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Abstract—Solar-induced chlorophyll fluorescence (SIF) is a 

crucial variable towards timely and effective monitoring of 

vegetation productivity, as well as physiological and biochemical 

parameters, across extensive areas. Among these advances, the 

TROPOspheric Monitoring Instrument (TROPOMI) SIF has 

significantly increased the spatiotemporal resolution and data 

coverage compared to previous sensors. However, TROPOMI SIF 

data suffer from nonuniform sampling, swath gaps and cloud 

contamination, resulting in numerous instances of missing data. In 

this paper, we proposed a physical and spatial information-aided 

gap filling (PSGF) method, which addresses effectively the missing 

data problem, generating a spatially seamless, 0.05°, daily SIF 

(S2-SIF) dataset globally at a spatial resolution of 0.05° from 2018 

to 2021. Through missing data simulation experiments conducted 

in six regions worldwide, we demonstrated consistency between the 

reference SIF and the filled SIF, with a correlation coefficient (CC) 

of 0.659. Furthermore, validation using in situ data from 35 SIF 

and gross primary productivity (GPP) ground sites yielded a CC of 

approximately 0.70 for the SIF sites and CC values above 0.60 

between the ground GPP and filled SIF. Additionally, consistency 

was observed between the filled SIF datasets and two other SIF 

products across 11 vegetation types, confirming the reliability of 

the filled SIF data and the efficacy of the PSGF method. The 

produced filled SIF data are made publicly available and should 

increase greatly the applicability of the daily SIF data for a wide 

range of applications, including quantifying the photosynthesis of 

vegetation and accurately estimating GPP globally. 

 

Index Terms—solar-induced chlorophyll fluorescence (SIF), 

TROPOspheric Monitoring Instrument (TROPOMI), gross 

primary productivity (GPP), photosynthesis, machine learning. 

I. INTRODUCTION 

Solar-induced chlorophyll fluorescence (SIF) is a 

complementary product of vegetative photosynthesis that can 

mirror directly the dynamics of plant photosynthesis [1] and 

discern the physiological intricacies of photosynthesis in 

vegetation [2]. Vegetation photosynthesis constitutes a pivotal 

element of the carbon cycle within terrestrial ecosystems. Thus, 

precise characterization of the physiological responses of 

vegetation energized by SIF is imperative to enable accurate 

estimation of Gross Primary Productivity (GPP) [3, 4] and, 
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thereby, enhance predictive capacity pertaining to the global 

carbon cycle [5].  

Currently, SIF remote sensing offers novel technological and 

data acquisition approaches spanning from leaf, to plant canopy, 

to the global scale [6]. Up to now, several SIF satellites have 

been launched, and ultra-fine-spectral satellite sensors such as 

GOSAT, GOME-2, OCO-2, OCO-3, and TanSat have been 

employed widely for SIF detection [6-10]. This expanding suite 

of sensors enables a comprehensive understanding of the Earth's 

biosphere at a macroscopic level, elucidating global seasonal 

variation [11], vegetation phenology [12, 13] and 

evapotranspiration [14], and enabling drought forecasting [15].  

Most of the earlier satellite sensors with SIF detection 

capabilities typically offer discrete sampling and long revisit 

intervals, leading to global SIF products with coarse temporal 

resolution. Since October 2017, the TROPOspheric Monitoring 

Instrument (TROPOMI) onboard the Copernicus Sentinel-5 

Precursor satellite has acquired global SIF (TROPOSIF) data 

with a daily revisit cycle, presenting new potential for SIF 

remote sensing. However, owing to the narrow swath width of 

the TROPOMI sensor, large orbital intervals and its 

susceptibility to cloud cover [16], gaps in the daily TROPOSIF 

data persist, hindering its wider applicability, including the 

capture of real-time fluctuations in photosynthetic capacity 

during sudden environmental changes, analysis of finely refined 

vegetation functional traits [17] and regional-scale crop yield 

estimation [18]. 

To fill the gaps in the daily TROPOSIF SIF data, machine 

learning algorithms have been applied due to their robust 

performance [19-22]. For example, several studies [8, 23, 24] 

have utilized neural networks to model the MODIS 

reflectance-SIF relationship, resulting in the development of SIF 

global data products such as contiguous solar-induced 

fluorescence (CSIF) with 4-day frequency and 0.05° spatial 

resolution, and the global “OCO-2” SIF dataset (GOSIF) with 

8-day frequency and 0.05° spatial resolution. Camps-Valls et al. 

indicated that remotely sensed vegetation indices (VIs), derived 

from spectral reflectance and ancillary data, can effectively 

capture vegetation cover, biochemistry, structure and function 

[25]. For example, the normalized difference vegetation index is 

effective in assessing chlorophyll content [26], while the 

near-infrared reflectance of vegetation demonstrates 

time-specific properties and a large correlation with SIF and 

GPP [27]. Integration of these indices into SIF data filling is 

beneficial to increase accuracy [16, 28]. However, the 

MODIS-based vegetation index products used in these studies 

exhibit significant gaps due to cloud contamination. Although 

these gaps can be reduced to some extent by 4-day and 8-day 

composites, it is still challenging to obtain spatially seamless 

MODIS data. 
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Vegetation photosynthesis is closely related to SIF, but 

existing studies have not utilized effectively the covariates 

controlling vegetation photosynthesis to fill the SIF gaps. In this 

paper, covariates providing information on vegetation 

photosynthesis were used for gap filling daily TROPOSIF data. 

