by an assumption of

asymptotic dependence at all lags. Winter and Tawn (2017) addresses this weakness

by introducing a model based on the conditional model for multivariate extremes

(Heffernan and Tawn, 2004) which can account for both asymptotic dependence

and asymptotic independence. As such, we seek to take advantage of the kth-order

Markov extremes model to provide good probabilistic estimates of extreme events

and provide more information on the risk of an extreme event of ozone than the

current DAQI system. The advantage of the Winter and Tawn method is it has the

capability to look at the full cluster behaviour. Further we aim to demonstrate the

forecasting capabilities of the model by simulating extreme events from an initial

exceedance using the forward simulation procedure given by Rootzén (1988).

The chapter is structured as follows. Section 5.2 sets out the asymptotically justified

modelling approach for kth-order chains based on the Heffernan and Tawn (2004)

conditional model. The parameter inference is explored in Section 5.3.1. The

simulation algorithm is given in Section 5.3.2 with a new diagnostic to choose the

model order in Section 5.3.3. Section 5.4 details the modelling results for our ozone
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data set from across Great Britain. Section 5.5 demonstrates the forecasting skill

of the kth-order Markov extremes model by forecasting all extreme events that

occurred during 2020. Conclusions and further work are presented in Section 5.6.

5.2 Modelling temporal dependence

The approach taken to modelling clusters of extremes is based on the concept of

a Markov process. By the Markov property, the probability distribution of future

states of the process conditioned on both the past and present states depends only

on the present state. The Markov property holds in a model if the values in any

state depend only on the immediately preceding or a small number of immediately

preceding states. Under the assumption that a time series {Xt} follows a kth-order

Markov process, the joint density f1:n of (x1, . . . ,xn) can be written as

f1:n(x1, . . . ,xn) = f1:k(x1, . . . ,xk)
n−k∏
t=1

fk+1|1:k(xt+k | xt:t+k−1), (5.2.1)

where fk+1|1:k(· | ·) is the conditional density function of Yk+1 | Y1:k. Consequently

we can model the extremes of the whole joint distribution by analysing the

extremes of (Xt, . . . , Xt+k) for t = 1, . . . , n − k and the conditional distribution of

Xt+k | (Xt, . . . , Xt+k−1). Adopting a copula framework (see Section 3.3.2 for details)

allows us to model the marginal distributions and the joint distribution separately

(Joe, 1997). We provide the modelling framework for the marginal exceedances

of threshold uX in Section 5.2.1. The extremal dependence modelling framework is

presented in Section 5.2.3 with the asymptotic justifications outlined prior in Section

5.2.2.

5.2.1 Marginal modelling

As {Xt} is a stationary series, the marginal distributions FX are identical. The

most common approach to modelling the marginal distributions of extreme values
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is to fit a generalized Pareto distribution (GPD), equation (3.2.5), to the peaks over

threshold data, i.e. exceedances of a high threshold uX (Pickands, 1975; Leadbetter

et al., 1983). Following Coles and Tawn (1991), we model the marginal distribution

of Xt as

FX(x) =

 1−GuX (x)[1− F̃ (uX)], for x > uX ,

F̃ (x), for x ≤ uX ,

where GuX (x) is the generalised Pareto distribution, F̃ (x) is the empirical marginal

cumulative distribution function of {Xt}nt=1 and 1 − F̃ (uX) is the threshold

exceedance rate.

Having estimated the marginal structure through standard likelihood approaches

an appropriate choice of transformation onto common margins is required before

characterising the extremal dependence. Following the work of Keef et al. (2013),

we use the probability integral transform to transform Xt, t = 1, . . . , n onto Laplace

margins, denoted by subscript L,

Xt,L =

 log{2F (Xt)}, if F (Xt) < 1/2,

− log{2[1− F (Xt)]}, if F (Xt) ≥ 1/2

which allows us to use the Normal distribution assumption in our inference, see

Section 5.3 for details. The symmetry of the Laplace distribution ensures the limiting

dependence model is unchanged with respect to t and the threshold and captures

the exponential upper tail of the Gumbel distribution required for modelling positive

dependence while allowing for negatively associated variables to be incorporated into

the model parsimoniously (Heffernan and Tawn, 2004; Heffernan and Resnick, 2007).

For variables on Laplace margins, we denote the associated threshold as uL.

5.2.2 Asymptotics for conditional extremes

Heffernan and Tawn (2004) proposed an asymptotically justified conditional ap-

proach for modelling the extremes of a vector X1:m,L where m ∈ N and each
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variable has Laplace margins. To investigate the conditional distribution P(X1:m,L ≤

x |X0,L > uL) for large uL we require the distribution to be non-degenerate as

uL → ∞, therefore an appropriate normalisation is required. Heffernan and Resnick

(2007) proposed that X1:m,L is linearly normalized as a function of either X0,L or

uL, however for statistical simplicity the Heffernan and Tawn (2004) approach to

normalize by X0,L is used.

Heffernan and Tawn (2004) assume there exists functions a : R → Rm and b : R →

Rm
+ , such that

P
(
X1:m,L − a(X0,L)

b(X0,L)
≤ z1:m, X0,L − uL > x

∣∣∣∣ X0,L > uL

)
→ G1:m(z1:m) exp(−x),

(5.2.2)

as uL → ∞, where G1:m is a joint distribution function that is non-degenerate in

each margin, i.e. for j = 1, . . . ,m the jth margin Gj of G1:m is non-degenerate and

z ∈ Rm. Heffernan and Resnick (2007) show that a and b must be regularly varying

functions, i.e. a decaying function of some order. A simple form for a and b that

holds for a very broad range of copulas was found to be

a(X0,L) = α1:mX0,L and b(X0,L) = Xβ1:m

0,L (5.2.3)

where α1:m = (α1, . . . , αm) ∈ [−1, 1]m and β1:m = (β1, . . . , βm) ∈ (−∞, 1)m. This

canonical parametric subfamily of a and b provides a flexible family for statistical

modelling.

Keef et al. (2013) provides details on how to interpret the type of extremal

dependence from the dependence parameters α1:m and β1:m. For 1 ≤ j ≤ m, the pair

(X0,L, Xj,L) are independent when αj = βj = 0, asymptotically positive dependent

when αj = 1 and βj = 0, asymptotically negative dependent when αj = −1 and

βj = 0, and asymptotically independent when αj < 1.
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5.2.3 Temporal dependence modelling

The within cluster dependence model of Winter and Tawn (2017) has two compo-

nents: (a) a conditional model for the joint behaviour of terms 2, . . . , k given the

initial term (k = 1); (b) for t = k + 1, . . . , a conditional model for each term given

the preceding k terms.

Component (a) uses the conditional extremes approach of Heffernan and Tawn

(2004) and Heffernan and Resnick (2007). Similarly the limiting form of the

conditional distribution (5.2.2) is assumed to hold exactly for all values of Xt,L > uL

with m = k such that the normalizing functions a and b can be given by the forms

in equation (5.2.3). This results in

Xt+1:t+k,L | (Xt,L > uL) = α1:kXt,L + (Xt,L)
β1:kZ1:k, (5.2.4)

for α1:k ∈ [−1, 1]k, β1:k ∈ [0, 1)k and where Z1:k is a random variable, which

is independent of t and Xt,L since the process is assumed to be stationary, with

joint density g1:k and distribution function G1:k. As the recurrence relationship in

equation (5.2.4) is assumed to hold only for Xt,L > uL, the processes generated

under this model will return from an extreme state to the body of the distribution,

i.e. will eventually fall back below the marginal threshold, Smith (1992) and

Papastathopoulos et al. (2017).

For component (b), model (5.2.4) is assumed to hold exactly for Xt,L = xt,L > uL

such that,

Xt+k,L | (Xt:t+k−1,L = xt:t+k−1,L) = αkXt,L + (Xt,L)
βkZk|1:k−1, (5.2.5)

where the conditional distribution of Zk|1:k−1 is obtained from g1:k using Bayes

Theorem,

Gk|1:k−1(z | z1:k−1) =

∫ z

−∞
gk|1:k−1(r | z1:k−1)dr. (5.2.6)
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Consequently estimates for future events Xt+k+j for j = 1, . . . ,m can be obtained

without explicitly evaluating αk+1:m, βk+1:m and Gk+1:m.

5.3 Inference

5.3.1 Parameter inference

Following Winter and Tawn (2017) we use a three-step inference procedure where we

estimate the marginal parameters (σuX , ξ), the dependence parameters (α1:k,β1:k)

and then the distribution (Gk|1:k−1). Winter and Tawn (2017) provide justification

to how one can separate out the inference for the margins from the inference for the

dependence. The likelihood of the model can be written as

f1:n(x1, . . . ,xn) ≈
∏

t:xt,L>uL

cXL
1:k+1(xt:t+k,L)

cXL
1:k (xt:t+k−1,L)

∏
t:xt>uX

f(xt), (5.3.1)

where cXL
1:k+1 and cXL

1:k are the copula densities for Xt:t+k,L and Xt:t+k−1,L respectively

and xt,L = F−1
XL

(FX(xt)) for all t. For the second product of the likelihood we

use standard maximum likelihood estimation for (σuX , ξ) using all the threshold

exceedances of uX . The first product term requires the conditional distribution of

Xt+k | Xt:t+k−1 given in equation (5.2.5) and since G1:k and its marginals do not

take any finite parametric form, we make a temporary assumption that Z1:k are

independent Normal variables with Zj ∼ N(µj, γ
2
j ) for j = 1, . . . , k (Keef et al.,

2013). Under this assumption,

Xt+j,L | {Xt,L = xL} ∼ N
(
αjxL + µj(xL)

βj , γ2j (xL)
2βj
)

for xL > uL,

where j = 1, . . . , k for all t resulting in the likelihood

L(α1:k,β1:k,µ1:k,γ1:k) =
k∏
j=1

nu∏
i=1

1√
2πγ2j (xi,L)

2βj

exp

{
−(xi,L − µji)

2

2γ2j (xi,L)
2βj

}
, (5.3.2)
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where nu is the number of exceedances by {Xt} of uX , and µji = αjxi,L + µj(xi,L)
βj

for j = 1, . . . , k and i = 1, . . . , nu. Maximization of likelihood L gives estimates

(α̂1:k, β̂1:k, µ̂1:k, γ̂1:k).

The conditional distribution function Gk|1:k−1 is estimated non-parametrically by

first obtaining a non-parametric estimate of the joint density function g1:k. We use

a similar kernel density approach to Papastathopoulos and Tawn (2013). We first

obtain fitted residuals from the IID model ẑ(i)1:k, i = 1, . . . , nu from Z1:k. Specifically,

let t1, . . . , tnu be the indices of t = 1, . . . , n where xt > uX . We invert equation

(5.2.4) such that, for i = 1, . . . , nu

ẑ
(i)
1:k =

xti+1:ti+k,L − α̂1:kxti,L − µ̂1:k(xti,L)
β̂1:k

γ̂1:k(xti,L)
β̂1:k

. (5.3.3)

For each j = 1, . . . , k, the sample ẑj = (ẑ
(i)
j , i = 1, . . . , nu) has zero mean and unit

variance.

We estimate the joint density g1:k by fitting a multivariate kernel density estimation

methods to the fitted residuals, ẑ1:k,

g̃1:k(z) = g̃(z1, . . . , zk) =
1

nu

nu∑
i=1

KH

(
z− ẑ

(i)
1:k

)
(5.3.4)

where KH is the multivariate Normal kernel function centred on 0 and H is a

symmetric positive definite matrix of bandwidths which control the roughness of

the smoothing. Winter and Tawn (2017) use the standard independent multivariate

normal kernel. Instead we use the approach of Liu and West (2001) who shrink

the variance of a kernel to reduce the risk of inflating the variance of the estimator

which arises when too large a bandwidth is used. This reduces the risk of misleading

estimates as the samples will be less varied. Here we use a shrinkage factor cj =√
1− h2j where hj is the bandwidth associated with lag j. As such equation (5.3.4)

becomes

g̃1:k(z) = g̃(z1, . . . , zk) =
1

nu

nu∑
i=1

k∏
j=1

1

hj
ϕ

(
zj − ζ

(i)
j

hj

)
, (5.3.5)
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where for j = 1, . . . , k, ζ(i)j = cj ẑ
(i)
j + (1− cj)µz,j and hj =

(
4σ5

z,j

3nuX

)1/5
, µz,j and σz,j

are the mean and standard deviation of ẑj respectively (Scott, 1992) and ϕ(·) is the

standard Normal density function. It follows that our non-parametric estimate of

the conditional distribution function Gk|1:k−1 is

Ĝk|1:k−1(z | z1:k−1) =
nu∑
i=1

ωiΦ

(
z − ζ

(i)
k

hk

)
,

where the weights

ωi =
k−1∏
j=1

ϕ

(
zj − ζ

(i)
j

hj

)
/

nu∑
r=1

k−1∏
j=1

ϕ

(
zj − ζ

(r)
j

hj

)
i = 1, . . . , nu, (5.3.6)

satisfy 0 ≤ ωi ≤ 1,
∑nu

i=1wi = 1.

