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Understanding electron neutrino interactions is crucial for measurements of neutrino oscillations
and searches for new physics in neutrino experiments. We present the first measurement of the
flux-averaged νe + ν̄e charged current single charged pion production cross section on argon using
the MicroBooNE detector and data from the NuMI neutrino beam. The total cross section is
measured to be (0.93 ± 0.13 (stat.) ± 0.27 (syst.))×10

−39
cm

2
/nucleon at a mean νe + ν̄e energy

of 730MeV. Differential cross sections are also reported in electron energy, electron and pion angles,
and electron-pion opening angle.

Introduction .— The next generation of accelerator
neutrino oscillation experiments will seek to address mul-
tiple open questions in neutrino physics through precision
measurement of electron neutrino appearance in muon
neutrino beams. These include the presence and scale of
charge-parity violation in the neutrino sector, the neu-
trino mass ordering, and the resolution of anomalies ob-
served at short baselines [1]. Several of these experiments
will make use of the liquid argon time projection chamber
(LArTPC) detector technology [2, 3]. As such, in order
to facilitate these measurements, precise understanding
of νe interactions on argon is essential.

Cross section modeling of νe interactions is typically
extrapolated from νµ measurements. However, uncer-
tainties on the νe/νµ interaction cross section ratio aris-
ing from the different lepton masses and subsequent ra-
diative corrections limit their constraining power [4–7].
Understanding these effects through measurements of νe
interactions is crucial for precision neutrino oscillation
measurements, rare-event searches, and benchmarking
theoretical models used in neutrino experiments.

Reconstructing and measuring νe interactions also
presents unique challenges compared to νµ interactions
due to the electromagnetic cascades produced by final-
state electrons. These are complicated to reconstruct
and sensitive to detector calibration uncertainties. Mea-
surements of νe interactions allow algorithms targeting
these topologies to be evaluated and improved reducing
systematic uncertainties and enhancing detector perfor-
mance.

Existing measurements of νe cross sections on argon
are limited and consist of several inclusive measure-
ments [8–10] and a measurement without final state pi-
ons [11]. The Deep Underground Neutrino Experiment
(DUNE) will be exposed to a neutrino flux peaking at en-

ergies of a few GeV [3]. At these energies, one of the dom-
inant neutrino interaction modes leads to the excitation
of baryon resonances that subsequently decay producing
pions. This process has never previously been measured
for νe interactions in argon.
This work presents the first measurement of the flux-

averaged νe +
—

νe charged-current (CC) single charged
pion production cross section on argon using Micro-
BooNE. The final-state topology considered consists of
an electron (or positron), a single charged pion, zero
neutral pions (or heavier mesons), and any number of
protons or neutrons:

(—)

ν e +Ar → e± + 1π± + 0π0 +X, (1)

where X represents the residual nucleus and any out-
going nucleons. These interactions will subsequently be

referred to as
(—)

ν e CC1π± for simplicity.
The MicroBooNE detector is an 85 tonne LArTPC

that collected data between 2015 and 2020. It consists of
an instrumented argon volume of (2.56×2.32×10.36)m3

(drift, vertical, beam direction). Ionization charge pro-
duced by charged particles resulting from neutrino inter-
actions is drifted towards three planes of readout wires,
orientated vertically and at ±60◦ to the vertical, by an
electric field of 273V/cm. Additionally, scintillation light
is collected by an array of 32 photomultiplier tubes lo-
cated behind the readout planes [12].
MicroBooNE collected data from two neutrino beams:

the on-axis 8GeV Booster Neutrino Beam and the ap-
proximately 8◦ off-axis 120GeV Neutrinos at the Main
Injector (NuMI) beam [13]. In this work, data from
the NuMI beam operating in a mixture of forward-horn-
current (FHC) neutrino mode and reverse-horn-current
(RHC) anti-neutrino mode are used. The NuMI flux
at MicroBooNE is shown for each horn-current mode
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in the Supplemental Material [14]. The flux contains a

significant fraction of
(—)

ν e (2.5%) due to the high beam
energy and the significantly off-axis position of the de-

tector. This makes it particularly useful for
(—)

ν e cross-

section measurements. The average
(—)

ν e energies incident
on MicroBooNE are 715MeV in FHC mode and 744MeV
in RHC mode. The integrated exposure is 8.9 × 1020

protons-on-target (POT) in FHC mode and 11.1 × 1020

POT in RHC mode. This corresponds to the full NuMI
dataset accumulated by MicroBooNE and used for the
first time in this analysis.