We classified the variables affecting vegetation photosynthesis 

into five types: topographic factors, solar radiation, extreme 

climate, weather condition, and vegetation status. Moreover, we 

also integrated spatial features (characterized by longitude and 

latitude). As a result, we proposed a physical and spatial 

information-aided gap filling (PSGF) method. Based on this 

method, we generated a spatially seamless, 0.05°, daily SIF 

(S
2
-SIF) dataset. The availability of this new spatially seamless 

SIF dataset holds significant potential for global and 

regional-scale GPP estimation and global ecosystem monitoring. 

II. MATERIALS 

A. In-situ data 

In this research, SIF station data from two locations were 

utilized: Xiaotangshan station (XTS) and Shangqiu station (SQ) 

in China, which are publicly available through the ChinaSpec 

network (https://chinaspec.nju.edu.cn/). The XTS and SQ 

stations are situated in cropland areas with two crop rotations 

annually; specifically winter wheat and summer maize [29, 30]. 

The GPP data employed in this research were sourced from the 

Ameriflux GPP site (http://ameriflux.ornl.gov/), which were 

derived by upscaling GPP based on flux observatory sites 

(including a total of 34 sites). Fig. 1 shows the MCD12Q1 

classification data, from which vegetation data were extracted 

across various regions including Evergreen Needleleaf Forests 

(ENF), Evergreen Broadleaf Forests (EBF), Deciduous 

Needleleaf Forests (DNF), Deciduous Broadleaf Forests (DBF), 

Mixed Forests (MF), Closed Shrublands (CS), Open Shrublands 

(OS), Woody Savannas (WS), Savannas (SA), Grasslands (GL), 

Permanent Wetlands (PW), Croplands (CL), and 

Cropland/Natural Vegetation Mosaics (CNVM). 
 

 
Fig. 1. Locations of in situ SIF and GPP data and simulated gaps. See text for 

definition of vegetation classes. 

B. Satellite sensor data 

1) SIF data. Daily TROPOSIF data from May 2018 to 

December 2021 [9] were downloaded. Given that Hu et al. [16] 

demonstrated greater accuracy in the validation of 

TROPOSIF743, we selected the daily average version for use in 

this paper. However, the data were stored as discrete points and, 

thus, we gridded the TROPOSIF data with geospatial attributes 

into SIF images with a spatial resolution of 0.05°. We also 

calculated the percentage of missing TROPOSIF data for each 

date. As shown in Fig. 2, the average missing ratio exceeds 0.5. 
 

 

Fig. 2. Missing ratio of the TROPOSIF data on each date. 

 

2) ERA 5 data. The used ERA5 data were generated by 

reproducing the land component of the ECMWF ERA5 climate 

reanalysis. This dataset offers fine temporal resolution and a 

comprehensive range of open data on terrestrial ecosystems. 

From this dataset, we selected key variables including 

temperature, precipitation, solar radiation, forecast albedo, leaf 

area index and skin reservoir content in the vegetation canopy 

(0.1° × 0.1°). We averaged all meteorological and chemical 

composition simulations at the hourly level to obtain daily 

values. The variables were interpolated from the original spatial 

resolution to approximately 5 km resolution (0.05° × 0.05°) 

using the bilinear interpolation method [31] to match that of the 

SIF data. 

3) DEM data. The ASTER Global Digital Elevation Model is 

a topographic dataset released collaboratively by the National 

Aeronautics and Space Administration and Japan's Ministry of 

Economy, Trade, and Industry in 2009. The dataset uses the 

UTM/WGS84 projection coordinate system. In Google Earth 

Engine, the ID of the DEM data used in this research is 

“NASA/ASTER_GED/AG100_003”. We used elevation, slope 

and aspect as the key terrain features. 

III. METHODS 

A. Input physical and spatial features  

Based on the mechanisms affecting vegetation photosynthesis, 

the physical features of the PSGF model are divided into five 

components: topographic factors, solar radiation, extreme 

climate, weather condition and vegetation status. Collectively, 

they capture the influence of environment on vegetation 

photosynthesis, as illustrated in Fig. 3 and detailed in Table 1. 

1) Topographic factors: Factors such as elevation, slope and 

aspect relative to solar radiation flux reach the 

vegetation-covered surface. They influence the amount 

of solar radiation absorbed by the vegetation. 