5.3.2 Extremal chain simulation algorithm

The model given in Section 5.2 describes the stochastic evolution of the chain over k+

m days following the initial exceedance. With the estimates of the model parameters,

we can use a simulation process to derive estimates of the cluster functionals outlined

in Section 5.1. The following simulation process follows the method outlined in

Winter and Tawn (2017). Starting with a simulation of the initial value in the

cluster, the remaining values of the cluster can be simulated by iterative application

of the model (5.2.5). This creates realisations of a tail chain with kth-order structure.

Unless stated otherwise, we initialise the simulated cluster by generating a starting

exceedance X(v)
0 = v + E1 where E1 is simulated from the standard exponential

distribution. Conditionally on X(v)
0 the next k−1 observations are simulated jointly

by

X
(v)
1:k−1 = α̂1:k−1X

(v)
0 + µ̂1:k−1

(
X

(v)
0

)β̂1:k−1

+ γ̂1:k−1

(
X

(v)
0

)β̂1:k−1

Z1:k−1, (5.3.7)
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where Z1:k−1 is sampled independently from ĝ1:k−1 and the marginal of ĝ1:k is given

by equation (5.3.5). At all subsequent time-steps m ≥ k, the transition kernel of

the extremal tail chain is used,

X(v)
m = α̂kX

(v)
m−k + µ̂k

(
X

(v)
m−k

)β̂k

+ γ̂k

(
X

(v)
m−k

)β̂k

Zm|m−k+1:m−1, (5.3.8)

where Zm|m−k+1:m−1 values are sampled independently from Ĝk|1:k−1. Following

this approach provides a tail chain X
(v)
0 , . . . , X

(v)
m on Laplace margins with kth-

order temporal dependence structure. The tail chain is immediately terminated

when X
(v)
m < 0, i.e. the simulated process falls below the marginal median, as the

transition (5.3.8) cannot be evaluated since βk < 1.

By repeating the steps above nsim times we obtain a sample of tail chains of size

nsim where each has the desired kth-order temporal dependence structure. From the

sample, we average over the chain lengths to obtain a model-based estimate for θ(v).

We obtain an estimate for χj(v) by evaluating the distribution of Dv. Estimates for

ψT (i, v) naturally follows by evaluating equation (5.1.3).

5.3.3 Extremal Markov process order selection

A standard approach to estimate the order of a Markov chain is to use the partial

auto-correlation function (PACF) to identify the largest lag at which the PACF

is significantly different from zero (Chatfield, 2003). This may not necessarily be

appropriate for an extremal Markov process as the PACF inference is dominated

by the data in the body of the distribution and the extremes may exhibit different

dependence structure to data from the body of the distribution.

Winter and Tawn (2017) developed alternative diagnostics for the Markov process

order which assess the stability of cluster functionals over a range of v > uL. The

resulting visual diagnostics are similar to the threshold stability plots for extremal

parameters by Coles (2001). If no particular cluster functional is of interest then
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they suggest that the best estimate of the extremal Markov process order is τ̂ where

τ̂ = min

{
τ > 0 :

∑
v∈V

{| θ̂(τ)(v)− θ̃(v) | + 1

nJ

∑
j∈J

| χ̂(τ)
j (v)− χ̃j(v) |< ϵ}

}
, (5.3.9)

for a choice of ϵ > 0 where θ̃(v) and θ̂(τ)(v) are the empirical and model-based

sub-asymptotic extremal index estimates, χ̃j(v) and χ̂
(τ)
j (v) are the empirical and

model-based sub-asymptotic extremal dependence measure estimates, J is a set of

lags, V is a set of thresholds and nJ is the length of J .

We propose a new diagnostic that accounts for multiple metrics. This new diagnostic

adapts recent work of Knutti et al. (2017) which is used to compute ensemble

model estimates using a weighted sum of multiple model outputs. The diagnostic

normalises the difference between the model-based estimate and the empirical

estimate of a metric over a range of levels v > uL from the τth-order model by

the difference between the τth-order metric estimate and all other order metric

estimates. More precisely, the best estimate of the extremal Markov process order

is τ̂ = max(ωτ ), where ωτ is the weight of the model of τth-order given by

ωτ =

∑M
i=1 exp (−D2

iτ )

M +
∑M

i=1

∑
j ̸=τ exp

(
−S2

ijτ

) , (5.3.10)

whereDiτ is a distance measure between the empirical estimate and τth-order model-

based estimate of the ith metric, Sijτ is the difference between the τth- and jth-order

model-based estimate of the ith metric and M is the number of metrics.

5.3.4 Bootstrapping

Throughout, estimates of the uncertainty of extremal quantities, including the

dependence parameters and cluster functionals, will be derived by bootstrapping.

As we are modelling the temporal dependence of a single variable Xt we require a

resampling approach that keeps the temporal dependence features of the original

data. Thus, we construct bootstrap samples by splitting the original data into
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periods of exceedances (clusters) and non-exceedances. Then we iteratively pick

randomly from the sets of non-exceedances and exceedances until we have a new

sample with the same length as the original data. For each bootstrap sample the

marginal and dependence characteristics can then be assessed using the approaches

above.

To estimate the uncertainty in the estimates of the temporal dependence and the

cluster functionals we take the 2.5% and 97.5% quantiles of the bootstrap estimates

to form a 95% block-bootstrapped confidence interval. When the bootstrapping

approach becomes too computationally intensive, we construct uncertainty bounds

by taking the standard error of a smaller number of bootstrap replicates (here

used 20) and construct a symmetric confidence interval, termed as modified block-

bootstrapped confidence interval.

5.4 Data analysis

5.4.1 Observational data

The hourly ozone observations from AURN, described in Section 2.4.1, are

aggregated to the daily maximum of the 8-hour running mean scale (DM8). We

restrict ourselves to the site-specific ozone seasons, as defined in Section 2.4.3, to

focus on the time of year where the levels of ozone are usually highest. The sampled

monitoring sites and their corresponding marginal 90th quantile are shown in Figure

5.1. Throughout the analysis of Chapter 5 we demonstrate the modelling approach

on two sites, Aston Hill (AH, rural background) and Wirral Tranmere (TRAN, urban

background). These two sites approximately represent all sites of respective type by

capturing the average distribution of ozone, the extremal index and the temporal

dependence.

As we are interested in modelling the temporal dependence structure, we first

identify clusters using the empirical runs estimator, defined in Section 5.1, with a

run length of one day. A run length of one day was chosen to optimise our data and
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to be in-line with other meteorological and air quality definitions, such as heatwaves.

As such, this results in an average of 56 clusters at each site with a median cluster

length of two days. Further the longest duration event ranges from five to 21 days

across sites (median of nine days). Across the sites, the proportion of clusters that

lasted one day ranges between 0.37 and 0.66 with the average being 0.50, indicating

that a run length of one day is appropriate.

Figure 5.1: Map showing the modelling threshold (lighter colour denotes higher
concentration) of the sampled urban background sites (▲) and rural background sites
(•). Sites circled are (in black) the randomly selected case study sites we use to verify the
model and (in red) the sites we use to demonstrate the modelling approach.

5.4.2 Marginal modelling

To fit a stationary generalised Pareto distribution, we first identify an appropriate

marginal modelling threshold at each site by examining the stability in the shape

estimates with threshold, Coles (2001). Such stability plots indicate that it is

sensible to use the site-specific 90th quantile as our marginal modelling threshold at

all sites. This results in a threshold ranging from 72.75µg/m3 to 108.56µg/m3 with

nine rural background and three urban background sites having thresholds above

100µg/m3.
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Figure 5.2: Maps showing (top) the MLEs of the marginal GPD scale parameter (left)
and shape parameter (right) and (bottom) the one-year return levels (left) and ten-year
return levels (right). The size of the points indicate the standard error of the estimate. (◦)
points denote rural background sites and (△) points denote urban background sites.

The GPD parameter estimates for each site are displayed in Figure 5.2 (top).

The largest estimates of the scale parameter occur in central England and around

London, with estimates decreasing with latitude. The shape parameter estimates

have a more complex pattern, with heavier tails around the coast and lighter

tails in the Midlands. Only 42% of rural background sites have a negative shape

parameter compared to 71% of urban background sites. One- and ten-year return

level estimates are also displayed in Figure 5.2 (bottom). Larger return levels occur

in the south and at the east-coast sites. The one-year return levels indicate that four

rural background and one urban background site are expected to exceed 160µg/m3

(DAQI of 7, meaning a high health risk) on average once every year. Whereas
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the ten-year return level estimates suggest all but one site (Aberdeen, ABD) are

expected to experience an exceedance of 160µg/m3, and eight sites are expected to

see an exceedance of 240µg/m3 (DAQI of 10, meaning a very high health risk) once

every ten years.

5.4.3 Conditional modelling

Figure 5.3 shows the estimates of χj(v) for the case where v is set to the 90th

quantile (u90,L). The estimates indicate strong asymptotic dependence at lags one

and two across all sampled monitoring sites. As the lag increases the strength of

asymptotic dependence decreases. Upon examining the corresponding confidence

intervals (not shown here), the type of dependence for higher lags switches to

asymptotic independence since the confidence intervals span zero. For some sites in

the Midlands, the confidence intervals suggest that asymptotic independence occurs

as early as lag two or three.

The dependence parameter estimates for the Heffernan and Tawn (2004) conditional

model are shown in Figures 5.4 and 5.5 for lags j = 1, . . . , 8. Lag one and two

estimates indicate asymptotic dependence for most sites with some Midlands sites

indicating asymptotic independence as the α estimates are not one, although the

confidence intervals do include one (not shown here). Sites on the south east-

coast and Midlands on average have smaller negative α estimates with some sites

indicating negative asymptotic independence. The β estimates in Wales and south-

west England remain marginally positive over the eight lags whereas the rest of the

UK has negative estimates. This implies that Wales and south-west England on

average see longer events than the rest of the UK since a negative β value implies

that all of the conditional quantiles of Xt+k converge to the same value as Xt. This is

consistent with the sub-asymptotic extremal index estimates and that fewer longer

events are observed in these regions.
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Figure 5.3: The extremal dependence measure χj(v) evaluated at the 90th quantile for j =
1, . . . , 8. (◦) points denote rural background sites and (△) points denote urban background
sites.
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Figure 5.4: Estimates for αj for j = 1, . . . , 8 at all sampled AURN sites. (◦) points denote
rural background sites and (△) points denote urban background sites.
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Figure 5.5: Estimates for βj for j = 1, . . . , 8 at all sampled AURN sites. (◦) points denote
rural background sites and (△) points denote urban background sites.

5.4.4 Order selection

We use the algorithm in Section 5.3.2 to simulate 5000 extremal chains from the

fitted kth-order Markov extremes models with k = 1, . . . , 8 and look at how the

model-based estimates of the sub-asymptotic extremal dependence measure χj(v)

and ψ(i, v) = ψ1(i, v) compare to the empirical-based estimates, Figures 5.6 and 5.7.

In these figures we set v to be the marginal 90th quantile (u90,L) and 95th quantile

(u95,L). At Aston Hill, all kth-order Markov extremes models overestimate the short
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(3) and medium (4− 5) range extremal dependence χj(u90) with k = 1 performing

the poorest and k = 5 performing the best. For long-range dependence structure

(≥ 6) there is little difference between k = 5, 6, 7, 8 and the empirical estimate. For

v = u95,L, all models slightly underestimate the longer dependence structure which

could be due to the limited number of such observed events causing the empirical

estimate to flat-line. At Wirral Tranmere, the simplest model (k = 1) estimates are

closest to the empirical and the more complex models (k = 6, 7, 8) do just as well,

whereas the models of order k = 2, 3, 4 perform the worst at v = u90,L. The best

order at v = u95,L is k = 2 with the worst performing being k = 7 or 8. Note all

model-based estimates fall within the empirical block bootstrapped 95% confidence

intervals indicating good model fits.