At these neutrino energies, the dominant
(—)

ν e CC1π±

production mechanism is through the ∆(1232) resonance
that subsequently decays to a pion and a nucleon. In
addition, there are subdominant contributions from co-
herent pion production and pion production as a result of
deep inelastic scattering. The observed topology is also
impacted by final-state interactions that can lead to pion
production or absorption as the particles produced in the
neutrino interaction leave the argon nucleus.

Although pion production has not previously been
measured in νe interactions on argon, it has been probed
in νµ interactions. ArgoNeuT has performed measure-

ments of νµ and
—

νµ induced charged pion production on
argon [15]. MicroBooNE has performed several measure-
ments of νµ induced neutral pion production on argon
for both CC [16, 17] and neutral-current (NC) interac-
tions [18, 19]. This work presents the first measurement

of
(—)

ν e CC1π± on argon. The total interaction cross sec-
tion is reported along with differential cross sections in
electron energy, electron and pion angles, and electron-
pion opening angle. These measurements are comple-

mentary to the existing suite of
(—)

ν µ measurements.
Simulation and reconstruction .— The NuMI neu-

trino flux is simulated with GEANT4 v4.10.4 [20–23] con-
strained with available hadron production data using the

PPFX software package [24]. The integrated flux of
(—)

ν e

with energy over 60 MeV is 1.86 × 10−11/cm2/POT in
FHC mode and 1.69 × 10−11/cm2/POT in RHC mode.
The combined FHC and RHC integrated flux is calcu-
lated by weighting the contributions from each horn-
current mode according to the accumulated POT in that

mode. The resulting combined integrated
(—)

ν e flux is
1.77× 10−11/cm2/POT.
The LArSoft software framework [25] is used

to perform simulation and reconstruction. Neu-
trino interactions are modeled using the GENIE

v3.0.6 G18 10a 02 11a event generator [26] with
the MicroBooNE tune applied [27]. In partic-
ular, resonant pion production is simulated us-
ing the Kuzmin-Lyubushkin-Naumov Berger-Sehgal

model [28–31] and coherent pion production using the
Berger-Sehgal model [32]. Propagation of the final
state particles through the detector is then performed
using GEANT4 v4 10 3 p03c with the QGSP BERT physics

FIG. 1. Event display of a candidate
(—)

ν e CC1π
±

interaction.

list [20–22]. This is followed by simulation of the pro-
duced ionization electrons and scintillation light and the
subsequent detector response [33, 34]. Simulated neu-
trino interactions are overlaid onto data collected while
the beam is off providing data-based modeling of cosmic-
ray induced interactions and detector noise. The Monte-
Carlo (MC) prediction consists of simulated neutrino in-
teractions within the detector, simulated interactions up-
stream of the detector (out-of-cryostat), and data col-
lected with the beam off to model beam spills where no
neutrino interaction occurs (EXT).

Reconstruction is performed using the Pandora

pattern-recognition toolkit. This uses a multi-algorithm
approach to identify neutrino interactions from cosmic-
ray-induced backgrounds and to reconstruct each result-
ing particle. Each particle associated with the neutrino
interaction is categorized as a track (muons, pions, pro-
tons) or an electromagnetic shower (electrons, photons).
A detailed description of the performance of the Pandora
reconstruction in MicroBooNE can be found in Ref. [35].
Following the Pandora reconstruction, particle identifi-
cation based on calorimetric and topological informa-
tion [36, 37] is performed. Finally, energy reconstruction
is performed using particle range for tracks and through
calorimetry for showers.

Signal, selection and observables.— Signal events
are defined as νe or

—

νe CC interactions that contain an
outgoing electron or positron with kinetic energy KE

e
± >

30MeV, a single charged pion with KE
π
± > 40MeV,

zero neutral pions or heavier mesons, and any number
of outgoing protons or neutrons. The signal definition
thresholds are guided by the reconstruction thresholds
for each particle type. In addition, the opening-angle be-
tween the electron and charged pion is required to be
θ
eπ

± < 170◦. This removes a region of phase-space,
containing less than 0.5% of predicted signal events, for
which the reconstruction performance is poor. Figure 1

shows a candidate
(—)

ν e CC1π± interaction matching the
signal definition that is selected in MicroBooNE data. A
high energy electromagnetic shower is visible along with
a single track that is consistent with a charged pion.
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The event selection expands upon tools developed

in previous MicroBooNE
(—)

ν e analyses [9–11, 38, 39].

