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Abstract

Our project explores the use of
Machine Learning (ML) to gen-
erate structural and carbon sur-
rogates from images of seashells,
reducing carbon in the construc-
tion of gridshell buildings.

Seashells exhibit evolved
geometries that are optimised
over hundreds of millions of years
for load distribution, structural
resilience and material efficiency.
By leveraging the natural curvature,
spiral growth and aperture scaling
of seashells, our project extracts
quantifiable performance patterns
from real shell specimens. Machine
Learning (ML) enables us to
reverse-engineer those forms from
photographs to reconstruct them
parametrically in  Grasshopper
(Rhino3D) software. The resulting
digital twin is subjected to
structural and carbon evaluation
using surrogate models, allowing
us to test how morphological
changes - such as compression,
elongation, or scaling affect the
shell's efficiency as a building.
This approach transforms natural
structures into generative, low-
carbon design tools.

I Objectives

To create ML-augmented work-
flow allowing designers to:

1) Extract and classify geometric
data from any image of a seashell to
create a digital twin in 3D software.

2) Predict structural and carbon
performance of altered forms using
ML-based surrogate models.

3) Use these models to provide
accurate real-time feedback on the
structural efficiency and carbon
cost of early design stage iterations
for form and material optioneering.

Impacts

a) Contributed to the de-car-
bonisation of the AEC sector by
enabling early-stage feedback on
form-material-carbon relation-
ships, supporting the UK’s net-zero
built environment target for 2030.

b) Reduced computational cost
and time of structural analysis
through the use of image-ba-
sed surrogate models, making
performance modelling accessi-
ble during early concept design.

c) Supported green skills develop-
ment in Morecambe through pu-
blic engagement, school outre-
ach, and Al workshops delivered
alongside Grimshaw Architects.

d) Demonstrated a replicable mo-
del for bioinspired design work-
flows using ML, influencing industry
partners and public understanding
of Al's potential positive role in sus-
tainable architecture.

Learning from the
Structural Efficiency of
Seashells

Seashell growth follows principles of logarithmic scaling, spiral
symmetry, and efficient curvature traits that confer significant
strength-to-weight ratios. Natural forms such as conches, bivalves,
and gastropods have long inspired architects and engineers
exploring biomimetic design including Heinz Isler’s shell studies
and Frei Otto’s form-finding experiments. Our work is inspired by the
design and construction of the Eden Morecambe Project, built near
to our Lancaster University, itself inspired by the shape of seashells.
The building takes the form of multiple mollusc seashell forms that
encompass a series of spaces that explore the ecologies and tidal
cycles of the Irish Sea.

Eden Project Morecambe

In collaboration with Grimshaw, the architects of Eden Project More-
cambe, we embedded Al workflows within real project stages to eval-
uate how image-derived shell geometries could inform the carbon
efficiencies of the seashell inspired gridshell forms of the building.
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Fig 1. Eden Morecambe 3D render (Grimshaw Architects)

I Results

CARBON & STRUCTURAL EFFICENCIES

Form variants inspired by real shell types achieved up to 38%
reductions in embodied carbon compared with final stage Finite
Element Analysis. Team testing enabled real-time carbon optioneering
with architects and engineers, with results suggesting that early-stage
feedback can materially affect design direction whilst significantly
reducing carbon expenditure at early design ideation.

Fig 4. a) % carbon saving in kg CO2 for different forms b) for dif-
ferent structural grids and ¢) beam utilisation ratios for different
forms.

Fig 5. Creating a synthetic dataset of FEA performance data (inc. total mass and utilisation
ratios of structure) across a solution space comprising varied form and grid spacing.

A convolutional neural network was trained on 1,090 synthetic shell variants for each shell type
using real photographs and parametric data to learn image-to-parameter regression. Shell types
were classified and reconstructed in Grasshopper via a live API. A second model predicted scalar
performance outputs and RGB image maps for structural stress and thickness. Surrogates were
validated against Karamba3D FEA simulations. Materials were varied parametrically (concrete,
steel, timber) to measure embodied carbon. Forms were varied over structural grid and UV axes.
This reduced simulation time by over 90%, whilst enabling real-time exploration of form and ma-
terial changes.

Fig 6. Gradio site showing original shell images (left) with matched closest ML-classified and parsed shell geometries (right) in Grasshopper3D