Figure 5.6: Estimates of the sub-asymptotic extremal dependence measure χj(v) for
j = 1, . . . , 8 at (top row) Aston Hill and (bottom row) Wirral Tranmere with v = u90,L
and v = u95,L respectively. Lines show the empirical estimator (black) and model-based
estimates for different order Markov models (rainbow). The grey regions are the 95%
block-bootstrapped confidence intervals of the empirical estimate.
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Figure 5.7 shows that the estimates for ψ(i, u90,L) at Aston Hill overestimate the

probability of observing an event at least i = 1, . . . , 8 days long in an ozone season.

The model of order k = 2 performs the worst, whereas the model of order k = 1

performs the best. This is the same at Wirral Tranmere, however the models of

order k = 1, 6, 7, 8 captures the probability of seeing events at least 6 days long

well. The estimates of ψ(i, u95,L) model-based estimates are closer to the empirical

estimates for both sites with k = 4 being the closest to the empirical estimates and

k = 1 being the poorest at Aston Hill and at Wirral Tranmere the best is k = 1 and

poorest is k = 2 or k = 8.

Figure 5.7: Estimates of ψ(i, v) for i = 1, . . . , 8 at (top row) Aston Hill (bottom row)
and Wirral Tranmere, with v = u90,L and v = u95,L respectively. Lines show the empirical
estimator (black) and model-based estimates for different order Markov models (rainbow).
The grey regions are the 95% block-bootstrapped confidence intervals of the empirical
estimate.

These figures indicate that, for Aston Hill, the best model would be order 1, 4,

or 5 depending on short-, medium- or long-dependence structures and modelling
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threshold, whereas at Wirral Tranmere the best model would be k = 1. Such visual

diagnostics provide a subjective determination of the best model order. Thus to

obtain a more objective choice, we use equation (5.3.10) over the cluster functionals

χj(v) and ψ(i, v) evaluated at v = u90,L, . . . , u95,L and across the first five lags to

determine τ̂ for each sampled site. This indicates that Aston Hill requires a model

of order k = 4 and it confirms that Wirral Tranmere requires a model of order

k = 1. Across all the sampled sites we find that 22 (36%, 64%), 13 (38%, 62%), 5

(20%, 80%), 5 (60%, 40%), 3 (0%, 100%), 4 (50%, 50%), 3 (0%, 100%), 2 (0%, 100%)

sites required models of order k = 1, . . . , 8 respectively, where values in parentheses

are the rural background and urban background percentage breakdowns of each

order.

Lon. Lat. θ(v) χj(v) ψ(i, v) Wθ,χ Wθ,ψ τω,1 τω,2

BAR3 -1.51044 53.56292 5 7 2 7 7 2 2
CANT 1.09806 51.27399 2 2 1 2 2 1 1
COAL -1.56023 52.41156 8 1 1 8 8 1 1
GLKP -4.24363 55.86578 2 7 1 2 2 1 1

HIL -0.46086 51.49633 7 6 7 7 7 2 7
WIG5 -2.63814 53.54914 1 5 1 1 1 1 1

MACK -2.68345 51.05625 1 6 4 1 1 4 1
HM -0.80855 54.33494 3 7 2 3 3 2 2
SIB 1.46350 52.29440 2 1 1 2 2 1 1

Table 5.1: Determining the best model order at the nine case-study sites using different
measures: Absolute difference in θ(v), mean absolute error in χj(v), mean absolute error
in ψ(i, v), Winter and Tawn measure, Winter and Tawn measure replacing χj(v) with
ψ(i, v), equation (5.3.10) looking at χj(v) and ψ(i, v) and equation (5.3.10) looking over
θ(v), χj(v) and ψ(i, v) respectively where we evaluate at v = u90,L, . . . , u95,L and where
appropriate average is taken over the first five lags.

We do find that the best model order changes depending on the statistical measure

used. We show how the order differs for seven statistical measures at the case study

sites, see Table 5.1. There appears to be some consistency between the model

order determined by the difference in θ(v) and the Winter and Tawn measure,

equation (5.3.9). In fact, 48 sites have the same model order across the two

measures. However, one would suggest the Winter and Tawn measure is biased
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towards θ(v) since the contributions from χj(v) and ψ(i, v) do not alter the model

order at majority (84%) of sites and their corresponding model orders frequently

differ (81% and 75% respectively) to that of θ(v). Further, to suggest their measure

is biased is when exchanging χj(v) for ψ(i, v) as the model order for all sites remain

the same.

Figure 5.8 shows the best model order for each site, estimated by equation (5.3.10).

As one may expect sites which are close together are of similar order. Sites in the

south-west on average require more complex models with 3 sites in Greater London

having τ̂ = 8. The Midlands typically require models of order τ̂ = 1, 2 with a few

requiring more complex models.

Figure 5.8: Map showing the best model order (τ̂) determined by equation (5.3.10) using
the cluster functionals χj(v) and ψ(i, v). (◦) points denote rural background sites and (△)
points denote urban background sites.

5.4.5 Model verification

In statistical modelling, it is natural to ask how well the model performs on the

trained dataset. To assess the performance, we compare the empirical estimates of
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the cluster functionals θ(v), χj(v) and ψ(i, v) to the model-based estimates at each

site. We use the difference measure for θ(v) and the mean absolute error (MAE) for

χj(v) and ψ(i, v) (averaging over the first five lags). Further, we look at how the

model performs at difference quantiles, v = u90,L and v = u95,L.

Figure 5.9: Difference between the empirical estimate and the model-based estimate of
θ(v) and the mean absolute error of χj(v) and ψ(i, v) respectively by row. We average over
the first five lags for χj(v) and ψ(i, v). The cluster functionals evaluated for v = u90,L and
v = u95,L respectively by column. (◦) points denote rural background sites and (△) points
denote urban background sites.

Figure 5.9 shows the difference between the empirical estimate and model-based

estimate of the cluster functionals across all sites. For θ(u90,L) the difference ranges

from −0.047 to 0.073 with a median difference of just 0.012 and 31.6% (38.5%)
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of rural (urban) background sites underestimate. This increase to 71% and 84.2%

respectively when v = u95,L. The magnitude of underestimating increases with a

difference ranging between −0.130 to 0.047 and a median value of −0.037.

There is little difference between the ranges and medians of the mean absolute error

of χj(v), however the spatial distribution of these change. For v = u90,L the MAEs

are larger on the west-coast with the smallest in East Anglia. This changes to the

south-coast having the smallest MAEs and North England and Scotland having the

largest for v = u95,L. For ψ(i, v) there appears to be no obvious spatial trend in

the MAEs but a noticeable difference in the magnitude between the two quantiles.

The range goes from (0.006,0.088) to (0.009, 0.126) and the median increases by

63% from 0.029 to 0.046. Note all the cluster functionals take values between zero

and one. These estimates and their corresponding standard errors computed by the

modified block-bootstrap approach, demonstrated in Table 5.2 for our case study

studies, indicate little difference between the empirical estimates and the model-

based estimates meaning that the model captures the extremal structure of the

trained data well.

Code θ(v) χj(v) ψ(i, v)

BAR3 0.013 (0.017) 0.059 (0.010) 0.046 (0.006)
CANT 0.048 (0.009) 0.014 (0.002) 0.034 (0.010)
COAL 0.029 (0.018) 0.032 (0.005) 0.023 (0.011)
GLKP 0.040 (0.016) 0.108 (0.011) 0.033 (0.003)

HIL 0.042 (0.015) 0.045 (0.007) 0.012 (0.017)
WIG5 0.013 (0.024) 0.074 (0.013) 0.009 (0.008)

MACK -0.019 (0.018) 0.082 (0.007) 0.032 (0.017)
HM 0.004 (0.011) 0.064 (0.007) 0.019 (0.009)
SIB 0.024 (0.012) 0.017 (0.003) 0.016 (0.008)

Table 5.2: Difference between the empirical estimate and the model-based estimate of θ(v)
and mean absolute error of χj(v) and ψ(i, v) at the nine case study sites with v = u90,L.
Mean is taken over the first five lags. Standard errors are given in parentheses computed
by the modified block-bootstrap approach.
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5.5 Forecasting

Scenario simulation

Scenario forecasting aids in warning system development and decisions of policy

makers by providing useful information into what could be expected during an

extreme event. Such useful information includes the cluster functionals. Here, we

provide cluster functional estimates for three scenarios where the initial exceedance

is greater than: (a) the marginal 90th quantile (b) the site-specific one-year return

level, and (c) 160µg/m3 (minimum for DAQI of 7, high health risk). These scenarios

are selected based on modelling quantities and public health risk levels. To obtain

the cluster functional estimates we simulate 5000 extremal chains by following the

algorithm in Section 5.3.2 but using an alternate cluster definition - where a cluster is

said to have ended once the concentration falls below 100µg/m3. This is done since a

concentration below 100µg/m3 is said to pose a low risk to public health according to

the DAQI. We present cluster functional estimates for i = 2, 5, and 8 to demonstrate

the short-, medium- and long-range dependence structure. Throughout, across site

standard deviations are given in parentheses.

Figure 5.10a shows the estimated cluster functionals Π(i, v) for each scenario.

Increasing X0 increases the probability of observing a longer event. Further sites, in

particular rural background sites, on the coast tend to have the largest probability

of witnessing longer extreme events. On average the probability that after the first

exceedance the concentration is above 100µg/m3 are 0.481 (0.155) and 0.267 (0.151)

across the rural and urban background sites, respectively. This is approximately 6-

fold higher than the empirical estimates 0.086 (0.033) and 0.048 (0.025), respectively.

There is little difference in scenario (b) and (c)’s probabilities of witnessing an

event at least two days long at rural background sites and urban background sites.

However, rural background sites have on average more than twice the chance of

seeing an event longer than five and eight days than urban background sites and

almost three times the probability in the case of scenario (a).
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(a) Estimates of Π(i, v)

(b) Estimates of ψ(i, v)

Figure 5.10: Cluster functional estimates for each scenario (rows) and for i = 2, 5, 8 day
of the simulated event (columns). Note the changing of scales throughout the maps. (◦)
points denote rural background sites and (△) points denote urban background sites.

Figure 5.10b gives the probability of observing an extreme event in an ozone season.
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There is little difference in the estimate between rural background and urban

background sites for at least two-day long events for all three scenarios. Under

scenario (a) the probability we observe an event of at least five days long above the

moderate health risk is on average 0.477 (0.145) and 0.273 (0.153) at rural and urban

background sites respectively. This decreases to 0.005 (0.006) and 0.001 (0.001) for

scenario (c). Scenario (c) indicates that the east-coast and south-coast sites have

the largest probability of witnessing a longer event in an ozone season.

Short-lead-time forecasting

As short-lead-time forecasting plays a fundamental role in providing the public

with health warnings, we wish to demonstrate the forecasting skill of the kth-order

Markov extremes model by forecasting out-of-sample events. More specifically, we

extract all extreme events that occurred in 2020, an out-of-sample year, at each of

our sampled monitoring sites and use the fitted kth-order Markov extremes model

to see how well the model does at forecasting these extreme events given the initial

exceedance. This is conducted by, for each sampled monitoring site and extreme

event, simulating 5000 extremal chains using the simulation algorithm in Section

5.3.2 with initialising step of setting v to be the initial observed exceedance. These

simulations are then used to determine the evolution of the event. Note three sites

did not witness an extreme event during 2020 and are omitted here.

Figure 5.11 depicts the distribution of ozone concentration on the next i days after

the initial exceedance for two events at Aston Hill and Wirral Tranmere. The

points indicate the observed concentration and evolution of the event. Such figures

can be used to determine the probability of persistence and provide probabilities of

remaining in different risk levels. For example, the Figure 5.11(b) indicates that for

days 1, 2 and 3 after the initial exceedance the probability of being at least moderate

risk (>100µg/m3) is 0.843, 0.611, 0.467 respectively. These figures (across all sites)

indicate that on average the median of the chains on each day captures the correct

classification, marginal threshold exceedance or non-exceedance.
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Figure 5.11: Density plots of ozone concentration on the ith day after the initial
exceedance for two events at (a, b) Aston Hill and (c, d) Wirral Tranmere, with the
marginal threshold given by the grey dashed line. The black points indicate the observed
concentration on each day of the event (the threshold exceedances and the first non-
exceedance).
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To numerically quantify the forecasting performance of the model we compute the

sub-asymptotic extremal index θ(v) and the average integrated concentration dis-

crepancy across the extreme events with the median estimating the concentration on

each day. On average, the θ(v) estimates indicate an approximate underestimation

of the length of extreme event by one day, however 35 sites have larger empirical

θ(v) estimates for 2020 than 2011 − 2019 which indicates longer extreme events

were observed. Figure 5.12 shows the average integrated difference using all the

simulated chains or chains of observed event length only, respectively. Using all the

simulated chains the kth-order Markov extremes model on average overestimates

the ozone concentration by approximately 9.471µg/m3 per day, whereas the chains

of observed event length indicate an average overestimation of 3.368µg/m3 at 45

sites and underestimates at 12 sites by approximately 1.358µg/m3 on average per

day. The integrated difference is largest around London and south-east England

indicating a potential improvement is required.