Charged current
(—)

ν e interactions are first identified
through the presence of an electromagnetic shower con-
sistent with an electron. Tracks present in the event are
then assumed to have originated from either protons or
charged pions. These are distinguished based on their
differing ionization profiles or the presence of pion re-
interactions. The focus on first identifying charged cur-

rent
(—)

ν e interactions avoids the need to distinguish be-
tween final state muons and charged pions that are oth-
erwise more challenging to separate.

Well-reconstructed candidate events are first identified
that have at least one electromagnetic shower and at
least one track contained within the instrumented vol-
ume. Next, a set of simple cuts are used to remove
obvious background events. Cosmic-ray-induced interac-
tions are rejected through Pandora classification based on
topological characteristics. Electromagnetic showers re-
sulting from neutral pion decays to photons are rejected
by applying cuts on three features: the fraction of en-
ergy in the leading shower compared to all showers; the
shower start position relative to the interaction vertex;

and the transverse spread of the shower. Finally,
(—)

ν e in-
teractions containing protons but not pions (referred to

subsequently as
(—)

ν e CC Np) are rejected by requiring at
least one track has an ionization profile (dE/dx) that is
inconsistent with a stopping proton Bragg peak hypoth-
esis [40].

After these initial cuts, more sophisticated methods are
applied to refine the event selection further focusing on
background suppression through the use of two Boosted
Decision Trees (BDTs) trained with XGBoost [41]. The
BDTs are trained separately for FHC and RHC modes
accounting for differences in neutrino composition and
energies.

The first BDT focuses on the shower information to
distinguish between electrons and photons from neutral

pion backgrounds (
(—)

ν e CC π0,
(—)

ν µ CC π0 and NC π0). It
uses both calorimetric and topological information about
the primary shower, any secondary showers if present,
and any shower-like clusters of charge identified close to
the neutrino interaction.

The second BDT focuses on the track information and
aims to distinguish between charged pions and protons,

in particular targeting remaining
(—)

ν e CC Np interactions
where the proton does not have a clear Bragg peak and,
hence, is not rejected at the previous stage. This BDT
uses the dE/dx of the track compared to different particle
hypotheses along with topological information focusing
on the ends of tracks to identify pion re-interactions or
decays. Interactions are selected where only one track is
identified as a charged pion candidate, with any number
of additional proton candidates allowed.

Figure 2 shows the distribution of scores for the π0-
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FIG. 2. Distribution of scores for (a) the π
0
-rejection BDT

and (b) the
(—)

ν e CC Np-rejection BDT compared with FHC
mode data. The shaded band shows the systematic and sta-
tistical uncertainty on the MC prediction and the black points
show the data with statistical uncertainties. The dashed lines
show the cuts applied, where events to the right are selected.

rejection BDT and
(—)

ν e CC Np-rejection BDT compared

with data. The
(—)

ν e CC Np-rejection BDT is shown after
the cut on the π0-rejection BDT has been applied. Both
are shown for FHC mode; RHC mode can be found in
the Supplemental Material [14]. Both BDTs achieve good
signal-background separation for their target topologies.
For the π0 rejection, 99.2% of π0 induced photon show-

ers are removed while keeping 42.0% of
(—)

ν e induced elec-

tron showers. For the
(—)

ν e CC Np rejection, 94.3% of
(—)

ν e

CC Np interactions are rejected while keeping 67.1% of
(—)

ν e CC π± interactions. In addition, excellent data–MC
agreement within statistical and systematic uncertainties
is seen across the full BDT score distributions. A full
description of the BDT input variables along with data–
MC comparisons used can be found in the Supplemental
Material [14].

Candidate
(—)

ν e CC π± interactions are selected with
efficiencies of 6.2% and 5.8% and purities of 57.3% and
58.5% for the FHC and RHC beam periods, respec-
tively. Further details on the selection performance can
be found in the Supplemental Material [14]. In total,
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116 candidate events pass the selection in the combined
2.0× 1021 POT data sample. The selected signal events
are predicted to be 78% νe interactions and 22%

—

νe in-
teractions. They are dominated by resonant production
(85%), with smaller contributions from deep-inelastic
scattering (11%), quasi-elastic interactions (2%) and co-
herent interactions (2%).