2) Solar radiation: The principles of SIF estimation are as 

follows: 

APASIF= R F escf                            (1) 

https://chinaspec.nju.edu.cn/
http://ameriflux.ornl.gov/
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where APAR is the photosynthetically active radiation 

(PAR) absorbed by the canopy, 
F  is the physiological 

total SIF emission yield of the canopy photosynthetic 

light response, and 
escf is the escape probability. In this 

paper, we used surface solar radiation downwards, 

surface net solar radiation sum and forecast albedo from 

ERA5 as the relevant variables for PAR. 

3) Extreme climate: Research has shown that extreme 

weather events lead to decreased vegetation productivity 

due to incurred damage [32] and because vegetation has 

an optimal temperature threshold for photosynthesis. 

Specifically, excessively high surface temperatures cause 

vegetation stomata to close, halting photosynthesis, 

while excessively low surface temperatures impede 

vegetation activity and hinder growth [33]. In this paper, 

we used temperature max and temperature min as 

covariates representing extreme climate variables. 

4) Weather condition: Vegetation photosynthesis is also 

controlled by weather condition. The factors characterizing 

weather condition include precipitation and temperature. 

These two factors govern the water and temperature stress 

experienced by vegetation. Both significantly impact plant 

respiration and soil organic carbon decomposition, 

ultimately influencing plant photosynthesis [34]. 

5) Vegetation status: The state of vegetation affects the ability 

to undertake photosynthesis. We used leaf area index (LAI) 

and skin reservoir content to characterize vegetation status. 

LAI delineates the structure of vegetation, directly 

impacting the degree of sunlight absorption [35]. Skin 

reservoir content is closely linked to the transpiration and 

photosynthesis processes of vegetation. 

 

Table 1. Detailed physical characteristics used in the proposed PSGF method. 
Factors Characteristics Detailed characteristics Abbreviation 

Topographic factor 

Elevation The height above sea level. ELE 

Slope The angle at which it slopes. SLO 

Aspect The surface orientation. ASP 

Solar radiation 

Surface net solar radiation 
Amount of solar radiation reaching the surface of the Earth (both 

direct and diffuse) minus the amount reflected by the Earth's surface. 
SNSR 

Surface solar radiation 

downwards 
Amount of solar radiation reaching the surface of the Earth. SSRD 

Forecast albedo The reflectivity of the Earth's surface. FA 

Extreme climate 
Skin temperature max Daily maximum skin temperature value. Tmax 

Skin temperature min Daily minimum skin temperature value. Tmin 

Weather condition 

Skin temperature Temperature of the surface of the Earth. T 

Total precipitation sum 
Accumulated liquid and frozen water, including rain and snow that 

fall to the Earth's surface. 
TPS 

Vegetation status 

Leaf area index high 

vegetation 

One-half of the total green leaf area per unit horizontal ground surface 

area for high vegetation type. 
LAI-H 

Leaf area index low 

vegetation 

One-half of the total green leaf area per unit horizontal ground surface 

area for low vegetation type. 
LAI-L 

Skin reservoir content Amount of water in the vegetation canopy. SRC 

 

 
Fig. 3. Physical features driving photosynthesis in vegetation. 
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Fig. 4. Framework of the proposed PSGF model for gap filling of SIF data. 

 

As acknowledged widely, the spatial distribution of SIF is 

related closely to geographical position on the sphere. Regarding 

spatial features, we used the weighting effect of polar 

coordinates [36] for characterization, as shown in Eq. (2): 
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where SF denotes the spatial features, lon represents longitude 

with a range of [0, 360] and lat represents latitude with a range of 

[0, 180]. 

We calculated the correlation coefficient (CC) between SIF 

data and each physical variable for each date from May 2018 to 

December 2021, as shown in the Appendix. The results 

demonstrate relatively strong correlation between SIF and the 

physical variables. These findings highlight the importance of 

using these physical variables in SIF gap filling. 

 

B. Model training 

Suppose that the SIF with gaps on date n is to be filled. As 

shown in Fig. 4, the basic principle of the PSGF model is as 

follows: 

Variable {TF,SR,EC,WC,VS,SF}                 (3) 

 valid validSIF Variablen nf                       (4) 

where 
validSIFn  is the valid value of the non-missing SIF zone for 

date n. TF, SR, EC, WC and VS denote topographic factors, 

solar radiation, extreme climate, weather condition, and 

vegetation status. f characterizes the relation between the valid 

SIF data and the input variables. 

To fill the global SIF data, we chose a machine learning 

method to fit the complex relationship (i.e., function f) between 

the valid SIF and the input variables (i.e., labels of the training 

data and input data). Specifically, we selected XGBoost due to 

its robustness to multicollinearity and default values, noise 

tolerance and capability to handle large datasets. It consists of a 

series of decision trees, where each decision tree is generated 

based on the previous one, and the spatial gradient of the loss 

function is continuously reduced by weighting multiple decision 

trees. Operations such as regularization, parallel processing, 

missing value processing and feature subsampling are 

introduced to reduce overfitting and increase robustness. To 

ensure the stability of the model, five-fold cross-validation was 

employed in the training process.  