Figure 5.12: Maps showing the average integrated difference between the observed event
and model-based median estimates using (left) all the simulated chains (right) chains of
observed event length. Grey coloured sites are the sites where no extreme events occurred.
(◦) points denote rural background sites and (△) points denote urban background sites.

5.6 Conclusions

Extreme levels of DM8 ozone often occur in clusters exhibiting temporal dependence

of the form asymptotic dependence and asymptotic independence. To capture this
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structure, we used the kth-order Markov extremes model of Winter and Tawn (2017).

To identify the optimal model order, we introduced a new statistic that adapts work

of Knutti et al. (2017) by computing weights for each model order based on cluster

functional estimates across a range of lags and quantiles. For our sampled AURN

sites we found that on average urban background sites required a more complex

model compared to rural background sites and the selected model order provides

suitable approximations of the dependence structure.

In Section 5.5 we introduced two novel applications of the model, simulating

important scenarios and short-lead-time forecasts of an out-of-sample event. We

forecast all 2020 extreme events at all sites and found that the kth-order Markov

extremes model provides good forecasts by capturing the duration of the events with

an average overestimation of ozone concentration less than 3µg/m3 on each day of

the event. The model struggles to capture the correct magnitude of ozone around

London. To improve these forecasts, one could use more sites within the region,

using the London Air Quality Network, and average over them to provide a more

representative estimate. A bias correction technique, similar to the one described

in Section 2.4.2 and used by the UK Met Office, may also be appropriate here as

one could correct for the simulation error throughout an event or pool information

across sites which have similar temporal dependence structure.

Although we have only presented for DM8 ozone concentrations this model can easily

be implemented on the hourly scale given an appropriate condition to end an extreme

event, for example a run length of at least twelve hours to account for the diurnal

cycle. Further extensions include modelling the marginal parameter estimates or

the threshold as a function of time in the form of a Fourier series to account for

all seasonality. Another adaptation of the model would be to incorporate covariates

such as temperature, pressure and precursor concentrations in both the marginal

and conditional parameters. Tendijck et al. (2021, 2023) has started extensions by

modelling multivariate time series of oceanographic data with a multivariate kth-

order Markov extremes model. In operational terms, we would dynamically update
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the dependence parameters and model order as more measurements are taken and

extending the time series to make sure the model provides efficient cluster functional

estimates and forecasts. Further, we would want to be using backward simulation

processes from each exceedance in the chain to obtain the simulated chains that have

captured the previous estimates accurately and then simulate these chains forward

to obtain cluster functional estimates.
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Chapter 6

A spatial Bayesian hierarchical

model for extreme ozone

6.1 Introduction

Ozone (O3) is a natural constituent of the atmosphere and is present in both

the stratosphere and the troposphere. Tropospheric ozone is a secondary, trans-

boundary air pollutant that is formed through photochemical reactions between

anthropogenic nitrogen oxides and volatile organic compounds. Unlike stratospheric

ozone which protects life on earth, tropospheric ozone can cause adverse effects

when present in high concentrations. Short-term exposure can lead to difficulty

breathing and aggravation to pre-existing respiratory issues like asthma, emphysema

and chronic bronchitis; whereas long-term exposure can lead to development of such

respiratory illnesses and potential death (Bell et al., 2004; Wilson et al., 2014; WHO,

2013).

Statistical modelling of high (extreme) concentrations of ozone is crucial in providing

efficient forecasts and warnings to the public to mitigate morbidity. Extreme

value theory (EVT) provides a method to characterise the tail behaviour of any

distribution and the fundamentals can be found in for example: Pickands (1975);

Leadbetter et al. (1983); Resnick (2007); Beirlant et al. (2004); Coles (2001). In
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recent times, modelling spatial extremes has gained traction and three distinct

methods have been developed.

The first is based on max-stable processes which are the natural generalization of

the generalised extreme value (GEV) distribution to the infinite-dimensional setting.

Max-stable processes arise by looking at the limit process of the renormalised

pointwise maxima of the spatial stochastic process, see e.g. Davison et al. (2012),

Smith (1990b) or de Haan and Ferreira (2007) for details of the approach. These

models have been used in a wide variety of environmental applications e.g. Vettori

et al. (2019) to model maxima of air pollution concentration and temperatures

in Los Angeles and Oesting et al. (2016) uses a bivariate Brown-Resnick process

to model extreme wind gusts over Germany. However, inference for max-stable

models in high-dimensions is difficult due to the complicated form of the likelihood

function (Padoan et al., 2010; Ribatet et al., 2012). Further, the block maxima

approach relies on creating artificial spatial block maxima; that is if the chosen

block-resolution is too large or too small then one can be imposing unobserved

spatial structure when obtaining the block maxima values. To model the observed

spatial processes directly one can use the analogue of max-stable processes, namely

the generalised Pareto processes where one uses the threshold exceedance approach

in a spatial context (Ferreira and de Haan, 2014). These models also benefit from

usually having simpler likelihood functions. However, the issue with max-stable and

generalised Pareto processes is the limited dependence structures they can capture;

full independence and asymptotic dependence.

The extremal dependence class of a stochastic process is determined by the

conditional exceedance probability between two sites. More precisely, let X =

(X1, . . . , Xm) be the observed concentration of ozone at m sites, often denoted as

belonging to the set of all sites S such that |S| = m, then a stochastic process X(s)

over S ⊂ Rm, is said to be asymptotically dependent if for any two sites s1, s2 ∈ S
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the conditional exceedance probability

χu(s1, s2) = Pr
(
X(s1) > F−1

1 (u)|X(s2) > F−1
2 (u)

)
, (6.1.1)

has a positive limit as u → 1 (Coles et al., 1999), where F1, F2 are the

random variables associated with X(s1) and X(s2) respectively and F−1
· are the

corresponding inverses. The stochastic process is asymptotically independent if

the limit of equation (6.1.1) is zero. Often in environmental data the strength

of asymptotic dependence weakens with quantiles and distance i.e. more extreme

events occur at the same time at locations closer together, while extremes at further

away locations rarely occur at the same time. As such, misclassification of the

dependence structure can lead to overestimation of risk measure estimates.

The second method for modelling spatial extremes is the spatial conditional extremes

model which alleviates this issue as it allows for a broader range of dependence

structures (Wadsworth and Tawn, 2022; Richards et al., 2023; Shooter et al., 2021).

This model allows for both asymptotic dependence and asymptotic independence by

conditioning on a single site being extreme in place of assuming all components of the

spatial process have a positive probability of being jointly extreme simultaneously.

Wadsworth and Tawn (2022) proposed the use of composite likelihoods, multiplying

the likelihoods obtained by conditioning on each site, to combine information and

overcome the limitation of having no natural conditioning site. Richards et al. (2023)

extends the model by allowing a mixture of two components with different marginal

and dependence models with an application to precipitation across southern UK. A

further advantage of this model over the max-stable and generalised Pareto processes

is the scalability to larger spatial domains due to the semi-parametric method and

use of composite likelihoods. However, a limitation of the conditional approach is it

is more heavily parametrised and difficult to interpret unconditionally.

Although the conditional approach to modelling spatial extremes allows for a wider

range of dependence structures, can be applied in reasonably high dimensions and

provides simple conditional simulation at unobserved locations (Wadsworth and
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Tawn, 2022), the marginal distribution at unobserved locations and risk measures

such as return levels are difficult to estimate. This is due to the use of a copula

formulation, where the marginal models are fitted separately for each site before the

dependence component is estimated. Consequently, the interpretation of the model

is difficult. For a extensive review of the above models see Huser and Wadsworth

(2020).

The final method uses Bayesian hierarchical models with a latent spatial structure

to describe the spatial variation of the marginal distribution parameters. The

advantage of these models is the capability of obtaining marginal parameter

estimates and uncertainties at locations with little or no observations. This is

done through obtaining samples from the posterior and predictive distributions

using Markov chain Monte Carlo (MCMC) algorithms and assuming that the

data model parameters vary smoothly over space. However, due to the inference

procedure, for increasing number of locations m the procedure becomes increasingly

computationally intensive as the inverse of a m×m covariance matrix is computed

at each MCMC step. A solution to this dimension limitation is proposed in Banerjee

et al. (2008). However, hierarchical models cannot be used to quantify spatial events

due to the site to site independence assumption.

The first instance of latent processes in spatial extremes was presented by Coles

and Casson (1998) and Casson and Coles (1999) who modelled wind speed

data of hurricanes on the U.S. Gulf Coast. Cooley et al. (2007) developed a

hierarchical spatial model for the generalised Pareto distribution (GPD) parameters

and constructed maps of extreme precipitation return levels in Colorado. Other

instances of using hierarchical models include: Sang and Gelfand (2009) who

employed a spatio-temporal model to extreme precipitation by assuming conditional

independence given the spatially correlated parameters; Clancy et al. (2016) used a

spatial Bayesian hierarchical model to capture the spatial variation of extreme sea

states in the west coast of Ireland; Sharkey and Winter (2019) proposed the use of

an adjusted likelihood to account for spatial and temporal dependence by imposing
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a condition of spatial similarity on the Bayesian hierarchical model parameters with

an application to precipitation across UK.

Many studies have explored air pollutants and air quality, for example: Kitabo

(2020) explored ozone using max-stable and kriging methods across South Korea,

Menezes et al. (2016) studied NO2 in Portugal using geostatistical tools from a

spatio-temporal approach and Russell et al. (2016) uses a hierarchical approach

to spatially model the effects of meteorological drivers of extreme ozone. Further

studies that explored all levels of ozone in a Bayesian framework include, Huerta

et al. (2004) who developed a spatio-temporal model to describe the ozone levels

across Mexico City and Mukhopadhyay and Sahu (2018) who estimated long-term

exposure to outdoor air pollution across the UK using a Bayesian spatio-temporal

model. However, to our best knowledge, no studies have analysed just the extreme

levels of ozone with a spatial Bayesian hierarchical model. Thus, this work focuses

on the spatial analysis of ozone threshold exceedances across Great Britain using the

Bayesian framework and adapts the work of Cooley et al. (2007) for our application.

The goal of this study is to propose a hierarchical model with a spatial structure

in the GPD parameters which is generalised by a latent spatial process. Further we

explore how including different geographical covariates as regression coefficients in

the latent process effects the model fit and the risk measures, here we look at return

levels.

The chapter is structured as follows. Section 6.2 describes the ozone data used

in the study. Section 6.3 provides the details of the model used by first outlining

the generalised Pareto distribution and then each layer of the three-layer Bayesian

hierarchical model used to model the GPD parameters. Section 6.3.3 describes the

ordinary kriging process to create the threshold surface, followed by the Markov

chain Monte Carlo inference and the interpolation procedure in Section 6.3.4 and

Section 6.3.5 respectively. The results and model validation are presented in Section

6.4 with conclusions and further work explored in Section 6.5.
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6.2 Data

This study is performed using the daily maximum of the 8-hour running mean

(DM8) ozone concentration observations from 57 monitoring sites sampled from the

Automatic Urban and Rural Network (AURN) across Great Britain for the period

2011− 2019, as described in Section 2.4.1, and for the months of March to August

inclusively. Figure 6.1 provides the locations of the monitoring sites and surfaces of

two geographical covariates used here, distance-to-coast (Dist) and elevation (Elev).

The covariate surfaces are found through R packages, rnaturalearth and elevatr

respectively. Further, Table 6.1 provides details of the nine monitoring sites we

withhold from the model fitting process, which are used to cross-validate our model.

Figure 6.1: Maps of (left) the AURN sites used where ▲ (•) denotes urban (rural)
background sites and those in red are the randomly selected sites used as a validation set
(middle) the distance-to-coast covariate surface and (right) the elevation covariate surface.