The observables considered are: the total rate; the elec-
tron energy, Ee; the electron and pion angles, θe and θπ,
with respect to the neutrino direction; and the electron-
pion opening angle, θeπ. Since MicroBooNE is off-axis
to the NuMI beam, the exact neutrino direction is not
known in data. To reconstruct angles relative to the neu-
trino direction, neutrinos are assumed to be produced at
the NuMI target position. This gives an effective ap-
proximation of the neutrino direction with 95% of signal
events having an approximated direction within 3◦ of the
true direction. In simulation, the true direction is known
and hence the smearing arising from this approximation
can be accounted for during unfolding [10]. Details on
the performance of this approximation can be found in
the Supplemental Material [14]. The reconstruction res-
olution is approximately 17% for Ee, 10% for θe, 10% for
θπ and 9% for θeπ.

Each observable is binned such that there are five bins
with approximately ten expected signal events each. In
the case of Ee, the highest energy bin also serves as an
overflow bin. For each observable, good data–MC agree-
ment is observed within uncertainties. The selected event
distributions can be found in the Supplemental Mate-
rial [14]

The largest backgrounds are interactions producing

neutral pions (13.0% of passing events) and
(—)

ν e CC Np in-
teractions (11.7% of passing events). Two sidebands are
constructed to assess the agreement between data and
simulation for these backgrounds. A π0-rich sideband is
constructed by reversing the π0-rejection BDT cut. This
results in a sample with 68.8% purity of π0-containing

interactions with a mixture of
(—)

ν e CC π0,
(—)

ν µ CC π0 and

NC π0 topologies. A
(—)

ν e CC Np-rich sideband is con-

structed by reversing both the
(—)

ν e CC Np-rejection BDT
cut and the proton Bragg peak cut. This results in a

sample with 77.6% purity of
(—)

ν e CC Np interactions. The
level of agreement with data is assessed across each ob-
servable considered for both sidebands. Good data–MC
agreement is seen across all distributions indicating the
background modeling is sufficient to proceed with cross
section extraction. The sideband selected event distribu-
tions can be found in the Supplemental Material [14].

Cross section extraction and uncertainties.—
The flux-averaged total cross section and differential
cross sections as a function of true kinematic variables
are reported. The cross sections are extracted using
the Wiener singular value decomposition unfolding tech-
nique [42] using a first-derivative regularization term.

The impact of the regularization is encoded in a regu-
larization matrix that can be applied to generator pre-
dictions to allow direct comparison with the extracted
cross sections in the regularized truth space. A block-
wise approach to unfolding is used allowing correlations
between bins in different variables to be evaluated and
reported [43].
Uncertainties on the extracted cross sections are as-

sessed from a variety of sources. The statistical and sys-
tematic uncertainties are encoded in a covariance matrix
using a block-wise formalism [43]. The total covariance
matrix is constructed by summing the covariance matri-
ces of each individual uncertainty.
Systematic uncertainties are considered on: the neu-

trino flux from hadron production and beam-line geome-
try modeling [23, 24]; the neutrino interaction cross sec-
tion modeling with GENIE [27]; secondary particle re-
interactions [44]; detector response modeling including
the scintillation light yield, recombination model, space
charge effects [45], and ionization signal response [46];
out-of-cryostat interaction modeling; the number of ar-
gon targets; and POT counting. In the unfolded re-
sults, the dominant systematic uncertainty arises from
the neutrino flux modeling (∼20–30%) due to the chal-
lenges in simulating the 8◦ off-axis NuMI beam. This is
followed by detector response modeling (∼15%), predom-
inantly from recombination modeling due to the reliance
on calorimetric variables to identify charged pions; and
cross section modeling (∼10%). The other sources of sys-
tematic uncertainty are subdominant.
Statistical uncertainties on the data and simulation are

evaluated using Poisson uncertainties. Data statistical
uncertainties are subdominant for the total cross-section
measurement at around 10% but are comparable with
systematic uncertainties or dominant for the differential
cross-section measurements at around 30%. The total
covariance and correlation matrices are reported in the
Supplemental Material [14].
The robustness of the unfolding procedure and regular-

ization is assessed using fake data produced by the GENIE
and NuWro 19.02.2 [47] generator models. These fake-
data tests motivated expanding the cross section model-
ing uncertainty by treating the NuWro sample as an ad-
ditional systematic universe [48].
Results.— The extracted total cross section is

shown in Table I and differential cross sections in
Ee, θe, θπ and θeπ are shown in Fig. 3. The dif-
ferential cross sections are presented in regularized
truth space described by the regularization matrix
available in the Supplemental Material [14]. The
unfolded data is compared with generator predictions
from NuWro 21.09.2 [47], NEUT 5.4.0.1 [49], GiBUU