C. Model prediction 

With the XGBoost-based training model in Section III-B, the 

relation between the valid SIF and the input physical and spatial 

features can be fitted by the function f, which can then be used to 

predict the missing SIF data on the corresponding date n. That is, 

the SIF for the gaps is filled using the following Eq. (5): 

gap gap )aS riab e(V lIF n
n

f                         (5) 

where gap SIF
n

 is the predicted SIF for the gaps and gapVariablen
 

represents the input physical and spatial features at the 

corresponding gap areas. 

D. Model validation 

In this paper, the accuracy and robustness of the PSGF model 

were validated using (i) a complete SIF dataset in which the gaps 

to be filled were simulated and (ii) a real experiment using the 

global, daily TROPOSIF time-series from 2018 to 2021. For the 

simulated gaps, the filled SIF predictions were compared with 

the original real SIF. Through this scheme, the performance of 
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the proposed PSGF method can be evaluated objectively, as the 

reference is known perfectly. The accuracy of the filled S
2
-SIF at 

the global scale was validated using in situ SIF and GPP data, 

and also compared with other SIF and GPP products. 

Quantitative assessment was conducted using the CC, root mean 

square error (RMSE) and mean absolute error (MAE). 

IV. RESULTS 

The validation results for the simulated and real data 

experiments are provided in Sections IV-A and IV-B, 

respectively.  

A. Validation based on simulated gaps 

Fig. 5 shows a comparison between the reference (i.e., with 

gaps) SIF data and the filled SIF data for six simulated regions. 

The six simulated regions were assumed to have completely 

missing SIF data. The first line of Fig. 5(a) and Fig. 5(b) presents 

the reference SIF data that are originally available. The 

references were used to evaluate the performance of gap filling 

for the simulated regions. Note there are also missing data in the 

references, which is an inherent characteristic of satellite 

observations of TROPOSIF data. These simulated regions are 

distributed across each continent, with the locations depicted in 

Fig. 1. Furthermore, the reference SIF data display distinct 

global variation in distribution. For example, on Oct 3, 2018, the 

southern hemisphere experiences spring while the northern 

hemisphere is in autumn, resulting in notably larger SIF values 

in Africa compared to other regions. Conversely, Oceania 

exhibits consistently smaller SIF values due to sparse vegetation, 

as depicted in Fig. 1, where the predominant vegetation type is 

OS. On May 23, 2020, during the northern hemisphere's spring 

season, elevated SIF values are observed in Europe and North 

America. These observations highlight distinct global 

differences between the six regions. Following the application of 

the filling model, the previously missing regions are effectively 

filled. 

 

 
Fig. 5. Experimental results of the six regions of the gap filling simulation. (a) Oct 3, 2018. (b) May 23, 2020. 
 

Table 2 presents a quantitative assessment of prediction 

accuracy following the filling process. The results indicate that 

on October 3, 2018, Africa exhibited the most accurate filling 

result, with a CC of 0.797, accompanied by RMSE and MAE 

values of 0.076 and 0.061, respectively. On May 23, 2020, North 

America demonstrated the highest filling accuracy, attaining a 

CC of 0.904, with RMSE and MAE values of 0.110 and 0.086. 

However, certain regions exhibited lower accuracies, notably 

Europe on October 3, 2018 and Oceania on May 23, 2020. This 

was likely caused by senescing or sparse vegetation and lower 

solar radiation during this period. Additionally, weaker sunlight 

during winter contributes to reduced SIF, as depicted in Fig. 5. 

Furthermore, noise in sparsely vegetated areas, such as Oceania, 

adds complexity to the filling process, as illustrated in Fig. 5. 
 

Table 2. Accuracy of the SIF gap filling model simulations. 

Date October 3, 2018 May 23, 2020 

Accuracy CC RMSE MAE CC RMSE MAE 

Asia 0.594 0.047 0.037 0.744 0.066 0.051 

South America 0.683 0.050 0.039 0.751 0.062 0.049 

Africa 0.797 0.076 0.061 0.697 0.057 0.045 

Oceania 0.605 0.044 0.035 0.294 0.023 0.019 

North America 0.605 0.055 0.042 0.904 0.110 0.086 

Europe 0.388 0.024 0.019 0.842 0.079 0.061 

 

B. Validation based on real gaps 

1) Visual results of the filled global SIF data 

We filled the global daily SIF data from May 2018 to 

December 2021, and five resulting maps are depicted, together 

with the original reference data, in Fig. 6. By selecting different 

dates for each year (May 1, 2018, February 26, 2019, July 20, 

2021, October 18, 2021, and April 18, 2020), we ensured to 

cover different seasons throughout the year.  

Spatially, the filled gaps in the SIF data exhibit a consistent 

distribution with the valid SIF values of the surrounding 

vegetation. However, some patterns resembling salt-and-pepper 

noise are observed, which we further explain in Section V-D. 