Code Long. Lat. Min. 1st qu. Median 3rd qu. u90 Max.
BAR3 -1.51044 53.56292 8.82 52.08 62.04 72.59 83.29 154.81
CANT 1.09806 51.27399 6.88 67.12 78.02 88.83 102.74 176.18
COAL -1.56023 52.41156 23.83 59.10 69.58 80.74 92.31 146.23
GLKP -4.24363 55.86578 21.22 51.74 62.35 73.97 84.43 139.44

HIL -0.46086 51.49633 2.64 38.58 54.39 69.84 82.92 154.67
WIG5 -2.63814 53.54914 6.34 60.61 71.05 82.62 92.00 175.44

MACK -2.68345 51.05625 10.26 67.91 80.08 91.77 102.59 165.03
HM -0.80855 54.33494 27.16 67.46 79.52 90.63 101.38 182.69
SIB 1.46350 52.29404 13.45 67.76 77.76 87.65 100.30 206.03

Table 6.1: Information of the nine case study monitoring sites: site-code, latitude and
longitude, minimum, maximum and quantiles of the observed DM8 ozone data.
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6.3 The model

6.3.1 Extreme value theory

Extreme value theory (EVT) mainly deals with modelling the tail of a distribution.

The most popular approach in tail behaviour is to define an extreme value as an

exceedance of a sufficiently high threshold u, such that the threshold exceedances

should approximately follow a generalised Pareto distribution (GPD), as given in

equation (3.2.5). The tail of the distribution is either bounded (ξ < 0), light (ξ → 0)

or heavy (ξ > 0). Further, EVT provides a method to extrapolate beyond the range

of the data and estimate quantities such as return levels. T -year return levels can

be estimated by using the equation (3.2.10).

6.3.2 Spatial hierarchical model for threshold exceedances

We are interested in producing return level maps of DM8 ozone across Great Britain

and thus must first construct maps for the threshold exceedances and the threshold.

To do this we employ Bayesian methods to estimate spatial hierarchical models as

they allow for simpler computation of parameter estimates compared to maximum

likelihood estimation. Here, we first introduce the Bayesian framework and then

build the structure of our spatial hierarchical model used.

Bayesian framework

Let X denote a vector of observations from some distribution depending on unknown

parameter θ and some covariates Z. The joint probability distribution for X, Z and

θ is given by,

p(X,Z,θ) = p(X|Z,θ)p(θ|Z), (6.3.1)

where p(X|Z,θ) is the data likelihood and p(θ|Z) is the prior distribution.

Conditioning on the observed data X, we obtain an expression for the posterior
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density of the parameters

π(θ|X,Z) = p(X|Z,θ)p(θ|Z)
p(X,Z)

, (6.3.2)

where p(X,Z) =
∫
p(X|Z,θ)p(θ|Z) dθ is the marginal distribution of the data. We

focus on only the numerator since p(X,Z) is often intractable, as such equation

(6.3.2) can be expressed as

π(θ|X,Z) ∝ p(X|Z,θ)p(θ|Z). (6.3.3)

Equation (6.3.3) forms the basis for Bayesian statistics and provides the building

blocks for hierarchical models (Gelman et al., 2003).

Bayesian hierarchical model

Hierarchical models provide a method to model a complex process and the

relationship to observations without the issue of over-fitting that non-hierarchical

models can face (Gelman et al., 2003). From equation (6.3.3) a Bayesian hierarchical

model can be built. Following Cooley et al. (2007) a three layer hierarchy can

be constructed where the first layer of the hierarchy models the data at each

monitoring site, the second layer models the latent process that drives the data

and the third defines the prior distributions for the latent parameters given in layer

two. Let X(s) = (X(s1), . . . ,X(sn)) be the matrix of observations where X(si)

is the observations at location si. Then Bayes’ rule provides the inference for the

parameters in our models θ given the data at each location s;

π(θ|X(s)) ∝ p(X(s)|θ)p(θ), (6.3.4)

where π denotes a posterior distribution, p(X(s)|θ) is the data likelihood and p(θ)

is the prior distribution. We can express equation (6.3.4) in terms of the conditional
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distributions of our hierarchical model,

π(θ|X(s)) ∝ p1(X(s)|θ1)p2(θ1|θ2)p3(θ2), (6.3.5)

where p1 is the data likelihood given the latent process, p2 is the prior density of the

latent process given the latent parameters and p3 is the prior density for the latent

parameters. Each layer of our hierarchical model is described in the remainder

of this subsection. Section 6.3.3 provides the model and method to generate the

threshold surface. Section 6.3.4 describes the parameter estimation techniques that

are employed and Section 6.3.5 provides the interpolation procedure.

Data model

In the first layer, we assume that the ozone exceedances of the marginal 90th quantile

at each monitoring site follow a generalised Pareto distribution with separate scale

parameters (σi) and separate shape parameters (ξi). The exceedance rate φ is fixed

to 0.1, resulting in the threshold varying spatially, see Section 6.3.3 for details.

Following Cooley et al. (2007), we reparametrise the scale parameter, ϕi = log σi,

allowing ϕi to take on both positive and negative values, although we note the

orthogonal parametrisation of Chavez-Demoulin and Davison (2005) could be a

useful alternative. We do this as we are assuming the underlying process is Gaussian.

For each monitoring site a separate GPD is fitted, resulting in the likelihood function

given by

p1(X(s) | θ1) =
m∏
i=1

ni∏
k=1

1

exp(ϕ(si))

[
1 + ξ(si)

(
xk(si)− u(si)

exp(ϕ(si))

)]−1/ξ(si)−1

, (6.3.6)

where θ1 = [ϕ, ξ]T , si are the spatial coordinates of the ith site, m is the number of

sites, ni is the number of observations at the ith site and xk(si) is the kth observation

at the ith site.

102



CHAPTER 6. BAYESIAN HIERARCHICAL MODELLING

Process model

In the second layer of our hierarchy, the parameters of the GPD are assumed to

follow a spatial model with two separate spatial features: one describing spatial

trends in the GPD parameters and the other describing the dependence that

cannot be attributed to co-dependence on a geographical covariate. As such, using

standard geostatistical methods (Matheron, 1963; Cressie, 1993), the parameter ϕ(s)

is specified through a Gaussian process with E[ϕ(s)] = µϕ(s) and Cov(ϕ(s), ϕ(s′)) =

Cϕ(s, s
′). The mean µϕ(s) is a function of parameters αϕ and the covariates Z(s):

µϕ(s) = fϕ(αϕ,Z(s)). (6.3.7)

The covariance is a function of the distance between monitoring sites and parameters

βϕ and κϕ,

Cϕ(s, s
′) = βϕ,0 exp

(
−
(
||s− s′||
βϕ,1

)κϕ)
, (6.3.8)

which corresponds to a κ-exponential covariance function. The parameters βϕ,0

and βϕ,1 are often called the sill and the range, respectively. The parameter βϕ,1

controls how quickly the spatial dependence decays as a function of the distance

apart, large βϕ,1 represents long-range correlations and small βϕ,1 means that points

close together are nearly independent. This model assumes the process is stationary

and isotropic; invariant to translation and rotation. As such the second piece of

equation (6.3.5) is given by,

p2(θ1 | θ2) =
1√

(2π)m|Σϕ|
exp

(
−1

2
(ϕ− µϕ)

TΣ−1
ϕ (ϕ− µϕ)

)
pξ(ξ|θξ), (6.3.9)

where µϕ is defined by equation (6.3.7) evaluated at the covariates of the monitoring

site locations si, Σϕ is the covariance matrix produced by equation (6.3.8) at

the monitoring site locations, and the density function pξ is defined as the

prior distribution for the shape parameter ξ with parameters θξ = (αξ,βξ) and
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θ2 = [αϕ,βϕ,θξ]
T , with θ2 often termed the hyperparameters. The form of pξ is

determined by the model fitted to the shape parameter, which also determines the

form of θξ. If the shape parameter is modelled spatially, we use a spatial Gaussian

process with similar structure as that of the scale parameter, i.e. where αξ and

βξ exist and require prior distributions. If the shape parameter is assumed to be

constant over the study space, a uniform prior is used. Consequently, the density

function pξ is absorbed into the proportionality constant of equation (6.3.5).

Prior model

In the third and final layer of our hierarchy, we define the priors for the

hyperparameters. Throughout, independence is assumed in all stages of the model

including the prior stage,

p3(θ2) = pαϕ
(αϕ)pβϕ

(βϕ)pαξ
(αξ)pβξ

(βξ). (6.3.10)

We have no prior information on how the GPD parameters ϕ and ξ relate to

the covariates, therefore uninformative priors for αϕ and αξ are chosen. For

all models we set αϕ,i ∼ Unif(−∞,∞) and for all models that involve αξ we

set αξ,i ∼ Unif(−∞,∞), which still provides proper posterior distributions, i.e.

integrates to one over the support (Banerjee et al., 2004). Berger et al. (2001) and

Banerjee et al. (2004) provide explanations to why improper priors for the sill and

range parameters often results in improper posteriors. As a result informative priors

are chosen to ensure proper posterior distributions are obtained.

As previously mentioned, a GPD is fitted independently at each monitoring site to

obtain a maximum likelihood estimate for σ and thus ϕ. Following Cooley et al.

(2007) an empirical variogram is fitted to ϕ̂. By definition βϕ,0 controls the sill of

the variogram model given in equation (6.3.8). Figure 6.2 (left) demonstrates such a

SSE-minimised variogram (solid) and the variogram associated with the prior chosen

for βϕ,0 (dashed). The prior chosen is βϕ,0 ∼ Unif(0.001, 0.15) as it provides a wide
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envelope of possible variograms and can be used across all models tested.

Figure 6.2: Binned variogram estimates (◦) and the SEE-minimising variogram (—) are
plotted for the MLE-estimated ϕ and ξ parameters respectively. The dashed lines denote
the envelope of possible variograms given the priors for β·,0 (sill) and β·,1 (range).

Cooley et al. (2007) used knowledge of the study space to determine the prior for βϕ,1,

the distance at which the correlation between the scale parameters is less than 0.05.

For exponential variograms, this distance is approximately 3/βϕ,1. Therefore, the

limits of a suitable uniform prior are approximately 3/min(d) and 3/max(d), where

d is the distances associated with the binned variogram estimates as given in Figure

6.2. As we are using a κ-exponential variogram model to describe the covariance of

ϕ(s) a different approach is required. Exploratory analysis of the variogram cloud

and the behaviour of the posterior distributions guide our prior choice. The prior

chosen is βϕ,1 ∼ Gamma(3, 1) as we can control where the mass of the distribution

lies and the probability of accepting unreasonable proposals. Further we reject the

proposed values of βϕ,1 and βϕ,0 if the proposed value goes outside the range of

observed distance between monitoring sites as our modelling assumptions may not

hold beyond the support.

For the shape parameter ξ(s), only when modelled as a Gaussian process are

priors for αξ and βξ required. Similarly to ϕ, following Cooley et al. (2007),

empirical information is used to determine the prior for βξ,0. We choose βξ,0 ∼
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Unif(0.001, 0.04) to provide a wide envelope of possible variograms, as seen in Figure

6.2 (right). Although for ξ(s) we use the exponential variogram model, as suggested

by the empirical variogram in Figure 6.2 (right), we still follow similar exploratory

analysis approach taken for ϕ(s) and chose the prior βξ,1 ∼ Gamma(4, 0.5).

Although we use a κ-exponential variogram model to describe the covariance of

ϕ(s), we do not require a prior for κϕ. We obtain the value for κϕ by fitting a range

of variograms with varying κϕ values and take the value which corresponds to the

SSE-minimised variograms. This results in κϕ = 0.5 and using a similar approach

produces κξ = 1. This decreases the number of parameters required to be estimated

and therefore reduced the uncertainty in parameter estimation.

6.3.3 Model for threshold

To produce surfaces of return level estimates we require surfaces for the scale,

shape and threshold. As defined in Section 6.3.2 we work with only the largest

10% of observations at each monitoring site, as such the threshold will vary

spatially. To model the spatial variation we employ ordinary kriging (Matheron,

1963; Zimmerman et al., 1999). Therefore, the estimate of threshold u at an arbitrary

location (s0) is defined as

û(s0) =
m∑
i=1

λiu(si) (6.3.11)

that minimises the mean squared prediction error. The kriging weights λi are derived

from the estimated spatial structure of the empirical 90th quantiles from sites with

data, in this case from the empirically fitted covariance function to these quantiles

as given in Figure 6.3 (left). This corresponds to Stein’s parametrisation of the

Matérn covariance function given by,

Cov(||s− s′||) =
√
πρ

2ν−1Γ(ν + 1
2
)γ2ν

(γ||s− s′||)νKν(γ||s− s′||)+ I||s−s′||=0 · τ 2, (6.3.12)

where ν > 0 represents the smoothness parameter, γ partially functions like an

inverse range parameter and affects low-frequency behaviours, ρ is the overall scale
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parameter that is seen in the high-frequency behaviour of the spatial process, τ 2

represents the nugget effect and Kν(·) denotes the modified Bessel function of the

second kind with order ν, (Matérn, 1960; Handcock and Stein, 1993; Stein, 1999;

Loh, 2005).