2025 [50], GENIE 3.0.6 G18 10a 02 11a MicroBooNE

tune [27] (labeled GENIE 3.0.6 G18µB), and GENIE

3.4.2 AR23 20i 00 000 [26] (labeled GENIE 3.4.2

AR23). Resonant pion production is simulated us-
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FIG. 3. Extracted differential cross sections in (a) electron energy, (b) electron angle, (c) pion angle and (d) electron-pion
opening angle compared with generator predictions. The unfolded data points show both statistical and systematic uncertainties.

Generator σ [10
−39

cm
2
/nucleon] χ

2
/nbins

Unfolded Data 0.93 ± 0.13 (stat.) ± 0.27 (syst.)

NuWro 21.09.2 0.76 0.30/1
NEUT 5.4.0.1 0.83 0.11/1
GiBUU 2025 0.74 0.42/1
GENIE 3.4.0 AR23 0.62 1.11/1
GENIE 3.0.6 G18 µB 0.68 0.68/1

TABLE I. Extracted total cross section compared with pre-
dictions from generators.

ing the Kuzmin-Lyubushkin-Naumov Berger-Sehgal

model [28–31] in GENIE, the Adler-Rarita-Schwinger

formalism [51] in NuWro, and the Rein-Sehgal model in
NEUT [52]. Coherent pion production is simulated with
the Berger-Sehgal [32] model in GENIE, NuWro and
NEUT. GiBUU models resonant pion production following
the MAID analysis [53] and does not simulate coherent
pion production.

The total cross section is measured to be (0.93 ± 0.13
(stat.) ± 0.27 (syst.)) ×10−39 cm2/nucleon. This is con-
sistent with the predictions from each of the generators
considered. The data slightly prefers the higher cross
sections predicted by NEUT, NuWro and GiBUU compared
with the lower cross sections predicted by GENIE. This
could suggest a slight preference for the treatment of res-

onant pion production or nuclear medium effects in these
models. However, the sensitivity of the measurement is
limited by the large systematic uncertainties on the flux
modeling.

The extracted differential cross sections in Ee, θe, θπ
and θeπ are all consistent with the generator predictions.
The preference for higher cross sections results in lower
χ2 for NEUT, NuWro and GiBUU in Ee, θe and θeπ; whereas
these models have a higher χ2 for θπ hinting at possible
shape disagreement in this variable. The smallest χ2 are
seen for Ee where there is minimal shape difference be-
tween the data and the generator predictions. The largest
χ2 are seen for θeπ driven by the smallest opening angle
bin where, in particular, GENIE and GiBUU underpredict
the cross section. However, due to the large statistical
and flux uncertainties, all models lie within or close to 1σ
of the data suggesting in general good modeling of this
process within the sensitivity of this measurement. To
achieve greater model separation, future measurements
would require greater statistics, potentially through im-
proved reconstruction, and improved flux modeling. In
particular, additional hadron production data to con-
strain the off-axis NuMI flux could significantly reduce
the associated uncertainties.

Conclusions.— We have presented the first mea-

surement of the flux-averaged
(—)

ν e charged current sin-
gle charged pion production cross section on argon us-
ing the MicroBooNE detector. The full NuMI beam
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data set accumulated by MicroBooNE is used for the
first time corresponding to a total exposure of 2.0× 1021

POT with mean
(—)

ν e energy of 730MeV. The total cross
section is measured to be (0.93 ± 0.13 (stat.) ± 0.27
(syst.))×10−39 cm2/nucleon. Differential cross sections
are also reported as functions of electron energy, the
electron and pion angles with respect to the neutrino di-
rection, and the electron-pion opening angle. These are
found to be in good agreement with generator predic-
tions within uncertainties. This is the first measurement
of pion production in

(—)

ν e interactions on argon, one of
the dominant interaction modes at the energies of the
DUNE neutrino flux. It is essential to understand this
process in order to facilitate the DUNE physics program,
and direct measurements will have a critical impact to
motivate modeling improvements. While this is the first
time this process has been measured, the measurement
is limited by statistical uncertainties and the challenges
arising from the off-axis flux; future experiments in the
SBN program [2] and the DUNE near detector [54] are
expected to be able to improve on this.
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