The tropical rainforest regions (Amazon, Indonesia, and Congo) 

exhibit consistently large SIF values throughout the year, 

attributed to the vigorous photosynthesis in tropical rainforest 
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vegetation and the region's tropical climate zone. The regions 

with large SIF values on at least one date are predominantly 

concentrated in the western United States, South America, 

southwestern Europe, central Africa, southeastern China, and 

Southeast Asia. In contrast, areas dominated by OS vegetation 

types, such as Australia, southern Africa, Argentina, 

southwestern North America, and northern Asia, display 

consistently small SIF values. Overall, the SIF data exhibit 

seasonal variability, with smaller values observed in winter, and 

peak values occurring in summer, a trend closely linked to the 

amount of short-wave radiation from the Sun. 

2) Accuracy evaluation based on the in situ SIF data  

The SIF values filled by the PSGF model were validated 

against ground station reference data. As depicted by the 

scatterplots in Fig. 7, the scatterplots for the filled SIF data 

(against the ground reference) demonstrate substantial 

concordance with the scatterplots for the valid SIF data (against 

the ground reference), with the goodness-of-fits and the fitted 

slopes being consistent between the two. Specifically, the CC 

between the ground reference SIF at the XTS station and the 

valid SIF data is 0.505, slightly larger than for the filled SIF data, 

which is 0.486. At the SQ station, the CC between the in situ SIF 

and the valid SIF data and between the in situ SIF and the filled 

SIF data were nearly identical, measuring 0.752 and 0.759, 

respectively. 

 

 
Fig. 6. Maps of (left) reference and (right) gap-filled global SIF. (a) May 1, 2018, (b) February 26, 2019, (c) July 20, 2021, (d) October 18, 2021, (e) April 18, 2020. 

 



 7 

 
Fig. 7. Scatterplots of SIF at ground stations against the (upper) SIF reference data and (lower) SIF predictions. (a) and (c) are results for XTS site. (b) and (d) are 

results for SQ site. 

 

 
Fig. 8. Accuracy of the GPP sites compared to the SIF at filled areas (P-value<0.005). (a) US-Var. (b) US-xTR. (c) US-CF4. (d) US-Ich. (e) US-BZS. (f) US-BZB. 

 

C. Comparison with in situ GPP data  

GPP represents the total carbon absorbed by green plants 

through photosynthesis. Research suggests that SIF exhibits 

great sensitivity to vegetative photosynthesis and, thus, 

maintains a robust linear relationship with GPP [2, 37]. Because 

of the wide availability of data on GPP, GPP can be used to 

validate methods of predicting SIF [4]. Fig. 8 shows scatterplots 

of measured GPP against filled SIF for six sites selected from 34 

sites. The CC between in situ GPP and the filled SIF at the 

US-Var, US-xTR, US-CF4, US-Ich, US-BZS, and US-BZB sites 

was 0.563, 0.844, 0.764, 0.393, 0.604 and 0.579, respectively, 

demonstrating the reliability of the PSGF model. 

Fig. 9 presents detailed results for each of the available 33 

GPP sites. The mean CC between the site GPP and filled SIF is 

0.688, with a good degree of consistency, further highlighting 

the efficacy and robustness of the PSGF. To further assess the 

accuracy of the SIF predictions, Fig. 10 shows a time-series plot 

of the valid SIF and filled SIF together with the site GPP for two 
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ground sites. It is evident that the filled SIF maintains the same 

temporal trend as the GPP time-series, similar to the valid SIF. 
 

 
Fig. 9. The correlation between in situ GPP at each site and the SIF at filled area 

(P-value<0.005). 

 

 
Fig. 10. Time-series plots of filled and valid SIF, and GPP, for two GPP sites: (a) 

US-xTR and (b) US-CF4. 

D. Ablation experiments 

Each of the used physical variables has the potential to 

influence vegetation photosynthesis significantly. Hence, it is 

crucial to evaluate the influence of each variable (e.g., by adding 

spatial features to the physical variables in the model) to ensure 

maximum accuracy and robustness when compensating for 

missing SIF data. Each physical variable was entered into the 

model individually, before including all five physical variables 

together and then all variables (i.e., adding spatial features to the 

physical variables). The dataset comprises 80% for training and 

20% for validation. The prediction accuracy when using only the 

topographic factors are notably low, with CC of 0.254 and a 

larger RMSE than for other physical variables. The CC is largest 

for the extreme climate and vegetation status parameters, 0.604 

and 0.603, respectively, underscoring their significance in 

compensating for the missing SIF data. Moreover, by adding the 

spatial features (ALL in Fig. 11), the prediction accuracy is 

increased by approximately 2% compared to using only the five 

physical variables. The individual contribution of each variable 

will be further explained in Section V-A. 
 

 
Fig. 11. Accuracy results for individual, and combinations of, covariates in the 

ablation experiments. (a) CC. (b) RMSE. 