Figure 6.3: (left) The binned variogram estimates (◦) and the empirically estimated Stein’s
parametrisation of the Matérn covariance function for threshold. (right) The ordinary
kriged threshold surface across Great Britain estimated by the variogram. Note: distances
are in degrees.

The ordinary kriged surface of threshold, Figure 6.3 (right) indicates a relatively

flat surface across Great Britain. The lowest thresholds are across North England,

spanning from the urban background sites around Liverpool and Manchester to York.

The highest thresholds are observed in East Anglia which is reflected in the surface.

Due to the nature of the model, the thresholds vary around an unknown mean

and thus the empirical thresholds at the monitoring sites do vary from the surface.

The inverse distance weighted interpolation method was explored but the generated

surface created too artificial circular neighbourhoods around the monitoring sites.
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6.3.4 MCMC structure

The dimension of the model increases with the number of sites and covariates. An

analytical solution for the parameters becomes impractical and intractable as there is

no closed form for the normalising constant in the posterior. However, Markov chain

Monte Carlo (MCMC) algorithms can be used to obtain approximate draws from the

posterior distribution (Robert and Casella, 1999; Gelman et al., 2003). We employ

Metropolis-Hastings (MH) steps within a Gibbs sampler to update each parameter of

the model. This involves drawing a potential value from an appropriate candidate

distribution and accepting or rejecting it according to the Hastings ratio (Geyer,

2011). The MH candidate densities for all parameters are implemented as random

walks. The appropriate steps of the random walks are selected to approximately

achieve the optimal rate of acceptance of 0.434 and 0.23 for parameters of dimension

1 to 4 or greater than 4 respectively (Gelman et al., 1996; Roberts and Rosenthal,

1998, 2001).

Three parallel chains were run for each model to determine if the true stationary

posterior distribution is obtained. Each simulation consisted of 20, 000 iterations,

of which 2000 were considered as burn-in. To reduce the dependence across the

samples only every 5th was kept as indicated by the partial auto-correlation function

(PACF). Convergence of the thinned chains for each parameter was checked using

the MCMC convergence criterion,

R̂ =
L−1
L
W + 1

L
B

W
, (6.3.13)

where L is the number of of iterations in each chain after the burn-in period, W is

the averaged variances of the individual chains across all chains and B is the variance

of the means of the chains (Gelman and Rubin, 1992). All parameter chains indicate

convergence as R̂ is below the suggested criterion of 1.2 (Gelman, 1996).
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6.3.5 Spatial interpolation

Once we have fitted the model described in Section 6.3.2, we are able to predict

quantities of interest at any location, such as the T -year return level. We shall

demonstrate the method to predict the scale parameter ϕ at a location, say location

s∗. Assuming that ϕ0 is the scale parameter at s∗, the joint distribution of the

modelled sites and s∗ is given byϕ0

ϕ

 ∼ MVN

 µ0

µ

 ,

 σ0 Σ0m

Σm0 Σϕ

 (6.3.14)

where µ0 and µ are the means of the distributions at s∗ and modelled sites

respectively, σ0 is the variance at s∗, Σϕ is the covariance matrix across the modelled

sites, and Σ0m and Σm0 are the covariance matrices between the modelled sites and

s∗. Multivariate normal distribution theory provides the result that the conditional

distribution of ϕ0 given ϕ is normal with mean

µ1 = µ0 + Σ0mΣ
−1
ϕ (ϕ− µ) (6.3.15)

and variance

σ1 = σ0 − Σ0mΣ
−1
ϕ Σm0, (6.3.16)

where µ0 and µ are given by equation (6.3.7) evaluated at s∗ and the modelled sites

respectively, Σ0m and Σm0 are given by equation (6.3.8) evaluated between s∗ and

the modelled sites and Σϕ is given by equation (6.3.8) evaluated across the modelled

sites. Once the mean µ1 and variance σ1 have been estimated, samples of the scale

parameter at s∗ can be drawn from the distribution,

ϕ0 | ϕ ∼ N(µ1, σ1). (6.3.17)

When the shape parameter is modelled by a Gaussian process a similar distribution is

formed that can be used to draw samples from. We will use the interpolation method
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to obtain parameter and return level estimates at the nine withheld monitoring sites

to cross-validate the modelling approach, see Section 6.4.4.

prior αϕ αξ prior

ϕ(s) xT (s) ξ(s)

prior βϕ ψ = 0.1, u(s) βξ prior

Figure 6.4: Schematic of the model used to estimate the T -year return level map xT (s),
adaptation of Cooley et al. (2007).

Further, to generate an estimate for the return level map across the study space

we divide the region into a regular 10km grid and estimate the threshold, scale

parameter and shape parameter at each grid location. The distributions of the scale

and shape parameters at these grid locations are based on the estimated latent

parameters and the covariates. Considering each latent parameter taken from its

posterior distribution and the covariate values for each grid location, the mean and

covariance are obtained. We take 1000 samples from the conditional distributions,

equation (6.3.17), and the average is taken to represent one posterior draw. This

procedure is repeated for each step of the MCMC chain to obtain estimates of

posterior distributions for the scale and shape parameters at the grid location. We

obtain the posterior pointwise mean of each parameter by taking the average of

the posterior draws and the 95% credible interval is obtained by taking the 0.025

quantile and the 0.975 quantile of the posterior draws. To obtain the return level

maps and consequently the credible interval of the return level maps we follow the

schematic given in Figure 6.4.
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6.4 Results

6.4.1 Model selection

In this study, several models are generated based on different covariates, including

elevation (Elev) and distance-to-coast (Dist), and are compared using the deviance

information criterion (DIC) (Spiegelhalter et al., 2002). The DIC is a simple and

robust criterion that is used widely in model selection e.g. Reich (2012) and Sang

and Gelfand (2009). The DIC value is the sum of the model fit measure D̄ and the

model complexity measure pD. The model fit measure D̄ is the posterior expectation

of the deviance, where the posterior distribution of the deviance statistic is given by

D(X(s) | θ1) = −2
∑
i

∑
k

log p1(X(s) | θ1). (6.4.1)

The model complexity measure pD is evaluated as D̄ − D(X(s) | θ̄1). As we are

running three chains we produce DIC values for each and take the average. This is

done to help minimise the randomness in the DIC values since they are a result of

posterior samples generated from an MCMC run. A model is considered better if it

has a smaller DIC value. Further we do not solely rely on the DIC values to determine

the best model, we also consider the return level maps and their uncertainties as

well as how they capture the behaviour of ozone at the case study monitoring sites.

Table 6.2 shows a selection of the models tested increasing in complexity from the

base model, where a common scale parameter and common shape parameter are

assumed over the study space. We start by adding in more complex structure to the

scale parameter such that ϕ(s) is modelled as in Section 6.3.2. This improves the

model considerably over the base model. We then model the shape parameter ξ(s)

with the structure in Section 6.3.2 (Model 3) and an improved model performance

was indicated by the DIC value. We then allow the mean of the scale parameter to

be a linear function of covariates: latitude (Lat), longitude (Long), elevation (Elev)

and/or distance-to-coast (Dist) (Models 4−10). An improvement to the DIC value is
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observed for when latitude or distance-to-coast are included in the mean of the scale

parameter. However, a combination of covariates did not indicate an improvement

in model performance. Adding complexity to the mean of the shape parameter did

not improve the model. Model 6 is chosen to be the most appropriate model tested

based on its DIC value and also the return level maps.

Baseline Model D̄ pD DIC
Model 1: ϕ = ϕ 49087.02 2.00 49089.02

ξ = ξ

Spatial Models D̄ pD DIC
Model 2: ϕ = αϕ,0 + ϵϕ 48866.79 33.25 48900.05

ξ = ξ
Model 3: ϕ = αϕ,0 + ϵϕ 48815.75 48.42 48864.17

ξ = αξ,0 + ϵξ

Spatial Covariate Models D̄ pD DIC
Model 4: ϕ = αϕ,0 + αϕ,1(Long) + ϵϕ 48817.48 47.38 48864.86

ξ = αξ,0 + ϵξ
Model 5: ϕ = αϕ,0 + αϕ,1(Lat) + ϵϕ 48822.75 40.88 48863.64

ξ = αξ,0 + ϵξ
Model 6: ϕ = αϕ,0 + αϕ,1(Dist) + ϵϕ 48811.84 45.06 48856.89

ξ = αξ,0 + ϵξ
Model 7: ϕ = αϕ,0 + αϕ,1(Elev) + ϵϕ 48818.43 49.31 48867.74

ξ = αξ,0 + ϵξ
Model 8: ϕ = αϕ,0 + αϕ,1(Dist) + αϕ,2(Elev) + ϵϕ 48811.65 46.56 48858.21

ξ = αξ,0 + ϵξ
Model 9: ϕ = αϕ,0 + αϕ,1(Dist) + αϕ,2(Lat) + ϵϕ 48817.85 39.80 48857.65

ξ = αξ,0 + ϵξ
Model 10: ϕ = αϕ,0 + αϕ,1(Dist) + αϕ,2(Long) + ϵϕ 48817.86 46.14 48864.00

ξ = αξ,0 + ϵξ

Table 6.2: GPD hierarchical models tested and their corresponding DIC scores. Note:
ϵ· ∼ MVN(0,Σ·), where [Σ·]i,j = β·,0 exp(−(||si − sj ||/β·,1)κ·).

6.4.2 Modelling parameters

Let us now consider Model 6 in greater detail. Figure 6.5 shows the posterior

densities for the parameters αϕ,0 and αϕ,1. The right-hand panel shows that the
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distance-to-coast coefficient is positive with a mean of 0.003 and 95% credible

interval of (0.001, 0.006). This indicates the further away from the coast the larger

the scale parameter. Although this value is marginally above zero, remember ϕ(s)

is on the logarithmic scale, once transformed onto the original margins the effects

of the covariate distance-to-coast is more pronounced. To provide a demonstration,

Aston Hill, located approximately 62km away from the coast, has a scale parameter

estimate of 2.720 (2.591, 2.843) whereas Wirral Tranmere, located approximately

3km away from the coast, has an estimate of 2.511 (2.362, 2.672), see Figure 6.6 (top

left) for their posterior densities. These are comparable to the maximum likelihood

estimates from the individually fitted GPD model, 2.892 (2.652, 3.086) and 2.490

(2.161, 2.737) respectively, and to the individually fitted Bayesian GPD model, 2.887

(2, 681, 3.067) and 2.531 (2.211, 2.750) respectively. Notice the narrower intervals

for the estimates obtained by the Bayesian hierarchical model.

Figure 6.5: The posterior densities for αϕ,0 and αϕ,1 of Model 6. The red lines shows the
95% credible interval for each parameter.

The posterior densities for the remaining hyperparameters are given in Figure 6.6

with their modelling priors. Using uniform priors for the sill parameters β·,0 provides

a pointwise mean of 0.041 (0.020, 0.075) and 0.013 (0.005, 0.029) with the 95%

credible interval in parentheses. The posterior densities for the range parameters β·,1

have a pointwise mean of 4.541 (1.658, 8.563) and 2.435 (0.946, 4.732) respectively.
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Note these values are in degrees where a difference of one degree is approximately

111km. The β·,1 estimates have a larger credible interval for the scale parameter

than the shape parameter. Also the effective range, the distance at which 95% of

the sill is exceeded, is larger for the scale parameter indicating a stronger dependence

relationship with distance between monitoring sites.

Figure 6.6: Posterior densities for Model 6 parameters. First column shows ϕ and ξ
parameters from two sampled sites, Aston Hill (· · · ) and Wirral Tranmere (—) respectively.
The middle column shows the posterior density for the sill of the variogram, β.,0 (—) and its
prior (· · · ) and the last column shows the range parameter of the variogram, β.,1 (—) and
its prior (· · · ). The red line shows the 95% credible interval of the posterior distributions.

With the posterior distributions for the latent parameters we can estimate the scale

and shape parameters at ungauged locations, as described in Section 6.3.5. Figure

6.7 shows the pointwise mean maps for the scale (σ) and shape (ξ) parameters

generated over the study space using a regular 10km grid and the covariate surfaces

given in Figure 6.1. The scale parameter map shows the importance distance-to-

coast is a spatial covariate since the spatial pattern seen is largely similar to the

covariate map, Figure 6.1 (middle). The largest scale estimates are around London

and Southeast England and the smallest being in North England and Scotland.
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Figure 6.7: Maps showing the pointwise mean estimates for GPD scale parameter σ and
GPD shape parameter ξ from Model 6 respectively. The highlighted locations are the
validation monitoring sites.

The shape parameter map highlights a clear spatial structure across Great Britain,

Figure 6.7 (right). The study region splits into approximately three bands: South-

West England having positive shape estimates; Wales, southern parts of the North

West, West Midlands, Greater London and Southeast England having negative shape

estimates; Scotland, northern parts of the North West, North East, Yorkshire and

Humber, East Midlands and East Anglia having positive shape estimates.

6.4.3 Return level maps

We now turn to the T -year return levels of DM8 ozone concentration. After

obtaining the posterior distributions for the scale and shape parameters, we can

follow the schematic in Figure 6.4 to obtain the one- and ten-year return levels

across Great Britain. Figure 6.8(b,f) provide the pointwise mean estimate of the

one- and ten-year return level maps with the 0.025 and 0.975 quantiles either side

respectively. The map shows the expected one time exceedance in one- and ten-

years is lower in Scotland and northern England than the south of England. Figure
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6.8(d,h) illustrate the width of the credible interval of the estimate of the one- and

ten-year return levels.

Figure 6.8: Estimate of the (a-d) one-year return levels and the (e-h) ten-year return levels
across Great Britain, where (b,f) show the posterior mean estimates, and the corresponding
credible intervals are given in (a,c) and (e,g), with the width of the interval given in (d,h).
The points on the map indicate the withheld validation monitoring sites and their site type,
where (◦) points denote rural background sites and (△) points denote urban background
sites.

The largest return levels are observed and predicted in East Anglia, with largest

concentration from the Bayesian hierarchical modelling being 147.80µg/m3 (141.85,

156.99) compared to the individually fit GPD return levels of 155.67µg/m3 (143.95,

167.40), where the values in parentheses are the 95% credible (confidence) intervals

respectively. The lower maximum estimate can be attributed to the smoothed
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threshold surface. Similar to the scale parameter map, a vein from East Anglia to

approximately Plymouth is observed, which highlights the importance of distance-

to-coast as a spatial covariate. The ten-year return levels show similar spatial

patterns but indicates a larger difference between East Anglia and the vein. The

maximum ten-year return level estimate from the Bayesian hierarchical model is

211.28µg/m3 (190.31, 246.77) compared to the individually fit GPD model of

229.66µg/m3 (144.65, 314.68). Notice the narrower intervals for estimates obtained

by the Bayesian hierarchical model. This is due to the sharing of data across the

monitoring sites in the data layer of the model. Further, the Bayesian hierarchical

model on average indicates smaller uncertainty in the estimates across Scotland and

northern England which can be attributed to fewer large extreme events causing

a smoothing effect in the estimates, although one may expect greater differences

at ungauged sites since there are fewer monitoring sites to interpolate from. The

greatest uncertainty is seen in East Anglia, the area where highest extreme levels of

ozone are observed and have highest return level estimates, and across the vein.

6.4.4 Model validation

In this study, we first assess the performance of the model by estimating return

levels at the nine randomly selected monitoring sites given in Table 6.1 which were

withheld during the parameter estimation. The remaining monitoring sites are used

to determine the distributions of the latent parameters through the MCMC process

given in Section 6.3.4. The 95% confidence intervals for GPD parameters and the

one-year return levels are compared to the 95% credible intervals obtained from the

Bayesian hierarchical model, Model 6. As seen in Figure 6.9, using the Bayesian

hierarchical model dramatically reduces the uncertainty in the estimates since data

from different monitoring sites are combined in the data model stage of the modelling

procedure. Note the overestimate of the scale parameter at site HIL can be explained

by its location, Greater London the region with the highest scale estimates.

117



CHAPTER 6. BAYESIAN HIERARCHICAL MODELLING

Figure 6.9: Model checking for the latent variable model. Comparing the point estimates
of σ, ξ, the one- and ten-year return levels obtained from fitting (black) the GPD
distribution and numerically optimising the likelihood, (red) the GPD distribution and
obtaining Bayesians estimates and (blue) the Bayesian hierarchical model, each with their
corresponding 95% confidence intervals and 95% credible intervals, respectively.

We further validate the Bayesian hierarchical model by using the posterior predictive

distribution to obtain predictions of ozone concentrations at the nine withheld

monitoring sites (Gelman et al., 1996). We do the following at each monitoring

site. For a given site i, we observe ni threshold exceedances. We then randomly

draw ni values for the scale and shape parameters from their posterior distributions.

Each scale and shape parameter draw is considered a separate generalised Pareto

distribution, which we generated one value from. This produces a vector of

predictive threshold exceedances for the site that is the same length as the observed

threshold exceedances. After ordering, we plot the results in a scatter plot to

demonstrate the predictive skill of the model. In general, we see a good match

between the observed and the predictive exceedances. For some of the larger

exceedances an overestimation is observed, however this could be due to the random
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selection process of a large scale estimate and overly positive shape parameter

estimate. The correlation coefficient is 0.961 (0.928, 0.979) and the average difference

between the ordered observed exceedances and the ordered predicted exceedances is

−0.812µg/m3 (−1.643, −0.001) where the 95% bootstrapped confidence intervals

are given in parentheses. This difference indicates a slight underestimation across

the nine withheld monitoring sites. We note that Figure 6.10 indicates a lack of fit

in the upper portion of the tail, which could be due to the random sampling of the

shape parameter from the corresponding posterior distribution.

Figure 6.10: Validating the Bayesian hierarchical model by comparing observed
exceedances with those predicted by the model at the nine withheld monitoring sites
(different grey tone for each site).

6.4.5 Probability maps

To characterise the risk, the probability of exceeding 100µg/m3 (moderate health

risk, DAQI 4) of the air quality index employed across the UK is presented

in Figure 6.11. Based on the Bayesian hierarchical model fit to the 2011-2019

data, the probability of DM8 ozone exceeding 100µg/m3 on a given day during

March to August ranges between 4.05% and 6.93%. The lowest probabilities
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occur in Northwest England around Manchester and Liverpool and the north-

east coast of the Scottish Lowlands. The largest probabilities occur across East

and Southeast England and follow similar spatial pattern to the distance-to-coast

covariate. Further, a distinct divide is evident in the probabilities with those above

the latitude of approximately 53◦ having less chance to observe an exceedance of

100µg/m3 than those below, as indicated by the dotted line in Figure 6.11. The

areas above have on average a probability of 4.93% whereas those below have an

average probability of 6.13%.

Figure 6.11: Maps showing the probability of exceeding 100µg/m3 on any given day
during an ozone period, (a) 0.025 quantile (b) posterior pointwise mean (c) 0.975 quantile.
Dotted line indicates latitude of 53◦.

6.5 Conclusions

In this study, we have proposed a spatial model of extreme values to evaluate the

risk of extreme levels of ozone, an adaptation of the model detailed in Cooley et al.

(2007). We assumed that the threshold exceedances of the marginal 90th quantile

are independent and identically distributed, allowing us to fix the rate parameter and

model the threshold spatially by ordinary kriging. Return level maps are obtained

for the generalised Pareto distribution. The estimation of parameters was obtained
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through a Bayesian approach allowing us to include a covariance function and model

the mean of the parameters as a function of covariates. We tested an array of models

and found the most effective model, given the covariates at hand, was Model 6 where

both the GPD scale parameter and shape parameter are modelled by a Gaussian

process with the mean of the scale parameter being a function of distance-to-coast.

The scale parameter and thus the return level is positively correlated with distance-

to-coast as indicated by a positive regression coefficient. The map of the estimated

shape parameter clearly splits the study space into three distinct regions, see Figure

6.7. The largest one-year return level obtained by Bayesian hierarchical model is

approximately 8µg/m3 less than the one-year return level obtained by individually

fitted GPD models, however within the 95% confidence intervals.

Model verification is assessed based on evaluating the return level at withheld

monitoring sites and drawing from the posterior predictive distribution to obtain

predicted threshold exceedances. Using the Bayesian hierarchical model dramat-

ically reduces the uncertainty in the return levels compared to fitting the GPD

at each site individually due to sharing of observations in the data model stage.

Drawing from the posterior predictive distribution generates samples of predicted

threshold exceedances that, when ordered, correlate with the ordered observed

threshold exceedances. Across the nine withheld monitoring sites the correlation

coefficient is 0.961 (0.928, 0.979) and the average forecast error is −0.812µg/m3

(−1.643, −0.001) where the 95% bootstrapped confidence intervals are given in

parentheses.

To provide context to public health we produced maps showing the estimated proba-

bility of exceeding 100µg/m3 on a given day during March-August. This probability

ranges between 4.05% and 6.93% with the East and Southeast regions having the

largest probabilities. Similar spatial structure can be seen in Gouldsbrough et al.

(2024), however are less smooth due to the higher resolution and the larger number

of covariates used. In their paper, distance-to-coast was found to be the 11th most

important feature but is found to be the second most important spatial feature,

121



CHAPTER 6. BAYESIAN HIERARCHICAL MODELLING

second to distance from major roads, (see Figure 3 in Gouldsbrough et al. 2024).

As such, an initial extension could involve including more spatial covariates, such

as distance to major roads. A further extension would be to expand the model

to a spatio-temporal paradigm similar to Garcia et al. (2023). Another option

is to implement a non-stationary GPD by including covariates into the marginal

scale and shape parameters and modelling each regression coefficient as a spatial

Gaussian process. Finally, as DM8 ozone possesses temporal extremal dependence

one could extend the modelling approach proposed by Winter and Tawn (2017) by

assuming some spatial structure exists on the conditional parameters and the joint

and conditional distributions.
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Chapter 7

Conclusions and further work

In this concluding chapter, we summarise our contributions to the area of extreme

value statistics that result from Chapters 4-6 of this thesis. The research presented

advances existing ideas and methodologies in evaluating extremes from process-

based forecasts and modelling the extremal behaviour of ozone. We summarise the

content of each chapter in Section 7.1, before proposing potential avenues for further

research in Section 7.2.

7.1 Summary of contributions

In Chapter 4 we demonstrated several novel applications of extreme value theory in

validating numerical process-based forecasts. These applications involved seeing

if the tail behaviour of the ozone observations and the tail behaviour of the

AQUM forecasts come from the same distribution, through modelling the tails

using the generalised Pareto distribution (GPD) and constructing likelihood ratio

tests. Our results showed the marginal distributions differed at 69% of the studied

sites, indicating improvements are required in forecasting extreme levels of ozone.

Further, we modelled the joint distribution of AURN and AQUM using the bivariate

extremes value distribution with a range of spectral measures. Selecting the model

that minimised the Akaike information criterion (AIC) resulted in 1 asymmetric
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logistic model, 7 negative logistic models, 14 Dirichlet distribution models, 19

logistic models and 20 Hüsler-Reiss distribution models, which indicated the joint

behaviour favoured the use of symmetric models. These models were then used

to probabilistically estimate conditional probabilities of correctly forecasting an

exceedance given an exceedance has been observed. Our results indicated that when

ozone events become more extreme and pose greater risk to public health, AQUM

struggles to accurately capture the magnitude particularly for observed events at

least 120µg/m3 (moderate health risk, DAQI 5). The methodology discussed in

Chapter 4 could apply to other pollutants and environmental fields where validation

of the tail behaviour in forecasts, real-analysis or ensembles is required.

Chapter 5 presented a framework to investigate the stochastic behaviour of the

DM8 ozone observations as prolonged episodes of extreme levels of ozone can cause

damage to public health through development of respiratory illnesses and potential

death. Consequently, understanding the stochastic behaviour of extreme ozone and

accounting for such temporal structure is of upmost importance. We used the kth-

order Markov extremes model of Winter and Tawn (2017) with a modified kernel

to describe the temporal dependence structure. We introduced a new statistic that

adapts work of Knutti et al. (2017) by computing weights for each model order based

on cluster functional estimates across a range of lags and quantiles. Our results

showed that urban background sites on average required more complex models than

rural background sites, which coincides with the more varied atmospheric conditions

(microclimates by the urban heat island effect) experienced in urban areas (Yang

et al., 2016). After obtaining the optimal order model, we then used them in

two novel applications: simulating scenarios and short-lead-time forecasts of an

out-of-sample event. Our results from the applications showed the models provide

accurate forecasts for the year of 2020, however could be improved around the more

densely populated areas, like London. Such simulations of scenarios could be used

to guide changes in legislation by providing a deeper understanding of the extremal

dependence structure of ozone and how extreme ozone events change with time. The
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ideas presented in Chapter 5 could be applied to more pollutants, but also to other

environmental variables which may exhibit stochastic behaviour.