V. DISCUSSION 

A. Factors affecting the filled SIF data 

We conducted an analysis of the importance scores of the 

variables used in SIF filling, as depicted in Fig. 12. Overall, 

spatial features exhibit the highest contribution, at 0.38. This 

prominence can be attributed to spatial features encompassing 

geographic characteristics, including seasonal and 

climate-specific attributes. Additionally, both the extreme 

climate and vegetation status contribute approximately 0.2 to the 

filled SIF. Studies have demonstrated the significance of 

extreme climate, such as cold, drought and freezing events, in 

regulating photosynthesis [32]. Extreme climate influences 

vegetation photosynthesis primarily through temperature 

variation [34]. We utilized Tmin and Tmax to characterize 

specific climatic temperature conditions, such as cold and 

drought, finding their contributions to be slightly higher than 

those of T within weather condition. Notably, Tmin exhibits a 

significantly higher contribution, indicating its sensitive control 

on vegetation photosynthesis across different geographic 

locations. This conclusion further demonstrates that temperature 

influences vegetation activity and transpiration, indirectly 

affecting SIF [38]. This underscores the importance of 

considering both Tmin and Tmax variation for SIF filling. 

Within the vegetation status group, LAI-H makes the largest 

contribution to SIF filling, aligning with previous studies on the 

contribution (and correlation) of LAI to SIF [39]. LAI reflects 

the photosynthetic capacity of canopy and may also indicate the 

contributions of grasslands or shrubs to the SIF signal [40]. 

Additionally, the skin reservoir content contributes 

approximately 0.04, underscoring its crucial role in vegetation 

photosynthesis [41, 42]. Furthermore, forecast albedo exhibiting 

the highest contribution due to its large correlation with 

reflectance. This prominence is attributed to forecast albedo 

serving as a representative of reflectance, complementing SIF 

measurements by capturing narrow solar Fraunhofer lines using 

fine-resolution spectrometers [6]. In weather condition, besides 

T, precipitation accounts for nearly 0.02. Precipitation enhances 

soil moisture and atmospheric humidity, thereby promoting 

vegetation photosynthesis. Conversely, low precipitation levels 

lead to reduced surface and deep soil moisture, resulting in 

decreased photosynthesis. Although topographic factors 

contribute the least to filled SIF, topographic changes impact 

shortwave solar radiation and are, therefore, worth considering. 

B. Comparison with other SIF products 

To further assess the reliability and robustness of the PSGF 

and further confirm the data accuracy of the S
2
-SIF, we 

compared the S
2
-SIF with (i) the CSIF product [24], featuring a 
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four-day temporal resolution and 0.05° spatial resolution and (ii) 

the reconstructed TROPOMI SIF (RTSIF) product [28], with an 

eight-day temporal resolution and 0.05° spatial resolution. First, 

we averaged the S
2
-SIF to match the temporal resolution of the 

other SIF products. To validate the data points, we utilized the 

MCD12Q1 ground vegetation cover type data (Fig. 1), where we 

categorized ENF and EBF as evergreen forest (EF), and DBF 

and DNF as deciduous forest (DF). We extracted 11 vegetation 

types including EF, DF, MF, CS, OS, WS, SA, GL, PW, CL and 

CNVM, each with 10,000 pixels. Accuracy was assessed by 

computing the CC, RMSE and MAE between these vegetation 

validation points and the corresponding CSIF and RTSIF 

product data. The results of this comparison are presented in 

Table 3. 

From Table 3, we observe that the S
2
-SIF exhibits consistency 

with both the four-day temporal resolution CSIF product and the 

eight-day temporal resolution RTSIF product. Notably, the 

correlation with the RTSIF product is the largest, with most 

vegetation types achieving a CC above 0.8. To elucidate the 

greater association with RTSIF, we analyze two factors. Firstly, 

both the S
2
-SIF and RTSIF datasets originate from TROPOMI 

satellite sensor data, ensuring data source consistency. 

Conversely, CSIF is generated by OCO-2 SIF reconstruction. 

This distinction is evident in Fig. 13, illustrating that the S
2
-SIF 

exhibits greater visual consistency with RTSIF, whereas some 

discrepancies exist with CSIF. Secondly, the literature suggests 

that increasing the number of dates for SIF averaging reduces 

in-grid SIF inversion errors by a factor of n  [28, 43]. With 

increased averaging over multiple dates, noise in the SIF data 

diminishes, leading to more stable and reliable results. Therefore, 

the RTSIF product data with an 8-day time resolution is 

expected to be more robust. 

 

 
Fig. 12. Importance scores of the variables used for SIF filling. 

 

Table 3. Comparison of S2-SIF with the CSIF and RTSIF products in terms of the 
CC, RMSE and MAE, under different vegetation covers. 