In Chapter 6 we proposed a spatial Bayesian hierarchical model for threshold

exceedances using a generalised Pareto distribution in the data layer, applied to

ozone data across Great Britain. These models aim to borrow information across

monitoring sites to improve estimation of marginal return levels, therefore reducing

uncertainty of these estimates. Minimising the DIC resulted in the model where

both the GPD scale and shape parameters are modelled by a Gaussian process with

the mean of the scale parameter being a function of distance-to-coast. We assumed

that the threshold exceedances of the marginal 90th quantile are independent and

identically distributed, allowing us to fix the rate parameter and model the threshold

spatially by ordinary kriging. Our resulting surface for the shape parameter showed

a clear splitting of the study space, from positive to negative to positive as you

move Southwest to Northeast. The resulting return level surfaces highlighted the

importance of distance-to-coast as a geographical covariate and showed that East

Anglia is the region expected to observe the highest concentrations of ozone. Cross-

validation across the nine withheld monitoring sites showed shrinkage in the credible

intervals of one- and ten-year return level estimates and the posterior pointwise mean

estimates were comparable to the estimates from the individually fitted generalised

Pareto distribution.

7.2 Further work

In the following sections we discuss potential interesting avenues for further research

which would extend the ideas and methodologies explored in this thesis. In Section

7.2.1 we present ideas that further develops our novel approach for evaluating and

valdating the extreme forecasts from process-based models, which was introduced in

Chapter 4. Then in Section 7.2.2 we discuss ways to extend our work from Chapter

6 regarding temporal dependence modelling using the kth-order Markov model.
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Lastly, in Section 7.2.3 we suggest ways to extend the spatial Bayesian hierarchical

model to account for further covariate effects and the temporal dependence structure

captured in Chapter 5.

7.2.1 Evaluation of ozone forecasts in Chapter 4

A key part of our methodologies in Chapter 4 was validating the AQUM forecasts

by investigating the marginal and joint tail behaviours of the AURN observations

and the AQUM forecasts. Although we aggregated to the daily maximum of the

8-hour running mean (DM8) scale, slight temporal dependence existed. It would be

insightful to see how accounting for the temporal dependence affects the confidence

intervals of the GPD parameter estimates and the resulting return levels. To account

for any temporal dependence, the non-stationary GPD of Smith (1989) and Davison

and Smith (1990) could be utilised. The non-stationary GPD allows the constant

parameters to be parametrised as functions of covariates, where seasonal variability

is often accounted for by using harmonics (Coles et al., 1994). It would be interesting

to see how the inclusion of temperature, time of day, time of year, wind speed

and wind direction in the GPD parameters would alter the modelling parameter

estimates and the return levels.

Further, using the bivariate extreme value distribution to model the joint behaviour

of extreme ozone assumes asymptotic dependence, where this might not be the

case at some monitoring sites or for other pollutants/environmental applications.

The conditional extremes model of Heffernan and Tawn (2004) can capture both

asymptotic dependence and asymptotic independence. As such, an interesting

avenue would be to fit the conditional extremes model to the pair (AURN, AQUM)

to examine the dependence structure more deeply. This model could also be used to

test whether the temporal dependence of the observations is captured in the forecasts

by fitting the model to the pair (AURN, AURNT ) and (AQUM, AQUMT ), where

subscript T denotes the T -lagged version of the data, and contrast the resulting

parameter estimates.
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An impactful extension of the validation process presented in Chapter 4 would be

to turn this offline validation tool into an on-line operational validation tool. This

could allow for the existing post-processing technique, as described in Chapter 2,

to be updated to have two separate regimes. This could be where the first regime

continues to correct non-exceedances with the current SPPO method, and when

an exceedance has been observed or forecasted by AQUM then the second regime

would kick in where the joint extremes model would be used to validate the forecasts

of the extreme event. The method of modelling of the joint behaviour allows for

probabilistic estimates to be obtained, which could be used to provide probabilities

of observing an exceedance on a given day. This information would be invaluable

to present to the public as it provides more information about the upcoming air

quality, rather than just the Daily Air Quality Index.

7.2.2 Temporal behaviour modelling in Chapter 5

Our simulation procedure for the clusters of extreme ozone using the kth-order

Markov extremes model, in Chapter 6, demonstrated promising results for replicat-

ing the temporal dependence structure of the observations. While our simulations

of out-of-sample extreme events matched the observations well (see Section 5.5

of Chapter 5), further work could investigate if improvements could be made.

One option is to pool information across sites that share similar site type and

similar temporal dependence characteristics. Another option could be, rather than

aggregating to the DM8 to account for the diurnal cycle, we could have explored

the hourly observations and redefine when a cluster ends i.e. using a run length

of at least 12 hours to account for the diurnal cycle. Further, before using the

probability integral transformation to transform onto Laplace margins, we could

have parametrised the GPD parameters to be functions of time using Fourier Series

or inclusion of other covariates. Tendijck et al. (2021, 2023) has started the extension

by modelling multivariate time series with a multivariate kth-order Markov extremal

model, although this is on an oceanographic dataset.
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We presented the use of forward simulation to generate the chains with kth-order

dependence structure from an initial exceedance. However, extreme concentrations

of ozone may have a building up period due to certain atmospheric conditions.

Therefore, it would be interesting to see if using backward simulation from the first

exceedance to generate a couple observations and then simulate forward these chains

improves the cluster functionals estimates, given the backward simulation generates

estimates approximately the same as the observations.

It could be interesting to apply the methodology in Chapter 5 to the AQUM data

explored in Chapter 4 and combine the findings. This would add another element

to the validation process of extremes from a process-based forecast model. The

combined findings could allow for extensions into an operational setting, where it

would be used to generate forecasts for the remainder of an extreme event. We

would need to dynamically update the dependence parameters and model order

as more observations become available. This could further improve the quality of

information about the air quality for future days available to the public, allowing

individuals who are more susceptible to high concentrations of air pollution to take

the appropriate action.

7.2.3 Bayesian hierarchical modelling in Chapter 6

Our motivation driving the research presented in Chapter 6 was the apparent spatial

patterns in the GPD parameter estimates, return levels, dependence parameter

estimates and the model order of the kth-order extremal Markov models we observed

in Chapter 4 and Chapter 5. As such, a spatial Bayesian hierarchical model

for threshold exceedances is presented in Chapter 6 to allow for interpolation to

ungauged locations. We fixed the rate of exceedance and modelled the threshold

using the ordinary kriging method, which created a very smooth surface. An

improvement to our proposed model would be to fix the threshold to say 100µg/m3

(DAQI of 4, moderate health risk) and model the rate of exceedance spatially.

MCMC techniques were used to interpolate our spatial Bayesian hierarchical model
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to ungauged locations and generate estimates for return levels and probabilities of

observing a moderate health risk or worse on a given day in an ozone period. Our

estimated surfaces show similar spatial structure as that of Gouldsbrough et al.

(2024), however are less smooth due to the higher resolution and the larger number

of covariates used. In their paper, distance-to-coast was found to be the 11th most

important feature but is found to be the second most important spatial feature,

second to distance from major roads, (see Figure 3 in Gouldsbrough et al. 2024).

Therefore, it would be interesting to include distance to major roads as a covariate

and contrast the results.

As seen in Chapter 5, ozone possesses temporal dependence and the conditional

extremes model captures this structure well. A potential avenue of further work

would be to assume the parameters of the conditional extremes model has some

underlying spatial structure. This could be done by following the work of Wadsworth

and Tawn (2019) where the model is constructed by conditioning on threshold

exceedances at a single location and composite likelihood approach used in the

inference, allowing for contributions from different conditioning sites. An extension

could be to use Simpson and Wadsworth (2021), which is an spatio-temporal

extension of the work by Wadsworth and Tawn (2019), or the spatio-temporal

framework of Garcia et al. (2023).
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AURN site information

Site Codes Type Latitude Longitude OS Start OS End

1 AH RB 52.50385 -3.03418 March July

2 ACTH RB 55.79216 -3.24290 March July

3 BUSH RB 55.86228 -3.20578 March May

4 MACK RB 51.05625 -2.68345 March July

5 CHBO RB 51.14962 -1.43823 April August

6 ESK RB 55.31531 -3.20611 March July

7 GLAZ RB 53.46008 -2.47206 March July

8 HM RB 54.33494 -0.80855 March August

9 LB RB 53.40337 -1.75201 March July

10 LERW RB 60.13922 -1.18532 March July

11 LH RB 50.79370 0.18125 March September

12 PEMB RB 51.78178 -4.69146 March July

13 ROCH RB 51.45617 0.63489 April August

14 SIB RB 52.29440 1.46350 March August

15 OSY RB 51.77798 1.04903 March August

16 SV RB 57.73446 -4.77658 March May

17 WEYB RB 52.95049 1.12202 March August

18 WFEN RB 52.29850 0.29092 April August
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19 YW RB 50.5976 -3.71651 March July

20 ABD UB 57.15736 -2.09428 March June

21 BAR3 UB 53.56292 -1.51044 March July

22 AGRN UB 52.43716 -1.83000 March August

23 BLC2 UB 53.80489 -3.00718 March July

24 BORN UB 50.73957 -1.82674 April August

25 BRT3 UB 50.84084 -0.14757 April September

26 BRS8 UB 51.46284 -2.58448 March July

27 CANT UB 51.27399 1.09806 March August

28 CARD UB 51.48178 -3.17625 April July

29 COAL UB 52.41156 -1.56023 April September

30 ED3 UB 55.94559 -3.18219 March May

31 GLKP UB 55.86578 -4.24363 March June

32 HUL2 UB 53.74878 -0.34122 March August

33 LEAM UB 52.28881 -1.53312 March August

34 LEED UB 53.80378 -1.54647 March July

35 LECU UB 52.61982 -1.12731 April August

36 CLL2 UB 51.52229 -0.12589 April August

37 HG4 UB 51.58413 -0.12525 March August

38 HIL UB 51.49633 -0.46086 March August

39 KC1 UB 51.52105 -0.21349 April August

40 MAN3 UB 53.48152 -2.23788 March July

41 NEWC UB 54.97825 -1.61053 March July

42 NO12 UB 52.61419 1.30198 March August

43 NOTT UB 52.95473 -1.14645 March August

44 PEEB UB 55.65747 -3.19653 March June

45 PLYM UB 50.37167 -4.14236 March July

46 PMTH UB 50.82881 -1.06858 March September

47 PRES UB 53.76559 -2.68035 March July
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48 REA1 UB 51.45309 -0.94407 April August

49 SHDG UB 53.37862 -1.47810 March August

50 SOUT UB 50.90814 -1.39578 March August

51 SEND UB 51.54421 0.67841 April August

52 STOK UB 53.02821 -2.17513 March July

53 SUN2 UB 54.88361 -1.40688 March July

54 THUR UB 51.47707 0.31797 April August

55 WAL4 UB 52.60562 -2.03052 March July

56 WIG5 UB 53.54914 -2.63814 March July

57 TRAN UB 53.37287 -3.02272 March July

Table A.1: AURN site information for sites used in the chapter analysis. OS denotes ozone
season. The site types are split into urban background (UB), rural background (RB).
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Case study sites

Code Lat. Long. u90 σ̂u90 ξ̂
BAR3 53.56292 -1.51044 84.927 12.612 (1.608) -0.001 (0.092)
CANT 51.27399 1.09806 102.737 18.729 (2.369) -0.098 (0.097)
COAL 52.41156 -1.56023 92.727 15.815 (2.765) -0.106 (0.142)
GLKP 55.86578 -4.24363 87.041 8.187 (1.668) 0.188 (0.168)

HIL 51.49633 -0.46086 82.921 13.953 (1.720) -0.032 (0.090)
WIG5 53.54914 -2.63814 94.528 14.719 (1.863) -0.040 (0.089)

MACK 51.05625 -2.68345 103.652 16.069 (2.196) -0.093 (0.102)
HM 54.33494 -0.80855 101.376 14.649 (1.968) 0.127 (0.108)
SIB 52.29440 1.46350 100.299 14.421 (2.112) 0.250 (0.125)

Table B.1: Information of the nine case study sites: site code, the latitude and longitude,
marginal threshold and generalised Pareto distribution parameter estimates. Values in
parentheses are the associated standard errors.
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