Vegetation 
CSIF RTSIF 

CC RMSE MAE CC RMSE MAE 

CL 0.873 0.097 0.073 0.911 0.079 0.060 

CNVM 0.831 0.107 0.081 0.888 0.087 0.066 

CS 0.824 0.069 0.05 0.865 0.058 0.043 

DF 0.534 0.079 0.059 0.620 0.062 0.047 

EF 0.606 0.089 0.068 0.736 0.069 0.054 

GL 0.834 0.089 0.067 0.870 0.076 0.058 

MF 0.780 0.082 0.063 0.867 0.061 0.047 

OS 0.468 0.076 0.059 0.472 0.067 0.053 

PW 0.679 0.102 0.077 0.827 0.077 0.059 

Sa 0.866 0.098 0.075 0.913 0.079 0.061 

WS 0.868 0.095 0.072 0.924 0.073 0.055 

 

 
Fig. 13. Global spatial presentation of RTSIF, CSIF and filled SIF datasets showing (left) annual mean and (right) annual maximum values. (a) and (b) RTSIF. (c) and 

(d) CSIF. (e) and (f) S2-SIF. 
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Fig. 14. Correlation results between S2-SIF and the GPP product under different vegetation cover types. (a) EF. (b) DF. (c) MF. (d) CS. (e) OS. (f) WS. (g) Sa. (h) GL. 

(i) PW. (j) CL. (k) CNVM. 

 

We conducted a comparative analysis of the accuracy of the 

S
2
-SIF with CSIF and RTSIF across various vegetation types. 

Overall, the S
2
-SIF produced a large correlation with the CSIF 

and RTSIF products across different vegetation types, with CC 

exceeding 0.8 for the CL, CNVM, CS, GL, SA and WS 

vegetation types. Specifically, in the correlation analysis with 

RTSIF products, correlations surpass 0.9 for the CL, SA and WS 

vegetation types. However, we observed slightly lower 

accuracies for two vegetation types: DF and OS. The DF 

vegetation region, mainly found in tropical rainforest regions, 

exhibits relatively weak seasonal variation, necessitating more 

complex explanatory variables in model construction. 

Conversely, the OS vegetation region displays a weaker SIF 

signal and, thus, experiences greater levels of signal noise 

interference throughout the year. In the OS, climatic factors, 

such as low precipitation, result in reduced water availability in 

both the soil and atmosphere. This leads to decreased stomatal 

conductance, leaf surface water potential, and xylem water 

transport in vegetation leaves, subsequently reducing 

photochemical and fluorescence efficiency [35]. 

C. S
2
-SIF comparison with GPP product data 

SIF was utilized effectively for calculating global GPP data 

products [37]. To further validate the application value of the 

S
2
-SIF dataset generated by the PSGF model, we examined the 

correlation between S
2
-SIF and the global GPP dataset [4] across 

various vegetation cover types: EF, DF, MF, CS, OS, WS, Sa, 

GL, PW, CL and CNVM. As illustrated in Fig. 14, the CC 

between S
2
-SIF and CMLR-GPP exceeds 0.8 for the CS, WS, Sa, 

GL, PW, CL and CNVM vegetation types. The smallest CC, 

with a coefficient of 0.557, is observed for OS vegetation types. 

Overall, these results demonstrate the large correlation between 

S
2
-SIF and GPP. 

To further assess the physiological relevance of the 

reconstructed SIF, we validated it by comparing the difference in 

temporal profiles between S
2
-SIF and GPP. We selected four 

vegetation types (forest, shrub, grassland, and farmland) and 

plotted the time-series for both filled SIF and GPP in Fig. 15. 

The results show strong correlations and similar seasonal trends, 

indicating that the gap-filled SIF effectively retains important 

physiological information across these vegetation types. 
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Fig. 15. The temporal profiles of the GPP and filled SIF for different vegetation 

cover types. (a) Forest. (b) Shrub. (c) Grassland. (d) Farmland. 

 

D. Advantages of the proposed PSGF model and applications 

in the future 

To address the pervasive problem of gaps in global daily SIF 

data, we introduced the PSGF model for SIF gap filing that 

incorporates both physical variables and spatial features. The set 

of physical variables represent comprehensively the factors 

influencing vegetation photosynthesis, split into five groups: 

topographic factors, solar radiation, extreme climate, weather 

condition and vegetation status. These factors were shown to 

contribute effectively to the PSGF model (Fig. 12). Considering 

the global-scale computation and the complex relationship 

between SIF and the independent variables, we introduced the 

machine learning model (XGBoost), which has advantages in 

handling large-scale datasets and complex model training. The 

model also excels in balancing processing efficiency and 

accuracy, as evidenced by its strong performance in various 

applications [44, 45]. We provided the training time cost of the 

model for each date in Fig. 16. It is seen that the average training 

time is about 12 s. Moreover, the model effectively captures 

complex nonlinear relationships between input variables and SIF. 

Meanwhile, the regularization operation effectively reduces the 

overfitting phenomenon [28]. 

The independent variables used in the PSGF include 

additional features related to weather condition and extreme 

climate , compared to previous work [28]. As discussed in 

Section V-A, the combined proportion of these features amounts 

to 0.3, highlighting the superiority of our model. LAI has always 

been considered in SIF-filling models, typically as an important 

factor [35, 46]. However, LAI saturates in areas with high 

vegetation cover [47]. Therefore, we introduced variables for 

LAI in high vegetation (LAI-H) and low vegetation (LAI-L) to 

quantify LAI in greater detail. Due to the absence of daily mean 

scale LAI data, it is difficult to explore the distinction between 

LAI-H/LAI-L and LAI, or their respective contributions to SIF.  

We employed the PSGF model to address missing SIF data 

and, thereby generated a seamless 0.05° daily SIF dataset 

(S
2
-SIF). It is important to elucidate the significance of this 

achievement in relation to potential applications. Previous 

studies have utilized SIF datasets scaled primarily at intervals of 

four days, eight days and monthly [23, 24, 28]. However, gaps 

exist in these products, with a notable lack of SIF products 

providing seamless daily temporal resolution. The PSGF model 

proposed herein effectively resolves this limitation. Moreover, 

the introduction of S
2
-SIF with seamless daily temporal 

resolution will facilitate advances in addressing various 

challenges. For example, the current coarse spatiotemporal 

resolution of SIF data hampers the identification of “sudden 

drought” events lasting less than eight days, as well as the 

accurate extraction of vegetation phenology over extended 

timeframes, and in local areas. Furthermore, it inhibits the 

assessment of short-term stressors on vegetation photosynthetic 

capacity. Therefore, the availability of a seamless daily temporal 

resolution SIF dataset holds significant promise for researchers 

and policymakers engaged in environmental and climate change 

research, vegetation monitoring and agronomy. 

 
Fig. 16. The training time cost of the model for each date. 

 

 
Fig. 17. Accuracy of the S2-SIF validated using the upslaced in situ SIF based on 
the NIRv approach.  
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E. Uncertainty in SIF gap filling 

The gap filling of SIF greatly expands the application 

potential of SIF, and the generated daily scale SIF product is of 

great significance for large-scale vegetation monitoring and 

carbon sink calculations. However, the following uncertainties 

also exist in the gap filling: 

1) We observed that the SIF products exhibited some noise 

during the experiments, as illustrated in Fig. 5. 

Consequently, the presence of noise introduces errors 

into the model during the gap filling process. In our 

future research, we plan to reconstruct the SIF to produce 

a data product with enhanced precision and 

spatiotemporal resolution.  

2) The model utilizes the available SIF value from the same 

day within the valid area to fill gaps in the missing area. 

Consequently, our gap filling model becomes ineffective 

when faced with completely missing dates, which is a 

limitation of the gap filling model itself.  

3) Topographic factors are incorporated into the model 

because the solar radiation flux varies across different 

locations due to terrain elevation and surface orientation 

relative to sunlight, influencing vegetation 

photosynthesis and the SIF values. However, the DEM 

data utilized in our research is unavailable for the North 

and South Poles regions, leading to the inability to fill 

SIF gaps in these areas.  

4) In situ SIF data are widely regarded as "true values" for 

validating satellite SIF products [23, 24, 28]. However, 

due to inconsistencies in spatial scale and geographical 

locations between satellite pixels and in situ points, 

unavoidable uncertainty exists in the evaluation scheme 

[16, 28]. Spatial upscaling is an effective solution to 

increase the reliability of ground measurements used for 

evaluation, by aggregating the in situ data within a single 

pixel to produce pixel-scale ground data. For example, 

Du et al. [48] established a relationship between 

Sentinel-2 NIRv and tower-based NIRv to upscale in situ 

SIF to satellite-scale SIF. Based on this approach, we 

upscaled the in situ SIF using Sentinel-2 data, and the 

accuracy evaluation is shown in Fig. 17. However, it 

should be pointed out that this method requires temporal 

alignment between Sentinel-2 and in situ data, making it 

suitable for validating instantaneous SIF values. 

Additionally, satellite overpasses require revisit cycles, 

which significantly limits the number of valid validation 

points. As a result, it remains challenging to validate 

daily SIF products using this approach. With the 

expansion of flux tower networks and the accumulation 

of more in situ data, this limitation is expected to be 

overcome to some extent. 

VI. CONCLUSION 

We proposed the PSGF model to fill the gaps in TROPOSIF 

data and generate a spatially seamless 0.05° global daily SIF 

dataset (S
2
-SIF) from 2018 to 2021. For validation, the SIF 

images for six simulated regions were gap-filled. By referring to 

the reference data, the overall CC, RMSE and MAE were 0.659, 

0.058, and 0.045. Additionally, we validated the model 

predictions using in situ data from 36 SIF and GPP sites, with an 

overall CC between GPP and filled SIF of 0.688. Comparison 

with other SIF products (CSIF and RTSIF) yielded consistent 

results, particularly in the CL, CNVM, CS, GL, Sa and WS 

vegetation types, with a CC above 0.8. Furthermore, we 

conducted ablation experiments using physical and spatial 

information to analyze the contribution of SIF-related factors to 

SIF filling, providing insights for future studies. In summary, the 

PSGF effectively addresses missing SIF data problem, yielding 

spatiotemporally complete datasets crucial for global and 

regional-scale GPP estimation and global carbon assessment. 

The produced S
2
-SIF data can be accessed via the link available 

at https://doi.org/10.5281/zenodo.11918785. 
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Fig. A1. The CC between SIF and each physical variable. 
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